IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧

<>
  • 特許-作業支援システム 図1
  • 特許-作業支援システム 図2
  • 特許-作業支援システム 図3
  • 特許-作業支援システム 図4
  • 特許-作業支援システム 図5
  • 特許-作業支援システム 図6
  • 特許-作業支援システム 図7
  • 特許-作業支援システム 図8
  • 特許-作業支援システム 図9
  • 特許-作業支援システム 図10
  • 特許-作業支援システム 図11
  • 特許-作業支援システム 図12
  • 特許-作業支援システム 図13
  • 特許-作業支援システム 図14
  • 特許-作業支援システム 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】作業支援システム
(51)【国際特許分類】
   G06F 16/90 20190101AFI20240409BHJP
   G06F 16/9038 20190101ALI20240409BHJP
   G06Q 50/04 20120101ALI20240409BHJP
   G06N 5/02 20230101ALI20240409BHJP
   B23B 1/00 20060101ALN20240409BHJP
【FI】
G06F16/90 100
G06F16/9038
G06Q50/04
G06N5/02
B23B1/00 N
【請求項の数】 17
(21)【出願番号】P 2019168484
(22)【出願日】2019-09-17
(65)【公開番号】P2021047520
(43)【公開日】2021-03-25
【審査請求日】2022-08-11
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】110000648
【氏名又は名称】弁理士法人あいち国際特許事務所
(74)【代理人】
【識別番号】110000604
【氏名又は名称】弁理士法人 共立特許事務所
(72)【発明者】
【氏名】東 孝幸
(72)【発明者】
【氏名】佐々木 雄二
(72)【発明者】
【氏名】酒井 隼樹
(72)【発明者】
【氏名】小島 大
(72)【発明者】
【氏名】石川 弘行
【審査官】長 由紀子
(56)【参考文献】
【文献】特開平06-106449(JP,A)
【文献】特開平08-252746(JP,A)
【文献】再公表特許第2017/033277(JP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 16/00-958
G06Q 50/04
G06N 5/02
B23B 1/00
(57)【特許請求の範囲】
【請求項1】
作業に関するノウハウを表す知識データを備えた知識モデルを探索可能且つ更新可能に記憶する知識データベースと、
任意の入力情報を入力する入力部と、
複数の前記入力情報に基づいて探索条件を設定して前記知識データベースに記憶された前記知識モデルを探索し、複数の前記入力情報に対して予測される予測解を複数導く解析機能を実行する制御部と、
前記制御部による複数の前記予測解のそれぞれを構成する複数の要因を基本出力情報として表示することにより出力する出力部と、を備え、
複数の前記予測解のそれぞれを構成する複数の前記要因は、
複数の前記入力情報に基づいて算出された前記作業に関する所定の指標と、前記指標に応じて前記作業を実行するための複数の作業条件と、を含んでおり、
さらに、作業者の操作によって、複数の前記予測解のうちの一部の前記予測解であるユーザー予測解を構成する、複数の前記要因のうちの一部の前記要因である前記指標を決定すると共に複数の前記要因のうちの他の前記要因である前記作業条件を決定する決定部を備え、
前記出力部は、
前記指標と前記作業条件とを紐付けすることにより表示して出力し、
前記出力部は、前記基本出力情報と共に、前記決定部によって決定された前記ユーザー予測解を構成する複数の前記要因を追加出力情報として表示して出力
前記出力部は、前記指標を表す指標軸と前記作業条件を表す条件軸とを有して、前記基本出力情報を線図化することにより表示して出力するものであり、
