(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-03
(45)【発行日】2024-04-11
(54)【発明の名称】ガスセンサ及び保護カバー
(51)【国際特許分類】
G01N 27/409 20060101AFI20240404BHJP
【FI】
G01N27/409 100
(21)【出願番号】P 2020127253
(22)【出願日】2020-07-28
【審査請求日】2023-04-19
(31)【優先権主張番号】P 2019183072
(32)【優先日】2019-10-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004064
【氏名又は名称】日本碍子株式会社
(74)【代理人】
【識別番号】110000017
【氏名又は名称】弁理士法人アイテック国際特許事務所
(72)【発明者】
【氏名】足立 洋介
(72)【発明者】
【氏名】大森 丈史
【審査官】黒田 浩一
(56)【参考文献】
【文献】特開2017-223621(JP,A)
【文献】特開2016-109693(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/409
G01N 27/41
G01N 27/419
(57)【特許請求の範囲】
【請求項1】
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子と、
前記センサ素子の先端及び前記ガス導入口が内部に配置されるセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、前記センサ素子を囲む筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記センサ素子の前記先端から後端に向かう方向を上方向とし、前記センサ素子の前記後端から前記先端に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm
2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm
2以上6.4mm
2以下である、
ガスセンサ。
【請求項2】
前記断面積Csが22.9mm
2以上である、
請求項1に記載のガスセンサ。
【請求項3】
前記断面積Dsが5.0mm
2以下である、
請求項1又は2に記載のガスセンサ。
【請求項4】
前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asと前記1以上の素子室入口の合計断面積である断面積Bsとの断面積比As/Bsが1.41以上4.70以下である、
請求項1~3のいずれか1項に記載のガスセンサ。
【請求項5】
前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asが47.3mm
2以上68.1mm
2以下である、
請求項1~4のいずれか1項に記載のガスセンサ。
【請求項6】
前記1以上の素子室入口の合計断面積である断面積Bsが14.5mm
2以上33.4mm
2以下である、
請求項1~5のいずれか1項に記載のガスセンサ。
【請求項7】
前記第1部材及び前記第2部材は、前記素子室入口のうち前記センサ素子室側の開口部である素子側開口部が前記下方向に向けて開口するように該素子室入口を形成している、
請求項1~6のいずれか1項に記載のガスセンサ。
【請求項8】
前記第1部材は、前記センサ素子を囲む第1円筒部を有しており、
前記第2部材は、前記第1円筒部よりも大径の第2円筒部を有しており、
前記素子室入口は、前記第1円筒部の外周面と前記第2円筒部の内周面との間の円筒状の隙間である、
請求項1~7のいずれか1項に記載のガスセンサ。
【請求項9】
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子、を保護するための保護カバーであって、
前記センサ素子の先端及び前記ガス導入口を内部に配置するためのセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記外側保護カバーの底部から該底部とは反対側に向かう方向を上方向とし、前記外側保護カバーの該底部とは反対側から該底部に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm
2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm
2以上6.4mm
2以下である、
保護カバー。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスセンサ及び保護カバーに関する。
【背景技術】
【0002】
従来、自動車の排気ガスなどの被測定ガスにおけるNOxや酸素などの所定のガス濃度を検出するガスセンサが知られている。例えば、特許文献1には、センサ素子と、センサ素子の先端が内部に配置される内側保護カバーと、内側保護カバーの外側に配置された外側保護カバーと、を備えたガスセンサが記載されている。また、特許文献1には、外側保護カバーに配設され被測定ガスの外部からの入口である1以上の外側入口の合計断面積S1と、外側保護カバーに配設され被測定ガスの外部への出口である1以上の外側出口の合計断面積S2と、の比である断面積比S1/S2を値2.0超過値5.0以下とすることで、ガス濃度検出の応答性をより高めることが記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、ガス濃度検出の応答性は、ガスセンサの周辺を流れる被測定ガスの流速によっても変化し、流速が低い場合(例えば2m/s未満)には応答性が低下しやすいという問題があった。
【0005】
本発明はこのような課題を解決するためになされたものであり、被測定ガスの低流速時の応答性の低下を低減することを主目的とする。
【課題を解決するための手段】
【0006】
本発明は、上述した主目的を達成するために以下の手段を採った。
【0007】
本発明のガスセンサは、
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子と、
前記センサ素子の先端及び前記ガス導入口が内部に配置されるセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、前記センサ素子を囲む筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記センサ素子の前記先端から後端に向かう方向を上方向とし、前記センサ素子の前記後端から前記先端に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
ものである。
【0008】
このガスセンサでは、ガスセンサの周囲を流れる被測定ガスは、外側保護カバーの外側入口から第1ガス室のうち第1空間に流入し、第1空間内を上方向に流れて第2空間に到達し、第2空間内を第2部材の外側から内側へ向かって流れて素子室入口に到達し、素子室入口を通ってセンサ素子室内のガス導入口に到達する。ここで、被測定ガスの流速が低流速の場合には、外側入口から流入する被測定ガスの流量が小さいため、素子室入口を通って素子室内に流入する被測定ガスの流量も小さくなり、特定ガス濃度検出の応答性が低下しやすくなる。これに対し、本発明のガスセンサでは、断面積Csが14.0mm2以上であることで、被測定ガスが第2空間内で第2部材の外側から内側へ向かって移動しやすくなる。すなわち第1空間内の被測定ガスが第2空間を通過して素子室入口に向かいやすくなる。これにより、素子室入口に到達する被測定ガスの流量を大きくすることができ、被測定ガスが低流速である場合の特定ガス濃度検出の応答性の低下を抑制できる。また、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れてしまうことによる応答性の低下を抑制できる。ここで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れると、被測定ガスが第2空間を通過して素子室入口に到達するまでの時間が長くなって応答性が低下する場合がある。これに対し、断面積Dsが6.4mm2以下であることで、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れにくくなる。したがって、上記のような被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れてしまうことに起因する応答性の低下を抑制できる。以上により、本発明のガスセンサは、被測定ガスの低流速時の応答性の低下を低減できる。断面積Dsは上記の通り値が小さい方が好ましいが、断面積Dsは0.5mm2以上としてもよい。
【0009】
本発明のガスセンサにおいて、前記断面積Csが22.9mm2以上であってもよい。こうすれば、被測定ガスが第2空間内で第2部材の外側から内側へ向かってさらに移動しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。
【0010】
本発明のガスセンサにおいて、前記断面積Dsが5.0mm2以下であってもよい。こうすれば、被測定ガスが第2空間内を内側保護カバーの周方向に沿って流れることをさらに抑制できるため、被測定ガスの低流速時の応答性の低下をより抑制できる。
