IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

特許7465641貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-03
(45)【発行日】2024-04-11
(54)【発明の名称】貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法
(51)【国際特許分類】
   F22G 5/12 20060101AFI20240404BHJP
   F22B 1/18 20060101ALI20240404BHJP
   F22B 29/06 20060101ALI20240404BHJP
【FI】
F22G5/12 B
F22B1/18 B
F22B29/06
【請求項の数】 8
(21)【出願番号】P 2019148835
(22)【出願日】2019-08-14
(65)【公開番号】P2021032420
(43)【公開日】2021-03-01
【審査請求日】2022-08-01
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】馬場 寿宏
(72)【発明者】
【氏名】堂本 和宏
(72)【発明者】
【氏名】三田 尚
【審査官】古川 峻弘
(56)【参考文献】
【文献】特開2006-125760(JP,A)
【文献】特許第5840032(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
F22G 1/00-7/14
F22B 1/00-37/78
(57)【特許請求の範囲】
【請求項1】
直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御装置であって、
前記蒸気の温度が目標蒸気温度になるように、前記貫流ボイラの水燃比を制御可能に構成された水燃比制御部と、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御可能に構成されたスプレイ制御部と、
前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出可能に構成された蒸気温度検出部と、
を備え、
前記複数の過熱器は、
前記火炉水冷壁からの蒸気を過熱可能に構成された第1の過熱器と、
前記第1の過熱器からの蒸気を過熱可能に構成された第2の過熱器と、
前記第2の過熱器からの蒸気を過熱可能に構成された第3の過熱器と、
を含み、
前記複数のスプレイは、
前記第1過熱器の出口側に設けられた第1スプレイと、
前記第2過熱器の出口部に設けられた第2スプレイと、
を含み、
前記スプレイ制御部は、
前記蒸気の温度が前記目標蒸気温度になり、且つ、前記第2スプレイによる減温量が前記目標減温量になるように、前記第2スプレイを制御するとともに、前記第2の過熱器の出口側における蒸気温度が所定の目標値になるように、前記第1スプレイを制御し、又は、
前記第2の過熱器の出口側における蒸気温度が所定の目標値になり、且つ、前記第1スプレイによる減温量が前記目標減温量になるように、前記第1スプレイを制御するとともに、前記蒸気の温度が前記目標蒸気温度になるように前記第2スプレイを制御し
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定されるように構成された、貫流ボイラの制御装置。
【請求項2】
前記蒸気温度検出部の検出値が前記目標蒸気温度より低い場合、前記バイアス値の符号は正に設定されるように構成された、請求項1に記載の貫流ボイラの制御装置。
【請求項3】
前記蒸気温度検出部の検出値が前記目標蒸気温度より高い場合、前記バイアス値の符号は負に設定されるように構成された、請求項1又は2に記載の貫流ボイラの制御装置。
【請求項4】
前記バイアス値の絶対値は、前記偏差に対して増加するように設定される、請求項1から3のいずれか一項に記載の貫流ボイラの制御装置。
【請求項5】
前記減温量は前記スプレイ制御部の制御対象となる前記スプレイの上流側及び下流側における温度検出値に基づいて算出される、請求項1からのいずれか一項に記載の貫流ボイラの制御装置。
【請求項6】
前記貫流ボイラは、石炭又は油を燃料とする石炭焚きボイラである、請求項1からのいずれか一項に記載の貫流ボイラの制御装置。
【請求項7】
前記貫流ボイラと、
請求項1からのいずれか一項に記載の制御装置と、
前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
前記タービンによって駆動可能に構成された発電機と、
を備える、発電プラント。
【請求項8】
直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
前記蒸気の温度が目標蒸気温度になるように、前記貫流ボイラの水燃比を制御する水燃比制御工程と、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御工程において制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出する蒸気温度検出工程と、
を備え、
前記複数の過熱器は、
前記火炉水冷壁からの蒸気を過熱可能に構成された第1の過熱器と、
前記第1の過熱器からの蒸気を過熱可能に構成された第2の過熱器と、
前記第2の過熱器からの蒸気を過熱可能に構成された第3の過熱器と、
を含み、
前記複数のスプレイは、
前記第1過熱器の出口側に設けられた第1スプレイと、
前記第2過熱器の出口部に設けられた第2スプレイと、
を含み、
前記スプレイ制御工程では、
前記蒸気の温度が前記目標蒸気温度になり、且つ、前記第2スプレイによる減温量が前記目標減温量になるように、前記第2スプレイを制御するとともに、前記第2の過熱器の出口側における蒸気温度が所定の目標値になるように、前記第1スプレイを制御し、又は、
前記第2の過熱器の出口側における蒸気温度が所定の目標値になり、且つ、前記第1スプレイによる減温量が前記目標減温量になるように、前記第1スプレイを制御するとともに、前記蒸気の温度が前記目標蒸気温度になるように前記第2スプレイを制御し