前記決定部は、前記作業者の操作によって、前記指標軸に沿ってスライドさせることにより、前記指標軸の前記指標に対応する前記作業条件を決定するスライダを有する、
作業支援システム。
【請求項2】
前記制御部は、
複数の前記入力情報に基づいて複数の前記予測解を予測するものであり、
前記出力部は、
前記制御部によって予測された複数の前記予測解の各々について前記基本出力情報を表示すると共に前記決定部によって決定された前記追加出力情報を表示して出力する、請求項1に記載の作業支援システム。
【請求項3】
図化された前記基本出力情報に対して前記追加出力情報を追加して表示する、請求項1又は2に記載の作業支援システム。
【請求項4】
前記指標は、
前記作業の実行に関する作業能率である、請求項1-3のうちの何れか一項に記載の作業支援システム。
【請求項5】
前記出力部は、
前記作業条件に応じて前記作業の実施する際に使用する工具の諸元を表す諸元情報を更に表示する、請求項1-4のうちの何れか一項に記載の作業支援システム。
【請求項6】
前記諸元情報は、複数の前記工具の諸元を含んでおり、
前記出力部は、前記決定部によって決定された前記作業条件に対応する前記工具に応じた前記諸元情報を表示して出力する、請求項に記載の作業支援システム。
【請求項7】
前記出力部は、複数の前記工具に対応して前記基本出力情報の表示態様を変更して表示することにより出力する、請求項に記載の作業支援システム。
【請求項8】
更に、前記出力部によって表示される表示画面を切り替える切替部を有し、
前記切替部の操作に応じて、前記基本出力情報及び前記追加出力情報が表示された第一表示画面から、前記追加出力情報に基づく探索条件によって前記知識モデルを探索して得られる情報であって前記追加出力情報に基づく前記作業に伴って発生が予測される現象の程度を出力する第二表示画面に切り替える、請求項1-7のうちの何れか一項に記載の作業支援システム。
【請求項9】
前記知識モデルは、更に、前記知識データに関連して作業者によって知覚可能な感覚を表す感覚データを備えており、
前記出力部は、更に、前記第二表示画面において表示される前記現象を前記感覚データに基づいて再現することにより出力する、請求項に記載の作業支援システム。
【請求項10】
前記出力部は、前記感覚データである画像又は映像を表す映像データに基づいて、前記現象を前記画像又は前記映像として再現することにより出力する、請求項に記載の作業支援システム。
【請求項11】
前記出力部は、前記感覚データである振動又は音を表す波形データに基づいて、前記現象を前記振動又は前記音として再現することにより出力する、請求項9又は10に記載の作業支援システム。
【請求項12】
前記知識モデルは、前記知識データとして機械加工方法及び機械加工を行う加工装置についての前記ノウハウを探索可能且つ更新可能に前記知識データベースに記憶されおり、
前記作業は、前記機械加工である、請求項1-11のうちの何れか一項に記載の作業支援システム。
【請求項13】
前記入力部は、前記入力情報として、文字、数値及び記号を含む所定の形式で記述された第一情報、及び、文字、数値及び記号を含む所定の形式で記述されていて前記加工装置の状態及び知覚可能な感覚のうち少なくとも前記感覚を表す第二情報のうちの一方を入力する、請求項12に記載の作業支援システム。
【請求項14】
前記入力部は、前記第一情報及び前記第二情報のうちの一方を、前記機械加工及び前記加工装置に関する質問として入力するものであり、
前記制御部は、前記解析機能を実行して、少なくとも前記入力部に入力された前記質問に基づく探索条件を設定して前記知識データベースを探索し、前記予測解を前記質問に対する回答として導く、請求項13に記載の作業支援システム。
【請求項15】
前記出力部は、
前記質問の解決に関連する複数の対策案、及び、それぞれの前記対策案の前記質問の解決への確からしさを表す確信度と、視覚的に表示されていて前記解析機能が前記知識データベースを探索して前記対策案を前記予測解として導くための複数の前記要因からなる探索過程及び前記探索過程における複数の前記要因間の関連性を表す探索経路を表す経緯情報と、を含むように表示して出力する、請求項14に記載の作業支援システム。