【0011】
本発明のガスセンサにおいて、前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asと前記1以上の素子室入口の合計断面積である断面積Bsとの断面積比As/Bsが1.41以上4.70以下であってもよい。ここで、断面積Asが小さすぎると、第1空間内の被測定ガスが第2空間内に流入しにくくなり、結果として被測定ガスが素子室入口内に流入しにくくなる。また、断面積Bsが小さすぎると、第2空間内の被測定ガスが素子室入口内に流入しにくくなる。これに対し、断面積比As/Bsが1.41以上4.70以下であれば、断面積As,Bsの大きさのバランスがよいことで、第1空間内の被測定ガスが第2空間を通過して素子室入口に流入しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。
【0012】
本発明のガスセンサにおいて、前記第1空間から前記第2空間への前記被測定ガスの流入口である第2空間入口の断面積Asが47.3mm2以上68.1mm2以下であってもよい。また、前記1以上の素子室入口の合計断面積である断面積Bsが14.5mm2以上33.4mm2以下であってもよい。
【0013】
本発明のガスセンサにおいて、前記第1部材及び前記第2部材は、前記素子室入口のうち前記センサ素子室側の開口部である素子側開口部が前記下方向に向けて開口するように該素子室入口を形成していてもよい。こうすれば、素子側開口部から流出した被測定ガスがセンサ素子の表面(ガス導入口以外の表面)に垂直に当たることを抑制したり、センサ素子の表面上を長い距離通過してからガス導入口に到達することを抑制したりできる。これにより、センサ素子の冷えを抑制できる。しかも、素子側開口部の開口の向きを調整することでセンサ素子の冷えを抑制しており、内側保護カバー内の被測定ガスの流量や流速を減らしているわけではないため、特定ガス濃度検出の応答性の低下も低減できる。これらにより、センサ素子の応答性の低下を抑制しつつ、センサ素子の保温性の低下も抑制できる。ここで、「素子側開口部が下方向に向けて開口する」とは、下方向と平行に開口している場合と、下方に向かうにつれてセンサ素子に近づくように下方向から傾斜して開口している場合とを含む。
【0014】
本発明のガスセンサにおいて、前記第1部材は、前記センサ素子を囲む第1円筒部を有しており、前記第2部材は、前記第1円筒部よりも大径の第2円筒部を有しており、前記素子室入口は、前記第1円筒部の外周面と前記第2円筒部の内周面との間の円筒状の隙間であってもよい。
【0015】
本発明の保護カバーは、
被測定ガスを導入するガス導入口を有し、該ガス導入口から内部に流入した該被測定ガスの特定ガス濃度を検出可能なセンサ素子、を保護するための保護カバーであって、
前記センサ素子の先端及び前記ガス導入口を内部に配置するためのセンサ素子室を内側に有し、該センサ素子室への入口である1以上の素子室入口と該センサ素子室からの出口である1以上の素子室出口とが配設された筒状の内側保護カバーと、
前記被測定ガスの外部からの入口である1以上の外側入口と、前記被測定ガスの外部への出口である1以上の外側出口と、が配設され、前記内側保護カバーの外側に配設された筒状の外側保護カバーと、
を備え、
前記外側保護カバー及び前記内側保護カバーは、両者の間の空間として、前記外側入口と前記素子室入口との間の前記被測定ガスの流路として機能する第1ガス室と、前記外側出口と前記素子室出口との間の前記被測定ガスの流路として機能し該第1ガス室と直接には連通していない第2ガス室と、を形成しており、
前記内側保護カバーは、筒状の第1部材と、該第1部材を囲む筒状の第2部材とを有し、
前記第1部材及び前記第2部材は、両者の間の隙間として、前記素子室入口を形成しており、
前記内側保護カバーの軸方向に平行且つ前記外側保護カバーの底部から該底部とは反対側に向かう方向を上方向とし、前記外側保護カバーの該底部とは反対側から該底部に向かう方向を下方向として、前記第1ガス室は、前記外側保護カバーと前記第2部材との間の空間であり前記外側入口から前記上方向に向かう前記被測定ガスの流路として機能する第1空間と、前記第2部材の上端よりも上方且つ前記外側保護カバーと前記第1部材との間の空間であり前記第1空間から前記素子室入口までの前記被測定ガスの流路として機能する第2空間と、を有し、
前記第2空間における、前記被測定ガスが前記第2部材の直上を前記第2部材の外側から内側へ向かって通過する際の流路断面積である断面積Csが14.0mm2以上であり、
前記第2空間における前記内側保護カバーの周方向に垂直な断面積である断面積Dsが0.5mm2以上6.4mm2以下である、
ものである。
【0016】
この保護カバーのセンサ素子室にセンサ素子の先端及びガス導入口を配置することで、上述した本発明のガスセンサと同様に、被測定ガスの低流速時の応答性の低下を低減する効果が得られる。本発明の保護カバーにおいて、上述したガスセンサの種々の態様を採用してもよい。
【図面の簡単な説明】
【0017】
【
図1】配管20へのガスセンサ100の取り付け状態の概略説明図。
【
図5】
図3の外側保護カバー140のC-C断面図。
【
図9】
図8の外側保護カバー240のF-F断面図。
【
図13】実験例1~4の各々の流速と応答時間との関係を示すグラフ。
【
図14】実験例1~4の各々の高さC,断面積Cs,Ds,体積Vと流速1m/sにおける応答時間との関係を示すグラフ。
【発明を実施するための形態】
【0018】
次に、本発明を実施するための形態を図面を用いて説明する。
図1は配管20へのガスセンサ100の取り付け状態の概略説明図である。
図2は、
図1のA-A断面図である。
図3は、
図2のB-B断面図である。
図4は、
図3のC-C断面図である。
図5は、
図3の外側保護カバー140のC-C断面図である。なお、
図5は、
図4から第1円筒部134,第2円筒部136,先端部138及びセンサ素子110を除いた図に相当する。
図6は、
図3のD視図である。
図7は、
図4のE-E断面の一部を拡大した断面図である。なお、保護カバー120の軸方向に平行且つセンサ素子110の先端から後端に向かう方向(
図3,7の上方向)を上方向とし、保護カバー120の軸方向に平行且つセンサ素子110の後端から先端に向かう方向(
図3,7の下方向)を下方向とする。
【0019】
図1に示すように、ガスセンサ100は車両のエンジンからの排気経路である配管20内に取り付けられており、エンジンから排出された被測定ガスとしての排気ガスに含まれるNOx,アンモニア,O
2等のガス成分のうち少なくともいずれか1つの特定ガスの濃度である特定ガス濃度を検出するようになっている。このガスセンサ100は、
図2に示すように、ガスセンサ100の中心軸が配管20内の被測定ガスの流れに垂直な状態で配管20内に固定されている。なお、ガスセンサ100の中心軸が配管20内の被測定ガスの流れに垂直且つ鉛直方向に対して所定の角度(例えば45°)だけ傾いた状態で配管20内に固定されていてもよい。
【0020】
ガスセンサ100は、
図3に示すように、被測定ガス中の特定ガス濃度(NOx,アンモニア,O
2等の濃度)を検出する機能を有するセンサ素子110と、このセンサ素子110を保護する保護カバー120とを備えている。また、ガスセンサ100は、金属製のハウジング102及び外周面におねじが設けられた金属製のボルト103を備えている。ハウジング102は配管20に溶接され内周面にめねじが設けられた固定用部材22内に挿入されており、さらにボルト103が固定用部材22内に挿入されることでハウジング102が固定用部材22内に固定されている。これにより、ガスセンサ100が配管20内に固定されている。なお、配管20内の被測定ガスの流れる向きは、
図3における左から右に向かう方向である。
【0021】
センサ素子110は、細長な長尺の板状体形状の素子であり、ジルコニア(ZrO
2)等の酸素イオン伝導性固体電解質層を複数積層した構造を有している。センサ素子110は、被測定ガスを自身の内部に導入するガス導入口111を有しており、ガス導入口111から内部に流入した被測定ガスの特定ガス濃度を検出可能に構成されている。本実施形態では、ガス導入口111は、センサ素子110の先端面(
図3におけるセンサ素子110の下面)に開口しているものとした。センサ素子110は、センサ素子110を加熱して保温する温度調整の役割を担うヒーターを内部に備えている。このようなセンサ素子110の構造や特定ガス濃度を検出する原理は公知であり、例えば特開2008-164411号公報に記載されている。センサ素子110は、先端(
図3の下端)及びガス導入口111がセンサ素子室124内に配置されている。なお、センサ素子110の後端から先端に向かう方向(下方向)を先端方向とも称する。
【0022】
また、センサ素子110は、表面の少なくとも一部を覆う多孔質保護層110aを備えている。本実施形態では、多孔質保護層110aは、センサ素子110の6つの表面のうち5面に形成されて、センサ素子室124内に露出した表面のほとんどを覆っている。具体的には、多孔質保護層110aは、センサ素子110のうちガス導入口111が形成された先端面(下面)を全て覆っている。また、多孔質保護層110aは、センサ素子110の先端面に接続される4つの表面(