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出工程において検出された検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される、貫流ボイラの制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法に関する。
【背景技術】
【0002】
蒸気を生成可能なボイラ装置は、蒸気エネルギを利用して発電を行う火力発電所のような発電プラントをはじめとして、様々な用途で用いられている。この種のボイラ装置の一方式として、貫流ボイラが知られている。
【0003】
特許文献1には貫流ボイラの一例として、火炉で生成された蒸気が流れる流路に対して、直列に設けられた複数の過熱器と、各過熱器の出口側にスプレイ可能な複数のスプレイとを備える貫流ボイラが開示されている。この特許文献1に開示された貫流ボイラでは、火炉出口側及び最下流側の過熱器出口側における蒸気温度が所定の設定値(目標蒸気温度)になるように水燃比を制御することで、蒸気温度の調整が可能に構成されている。
【0004】
また特許文献2では、蒸気発生器の下流側に直列配置された上流過熱器群と最終過熱器との間に最終過熱低減器(スプレイ)が配置された貫流ボイラが開示されている。この特許文献2に開示された貫流ボイラでは、最終過熱器の出口側における蒸気温度が所定の設定値(最終目標蒸気温度)になるように最終過熱低減器による水プレイ量を制御するとともに、最終過熱低減器の上流側温度が所定の設定値になるように燃料の燃焼量を制御するように構成されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5840032号公報
【文献】特許第4453858号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記特許文献1及び2のような貫流ボイラでは、火炉水冷壁からの蒸気に対する各過熱器による昇温量、及び、各スプレイによる減温量、及び、燃料供給量を調整することで、最終的な蒸気温度が目標蒸気温度になるとともに、蒸気流路の各点における温度分布である蒸気温度プロファイルが理想的な設計温度プロファイルになるように各種の制御や調整をする事が望まれる。
【0007】
ところで貫流ボイラの運用時には、様々な要因によって貫流ボイラの熱収支バランスが変化し、蒸気温度プロファイルが設計温度プロファイルから乖離してしまうことがある。例えば、経年に伴って蒸気流路の伝熱面にスケール等の汚れが生じると、蒸気流路における蒸気温度の検出値が低下したり、過熱器による過熱性能が低下する場合がある。また火炉水冷壁に投入される燃料の種類が変更されることで、火炉水冷壁や過熱器による伝熱が増加する場合がある。このように蒸気温度プロファイルが設計プロファイルから乖離すると、貫流ボイラを構成する各部材の予寿命に影響を及ぼすなど、貫流ボイラの信頼性や品質に影響を与えるおそれがある。
【0008】
本開示の幾つかの態様は上述の事情に鑑みなされたものであり、貫流ボイラの熱収支条件が変化することに伴って、蒸気温度プロファイルバランスが設計温度プロファイルから乖離することを抑制可能な貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本開示の幾つかの態様に係る貫流ボイラの制御装置は、上記課題を解決するために、
直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御装置であって、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御可能に構成されたスプレイ制御部と、
前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側における蒸気温度を検出可能に構成された蒸気温度検出部と、
を備え、
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定されるように構成される。
【0010】
本開示の幾つかの態様に係る発電プラントは、上記課題を解決するために、
前記貫流ボイラと、
本開示の幾つかの態様に係る制御装置と、
前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
前記タービンによって駆動可能に構成された発電機と、
を備える。
【0011】
本開示の幾つかの態様に係る貫流ボイラの制御方法は、上記課題を解決するために、
直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側における蒸気温度を検出する蒸気温度検出工程と、
を備え、
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される。
【発明の効果】
【0012】
本開示の幾つかの態様によれば、貫流ボイラの熱収支条件が変化することに伴って、蒸気温度プロファイルバランスが設計温度プロファイルから乖離することを抑制可能な貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法を提供できる。
【図面の簡単な説明】
【0013】
図1】本開示の一態様に係る発電プラントの全体構成を示す概略図である。
図2図1の貫流ボイラの構成を蒸気温度プロファイルとともに示す概略構成図である。
図3】本開示の一態様に係る制御装置の内部構成を示すブロック図である。
図4図3の制御装置によって実施される貫流ボイラの制御方法を工程毎に示すフローチャートである。
図5A図3の制御装置による蒸気温度プロファイルの推移を示す一例である。
図5B図3の制御装置による蒸気温度プロファイルの推移を示す一例である。
図5C図3の制御装置による蒸気温度プロファイルの推移を示す一例である。
図6A図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。
図6B図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。
図6C図3の制御装置による蒸気温度プロファイルの推移を示す他の例である。
図7】本開示の他の態様に係る制御装置の内部構成を示すブロック図である。
図8図7の制御装置によって実施される貫流ボイラの制御方法を工程毎に示すフローチャートである。