【請求項16】
前記制御部は、
前記加工装置の動作に関する情報及び前記加工装置による加工の結果を表す加工結果情報を訓練データセットとして学習することにより前記知識モデルを構築する機械学習部を有する、請求項12-15のうちの何れか一項に記載の作業支援システム。
【請求項17】
前記加工装置は、
切れ刃を有する工具を保持する工具保持装置と、
工作物を保持する工作物保持装置と、
前記工作物保持装置に保持された前記工作物を所定方向に送る工作物送り装置と、
前記工作物に対する前記工具の相対的な移動を行う工具変位装置と、
前記工具変位装置の作動を制御する制御装置と、を備えた切削装置である、請求項12-16のうちの何れか一項に記載の作業支援システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作業支援システムに関する。
【背景技術】
【0002】
近年、知見及び経験が豊富な熟練作業者のノウハウを電子データ化して知識モデルを構築し、知見及び経験が浅い未熟作業者が入力した情報に対応するノウハウを提供する作業支援システムが提案されている。例えば、下記特許文献1においては、専門家の知識を因果連鎖木構造により表現して知識モデルを構築し、ユーザの質問に応答する技術が開示されている。
【0003】
又、例えば、下記特許文献2においては、製品構造情報モデルと工程構成情報モデルを統合化した統合モデルに基づく実体/状態データモデルを構築し、作業者が参照する技術が開示されている。更に、例えば、下記特許文献3においては、所定の形式に従って記述した知識モデルを構築し、ユーザが容易に解釈し得る形態で表現された情報を提供する技術が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開平3-108030号公報
【文献】特開2007-241774号公報
【文献】特開2018-147351号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上記従来の技術では、作業者が入力した入力情報に一意に対応するノウハウが提供される。この場合、単に作業を進めるのみであれば、作業者が提供されたノウハウに従うことにより、目的の作業を行うことができる。しかし、例えば、未熟作業者が提供されたノウハウを任意に変更したい場合、ノウハウの変更が作業にどの程度影響するのかを予め理解できることが好ましい。
【0006】
本発明は、データベースに蓄積されたノウハウに基づいて提供される情報を変更した場合において、変更後の影響を理解し易くする作業支援システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
作業支援システムは、作業に関するノウハウを表す知識データを備えた知識モデルを探索可能且つ更新可能に記憶する知識データベースと、任意の入力情報を入力する入力部と、複数の入力情報に基づいて探索条件を設定して知識データベースに記憶された知識モデルを探索し、複数の入力情報に対して予測される予測解を複数導く解析機能を実行する制御部と、制御部による複数の予測解のそれぞれを構成する複数の要因を基本出力情報として表示することにより出力する出力部と、を備え、複数の予測解のそれぞれを構成する複数の要因は、複数の入力情報に基づいて算出された作業に関する所定の指標と、指標に応じて作業を実行するための複数の作業条件と、を含んでおり、さらに、作業者の操作によって、複数の予測解のうちの一部の予測解であるユーザー予測解を構成する、複数の要因のうちの一部の要因である指標を決定すると共に複数の要因のうちの他の要因である作業条件を決定する決定部を備え、出力部は、指標と作業条件とを紐付けすることにより表示して出力し、出力部は、基本出力情報と共に、決定部によって決定されたユーザー予測解を構成する複数の要因を追加出力情報として表示して出力し、出力部は、指標を表す指標軸と作業条件を表す条件軸とを有して、基本出力情報を線図化することにより表示して出力するものであり、決定部は、作業者の操作によって、指標軸に沿ってスライドさせることにより、指標軸の指標に対応する作業条件を決定するスライダを有する