図4のセンサ素子110における上下左右の面)のうちセンサ素子110の先端面に近い側を覆っている。多孔質保護層110aは、例えば、被測定ガス中の水分等が付着してセンサ素子110にクラックが生じるのを抑制する役割を果たす。また、多孔質保護層110aは、被測定ガスに含まれるオイル成分等がセンサ素子110の表面の図示しない電極等に付着するのを抑制する役割を果たす。多孔質保護層110aは、例えばアルミナ多孔質体、ジルコニア多孔質体、スピネル多孔質体、コージェライト多孔質体,チタニア多孔質体、マグネシア多孔質体などの多孔質体からなる。多孔質保護層110aは、例えばプラズマ溶射,スクリーン印刷,ディッピングなどにより形成することができる。なお、多孔質保護層110aは、ガス導入口111も覆っているが、多孔質保護層110aが多孔質体であるため、被測定ガスは多孔質保護層110aの内部を流通してガス導入口111に到達可能である。多孔質保護層110aの厚さは例えば100μm~700μmである。
【0023】
保護カバー120は、センサ素子110の周囲を取り囲むように配置されている。この保護カバー120は、センサ素子110の先端を覆う有底筒状の内側保護カバー130と、内側保護カバー130を覆う有底筒状の外側保護カバー140とを有している。また、内側保護カバー130と外側保護カバー140とに囲まれた空間として第1ガス室122,第2ガス室126が形成され、内側保護カバー130に囲まれた空間としてセンサ素子室124が形成されている。なお、ガスセンサ100,センサ素子110,内側保護カバー130,外側保護カバー140の中心軸は同軸になっている。保護カバー120は、金属(例えばSUS310Sなどのステンレス鋼)で形成されている。
【0024】
内側保護カバー130は、第1部材131と、第2部材135と、を備えている。第1部材131は、円筒状の大径部132と、円筒状で大径部132よりも径の小さい第1円筒部134と、大径部132と第1円筒部134とを接続する段差部133と、を有している。第1円筒部134は、センサ素子110の周囲を囲んでいる。第2部材135は、第1円筒部134よりも径が大きい第2円筒部136と、第2円筒部136よりもセンサ素子110の先端方向(下方向)に位置する先端部138と、先端部138の上端に接続して配設され先端部138の外周面よりも外側に突出する段差部139と、第2円筒部136の下端と段差部139とを接続する接続部137と、を有している。先端部138は、側部138dと底部138eとを有している。先端部138には、センサ素子室124と第2ガス室126とに通じ、センサ素子室124からの被測定ガスの出口である1以上の素子室出口138aが形成されている。素子室出口138aは、側部138dに等間隔に形成された複数(本実施形態では4個)の円形の横孔138bを有している。素子室出口138aは、先端部138の底部138eには配設されていない。素子室出口138aの径は、例えば0.5mm~2.6mmである。本実施形態では、複数の横孔138bの径はいずれも同じ値とした。素子室出口138aは、ガス導入口111よりもセンサ素子110の先端方向(下方向)の位置に形成されている。換言すると、素子室出口138aは、センサ素子110の後端(
図3におけるセンサ素子110の図示しない上端)から見てガス導入口111よりも遠く(下方向)に位置している。
【0025】
大径部132,第1円筒部134,第2円筒部136,先端部138は中心軸が同一である。大径部132は、ハウジング102に内周面が当接しており、これにより第1部材131がハウジング102に固定されている。第2部材135は、接続部137の外周面が外側保護カバー140の内周面と当接しており溶接などにより固定されている。なお、接続部137の先端側(下端側)の外径を外側保護カバー140の先端部146の内径よりわずかに大きく形成し、接続部137の先端部分を先端部146内に圧入することで、第2部材135を固定してもよい。
【0026】
第2円筒部136の内周面には、第1円筒部134の外周面に向けて突出してこの外周面に接している複数の突出部136aが形成されている。
図4に示すように、突出部136aは3個設けられ、第2円筒部136の内周面の周方向に沿って均等に配置されている。突出部136aは、略半球形状に形成されている。このような突出部136aが設けられていることで、突出部136aによって第1円筒部134と第2円筒部136との位置関係が固定されやすくなっている。なお、突出部136aは、第1円筒部134の外周面を径方向内側に向けて押圧していることが好ましい。こうすれば、突出部136aによって第1円筒部134と第2円筒部136との位置関係をより確実に固定できる。なお、突出部136aは、3個に限らず2個や4個以上としてもよい。なお、第1円筒部134と第2円筒部136との固定が安定化しやすいため、突出部136aは3個以上とすることが好ましい。
【0027】
この内側保護カバー130は、第1部材131と第2部材135との隙間でありセンサ素子室124への被測定ガスの入口である素子室入口127(
図3,4,7参照)を形成している。素子室入口127は、より具体的には、第1円筒部134の外周面と第2円筒部136の内周面との間の円筒状の隙間(ガス流路)として形成されている。素子室入口127は、外側入口144aの配置された空間である第1ガス室122側の開口部である外側開口部128と、ガス導入口111の配置された空間であるセンサ素子室124側の開口部である素子側開口部129と、を有している。外側開口部128は、素子側開口部129よりもセンサ素子110の後端側(上側)に形成されている。そのため、外側入口144aからガス導入口111に達するまでの被測定ガスの経路中で、素子室入口127はセンサ素子110の後端側(上側)から先端側(下側)へ向かう流路となっている。また、素子室入口127は、センサ素子110の後端-先端方向に平行な流路(上下方向に平行な流路)となっている。
【0028】
素子側開口部129は、センサ素子110の後端から先端へ向かう方向(下方向)に開口し且つセンサ素子110の後端-先端方向(上下方向)に平行に開口している。すなわち、素子側開口部129は、下方向と平行に開口している。そのため、センサ素子110は、素子側開口部129から素子室入口127を仮想的に延長した領域(
図3,7における素子側開口部129の真下の領域)以外の位置に、配置されている。これにより、素子側開口部129から流出した被測定ガスがセンサ素子110の表面に直接当たることを抑制でき、センサ素子110の冷えを抑制できる。
【0029】
第1円筒部134の外周面と第2円筒部136の内周面とは、素子側開口部129において円筒の径方向に距離A4(
図7参照)だけ離れており、外側開口部128において円筒の径方向に距離A5だけ離れている。また、第1円筒部134の外周面と第2円筒部136の内周面とは、突出部136aと第1円筒部134とが接触する部分(
図4に示した断面)において距離A7だけ離れている。距離A4,距離A5,距離A7は、例えばそれぞれ0.3mm~2.4mmである。距離A4,距離A5,距離A7は、0.51mm以上としてもよいし、1.18mm以下としてもよい。距離A4,距離A5の値を調整することで、素子側開口部129の開口面積や外側開口部128の開口面積を調整することができる。本実施形態では、距離A4,距離A5,距離A7は等しいものとし、素子側開口部129の開口面積と外側開口部128の開口面積とが等しいものとした。なお、本実施形態では、距離A4(距離A5,距離A7)は、第1円筒部134の外径と第2円筒部136の内径との差の半分の値と同じである。また、素子側開口部129と外側開口部128との上下方向の距離、すなわち素子室入口127の上下方向の距離L(素子室入口127の経路長に相当)は、例えば0mm超過6.6mm以下である。距離Lは3mm以上としてもよいし、5mm以下としてもよい。また、第1円筒部134の下端と接続部137との最小距離を、距離A6とする(
図7参照)。距離A6は距離A4,A5,A7よりも大きい値としてもよいし、同じ値としてもよいし、小さい値としてもよい。
【0030】
外側保護カバー140は、
図3に示すように、円筒状の大径部142と、大径部142に接続しており大径部142よりも径の小さい円筒状の胴部143と、有底筒状で胴部143よりも内径の小さい先端部146とを有している。また、胴部143は、外側保護カバー140の中心軸方向(上下方向)に沿った側面をもつ側部143aと、胴部143の底部であり側部143aと先端部146とを接続する段差部143bと、を有している。なお、大径部142,胴部143,先端部146の中心軸はいずれも内側保護カバー130の中心軸と同一である。大径部142は、ハウジング102及び大径部132に内周面が当接しており、これにより外側保護カバー140がハウジング102に固定されている。胴部143は、第1円筒部134,第2円筒部136の外周を覆うように位置している。大径部142と胴部143とは、径が同じであってもよい。先端部146は、先端部138を覆うように位置していると共に、内周面が接続部137の外周面と当接している。先端部146は、外側保護カバー140の中心軸方向(上下方向)に沿った側面を有し外径が側部143aの内径よりも小さい側部146aと、外側保護カバー140の底部である底部146bと、側部146aと底部146bとを接続し側部146aから底部146bに向けて縮径するテーパー部146cと、を有している。先端部146は、胴部143よりも先端方向側(下側)に位置している。この外側保護カバー140は、胴部143に形成され被測定ガスの外部からの入口である1以上(本実施形態では複数であり、具体的には12個)の外側入口144aと、先端部146に形成され被測定ガスの外部への出口である1以上の外側出口147aとを有している。