図9A図7の制御装置による蒸気温度プロファイルの推移を示す一例である。
図9B図7の制御装置による蒸気温度プロファイルの推移を示す一例である。
図9C図7の制御装置による蒸気温度プロファイルの推移を示す一例である。
図10A図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。
図10B図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。
図10C図7の制御装置による蒸気温度プロファイルの推移を示す他の例である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
【0015】
<発電プラント>
図1は本開示の一態様に係る発電プラント100の全体構成を示す概略図である。発電プラント100は、蒸気を生成可能な貫流ボイラ1と、貫流ボイラ1からの蒸気を用いて駆動可能に構成されたタービン110と、タービン110によって駆動可能に構成された発電機120と、を備える。
【0016】
貫流ボイラ1は、燃料を燃焼させることで蒸気を生成可能に構成された蒸気発生器の一例である。貫流ボイラ1で生成された蒸気は、蒸気供給路112を介してタービン110に供給される。タービン110は、蒸気供給路112を介して供給された蒸気によって駆動される。タービン110の出力軸には発電機120が連結されており、タービン110の回転エネルギが電気エネルギに変換される。発電機120で発生された電気エネルギは、所定の経路を介して電力系統(不図示)に供給される。
【0017】
蒸気供給路112には、貫流ボイラ1からタービン110に供給される蒸気の流量を調整するための蒸気弁114(主蒸気弁)が設置される。蒸気弁114の開度は、例えば、貫流ボイラ1からタービン110に供給される蒸気流量が、発電プラント100に対する負荷指令値Ldに基づいて設定される所定の目標流量値になるように制御される。
【0018】
発電プラント100は、発電プラント100の各構成要素を制御するための制御装置2を有する。制御装置2は、例えばコンピュータのような電子演算装置からなるハードウェア構成を有し、本開示の幾つかの態様に係る制御方法を実施するためのプログラムがインストールされることで、本開示の幾つかの態様に係る制御装置として機能可能に構成される。
【0019】
制御装置2は、発電プラント100を総合的に制御可能な制御ユニットである。本明細書では、制御装置2が実施可能な様々な制御のうち貫流ボイラ1に関する制御について具体的に説明することとし、その他の制御については、特段の記載がない限りにおいて、発電プラント100に関する公知の制御を適宜実施可能である。
【0020】
制御装置2による蒸気温度制御は、タービン110に供給される蒸気温度(後述の第3蒸気温度T3SO)が予め設定される目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)になるように行われる。この目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)は、オペレータによってマニュアル的に設定されてもよいし、制御装置2が受信する所定の信号に基づいて自動的に設定されてもよい。後者の場合、目標蒸気温度(後述の第3目標蒸気温度T3SOtarget)は、例えば発電プラント100の電力供給先である電力系統の需給状態に応じて発電プラント100が取得する負荷指令値Ldに応じて設定される。
【0021】
<貫流ボイラの構成>
続いて上記構成を有する発電プラント100が有する貫流ボイラ1の具体的構成について図2を参照して説明する。図2図1の貫流ボイラ1の構成を蒸気温度プロファイルとともに示す概略構成図である。
【0022】
貫流ボイラ1は、蒸気を生成可能な火炉水冷壁4(Water Wall)を有する。火炉水冷壁4は、その内部に冷却水が導入可能な伝熱管を有し、燃料(例えば石炭を粉砕して生成された微粉炭)を燃焼させることで伝熱管を流れる冷却水を加熱することで蒸気を生成可能に構成される。火炉水冷壁4への水及び燃料の供給は、例えば、不図示の給水ポンプユニットや燃料供給ユニットによって行われる。火炉水冷壁4への燃料流量は例えば発電プラント100に対する負荷指令値Ldに応じて基本的に決定されるが、実際に生成される蒸気温度と目標蒸気温度との偏差に応じて、燃料流量を補正するための補正信号である水燃比は、後述するように、制御装置2の制御パラメータの一つとして制御される。
【0023】
火炉水冷壁4の下流側には、火炉水冷壁4で生成された蒸気を過熱するための複数の過熱器6が設けられる。複数の過熱器6は、火炉水冷壁4からの蒸気が流れる蒸気流路8に対して互いに直列に設けられる。図2に示す態様では、複数の過熱器6は、第1過熱器6aと、第2過熱器6bと、第3過熱器6cと、を含む。第1過熱器6aは、火炉水冷壁4の下流側に配置されることで、火炉水冷壁4で生成された蒸気を過熱可能に構成される。第2過熱器6bは、第1過熱器6aの下流側に配置されることで、第1過熱器6aで過熱された蒸気を更に過熱可能に構成される。第3過熱器6cは、第2過熱器6bの下流側に配置されることで、第2過熱器6bで過熱された蒸気を更に過熱可能に構成される。
【0024】
尚、図2では、貫流ボイラ1が3つの過熱器6を備える場合を例示しているが、貫流ボイラ1が備える過熱器6の数はこれに限定されない。
【0025】
蒸気流路8には、蒸気流路8を流れる蒸気に対して冷却水をスプレイ可能に構成された複数のスプレイ10が設けられる。図2の態様では、複数のスプレイ10は、蒸気流路8のうち第1過熱器6aの出口側(第1過熱器6aと第2過熱器6bとの間)に設けられた第1スプレイ10aと、第2過熱器6bの出口側(第2過熱器6bと第3過熱器6cとの間)に設けられた第2スプレイ10bと、を含む。第1スプレイ10aは、第1過熱器6aからの蒸気に対して冷却水をスプレイすることにより、第1過熱器6aによって昇温された蒸気を減温して蒸気温度の調整を行う。第2スプレイ10bは、第2過熱器6bからの蒸気に対して冷却水をスプレイすることにより、第2過熱器6bによって昇温された蒸気を減温して蒸気温度の調整を行う。
【0026】