【0008】
これによれば、作業支援システムは、出力部が基本出力情報と共に追加出力情報を表示することができる。これにより、作業者は、基本出力情報と決定部により決定した要因を反映した追加出力情報とを容易に比較することができる。従って、作業者は、ノウハウに基づいて提供された基本出力情報を変更する場合には、追加出力情報に基づいて変更による影響を予め理解することができる。
【図面の簡単な説明】
【0009】
図1】本発明の一実施形態に係る作業支援システムのブロック図である。
図2】切削装置の全体構成を示す平面図である。
図3】切削装置の断面図である。
図4図2及び図3の切削装置に設けられた制御装置のブロック図である。
図5】知識データベースに更新可能に記憶される各種情報を説明するための図である。
図6図1の制御部が参照するテーブルである。
図7図1の制御部によって実行される作業支援ツールプログラムのフローチャートである。
図8図1の制御部による推奨加工条件の設定を説明するための図である。
図9図1の出力部に表示される第一表示画面を説明するための図である。
図10図1の出力部に表示される第二表示画面を説明するための図である。
図11図2及び図3の切削装置により良品の工作物が切削加工された場合の映像を説明するための概略図である。
図12図1の出力部によって出力される振動を説明するための図である。
図13図2及び図3の切削装置により不良品の工作物が切削加工された場合の映像を説明するための概略図である。
図14図1の制御部によって生成される回答に含まれる経緯情報及び確信度(優先順位)を説明するための図である。
図15図1の制御部によって生成される回答に含まれる対策案を説明するための図である。
【発明を実施するための形態】
【0010】
(1.適用の作業支援システム)
作業支援システムは、作業に関する知見(知識)及び経験の浅い未熟作業者が作業に関する知見(知識)及び経験の豊富な熟練作業者が有するノウハウに基づいて作業を行った際の結果(状態)が予め理解できるように、各種情報を提供する。具体的に、作業支援システムは、例えば、生産設備である工作機械を操作する未熟作業者による工作機械を用いた作業である機械加工の支援に適用された場合には、機械加工時の適切な加工条件の判断や決定を支援することができる。ここで、工作機械の一例としては、切削装置や研削盤、溶融した材料を型に射出して生産品を生産する射出成形機或いはダイキャスト成形機等を例示することができる。
【0011】
ここで、ノウハウは、例えば、熟練作業者が工作機械を用いた機械加工(切削加工等)によって得た豊富な知見(知識)及び経験に基づくものである。これにより、作業支援システムは、未熟作業者による工作機械を用いた機械加工を支援することができると共に、未熟作業者に対する教育を支援することができる。
【0012】
(2.作業支援システム100の第一例)
次に、作業支援システム100の構成を、図面を参照しながら説明する。作業支援システム100は、図1に示すように、パーソナルコンピュータ110と、機械加工に関連するノウハウ等を表す知識モデル121を格納する知識データベース120とを備えている。尚、知識データベース120には、知識モデル121に加えて、機械加工(例えば、切削加工)が施される被加工材(被削材)に関する物性データ等も探索可能に格納される。
【0013】
又、作業支援システム100は、パーソナルコンピュータ110によって実行される第一解析機能としての駆動解析機能130と、パーソナルコンピュータ110によって実行される第二解析機能としての解決解析機能140とを備えている。ここで、「解析機能」としては、例えば、目的とする結果を得るために、複数の変数を含む数式において解析により最適な変数の値を求める機能である「ソルバ」等を用いることができる。
【0014】
パーソナルコンピュータ110は、図1に示すように、CPU、ROM、RAM等を主要構成部品とする制御部111を備えており、制御部111が作業支援システム100の作動を統括的に制御する。このため、制御部111には、入力部112、記憶部113、出力部114、インターフェース115及びデータベース更新部116が通信可能に接続されている。尚、制御部111は、後述する「決定部」の一部機能を発揮する。