【0031】
外側入口144aは、外側保護カバー140の外側(外部)と第1ガス室122とに通じる孔である。外側入口144aは、側部143aに等間隔に形成された複数(本実施形態では6個)の横孔144bと、段差部143bに等間隔に形成された複数(本実施形態では6個)の縦孔144cとを有している(
図3~6)。この外側入口144a(横孔144b及び縦孔144c)は、円形(真円)に開けられた孔である。この12個の外側入口144aの径は、例えば0.5mm~2mmである。外側入口144aの径は、1.5mm以下としてもよい。なお、本実施形態では、複数の横孔144bの径はいずれも同じ値とし、複数の縦孔144cの径はいずれも同じ値とした。また、横孔144bの径は縦孔144cの径よりも大きい値とした。なお、外側入口144aは、
図4,5に示すように、外側保護カバー140の周方向に沿って横孔144bと縦孔144cとが交互に等間隔に位置するように形成されている。すなわち、
図4,5における横孔144bの中心と外側保護カバー140の中心軸とを結んだ線と、その横孔144bに隣接する縦孔144cの中心と外側保護カバー140の中心軸とを結んだ線と、のなす角が30°(360°/12個)となっている。
【0032】
外側出口147aは、外側保護カバー140の外側(外部)と第2ガス室126とに通じる孔である。この外側出口147aは、先端部146の底部146bの中心に形成された1つの縦孔147cを有している(
図3,5,6参照)。なお、外側入口144aとは異なり、外側出口147aは、外側保護カバー140の側部(ここでは先端部146の側部146a)には配設されていない。この外側出口147a(ここでは縦孔147c)は、円形(真円)に開けられた孔である。この外側出口147aの径は、例えば0.5mm~2.5mmである。外側出口147aの径は、1.5mm以下としてもよい。なお、本実施形態では、縦孔147cの径は、横孔144bや縦孔144cの径よりも大きい値とした。
【0033】
外側保護カバー140及び内側保護カバー130は、胴部143と内側保護カバー130との間の空間として第1ガス室122を形成している。より具体的には、第1ガス室122は、段差部133,第1円筒部134,第2円筒部136,側部143a、段差部143bにより囲まれた空間である。センサ素子室124は、内側保護カバー130により囲まれた空間である。外側保護カバー140及び内側保護カバー130は、先端部146と内側保護カバー130との間の空間として第2ガス室126を形成している。より具体的には、第2ガス室126は、先端部138と先端部146とに囲まれた空間である。なお、先端部146の内周面が接続部137の外周面と当接しているため、第1ガス室122と第2ガス室126とは直接には連通していない。
【0034】
また、
図7に示すように、第1ガス室122は、第1空間122aと、第2空間122bと、を有している。第1空間122aは、外側保護カバー140と内側保護カバー130の第2部材135との間の空間であり、外側入口144aから上方向に向かう被測定ガスの流路として機能する。第1空間122aは、より具体的には、側部143a,段差部143b,第2円筒部136で囲まれた空間であり、第2部材135の上端(ここでは第2円筒部136の上端)よりも下方の空間である。第1空間122aは、外側保護カバー140の内周面と第2円筒部136の外周面との間の円筒状の隙間である。第2空間122bは、第2部材135の上端(ここでは第2円筒部136の上端)よりも上方且つ外側保護カバー140と第1部材131(ここでは第1円筒部134)との間の空間である。第2空間122bは、第1空間122aから素子室入口127までの被測定ガスの流路として機能する。第2空間122bは、外側保護カバー140の内周面と第1円筒部134の外周面との間の円筒状の隙間である。
【0035】
第1空間122aから第2空間122bへの被測定ガスの流入口を第2空間入口122cと称する。第2空間入口122cは、外側保護カバー140の内周面と第2円筒部136の外周面の上端との間のリング状の隙間である。外側入口144aは、いずれも、第2空間入口122cよりも下方に位置している。言い換えると、外側入口144aは、いずれも、第2部材135の上端(ここでは第2円筒部136の上端)よりも下方に位置している。第2空間入口122cの径方向の幅、すなわち、外側保護カバー140の内周面の半径と第2円筒部136の外周面の上端の半径との差を、距離A1と称する(
図7参照)。また、第2空間入口122cの断面積(開口面積)を、断面積Asと称する。断面積Asは、上下方向に垂直な面の面積とする。本実施形態では、断面積As=(側部143aの内径を直径とする円の面積)-(第2円筒部136の外径を直径とする円の面積)である。距離A1は、例えば1.18mm以上としてもよいし、1.85mm以下としてもよい。距離A1は、距離A4,A5,A7以上の値としてもよい。比A/A4は、1.0以上3.63以下としてもよい。比A/A5及び比A/A7についても同様に、1.0以上3.63以下としてもよい。断面積Asは、例えば47.3mm
2以上としてもよいし、68.1mm
2以下としてもよい。
【0036】
上述した外側開口部128は、第2空間122bから素子室入口127への出口(第2空間出口)でもある。また、素子室入口127の断面積(流路断面積)を、断面積Bsと称する。断面積Bsは、素子室入口127を通過する被測定ガスの向き(ここでは下方向)に垂直な方向の面積とする。また、素子室入口127内の被測定ガスの流路断面積が一定ではない場合には、その最小値を断面積Bsとする。例えば、本実施形態では、距離A4,A5が等しいため外側開口部128と素子側開口部129とは開口面積(=流路断面積)が等しいが、これらの開口面積よりも、素子室入口127のうち突出部136aが存在する部分における流路断面積の方が断面積が小さくなっている。そのため、本実施形態では、素子室入口127のうち突出部136aが最も突出している断面、すなわち
図4に示す断面における素子室入口127の断面積を、断面積Bsとする。そのため、本実施形態では、断面積Bs=(第2円筒部136の内径を直径とする円の面積)-(第1円筒部134の外径を直径とする円の面積)-(
図4の断面における突出部136aによる素子室入口127の断面積の減少分の絶対値)×(突出部136aの個数)である。断面積Bsは、例えば14.5mm
2以上としてもよいし、33.4mm
2以下としてもよい。
【0037】
第2空間122bのうち、被測定ガスが第2部材135の直上(ここでは第2円筒部136の直上)を第2部材135の外側から内側へ向かって通過(
図7では左から右へ通過)する際の断面を、流路断面122dと称する。また、流路断面122dの上下方向の長さを高さCと称し、流路断面122dの断面積を断面積Csと称する。断面積Csは、直径が第2円筒部136の内径と同じである高さCの円柱の外周面の面積と同じである。すなわち断面積Cs=(第2円筒部136の内径)×π×(高さC)である。流路断面122dは、第2空間122bのうち内側保護カバー130の中心へ向かう径方向に垂直な面且つ第2円筒部136の直上の面の断面であり、第2部材135の直上のうち断面積が最も小さくなるような位置の断面として定める。例えば、本実施形態では、第2円筒部136の外周面の直上よりも第2円筒部136の内周面の直上の方が径方向に垂直な第2空間122bの断面積は小さくなる。そのため、第2空間122bのうち内側保護カバー130の径方向に垂直且つ第2円筒部136の内周面の直上の断面を、流路断面122dとして定める。高さCは、例えば0.47mm以上としてもよいし、0.75mm以上としてもよい。高さCは、2.35mm以下としてもよいし、1.87mm以下としてもよい。
【0038】
第2空間122bのうち、内側保護カバー130の周方向に垂直な断面積を、断面積Dsと称する。断面積Dsは、
図7の断面で図示されている第2空間122bの面積(略四角形状の面積)である。本実施形態では、断面積Ds={(側部143aの内径)-(第1円筒部134の外径)}÷2×(高さC)である。言い換えると、断面積Ds={A
1+A5+(第2円筒部136の厚さ)}×(高さC)である。
【0039】
第2空間122bの体積Vは、例えば43mm3以上としてもよいし、70mm3以上としてもよい。第2空間122bの体積Vは、例えば223mm3以下としてもよいし、174mm3以下としてもよい。本実施形態では、体積V={(側部143aの内径を直径とする円の面積)-(第1円筒部134の外径を直径とする円の面積)}×(高さC)である。
【0040】