複数のスプレイ10は、火炉水冷壁4に対する給水の一部を、蒸気流路8に対してスプレイ可能に構成される。具体的には、火炉水冷壁4に対する給水のメイン給水路12には、スプレイ10側に分岐するサブ給水路14が設けられる。サブ給水路14は、複数のスプレイ10の各々に対して給水を並列に供給可能に構成される。このように複数のスプレイ10では、火炉水冷壁4に供給される給水の一部をスプレイするため、スプレイ10でのスプレイ量が増加すると火炉水冷壁4に対する給水量が減少し、逆に、スプレイ10でのスプレイ量が減少すると火炉水冷壁4に対する給水量が増加する。
【0027】
第1スプレイ10a及び第2スプレイ10bは、それぞれスプレイ量を可変に調整するために開閉可能な第1スプレイ弁16a、第2スプレイ弁16bを有する。第1スプレイ弁16a、第2スプレイ弁16bの開度は、制御装置2からの制御信号に基づいて、互いに独立に制御可能に構成される。
【0028】
尚、図2では、貫流ボイラ1が2つのスプレイ10を備える場合を例示しているが、貫流ボイラ1が備えるスプレイ10の数はこれに限定されない。スプレイ10の数は、例えば、最下流側の過熱器6を除く他の過熱器6の出口側にそれぞれ配置されるように設定されるとよい。
【0029】
火炉水冷壁4で生成された蒸気は、複数の過熱器6及び複数のスプレイ10によって温度が調整されることで、貫流ボイラ1からタービン110に供給される蒸気温度が目標蒸気温度になるように制御される。図2に示すように、火炉水冷壁4からの蒸気は、まず第1過熱器6aを通過することで第1蒸気温度T1SOまで昇温される。第1過熱器6aを通過した蒸気は、第1過熱器6aの出口側において第1スプレイ10aによって第1減温量1DSDT分が冷却される。そして第1スプレイ10aによって冷却された蒸気は、第2過熱器6bを通過することで第2蒸気温度T2SOまで昇温される。第2過熱器6bを通過した蒸気は、第2過熱器6bの出口側において第2スプレイ10bによって第2減温量2DSDT分が冷却される。そして第2スプレイ10bによって冷却された蒸気は、第3過熱器6cを通過することで、貫流ボイラ1の最終的な出口温度である第3蒸気温度T3SOまで昇温される。
【0030】
このような図2に示される蒸気温度プロファイルは、基本的には、制御装置2によって貫流ボイラ1の各構成要素(火炉水冷壁4、複数の過熱器6及び複数のスプレイ10)を制御することにより、理想的な設計温度プロファイルPrになるように制御される(図2では、蒸気温度プロファイルが設計温度プロファイルPrに一致している状態を示している)。具体的には、制御装置2は貫流ボイラ1の所定の測定点に設けられた温度センサの検出値が、設計温度プロファイルPrに近づくように貫流ボイラ1の各構成要素を制御することで、蒸気温度プロファイルが設計温度プロファイルになるように管理される。
【0031】
しかしながら実際の貫流ボイラ1では、様々な要因によって貫流ボイラ1における熱収支バランスが変化し、蒸気温度プロファイルが設計温度プロファイルPrから乖離してしまうことがある。例えば、経年に伴って貫流ボイラ1内の各伝熱面にスケール等の汚れが生じると、貫流ボイラ1の所定の測定点に設けられた温度センサの検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下することがある。また火炉水冷壁4に投入される燃料の種類が変更されることで、火炉水冷壁4や第1過熱器6a~第3過熱器6cによる伝熱量が増減することがある。本開示の幾つかの実施形態では、このように蒸気温度プロファイルが設計温度プロファイルPrから乖離した場合に、以下に説明するように、制御装置2によって蒸気温度プロファイルが設計温度プロファイルPrに近づくように貫流ボイラ1が制御される。
【0032】
尚、蒸気流路8は各位置における蒸気温度が検出可能に構成されている。具体的には図2に示すように、第1過熱器6aの出口側における蒸気温度T1SO、第2過熱器6bの出口側における蒸気温度第2T2SO、第3過熱器6cの出口側における蒸気温度T3SO、第1スプレイ10aによる冷却後の蒸気温度T2SI、第2スプレイ10bによる冷却後の蒸気温度T3SIがそれぞれ検出可能に構成されている。これらの各温度は、例えば温度センサなどの検出用素子が配置されることで検出される。
【0033】
図3は本開示の一態様に係る制御装置2の内部構成を示すブロック図であり、図4図3の制御装置2によって実施される貫流ボイラ1の制御方法を工程毎に示すフローチャートである。
【0034】
図3に示すように、本態様に係る制御装置2は、火炉水冷壁4の水燃比を制御するための水燃比制御部50と、スプレイ10(第1スプレイ10a及び第2スプレイ10b)を制御するためのスプレイ制御部60と、スプレイ10の目標減温量に対するバイアス値を算出するためのバイアス値算出部70と、を備える。スプレイ制御部60は、第1スプレイ10aを制御するための第1スプレイ制御部60aと、第2スプレイ10bを制御するための第2スプレイ制御部60bと、を含む。
【0035】
水燃比制御部50は、貫流ボイラ1の最終的な蒸気温度である第3蒸気温度T3SOが、予め設定された第3目標蒸気温度T3SOtargetになるように、燃料流量補正として水燃比を制御する。具体的には、水燃比制御部50には、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第3過熱器6cより下流側での蒸気温度検出値)である第3蒸気温度T3SOと、予め設定された第3目標蒸気温度T3SOtargetとが入力される。水燃比制御部50は、第3蒸気温度T3SOと第3目標蒸気温度T3SOtargetとの偏差ΔT3SOを算出し、当該偏差ΔT3SOがゼロになるように(すなわち第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるように)水燃比制御信号を燃料流量補正として出力することにより、水燃比をフィードバック制御する。
【0036】
尚、第3目標蒸気温度T3SOtargetは、負荷指令値Ldに応じて貫流ボイラ1に対して要求される蒸気温度値として設定されてもよい。
【0037】