【0015】
入力部112は、キーボードやマイク、或いは、静止画や動画等の映像を入力するためのインターフェースを有している。入力部112は、主として、未熟作業者によって操作され、機械加工方法(例えば、切削加工方法等)に関する各種条件及び加工装置である工作機械(切削装置200等)に関する入力情報(後述する初期条件等)を入力する。
【0016】
記憶部113は、後述する作業支援ツールプログラムを含む各種プログラム及び作業支援ツールプログラムの実行によって取得される各種データを記憶している。又、記憶部113は、駆動解析機能130と解決解析機能140とをファイルとして記憶しており、制御部111に駆動解析機能130と解決解析機能140とを実行可能なファイルとして出力する。
【0017】
出力部114は、作業支援ツールプログラムの実行により得られた後述する推奨加工条件や質問に対する回答を含む処理内容を未熟作業者に出力する。出力部114としては、文字、静止画及び動画等の映像を表示するモニタ装置、音を発生するスピーカ装置、機械加工時に発生する振動を再現する振動装置等から適宜選択される。
【0018】
本例においては、出力部114は、文字、画像及び動画等の映像を表示するように机上に配置された表示器114a(図9及び図10を参照)を備える。又、本例においては、出力部114は、機械加工時(作業時)に発生する振動を再現する振動器114b(図14を参照)を備える。尚、出力部114による表示画面には、後述する「決定部」を構成するスライダR15B及び「切替部」としての加工結果予測ボタンHが表示される。
【0019】
インターフェース115は、工作機械(切削装置200等)と通信可能に接続されて種々の情報を取得する。データベース更新部116は、知識データベース120に格納された知識モデル121等を更新する。
【0020】
知識データベース120は、パーソナルコンピュータ110(具体的には、制御部111及びデータベース更新部116)と通信可能に接続されている。知識データベース120は、知識モデル121として、知識データ121a及び感覚データ121bを所定記憶位置に更新可能に記憶している。
【0021】
知識データ121aは、熟練作業者が有する知見(知識)や経験に基づいて機械加工(切削加工等)に関する各種情報、即ち、ノウハウを表す電子データである。感覚データ121bは、未熟作業者が知覚し得る感覚である視覚、聴覚、触覚、臭覚等を再現するための電子データである。ここで、感覚データ121bは、例えば、視覚として知覚される静止画及び動画等の映像を表す電子データ、触覚や聴覚として知覚される振動や熱又は音を表す電子データ等である。
【0022】
尚、知識データベース120は、パーソナルコンピュータ110と接続されると共に、図示しないネットワーク回線を介して他のパーソナルコンピュータと接続されていても良い。この場合には、熟練作業者は、パーソナルコンピュータ110の入力部112又は他のパーソナルコンピュータのキーボード等を用いて、知識データ121a及び感覚データ121b即ち知識モデル121を知識データベース120に入力することができる。
【0023】
駆動解析機能130は、制御部111により実行される機能ファイルである。駆動解析機能130は、知識データベース120に記憶されて蓄積された機械加工(切削加工等)に関する知識モデル121の知識データ121aを探索し、後述する探索過程及び探索経路を第一解として導くものである。尚、本例において、「探索過程」及び「探索経路」を合わせて「経緯情報」とも称呼する場合がある。更に、駆動解析機能130は、経緯情報が導かれた知識データ121aに関連する感覚データ121bを探索する。
【0024】
解決解析機能140は、制御部111により実行される機能ファイルである。解決解析機能140は、入力情報として未熟作業者によって入力された機械加工(切削加工等)に関連する初期条件に基づき探索条件を生成して駆動解析機能130に出力する。又、解決解析機能140は、入力情報として未熟作業者によって入力された質問等に基づき探索条件を生成して駆動解析機能130に出力する。