ここで、ガスセンサ100が特定ガス濃度を検出する際の保護カバー120内の被測定ガスの流れについて説明する。配管20内を流れる被測定ガスは、まず、複数の外側入口144a(横孔144b及び縦孔144c)の少なくともいずれかを通って第1ガス室122内に流入する。次に、被測定ガスは、第1ガス室122から外側開口部128を経て素子室入口127に流入し、素子室入口127を経て素子側開口部129から流出して、センサ素子室124に流入する。素子側開口部129からセンサ素子室124内に流入した被測定ガスは、少なくとも一部がセンサ素子110のガス導入口111に到達する。被測定ガスがガス導入口111に到達してセンサ素子110の内部に流入すると、この被測定ガス中の特定ガス濃度に応じた電気信号(電圧又は電流)をセンサ素子110が発生させ、この電気信号に基づいて特定ガス濃度が検出される。また、センサ素子室124内の被測定ガスは、素子室出口138a(横孔138b)の少なくともいずれかを通って第2ガス室126に流入し、そこから外側出口147aを通って外部に流出する。なお、センサ素子110は、所定の温度を保つように内部のヒーターの出力が例えば図示しないコントローラによって制御される。
【0041】
上述した被測定ガスの流れのうち、第1ガス室122内及び素子室入口127内の流れについて詳細に説明する。外側入口144aから外側保護カバー140の内部に流入した被測定ガスは、まず第1ガス室122のうち第1空間122aに流入し、第1空間122a内を上方向に流れる。続いて、被測定ガスは第2空間入口122cから第2空間122b内に到達し、第2空間122b内を第2部材135の外側から内側へ向かって流れて、すなわち第2空間122b内を保護カバー120の中心軸に向かって径方向に流れて、素子室入口127の外側開口部128に到達する。そして、被測定ガスは外側開口部128から素子室入口127内を下方向に向かって流れて、素子側開口部129からセンサ素子室124内に到達する。
【0042】
ここで、一般に、被測定ガスの流速が低流速(例えば2m/s未満)の場合には、外側入口144aから流入する被測定ガスの流量が小さいため、素子室入口127を通ってセンサ素子室124内に流入する被測定ガスの流量も小さくなり、特定ガス濃度検出の応答性が低下しやすくなる。これに対し、本実施形態のガスセンサ100では、上述した断面積Csが14.0mm2以上であることで、被測定ガスが第2空間122b内で第2部材135の外側から内側へ向かって移動しやすくなる。すなわち、第1空間122a内の被測定ガスが第2空間122bを通過して素子室入口127に向かいやすくなる。これにより、素子室入口127に到達する被測定ガスの流量を大きくすることができ、被測定ガスが低流速である場合の特定ガス濃度検出の応答性の低下を抑制できる。
【0043】
また、本実施形態のガスセンサ100では、断面積Dsが6.4mm
2以下であることで、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れてしまうことによる応答性の低下を抑制できる。ここで、一般に、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れると、被測定ガスが第2空間122bを通過して素子室入口127に到達するまでの時間が長くなって応答性が低下する場合がある。また、一般に、外側入口144aが複数存在する場合において、複数の外側入口144aのうち外側保護カバー140の周囲を流れる被測定ガスの下流側に近い位置にある外側入口144aから被測定ガスが外部に流出してしまう現象が生じる場合がある。例えば
図3では被測定ガスは外側保護カバー140の周囲を左から右に流れるため、
図3でセンサ素子110よりも右側に図示されている横孔144bや縦孔144cなどが、下流側に近い位置にある外側入口144aに相当する。そして、第2空間122b内を内側保護カバー130の周方向に沿って流れる被測定ガスの流量が多いほど、このような下流側に近い位置の外側入口144aから外部に流出する被測定ガスの流量が多くなりやすい。そして、被測定ガスが外側入口144aから外部に流出すると、その分だけ素子室入口127に到達する被測定ガスが減少するため、特定ガス濃度検出の応答性が低下する。このように、一般に、第2空間122b内を内側保護カバー130の周方向に沿って流れる被測定ガスの流量が多いほど、特定ガス濃度検出の応答性が低下しやすい。これに対し、本実施形態のガスセンサ100では、断面積Dsが6.4mm
2以下であることで、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れにくくなる。したがって、上記のような被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れてしまうことに起因する応答性の低下を抑制できる。以上により、本実施形態のガスセンサ100は、被測定ガスの低流速時の応答性の低下を低減できる。断面積Dsは上記の通り値が小さい方が好ましいが、断面積Dsは0.5mm
2以上としてもよい。
【0044】
以上詳述した本実施形態のガスセンサ100によれば、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下であることで、被測定ガスの低流速時の応答性の低下を低減できる。
【0045】
また、断面積Csは20.0mm2以上が好ましく、20.9mm2以上がより好ましく、22.9mm2以上がさらに好ましく、30mm2以上が一層好ましく、40mm2以上がより一層好ましい。断面積Csが大きいほど、被測定ガスが第2空間122b内で第2部材135の外側から内側へ向かって移動しやすくなるため、被測定ガスの低流速時の応答性の低下を抑制する効果が高まる。さらに、前記断面積Dsは6.0mm2以下が好ましく、5.9mm2以下がより好ましく、5.0mm2以下がさらに好ましく、4.0mm2以下が一層好ましい。断面積Dsが小さいほど、被測定ガスが第2空間122b内を内側保護カバー130の周方向に沿って流れることを抑制できるため、被測定ガスの低流速時の応答性の低下を抑制する効果が高まる。また、断面積Csは、例えば73.1mm2以下としてもよいし、70.0mm2以下としてもよいし、60.0mm2以下としてもよいし、57.0mm2以下としてもよい。また、断面積Dsは、例えば1.2mm2以上としてもよいし、1.5mm2以上としてもよいし、2.0mm2以上としてもよい。
【0046】
さらに、断面積Asと断面積Bsとの断面積比As/Bsは、1.0以上であることが好ましく、1.41以上4.70以下であることがより好ましい。ここで、断面積Asが小さすぎると、第1空間122a内の被測定ガスが第2空間122b内に流入しにくくなり、結果として被測定ガスが素子室入口127内に流入しにくくなる。また、断面積Bsが小さすぎると、第2空間122b内の被測定ガスが素子室入口127内に流入しにくくなる。これに対し、断面積比As/Bsが1.41以上4.70以下であれば、断面積As,Bsの大きさのバランスがよいことで、第1空間122a内の被測定ガスが第2空間122bを通過して素子室入口127に流入しやすくなるため、被測定ガスの低流速時の応答性の低下をより抑制できる。
【0047】
さらにまた、ガスセンサ100において、第1部材131及び第2部材135は、素子側開口部129が下方向に向けて開口するように素子室入口127を形成している。そのため、素子側開口部129から流出した被測定ガスがセンサ素子110の表面(ガス導入口111以外の表面)に垂直に当たることを抑制したり、センサ素子110の表面上を長い距離通過してからガス導入口111に到達することを抑制したりできる。これにより、センサ素子110の冷えを抑制できる。しかも、素子側開口部129の開口の向きを調整することでセンサ素子110の冷えを抑制しており、内側保護カバー130内の被測定ガスの流量や流速を減らしているわけではないため、特定ガス濃度検出の応答性の低下も低減できる。これらにより、センサ素子110の応答性の低下を抑制しつつ、保温性の低下も抑制できる。
【0048】
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施しうることは言うまでもない。
【0049】
例えば、保護カバー120の形状は上述した実施形態に限られない。保護カバー120の形状や素子室入口127,素子室出口138a,外側入口144a,外側出口147aの形状,個数,配置などは、適宜変更してもよい。例えば、外側保護カバー140の先端部146は、有底筒状で、側部146aと底部146bとテーパー部146cとを有するものとしたが、テーパー部146cを省略した円筒形状としてもよい。また、内側保護カバー130の先端部138は、側部138dの外径が一定で側部138dと底部138eとが同径となるような形状としたが、例えば円錐台を逆さにした形状など、側部138dの外径が底部138eに近づくほど小さくなるような形状としてもよい。
図8は、外側保護カバー140の先端部146をテーパー部146cを省略した円筒形状とし、内側保護カバー130の先端部138を円錐台を逆さにした形状としたガスセンサ200の縦断面図(ガスセンサ100のB-B断面図に相当)である。
図8には第2空間122b周辺の拡大図も併せて示した。
図9は
図8の外側保護カバー240のF-F断面図であり、
図10は
図8のG視図である。
図8~10では、ガスセンサ100と同じ構成要素については同じ符号を付して、詳細な説明を省略する。