第2スプレイ制御部60bは、第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるとともに、第2減温量2DSDTが第2目標減温量2DSDTtargetになるように第2スプレイ10bを制御する。具体的には、第2スプレイ制御部60bには、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第3過熱器6cより下流側での蒸気温度検出値)である第3蒸気温度T3SOと、予め設定された第3目標蒸気温度T3SOtargetと、貫流ボイラ1の対応箇所でセンサ検出された実測値(例えば、第2過熱器6bと第3過熱器6cとの間の蒸気流路8のうち第2スプレイ10bによるスプレイ位置の上流側及び下流側でそれぞれ検出された蒸気温度検出値の差)である第2減温量2DSDTと、予め設定された第2目標減温量2DSDTtargetと、が入力される。第2スプレイ制御部60bは、第3蒸気温度T3SOが目標蒸気温度T3SOtargetになるとともに、第2スプレイ10bによる減温量2DSDTが目標減温量2DSDTtargetになるように、第2スプレイ弁16bの開度指令値(第2スプレイ弁開度信号)を出力することにより、第2スプレイ10bをフィードバック制御する。
【0038】
尚、第2減温量目標値2DSDTtargetは、負荷指令値Ldに応じて設定される。
【0039】
第1スプレイ制御部60aは、温度検出値T2S0及び目標温度T2SOtargetに基づいて、第1スプレイ弁16aの開度指令値(第1スプレイ弁開度信号)を出力することで、第1スプレイ10aのフィードバック制御を行う。つまり第1スプレイ制御部60aは、第2過熱器6bの出口側における蒸気温度が所定の目標値になるように第1スプレイ弁16aの開度信号を決定する。
【0040】
バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち、スプレイ制御部60によって減温量が制御されるスプレイ10(本態様では、第2スプレイ制御部60bによって減温量2DSDTが制御される第2スプレイ10b)のスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0に基づいて、第2目標減温量2DSDTに対するバイアス値αを算出する。
尚、バイアス値算出部70は、例えば偏差ΔT0を積分制御して、その出力をバイアス値αとして算出する。
【0041】
尚、蒸気温度T0は、第2スプレイ制御部60bによって減温量2DSDTが制御される第2スプレイ10bのスプレイ位置より上流側に設置された蒸気温度検出部72によって検出される。図5A図5C図6A図6Cに示す態様では、蒸気温度検出部72の一例として、蒸気流路8のうち火炉水冷壁4と第1過熱器6aとの間における蒸気温度T0が検出可能に構成されている。
【0042】
尚、目標蒸気温度T0targetは、負荷指令値Ldに応じて蒸気温度検出部72に対応する位置における蒸気温度T0として設定される。
【0043】
このような構成を有する制御装置2は、図4に示す制御を実施する。まず制御装置2は、蒸気流路8のうち例えば火炉水冷壁4の出口における蒸気温度を検出し(ステップS100)、蒸気温度プロファイルが設計温度プロファイルPrから乖離しているか否かを判定する(ステップS101)。
【0044】
そして蒸気温度プロファイルが設計温度プロファイルPrから乖離していると判定された場合(ステップS101:YES)、バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち第2スプレイ10bのスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0を算出し(ステップS102)、当該偏差T0に基づいてバイアス値αを算出する(ステップS103)。
【0045】
ここでバイアス値αの符号は、蒸気温度T0と目標蒸気温度T0targetとの大小関係に基づいて設定される。具体的には、蒸気温度T0が目標蒸気温度T0targetより低い場合、バイアス値の符号は正に設定される。逆に蒸気温度T0が目標蒸気温度T0targetより高い場合、バイアス値の符号は負に設定される。またバイアス値の絶対値は、偏差ΔT0に対して増加するように設定される。
【0046】
続いてスプレイ制御部60は、ステップS103で設定されたバイアス値αを第2目標減温量2DSDTtargetに加算し(ステップS104)、第2スプレイ10bによる第2減温量2DSDTが、バイアス値αが加算された第2目標減温量2DSDTtargetになるように第2スプレイ10bを制御する(ステップS105)。このように減温量が目標減温量になるように制御されるスプレイ弁の目標減温量に対してバイアス値αを加算することで、貫流ボイラ1の蒸気温度プロファイルを設計温度プロファイルPrに近づけることができる。
【0047】
ここで上記制御による蒸気温度プロファイルの推移について、より具体的に説明する。図5A図5C図3の制御装置2による蒸気温度プロファイルの推移を示す一例である。この例では図5Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより低温側に乖離している。このような要因として、例えば、経年に伴って蒸気流路8の伝熱面にスケール等の汚れが生じて、蒸気流路8における蒸気温度の検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下したり、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。
【0048】
この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより低温側に乖離しているため、図5Bに示すように、第2減温量目標値2DSDTtargetに対して正の符号を有するバイアス値αが加算される。これにより、スプレイ10側への給水量が増加するとともに、火炉水冷壁4への給水量が減少する。その結果、図5Cに示すように、蒸気温度プロファイルは全体的に高温側にシフトし、設計温度プロファイルPrに近づくように制御される。
【0049】
また図6A図6C図3の制御装置2による蒸気温度プロファイルの推移を示す他の例である。この例では図6Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより高温側に乖離している。このような要因として、例えば、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。
【0050】