【0025】
又、解決解析機能140は、駆動解析機能130から得られた経緯情報に基づき、未熟作業者によって入力された初期条件に対応する1つ以上の推奨加工条件を第二解即ち予測解として生成して出力部114から出力させる。又、解決解析機能140は、未熟作業者によって入力された質問等に対する回答を第二解として生成して出力部114から出力させる。
【0026】
(3.切削装置200の構成)
切削装置200は、図2に示すように、旋盤である。切削装置200は、工作物保持装置210と、工作物送り装置220と、工具保持装置230と、工具としてのバイト240とを備えている。
【0027】
工作物保持装置210は、工作物W(例えば、単純な円柱等)を回転可能に保持する。工作物保持装置210は、主軸台211と、心押台212とを備えている。主軸台211は、主軸台本体213と、主軸台本体213に回転可能に支持されて工作物Wの軸方向における一端側(図2において紙面右側)を回転可能に支持する回転主軸214と、回転主軸214を回転させるための駆動力を付与する回転主軸モータ215(図4を参照)とを備えている。心押台212は、心押台本体216と、工作物Wの軸方向における他端側(図2において紙面左側)を回転可能に支持する心押センタ217とを備える。
【0028】
工作物保持装置210は、工作物Wの回転軸線AwをX軸方向と平行に向けた状態で、回転軸線Awの方向における両端を回転主軸214と心押センタ217とによって支持する。そして、工作物Wは、回転主軸モータ215が駆動することにより、回転軸線Awの回りに回転する。
【0029】
工作物送り装置220は、工作物Wを所定方向であるX軸方向へ送る。工作物送り装置220は、送り台221と、X軸駆動装置222(図4を参照)とを備えている。尚、図2及び図3においては、X軸駆動装置222の図示が省略されている。送り台221は、ベッド201の上面をX軸方向へ移動可能に設けられる。具体的に、ベッド201の上面には、図3に示すように、X軸方向に延びる一対のX軸ガイドレール223が設けられ、送り台221は、X軸ガイドレール223に案内されながらX軸方向へ移動可能に設置される。X軸駆動装置222は、ベッド201に対して送り台221をX軸方向(即ち、工作物Wの回転軸線Aw方向)に送るねじ送り装置である。
【0030】
送り台221の上面には、主軸台211及び心押台212が設置される。従って、主軸台211及び心押台212に支持された工作物Wは、X軸駆動装置222を駆動して送り台221をX軸方向に移動させることにより、工作物Wの回転軸線Awの方向に送られる。
【0031】
工具保持装置230は、刃を有する工具としてのバイト240を回転不能に保持する。工具保持装置230は、コラム231と、工具変位装置としてのZ軸駆動装置232(図4を参照)と、サドル233と、ホルダ234とを備えている。尚、図2及び図3においては、Z軸駆動装置232の図示が省略されている。
【0032】
コラム231は、ベッド201の上面をZ軸方向に移動可能となるように設けられている。具体的に、ベッド201の上面にはZ軸方向に延びる一対のZ軸ガイドレール235が設けられており、コラム231はZ軸ガイドレール235に案内されながらZ軸方向に移動可能に設置される。Z軸駆動装置232は、ベッド201に対してコラム231をZ軸方向に送るねじ送り装置である。
【0033】
ホルダ234は、サドル233に対して固定されており、バイト240を着脱可能に保持する。これにより、ホルダ234に保持されたバイト240は、コラム231及びサドル233の移動に伴い、ベッド201に対してZ軸方向(送り方向であるX軸方向に直交する方向)に平行移動する。
【0034】
又、切削装置200は、図4に示すように、制御装置250を備えている。制御装置250は、工作物回転制御部251と、送り制御部252と、変位制御部253と、加工条件入力部254と、を含んで構成されている。工作物回転制御部251は、回転主軸モータ215の駆動制御を行い、回転主軸214と心押センタ217とによって支持された工作物Wを回転させる。
【0035】