図8に示すように、ガスセンサ200の保護カバー220は、内側保護カバー130に代えて内側保護カバー230を備え、外側保護カバー140に代えて外側保護カバー240を備えている。内側保護カバー230の第2部材235は、先端部138及び段差部139に代えて円錐台を逆さにした形状の先端部238を有している。また、先端部238には、センサ素子室124と第2ガス室126とに通じ、センサ素子室124からの被測定ガスの出口である素子室出口238aが形成されている。素子室出口238aは、先端部238の底面の中心に形成された円形の縦穴を1つ有している。外側保護カバー240は、先端部146に代えて、有底筒状(円筒形状)で胴部143よりも内径の小さい先端部246を有している。先端部246は、外側保護カバー240の中心軸方向(
図8の上下方向)に沿った側面を有し外径が側部143aの内径よりも小さい側部246aと、外側保護カバー240の底部である底部246bと、を有している。また、先端部246には、被測定ガスの外部への出口である外側出口247aが形成されている。外側出口247aは、先端部246の底部246bに外側保護カバー240の周方向に沿って等間隔に形成された複数(ここでは6個)の縦孔247cを有している(
図8,9,10参照)。こうしたガスセンサ200でも、断面積Csが14.0mm
2以上且つ断面積Dsが6.4mm
2以下であることで、上述した実施形態と同様の効果が得られる。
【0050】
上述した実施形態では、素子室入口127は第1部材131の第1円筒部134と第2部材135の第2円筒部136との間の円筒状の隙間としたが、これに限らず、素子室入口は第1部材131と第2部材135との間の隙間であればどのような形状であってもよい。例えば素子室入口が
図3の上下方向から傾斜した隙間であってもよい(後述する
図12も参照)。また、素子室入口127の数は1つに限らず複数でもよい(後述する
図11も参照)。素子室出口138a,外側入口144a,外側出口147aについても、孔に限らず保護カバー120を構成する複数の部材の隙間であってもよいし、各々の数は1以上であればよい。また、外側入口144aは横孔144bと縦孔144cとを有するものとしたが、いずれか一方のみを有するものとしてもよい。また、横孔144b及び縦孔144cに加えて又は代えて、側部143aと段差部143bとの境界の角部に角孔を形成してもよい。素子室出口138a,外側出口147aについても、同様に横孔,縦孔,角孔のいずれか1以上を有するものとしてもよい。また、外側出口147aは、テーパー部146cに設けられた貫通孔を有するものとしてもよい。
【0051】
上述した実施形態では、突出部136aは第2円筒部136の内周面に形成されているが、これに限られない。第1円筒部134の外周面と第2円筒部136の内周面との少なくとも一方の面に、他方の面に向けて突出してその面に接する複数の突出部が形成されていればよい。また、上述した実施形態では、
図3,4に示すように、第2円筒部136のうち突出部136aが形成されている部分の外周面は内側に窪んでいるが、これに限らず外周面が窪んでいなくてもよい。また、突出部136aは半球形状に限らずどのような形状であってもよい。なお、第1円筒部134の外周面及び第2円筒部136の内周面に突出部136aが形成されていなくてもよい。
【0052】
上述した実施形態では、素子室入口127は第1円筒部134の外周面と第2円筒部136の内周面との間の筒状の隙間としたが、これに限られない。例えば、第1円筒部の外周面と第2円筒部の内周面との少なくとも一方に凹部(溝)が形成されており、素子室入口は、凹部により形成された第1円筒部と第2円筒部との隙間としてもよい。
図11は、変形例の素子室入口327を示す断面図である。
図11に示すように、第1円筒部334の外周面と第2円筒部336の内周面とは接しており、第1円筒部334の外周面には複数(
図11では4個)の凹部334aが等間隔に形成されている。この凹部334aと第2円筒部336の内周面との間の隙間が、素子室入口327となっている。この素子室入口327のように素子室入口が複数(
図11では4箇所)存在する場合は、各々の素子室入口の断面積の合計すなわち合計断面積を、断面積Bsとする。
【0053】
上述した実施形態では、素子室入口127は、センサ素子110の後端-先端方向に平行な流路(
図3における上下方向に平行な流路)としたが、これに限られない。例えば、素子室入口は、下方に向かうにつれてセンサ素子110に近づくように上下方向から傾斜した流路としてもよい。
図12は、この場合の変形例のガスセンサ400の縦断面図である。
図12には第2空間122b周辺の拡大図も併せて示した。
図12では、ガスセンサ100,200と同じ構成要素については同じ符号を付して、詳細な説明を省略する。
図12に示すように、ガスセンサ400の保護カバー420は、内側保護カバー230に代えて内側保護カバー430を備えている。内側保護カバー430は、第1部材431と、第2部材435と、を備えている。第1部材431は、第1部材131と比べて、第1円筒部134を備えない代わりに、円筒状の胴部434aと、下方に向かうにつれて縮径する円筒状の第1円筒部434bと、を備えている。第1円筒部434bは、上端部で胴部434aと接続されている。第2部材435は、第2部材235と比べて、第2円筒部136及び接続部137を備えない代わりに、下方に向かうにつれて縮径する円筒状の第2円筒部436を備えている。第2円筒部436は、先端部238と接続されている。第1円筒部434bの外周面と第2円筒部436の内周面とは接しておらず、両者により形成される隙間が素子室入口427となっている。素子室入口427は、第1ガス室122側の開口部である外側開口部428と、センサ素子室124側の開口部である素子側開口部429と、を有している。この素子室入口427は、第1円筒部434b及び第2円筒部436の形状によって、下方に向かうにつれてセンサ素子110に近づくように(内側保護カバー430の中心軸に近づくように)上下方向から傾斜した流路となっている。同様に、素子側開口部429は、下方に向かうにつれてセンサ素子110に近づくように上下方向から傾斜して開口している(
図12の拡大図参照)。このように素子室入口427が上下方向に対して傾斜した流路である場合や素子側開口部429が上下方向に対して傾斜して開口している場合、素子側開口部429からセンサ素子室124に流出する被測定ガスの流れる向きは上下方向から傾斜した向きになる。これにより、上述した実施形態の素子室入口127や素子側開口部129と同様の効果が得られる。すなわち、被測定ガスがセンサ素子110の表面(ガス導入口111以外の表面)に垂直に当たることを抑制したり、センサ素子110の表面上を長い距離通過してからガス導入口111に到達することを抑制したりできる。これにより、センサ素子110の冷えを抑制できる。また、
図12では、素子室入口427の幅は、センサ素子110の下方に向かうにつれて狭くなっている。そのため、素子側開口部429の開口面積は外側開口部428の開口面積よりも小さい。換言すると、素子室入口427は、
図7を用いて説明した距離A5よりも距離A4の方が小さくなっている。これにより、被測定ガスが外側開口部428から流入して素子側開口部429から流出することで流入時と比べて流出時の被測定ガスの流速が高まる。そのため、特定ガス濃度検出の応答性を向上させることができる。このガスセンサ400では、外側保護カバー240と第2部材435の第2円筒部436との間の空間が第1空間122aとなっている。また、第2円筒部436の上端よりも上方且つ外側保護カバー240と第1部材431の胴部434aとの間の空間が第2空間122bとなっている。なお、
図12では、素子室入口427が上下方向から傾斜した流路となっており、素子側開口部429が上下方向から傾斜して開口し、且つ素子側開口部429の開口面積が外側開口部428の開口面積よりも小さくなるようにしているが、これらの3つの特徴のうち1以上を省略してもよいし、ガスセンサがこれらの3つの特徴のうち1以上の特徴を有するようにしてもよい。こうしたガスセンサ400でも、断面積Csが14.0mm
2以上且つ断面積Dsが6.4mm
2以下であることで、上述した実施形態と同様の効果が得られる。なお、
図12のガスセンサ400では、ガスセンサ200のように、外側保護カバー240の先端部246をテーパー部を省略した円筒形状とし、内側保護カバー430の先端部238を円錐台を逆さにした形状としたが、これに代えて、ガスセンサ400がガスセンサ100のような先端部138,段差部139,及び先端部146を有するものとしてもよい。
【0054】
上述した実施形態では、素子側開口部129は下方向に向けて開口していたが、これに限らず、例えば下方向と垂直な方向に向けてセンサ素子室124に開口していてもよい。
【0055】
上述した実施形態では、第2空間122bの上端を規定する面は第1部材131の段差部133の下面であったが、これに限られない。例えば、ハウジング102の下面が第2空間122bの上端を規定する面であってもよい。
【0056】
上述した実施形態では、内側保護カバー130は、第1部材131と第2部材135との2つの部材を備えていたが、第1部材131と第2部材135とは一体化された部材であってもよい。
【0057】
上述した実施形態では、ガス導入口111は、センサ素子110の先端面(
図3におけるセンサ素子110の下面)に開口しているものとしたが、これに限られない。例えば、センサ素子110の側面(
図4におけるセンサ素子110の上下左右の面)に開口していてもよい。
【0058】
上述した実施形態では、センサ素子110は多孔質保護層110aを備えているが、多孔質保護層110aを備えていなくてもよい。
【0059】