この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより高温側に乖離しているため、図6Bに示すように、第2減温量目標値2DSDTtargetに対して負の符号を有するバイアス値αが加算される。これにより、スプレイ10側への給水量が減少するとともに、火炉水冷壁4への給水量が増加する。その結果、図6Cに示すように、蒸気温度プロファイルは全体的に低温側にシフトし、設計温度プロファイルPrに近づけられる。
【0051】
図7は本開示の他の態様に係る制御装置2の内部構成を示すブロック図である。本態様に係る制御装置2は、水燃比を制御するための水燃比制御部50と、スプレイ10(第1スプレイ10a及び第2スプレイ10b)を制御するためのスプレイ制御部60と、目標減温量に対するバイアス値を算出するためのバイアス値算出部70と、を備える。スプレイ制御部60は、第1スプレイ10aを制御するための第1スプレイ制御部60aと、第2スプレイ10bを制御するための第2スプレイ制御部60bと、を含む。
【0052】
水燃比制御部50は、第2蒸気温度T2SOが、予め設定された第2目標蒸気温度T2SOtargetになるように、水燃比を制御する。具体的には、水燃比制御部50には、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第2過熱器6bと第3過熱器6cとの間での蒸気温度検出値)である第2蒸気温度T2SOと、予め設定された第2目標蒸気温度T2SOtargetとが入力される。水燃比制御部50は、第2蒸気温度T2SOと第2目標蒸気温度T2SOtargetとの偏差ΔT2SOを算出し、当該偏差ΔT2SOがゼロになるように(すなわち第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるように)水燃比制御信号を燃料流量補正として出力することにより、水燃比をフィードバック制御する。
【0053】
尚、第2目標蒸気温度T2SOtargetは、負荷指令値Ldに応じて設定される。
【0054】
第1スプレイ制御部60aは、第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるとともに、第1減温量1DSDTが第1目標減温量1DSDTtargetになるように第1スプレイ10aを制御する。具体的には、第1スプレイ制御部60aには、貫流ボイラ1の対応箇所で検出された実測値(例えば、蒸気流路8のうち第2過熱器6bと第3過熱器6cとの間での蒸気温度検出値)である第2蒸気温度T2SOと、予め設定された第2目標蒸気温度T2SOtargetと、貫流ボイラ1の対応箇所でセンサ検出された実測値(例えば、第1過熱器6aと第2過熱器6bとの間の蒸気流路8のうち第1スプレイ10aによるスプレイ位置の上流側及び下流側でそれぞれ検出された蒸気温度検出値の差)である第1減温量1DSDTと、予め設定された第1目標減温量1DSDTtargetと、が入力される。第1スプレイ制御部60aは、第2蒸気温度T2SOが第2目標蒸気温度T2SOtargetになるとともに、第1スプレイ10aによる第1減温量1DSDTが第1目標減温量1DSDTtargetになるように、第1スプレイ弁16aの開度指令値(第1スプレイ弁開度信号)を出力することにより、第1スプレイ10aをフィードバック制御する。
【0055】
尚、第1目標減温量1DSDTtargetは、負荷指令値Ldに応じて設定される。
【0056】
第2スプレイ制御部60bは、第3蒸気温度T3SOが第3目標蒸気温度T3SOtargetになるように第2スプレイ弁16bの開度指令値(第2スプレイ弁開度信号)を出力することで、第2スプレイ10bのフィードバック制御を行う。
【0057】
バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち、スプレイ制御部60によって減温量が制御されるスプレイ10(本態様では、第1スプレイ制御部60aによって第1減温量1DSDTが制御される第1スプレイ10a)のスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0に基づいて、第1目標減温量1DSDTに対するバイアス値αを算出する。
【0058】
尚、蒸気温度T0は、第1スプレイ制御部60aによって第1減温量1DSDTが制御される第1スプレイ10aのスプレイ位置より上流側に設置された蒸気温度検出部72によって検出される。図9A図9C図10図10Cを参照して後述する態様では、蒸気温度検出部72の一例として、蒸気流路8のうち火炉水冷壁4と第1過熱器6aとの間における蒸気温度T0が検出可能に構成されている。
【0059】
このような構成を有する制御装置2は、図8に示す制御を実施する。図8図7の制御装置2によって実施される貫流ボイラ1の制御方法を工程毎に示すフローチャートである。
【0060】
まず制御装置2は、蒸気流路8のうち例えば火炉水冷壁4の出口部における蒸気温度を検出し(ステップS200)、蒸気温度プロファイルが設計温度プロファイルPrから乖離しているか否かを判定する(ステップS201)。そして蒸気温度プロファイルが設計温度プロファイルPrから乖離していると判定された場合(ステップS201:YES)、バイアス値算出部70は、第1過熱器6a~第3過熱器6cが設けられた蒸気流路8のうち第1スプレイ10aのスプレイ位置より上流側における蒸気温度T0と、予め設定された目標蒸気温度T0targetとの偏差ΔT0を算出し(ステップS202)、当該偏差T0に基づいてバイアス値αを算出する(ステップS203)。
【0061】
ここでバイアス値αの符号は、蒸気温度T0と目標蒸気温度T0targetとの大小関係に基づいて設定される。具体的には、蒸気温度T0が目標蒸気温度T0targetより低い場合、バイアス値の符号は正に設定される。逆に蒸気温度T0が目標蒸気温度T0targetより高い場合、バイアス値の符号は負に設定される。またバイアス値の絶対値は、偏差ΔT0に対して増加するように設定される。
【0062】
続いてスプレイ制御部60は、ステップS203で設定されたバイアス値αを第1目標減温量1DSDTtargetに加算し(ステップS204)、第1スプレイ10aによる第1減温量1DSDTが、バイアス値αが加算された第1目標減温量1DSDTtargetになるように第1スプレイ10aを制御する(ステップS205)。このように減温量が目標減温量になるように制御されるスプレイ弁の目標減温量に対してバイアス値αを加算することで、貫流ボイラ1の蒸気温度プロファイルを設計温度プロファイルPrに近づけることができる。