送り制御部252は、X軸駆動装置222の駆動制御を行い、送り台221をX軸方向に移動させることにより、工作物保持装置210に保持された工作物WをX軸方向に送る。変位制御部253は、Z軸駆動装置232の駆動制御を行い、工具保持装置230に装着されたバイト240をZ軸方向に平行移動させる。
【0036】
加工条件入力部254は、作業者によって操作されるものであり、作業者が工作物Wを切削加工する際の加工条件を入力する。具体的に、加工条件入力部254は、バイト240(即ち、ホルダ234)のZ軸方向への変位量やバイト240に対する工作物WのX軸方向への相対的な送り速度、切込量、工作物Wの材質等を含む切削加工に関する各種加工条件が入力される。加工条件入力部254は、工作物回転制御部251、送り制御部252及び変位制御部253と接続され、作業者によって入力された加工条件を工作物回転制御部251、送り制御部252及び変位制御部253に出力する。
【0037】
(4.知識データ121a及び感覚データ121bについて)
次に、知識データベース120に蓄積(登録)される知識データ121aを具体的に例示しておく。ここで、以下に説明する知識データ121aは、例えば、機械加工方法及び工作機械に関するノウハウである。より具体的には、知識データ121aは、機械加工における問題を生じさせる複数の要因と、問題及び要因の粒度と、問題と要因との間の接続(関連性)及び要因と要因との間の接続(関連性)とを言う。尚、「粒度」とは、例えば、「1,2,・・・」のような段階的数値や「大中小」のような文字、「##~**」のような数値範囲により表されるものであり、「1,2,・・・」や「大中小」等の定性表現によって表されるランク、或いは、「##~**」等の量的表現によって表されるレンジである。
【0038】
具体的に、熟練作業者が機械加工、例えば、切削装置200を用いた切削加工において発生した問題として、バイト240の摩耗が大きいことに対応する知識データ121aを知識データベース120に蓄積(登録)する場合を例示する。熟練作業者は、図5に示すように、先ず「問題」として「工具の摩耗」を入力する。
【0039】
そして、熟練作業者は、「工具の摩耗」を引き起こしていると考えられる要因Aとして「切削力」を入力し、要因Bとして「切込量」を入力する。尚、要因については、2つに限られることはなく、3つ以上の要因として、例えば、「切削熱」や「化学摩耗」、「送り速度」、「送り量」、「工具材質」等を入力可能であることは言うまでもない。
【0040】
又、熟練作業者は、図5に示すように、「問題」の「粒度」として、例えば、摩耗量の数値範囲を入力すると共に、数値範囲(摩耗量)が大きくなるにつれて大きくなるように「1,2,3,4,5」の数字による段階表記で表される「ランク」を入力する。又、熟練作業者は、「要因A」の「粒度」として、例えば、切削力の数値範囲による範囲表記で表される「レンジ」を入力する。尚、図5において、「###~##*」は切削力が大きい範囲を表し、「#**~***」は切削力が小さい範囲を表す。
【0041】
又、熟練作業者は、「要因B」の「粒度」として、例えば、切込量の数値範囲を入力すると共に、数値範囲(切込量)が小さくなるにつれて大きくなるように「1,2,3,4」の数字の段階表記による「ランク」を入力する。ここで、「ランク」及び「レンジ」については、例えば、数値を用いて互いに関連付ける(紐付けする)ことが可能である。これにより、熟練作業者が「ランク」又は「レンジ」或いは「ランク」及び「レンジ」の両方を入力する場合、例えば、入力された「ランク」に対応する「レンジ」も入力されたり、逆に、入力された「レンジ」に対応する「ランク」も入力されたりする。即ち、「ランク」と「レンジ」とは、互いに連動することができる。
【0042】
更に、熟練作業者は、図5にて矢印にて示すように、「問題」と「要因A」との間の接続(関連性)を入力すると共に、「要因A」と「要因B」との間の接続(関連性)を入力する。具体的に、熟練作業者は、「切削力」が大きく、且つ、「切込量」が小さい状態で切削加工が行われた場合に、「工具の摩耗」が大きくなるという関連性が存在することを、これまでの経験から知っている。
【0043】