上述した実施形態では、保護カバー120をガスセンサ100の一部として説明したが、保護カバー120は単独で流通してもよい。
【0060】
上述した実施形態では説明しなかったが、ガスセンサ100は、以下の第1条件及び第2条件を共に満たすことが好ましい。第1条件は、外側入口144a,素子室出口138a,外側出口147aのいずれもが、直径1.5mmの球が通過できる孔を少なくとも1つ有していることである。第2条件は、外側入口144aからガス導入口111まで直径0.8mmの球が到達できるように、保護カバー120内の被測定ガスの流路の幅が調整されていることである。第2条件は、言い換えると、外側入口144aからガス導入口111までの間における被測定ガスが必ず通過する必要のある流路のうちの流路幅の最小値(最小流路幅と称する)が、0.8mm以上であることである。例えば、上述した実施形態のガスセンサ100において、
図7に示した距離A6が
図4,7に示した距離A4,距離A5及び距離A7のいずれよりも小さい場合には、最小流路幅は距離A6の値となる。この場合、距離A6が0.8mm以上であれば第2条件を満たす。配管20内を流れる被測定ガスには煤が含まれている場合があるが、この第1条件及び第2条件を共に満たすことで、ガスセンサ100の耐煤性が向上する。例えば、距離A6が0.8mm未満である場合には、第1円筒部134の下端と接続部137との間の隙間で煤が目詰まりを起こす場合がある。これに対し、距離A6が0.8mm以上であれば、そのような煤の目詰まりを抑制できる。第1条件及び第2条件を共に満たすことで耐煤性が向上する効果は、上述した断面積Csが14.0mm
2以上であるか否かや断面積Dsが0.5mm
2以上6.4mm
2以下であるか否かに関わらず得られる。また、ガスセンサ100に限らず、上述した種々の変形例などの他の形状の保護カバーを備えたガスセンサであっても、第1条件及び第2条件を共に満たすことで耐煤性が向上する効果が得られる。例えば、ガスセンサ100において
図7に示した距離A6よりも距離A4,距離A5及び距離A7のうちの最小値が小さい場合には、最小流路幅はその最小値となる。この場合、その最小値が0.8mm以上であれば(言い換えると距離A4,距離A5及び距離A7がいずれも0.8mm以上であれば)、第2条件を満たす。この場合、さらに第1条件も満たしていれば、耐煤性が向上する効果が得られる。また、外側入口144aが複数の孔を有する場合、第1条件を満たすためにはこの複数の孔のうち直径1.5mmの球が通過できる孔が1以上存在すればよいが、直径1.5mmの球が通過できる孔がこの複数の孔のうちの60%以上の数を占めているか、又は直径1.5mmの球が通過できる孔の開口面積の合計がこの複数の孔の開口面積の合計の60%以上を占めていることが好ましい。素子室出口138a及び外側出口147aについても同様である。また、第1条件及び第2条件に加えて、以下の第3条件も満たすことが好ましい。第3条件は、ガス導入口111から外側出口147aまで直径0.8mmの球が到達できるように、保護カバー120内の被測定ガスの流路の幅が調整されていることである。
【実施例】
【0061】
以下には、ガスセンサを具体的に作製した例を実施例として説明する。実験例2~4,6~8,10~12,14~16,18,19が本発明の実施例に相当し、実験例1,5,9,13,17が比較例に相当する。なお、本発明は以下の実施例に限定されるものではない。
【0062】
[実験例1]
図8~10に示したガスセンサ200を実験例1とした。具体的には、内側保護カバー230の第1部材131は、板厚が0.3mm、軸方向長さが10.2mm、大径部132の軸方向長さが1.8mm、大径部132の外径が14.4mm、第1円筒部134の軸方向長さが8.4mm、第1円筒部134の外径が8.48mm、第1円筒部134の外径の半径Br2が4.24mmとした。第2部材235は、板厚が0.3mm、軸方向長さが11.5mm、第2円筒部136の軸方向長さが4.941mm、第2円筒部136の内径が9.7mm、第2円筒部136の外径の半径Ar2が5.15mm、第2円筒部136の内径の半径Br1が4.85mm、先端部238の軸方向長さが4.9mm、先端部238の底面の径が3.0mmとした。素子室出口238aの径は1.5mmとした。外側保護カバー240は、板厚が0.4mm、軸方向長さが24.35mm、大径部142の軸方向長さが5.75mm、大径部142の外径が15.2mm、胴部143の軸方向長さが9.0mm(胴部143の上端から段差部143bの上面までの軸方向長さが8.7mm)、胴部143の外径が14.6mm、胴部143の内径の半径Ar1が6.9mm、先端部246の軸方向長さが9.6mm、先端部246の外径が8.7mmとした。外側入口144aは、径1.5mmの横孔144bを6個、径1mmの縦孔144cを6個、それぞれ交互に等間隔(隣接する孔のなす角が30°)に形成した。外側出口247aは横孔を備えず、縦孔247cを6個備えるものとし、縦孔247cの径は1mmとした。保護カバー220の材質は、SUS310Sとした。また、ガスセンサ200のセンサ素子110は、幅(
図4における左右長さ)が4mm、厚さ(
図4における上下長さ)が1.5mmとした。多孔質保護層110aはアルミナ多孔質体とし、厚さは400μmとした。第2空間122bの高さCは3.759mmとし、断面積Asは66.2mm
2とし、断面積Bsは15.9mm
2とし、断面積Csは114.5mm
2とし、断面積Dsは10.0mm
2とした。断面積比As/Bsは4.2とし、第2空間122bの体積Vは349.94mm
3とした。
【0063】
[実験例2]
第2円筒部136の軸方向長さを長くする(6.5mm)ことで高さCを2.2mmにした点以外は、実験例1と同じガスセンサ200を実験例2とした。実験例2では、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは67.0mm2とし、断面積Dsは5.9mm2とし、断面積比As/Bsは4.2とし、体積Vは204.80mm3とした。
【0064】
[実験例3]
図3~7に示したガスセンサ100を実験例3とした。具体的には、内側保護カバー130の第1部材131は、板厚が0.3mm、軸方向長さが10.2mm、大径部132の軸方向長さが1.8mm、大径部132の外径が14.4mm、第1円筒部134の軸方向長さが8.4mm、第1円筒部134の外径が8.48mm、第1円筒部134の外径の半径Br2が4.24mmとした。第2部材135は、板厚が0.3mm、軸方向長さが15.1mm、第2円筒部136の軸方向長さが7.326mm、第2円筒部136の内径が9.7mm、第2円筒部136の外径の半径Ar2が5.15mm、第2円筒部136の内径の半径Br1が4.85mm、先端部138の軸方向長さが4.9mm、先端部138の側部138dの外径が5.6mmとした。素子室出口138aは、径1.5mmの横孔138bを4個、等間隔に形成した。外側保護カバー140は、板厚が0.4mm、軸方向長さが24.35mm、大径部142の軸方向長さが5.75mm、大径部142の外径が15.2mm、胴部143の軸方向長さが9.0mm(胴部143の上端から段差部143bの上面までの軸方向長さが8.7mm)、胴部143の外径が14.6mm、胴部143の内径の半径Ar1が6.9mm、先端部146の軸方向長さが9.6mm、先端部
146の側部146aの軸方向長さが6.9mm、先端部146の外径が8.7mm、先端部146の底部146bの径が2.6mmとした。外側入口144aは、径1.5mmの横孔144bを6個、径1.0mmの縦孔144cを6個、それぞれ交互に等間隔に形成した。外側出口147a(縦孔147c)の径は、2.0mmとした。保護カバー120の材質は、SUS310Sとした。また、ガスセンサ100のセンサ素子110は、幅(
図4における左右長さ)が4mm、厚さ(
図4における上下長さ)が1.5mmとした。多孔質保護層110aはアルミナ多孔質体とし、厚さは400μmとした。実験例3では、高さCは1.374mmとし、断面積Asは66.2mm
2とし、断面積Bsは15.9mm
2とし、断面積Csは41.9mm
2とし、断面積Dsは3.7mm
2とし、断面積比As/Bsは4.2とし、体積Vは127.91mm
3とした。
【0065】
[実験例4]
第2円筒部136の軸方向長さを長くする(8.015mm)ことで高さCを0.685mmにした点以外は、実験例3と同じガスセンサ100を実験例4とした。実験例4では、断面積Asは66.2mm2とし、断面積Bsは15.9mm2とし、断面積Csは20.9mm2とし、断面積Dsは1.8mm2とし、断面積比As/Bsは4.2とし、体積Vは63.77mm3とした。
【0066】
[実験例5~8]
第2円筒部136の径を変更して半径Ar2を5.3mmとし半径Br1を5.0mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例5~8とした。
【0067】
[実験例9~12]
第2円筒部136の径を変更して半径Ar2を5.45mmとし半径Br1を5.15mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例9~12とした。
【0068】
[実験例13~16]
第2円筒部136の径を変更して半径Ar2を5.6mmとし半径Br1を5.3mmとした点以外は、実験例1~4の各々と同じガスセンサを、実験例13~16とした。