【0063】
ここで上記制御による蒸気温度プロファイルの推移について、より具体的に説明する。図9A図9C図7の制御装置2による蒸気温度プロファイルの推移を示す一例である。この例では図9Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより低温側に乖離している。このような要因として、例えば、経年に伴って蒸気流路8の伝熱面にスケール等の汚れが生じて、蒸気流路8における蒸気温度の検出値が低下したり、第1過熱器6a~第3過熱器6cによる過熱性能が低下したり、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。
【0064】
この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより低温側に乖離しているため、バイアス値算出部70は図9Bに示すように、偏差ΔT0に基づく絶対値を有し、且つ、正の符号を有するバイアス値αを算出する。その結果、図9Cに示すように、蒸気温度プロファイルは全体的に高温側にシフトし、設計温度プロファイルPrに近づけられる。
【0065】
また図10A図10C図7の制御装置2による蒸気温度プロファイルの推移を示す他の例である。この例では図10Aに示すように、貫流ボイラ1の蒸気温度プロファイルが、何らかの要因によって、設計温度プロファイルPrより高温側に乖離している。このような要因として、例えば、火炉水冷壁4に投入される燃料の種類が変更されたことが挙げられる。
【0066】
この場合、貫流ボイラ1の蒸気温度プロファイルは設計温度プロファイルPrより高温側に乖離しているため、バイアス値算出部70は図10Bに示すように、偏差ΔT0に基づく絶対値を有し、且つ、負の符号を有するバイアス値αを算出する。その結果、図10Cに示すように、蒸気温度プロファイルは全体的に低温側にシフトし、設計温度プロファイルPrに近づけられる。
【0067】
以上説明したように本開示の幾つかの態様によれば、貫流ボイラ1の熱収支条件が変化することに伴って、貫流ボイラ1の蒸気流路の各位置における蒸気温度プロファイルが設計温度プロファイルから乖離することを抑制可能な貫流ボイラ1の制御装置2、発電プラント100、及び、貫流ボイラ1の制御方法を提供できる。
【0068】
その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。
【0069】
上記各実施形態に記載の内容は、例えば以下のように把握される。
【0070】
(1)本開示の一態様に係る貫流ボイラの制御装置は、
直列に設けられた複数の過熱器(例えば上記実施形態の第1過熱器6a、第2過熱器6b、第3過熱器6c)、及び、火炉水冷壁(例えば上記実施形態の火炉水冷壁4)への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイ(例えば上記実施形態の第1スプレイ10a、第2スプレイ10b)によって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラ(例えば上記実施形態の貫流ボイラ1)の制御装置(例えば上記実施形態の制御装置2)であって、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量(例えば上記実施形態の第1減温量1DSDT又は第2減温量2DSDT)が目標減温量(例えば上記実施形態の第1目標減温量1DSDTtarget又は第2目標減温量2DSDTtarget)になるように制御可能に構成されたスプレイ制御部(例えば上記実施形態のスプレイ制御部60)と、
前記複数の過熱器が設けられた蒸気流路(例えば上記実施形態の蒸気流路8)のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出可能に構成された蒸気温度検出部(例えば上記実施形態の蒸気温度検出部72)と、
を備え、
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差(例えば上記実施形態の偏差ΔT0)に基づいて設定されるバイアス値(例えば上記実施形態のバイアス値α)を加算することで設定されるように構成される。
【0071】
上記(1)の態様によれば、スプレイの目標減温量に対してバイアス値が加算される。バイアス値は、減温量が目標減温量になるように制御されるスプレイのスプレイ位置より上流側における蒸気温度の目標蒸気温度に対する偏差に基づいて設定される。これにより、何らかの要因によって、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルから乖離した場合においても、蒸気温度プロファイルが設計温度プロファイルに近づくように蒸気温度を制御することができる。
【0072】
(2)他の態様では上記(1)の態様において、
前記蒸気温度検出部の検出値が前記目標蒸気温度より低い場合、前記バイアス値の符号は正に設定されるように構成される。
【0073】
上記(2)の態様によれば、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルに対して低温側に乖離した場合、バイアス値の符号が正に設定される。これにより、蒸気温度プロファイルを高温側にシフトし、設計温度プロファイルに近づけることができる。
【0074】
(3)他の態様では上記(1)又は(2)の態様において、
前記蒸気温度検出部の検出値が前記目標蒸気温度より高い場合、前記バイアス値の符号は負に設定されるように構成される。
【0075】
上記(3)の態様によれば、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルに対して高温側に乖離した場合、バイアス値の符号が負に設定される。これにより、蒸気温度プロファイルを低温側にシフトし、設計温度プロファイルに近づけることができる。
【0076】
(4)他の態様では上記(1)から(3)のいずれか一態様において、
前記バイアス値の絶対値は、前記偏差に対して増加するように設定される。