【0069】
[実験例17~19]
第2円筒部136の径を変更して半径Ar2を5.75mmとし半径Br1を5.45mmとした点以外は、実験例1~3の各々と同じガスセンサを、実験例17~19とした。
【0070】
[応答性及び保温性の評価]
実験例1~19のガスセンサをそれぞれ
図1,2と同様に配管に取り付けた。大気に酸素を混合して任意の酸素濃度に調節したガスを被測定ガスとし、この被測定ガスを配管内に流速0.73m/sで流した。そして、配管内に流す被測定ガスの酸素濃度を23.6%から20.9%に変化させた場合における、センサ素子の出力の時間変化を調べた。酸素濃度を変化させる直前のセンサ素子の出力値を0%、酸素濃度の変化後にセンサ素子の出力が変化して安定したときの出力値を100%として、出力値が10%を越えたときから90%を越えるまでの経過時間を特定ガス濃度検出の応答時間(sec)とした。この応答時間が短いほど特定ガス濃度検出の応答性が高いことを意味する。応答時間の測定は、各実験例について複数回行い、各々の平均値を各実験例についての応答時間とした。実験例1~19の各々について、被測定ガスの流速を1m/sとした場合についても、同様に応答時間の測定を行った。実験例1~4の各々について、被測定ガスの流速を2m/s及び4m/sとした場合についても、同様に応答時間の測定を行った。また、実験例1,2については、被測定ガスの流速を8m/sとした場合についても、同様に応答時間の測定を行った。
【0071】
表1に、実験例1~19のガスセンサにおける半径Ar1,Ar2,Br1,Br2,高さC,断面積As~Ds,断面積比As/Bs,体積V,応答時間,及び応答性の評価結果をまとめた。表1では、被測定ガスの流速を1m/sとした場合の応答時間を応答性の評価に用い、この応答時間が2.5秒以下の場合に応答性が非常に良好(A)、3秒以下の場合に応答性が良好(B)、3秒超過の場合に応答性が不良(F)と判定した。また、
図13は、実験例1~4の各々の流速と応答時間との関係を示すグラフである。
図14は、実験例1~4の各々の高さCと流速1m/sにおける応答時間との関係を示すグラフである。
図14には、高さCと応答時間との関係を示す近似曲線(3次の多項式による近似)も示した。また、この近似曲線に基づいて応答時間が3秒となる高さCや応答時間が2.5秒となる高さCを算出し、
図14に併せて示した。また、実験例1~4は、いずれも高さCのみを変更することで断面積Cs,Ds,体積Vを変更しているため、断面積Cs,Ds,体積Vはいずれも高さCと比例した値になっている。すなわち、断面積Cs,Ds,体積Vの各々と応答時間との関係も、
図14のグラフと横軸の値が異なる点以外は同じとなる。そこで、
図14には、応答時間が3秒となる断面積Cs,Ds,体積Vの値、及び応答時間が2.5秒となる断面積Cs,Ds,体積Vの値も併せて示した。
【0072】
【0073】
表1及び
図13に示すように、実験例1~4のいずれも、流速が低いほど応答時間が長くなる(応答性が低下する)傾向にあることがわかった。また、流速が2m/s以上では実験例1~4間で応答時間にほとんど差は見られないが、流速が2m/
s未満では実験例1~4間の応答時間の差が大きくなった。また、表1及び
図13に示すように、実験例1よりも実験例2~4は応答時間が短く、特に実験例3の応答時間が最も短かった。また、
図14の近似曲線からわかるように、高さC、断面積Cs、断面積Ds、体積Vのいずれについても、値が大きすぎても小さすぎても応答時間が長くなることがわかった。高さC、断面積Cs、断面積Ds、体積Vが小さすぎるときに応答時間が長くなるのは、これらのうち特に断面積Csが小さすぎることが原因と考えられる。すなわち、上述したように、断面積Csが小さすぎると被測定ガスが第2空間122b内で第2部材の外側から内側へ向かって移動しにくい(保護カバーの径方向内側に向かって移動しにくい)ことから、応答性が低下していると考えられる。また、高さC、断面積Cs、断面積Ds、体積Vが大きすぎるときに応答時間が長くなるのは、これらのうち特に断面積Dsが大きすぎることが原因と考えられる。すなわち、上述したように、断面積Dsが大きすぎると被測定ガスが第2空間122b内を内側保護カバーの周方向に沿って流れやすくなることから、応答性が低下していると考えられる。そして、
図14の近似曲線と応答時間との関係から、断面積Csが14.0mm
2以上且つ断面積Dsが6.4mm
2以下であれば、流速1m/sにおける応答時間が3秒以下となり被測定ガスの低流速時の応答性の低下を低減できると考えられる。また、断面積Csが22.9mm
2以上且つ断面積Dsが5.0mm
2以下であれば、流速1m/sにおける応答時間が2.5秒以下となり、被測定ガスの低流速時の応答性の低下をより低減できると考えられる。
【0074】
なお、
図14にも示したように、「断面積Csが14.0mm
2以上且つ断面積Dsが6.4mm
2以下」に対応する高さCの数値範囲は0.46mm以上2.40mm以下であり、対応する体積Vの数値範囲は43mm
3以上223mm
3以下であった。「断面積Csが22.9mm
2以上且つ断面積Dsが5.0mm
2以下」に対応する高さCの数値範囲は0.75mm以上1.87mm以下であり、対応する体積Vの数値範囲は70mm
3以上174mm
3以下であった。
【0075】
実験例5~19についても、実験例1~4と同様に、流速が低いほど応答時間が長くなる(応答性が低下する)傾向がみられた。実験例5~19についても、断面積Cs及び断面積Dsの値と、低流速時の応答性との間に、実験例1~4と同様の傾向が確認された。例えば、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下となっている実験例6~8,10~12,14~16,18,19は、流速1m/sにおける応答時間が3秒以下(応答性の評価が「B」以上)であった。また、断面積Asが互いに同じ且つ断面積Bsの値が互いに同じである実験例5~8間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例7が応答時間が最も短かった。同様に、実験例9~12間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例11が応答時間が最も短かった。実験例13~16間で比較すると、断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例15が、流速0.73m/sにおける応答時間が最も短かった。なお、流速1m/sにおける応答時間は実験例15よりも実験例14の方が短かったが、この差はわずかであり誤差と考えられる。実験例17~19間で比較すると、実験例18と断面積Csが22.9mm2以上且つ断面積Dsが5.0mm2以下という条件を満たす実験例19とで流速1m/sにおける応答時間は同じ値であったが、流速0.73m/sにおける応答時間は実験例17~19の中で実験例19が最も短かった。そのため、全体としては実験例17~19間では実験例19が応答時間が最も短い傾向が確認された。
【0076】
また、断面積Csが14.0mm2以上且つ断面積Dsが6.4mm2以下となっている実験例2~4,6~8,10~12,14~16,18,19のうち、互いに断面積Asが同じ且つ互いに断面積比As/Bsが同じである実験例2~4を第1グループとし、同様に実験例6~8を第2グループ、実験例10~12を第3グループ、実験例14~16を第4グループ、実験例18,19を第5グループとする。この第1~第5グループ間を比較すると、断面積Asが47.3mm2以上68.1mm2以下の範囲内にある第1~第4グループの方が、断面積Asがこの範囲内から外れている第5グループと比較して、低流速時の応答時間が短い傾向が確認された。そのため、断面積Asは47.3mm2以上68.1mm2以下が好ましいと考えられる。ただし、第5グループでも、応答性の評価が「A」であり、被測定ガスの低流速時の応答性の低下を低減する効果は得られている。
【符号の説明】
【0077】
20 配管、22 固定用部材、100,200,400 ガスセンサ、102 ハウジング、103 ボルト、110 センサ素子、110a 多孔質保護層、111 ガス導入口、120,220,420 保護カバー、122 第1ガス室、122a 第1空間、122b 第2空間、122c 第2空間入口、122d 流路断面、124 センサ素子室、126 第2ガス室、127,327,427 素子室入口、128,428 外側開口部、129,429 素子側開口部、130,230,430 内側保護カバー、131,431 第1部材、132 大径部、133 段差部、134,334 第1円筒部、135,235,435 第2部材、136,336,436 第2円筒部、136a 突出部、137 接続部、138,238 先端部、138a,238a 素子室出口、138b 横孔、138d 側部、138e 底部、139 段差部、140,240 外側保護カバー、142 大径部、143 胴部、143a 側部、143b 段差部、144a 外側入口、144b 横孔、144c 縦孔、146,246 先端部、146a,246a 側部、146b,246b 底部、146c テーパー部、147a,247a 外側出口、147c,247c 縦孔、334a 凹部、434a 胴部、434b 第1円筒部。