【0077】
上記(4)の態様によれば、蒸気流路における蒸気温度プロファイルと設計温度プロファイルとの乖離量が大きくなるに従ってバイアス値が増加するように設定される。これにより、蒸気温度プロファイルの設計温度プロファイルに対する乖離量が大きい場合には、大きなバイアス値を目標減温量に対して加算することで、蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。
【0078】
(5)他の態様では上記(1)から(4)のいずれか一態様において、
前記複数の過熱器は、
前記火炉水冷壁からの蒸気を過熱可能に構成された第1の過熱器(例えば上記実施形態の第1過熱器6a)と、
前記第1の過熱器からの蒸気を過熱可能に構成された第2の過熱器(例えば上記実施形態の第2過熱器6b)と、
前記第2の過熱器からの蒸気を過熱可能に構成された第3の過熱器(例えば上記実施形態の第3過熱器6c)と、
を含み、
前記複数のスプレイは、
前記第1過熱器の出口側に設けられた第1スプレイ(例えば上記実施形態の第1スプレイ10a)と、
前記第2過熱器の出口部に設けられた第2スプレイ(例えば上記実施形態の第2スプレイ10b)と、
を含む。
【0079】
上記(5)の態様によれば、複数の過熱器及び複数のスプレイを制御することによって、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。
【0080】
(6)他の態様では上記(5)の態様において、
前記スプレイ制御部は、前記第2スプレイによる減温量(例えば上記実施形態の第2減温量2DSDT)と前記目標減温量(例えば上記実施形態の第2目標減温量2DSDTtarget)との偏差に基づいて、前記第2スプレイを制御可能に構成される。
【0081】
上記(6)の態様によれば、第2スプレイによる減温量が目標減温量になるように第2スプレイが制御される貫流ボイラにおいて、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。
【0082】
(7)他の態様では上記(5)の態様において、
前記スプレイ制御部は、前記第1スプレイによる減温量(例えば上記実施形態の第1減温量1DSDT)が前記目標減温量(例えば上記実施形態の第1目標減温量1DSDTtarget)になるように、前記第1スプレイを制御可能に構成される。
【0083】
上記(7)の態様によれば、第1スプレイによる減温量が目標減温量になるように第1スプレイが制御される貫流ボイラにおいて、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。
【0084】
(8)他の態様では上記(1)から(7)のいずれか一態様において、
前記減温量は前記スプレイ制御部の制御対象となる前記スプレイの上流側及び下流側における温度検出値に基づいて算出される。
【0085】
上記(8)の態様によれば、スプレイによる減温量は、スプレイの上流側及び下流側における温度検出値に基づいて好適に算出される。
【0086】
(9)他の態様では上記(1)から(8)のいずれか一態様において、
前記貫流ボイラは、石炭又は油を燃料とする石炭焚きボイラである。
【0087】
上記(9)の態様によれば、石炭を微粉炭機で粉砕するプロセスがあることにより、運転制御による負荷指令値への応答性が低い石炭焚きボイラや、油焚きボイラを蒸気発生器として用いる発電プラントにおいても、火炉水冷壁からの蒸気温度プロファイルを設計温度プロファイルに好適に近づけることができる。
【0088】
(10)本開示の一態様に係る発電プラントは、
前記貫流ボイラと、
上記(1)から(9)のいずれか一態様の制御装置と、
前記貫流ボイラからの蒸気を用いて駆動可能に構成されたタービンと、
前記タービンによって駆動可能に構成された発電機と、
を備える。
【0089】
上記(10)の態様によれば、貫流ボイラの蒸気温度プロファイルが設計温度プロファイルから乖離する要因が生じた際にも、蒸気温度プロファイルを設計温度プロファイルに近づけることで、発電プラントのより安定的な運用が可能となり、良好な信頼性が得られる。
【0090】
(11)本開示の一態様に係る貫流ボイラの制御方法は、
直列に設けられた複数の過熱器、及び、火炉水冷壁への給水の一部を前記複数の過熱器の出口側にそれぞれスプレイ可能に構成された複数のスプレイによって、前記火炉水冷壁及び前記複数の過熱器で生成された蒸気の温度を調整可能な貫流ボイラの制御方法であって、
前記複数のスプレイの少なくとも一部による前記蒸気の減温量が目標減温量になるように制御するスプレイ制御工程と、
前記複数の過熱器が設けられた蒸気流路のうち、前記スプレイ制御部によって制御される前記スプレイのスプレイ位置より上流側に配置された前記過熱器より上流側における蒸気温度を検出する蒸気温度検出工程と、
を備え、
前記目標減温量は、基本目標減温量に対して、前記蒸気温度検出部の検出値と目標蒸気温度との偏差に基づいて設定されるバイアス値を加算することで設定される。
【0091】
上記(11)の態様によれば、スプレイの目標減温量に対してバイアス値が加算される。バイアス値は、減温量が目標減温量になるように制御されるスプレイのスプレイ位置より上流側における蒸気温度の目標蒸気温度に対する偏差に基づいて設定される。これにより、何らかの要因によって、蒸気流路における蒸気温度プロファイルが理想的な設計温度プロファイルから乖離した場合においても、蒸気温度プロファイルが設計温度プロファイルに近づくように蒸気温度を制御することができる。
【符号の説明】
【0092】
1 貫流ボイラ
2 制御装置
4 火炉水冷壁
6 過熱器
6a 第1過熱器
6b 第2過熱器
6c 第3過熱器
8 蒸気流路
10 スプレイ
10a 第1スプレイ
10b 第2スプレイ
12 メイン給水路
14 サブ給水路
16a 第1スプレイ弁
16b 第2スプレイ弁
50 水燃比制御部
60 スプレイ制御部
60a 第1スプレイ制御部
60b 第2スプレイ制御部
70 バイアス値算出部
72 蒸気温度検出部
100 発電プラント
110 タービン
112 蒸気供給路
114 蒸気弁
120 発電機
図1
図2
図3
図4
図5A
図5B
図5C
図6A
図6B
図6C
図7
図8
図9A
図9B
図9C
図10A
図10B
図10C