従って、熟練作業者は、この経験に基づき、換言すれば、関連性に基づき、図5に示すように、「問題」として「工具の摩耗」が極めて大きい「ランク:5」と「要因A」である「切削力」が大きい「レンジ:###~##*」との接続を入力する。加えて、熟練作業者は、「要因A」である「切削力」の「レンジ:###~##*」と「要因B」である「切込量」が小さい「ランク:4」との接続を入力する。
【0044】
同様に、熟練作業者は、「問題」である「工具の摩耗」の比較的大きな「ランク:4」及び「ランク:3」と「要因A」である「切削力」の比較的大きな「レンジ:##*~#**」との接続を入力する。加えて、熟練作業者は、「要因A」である「切削力」の比較的大きな「レンジ:##*~#**」と「要因B」である「切込量」が比較的小さい「ランク:3」との接続を入力する。
【0045】
更に、熟練作業者は、「問題」である「工具の摩耗」の比較的小さな「ランク:2」及び「ランク:1」と「要因A」である「切削力」の小さな「レンジ:#**~***」との接続を入力する。加えて、熟練作業者は、「要因A」である「切削力」の「レンジ:#**~***」と「要因B」である「切込量」が比較的大きい「ランク:2」との接続を入力する。このように、熟練作業者は、問題を解決できるように突き詰めた(特定した)複数の要因及びこれらの要因の間の接続(関連性)を、電子データ化(デジタル化)した知識データ121aをノウハウとして知識データベース120に格納(登録)する。
【0046】
又、熟練作業者は、例えば、「問題」である「工具の摩耗」や「振動が大きい」等に関連して加工条件を異ならせた場合の感覚データ121bを知識データ121aに対応させて(紐付けして)知識データベース120に格納(登録)する。感覚データ121bは、例えば、切削装置200による加工状態や工作物Wの状態等を撮影した静止画や動画の映像データ、加工状態に応じて変化する切削装置200の音又は振動を表す波形データ、或いは、加工状態に応じて変化する切削油の匂い(オイル焼け等)に対応するサンプルの識別データ等を登録することができる。
【0047】
具体的に、感覚データ121bとしての映像データは、図6に示すように、工作物Wに加工に伴って発生する異常(状態)や切削装置200の加工に伴って発生する異常(加工現象)を撮影して得られる電子データである。この場合、異常の項目としては、「加工面の傷」や、「むしれ」、「切り屑」、「びびり」、「チッピング」等を挙げることができる。
【0048】
熟練作業者は、例えば、後述する「推奨加工条件」によって加工した状態を基準として、それぞれの項目における程度即ち推奨加工条件とのずれを表す「大」、「中」、「小」をテーブル形式で記述する。そして、熟練作業者は、それぞれの項目における「大」、「中」、「小」に対応する映像データを感覚データ121bとして格納(登録)する。又、熟練作業者は、感覚データ121bとしての波形データも、映像データと同様に、図6に示すそれぞれの項目における程度即ち推奨加工条件とのずれを表す「大」、「中」、「小」に対応する波形データを感覚データ121bとして格納(登録)する。
【0049】
(5.作業支援の詳細)
以下、作業支援の一例を説明する。パーソナルコンピュータ110の制御部111(より詳しくは、制御部111を構成するCPU。以下、同じ。)は、図7に示す作業支援ツールプログラムの実行をステップS10にて開始する。そして、制御部111は、続くステップS11にて、機械加工としての切削加工に関連する初期条件を入力情報として入力する。
【0050】
初期条件(入力情報)は、入力部112を用いて未熟作業者により入力されるものである。入力される初期条件は、工作物Wを形成する被削材諸元として、工作物Wのワーク材質、ワーク外径、ワーク長さを例示することができる。又、入力される初期条件は、工作物Wの加工要件として、加工に用いる機械名(機械種)、ワークの支持方法(両持ち支持や片持ち支持)、加工工程(粗加工や仕上げ加工等)を例示することができる。
【0051】
この場合、被削材諸元や加工要件は、上述した「要因A」及び「要因B」と同様に、「ランク」や「レンジ」を付して、知識データ121aとして知識データベース120に格納(登録)されている。そして、制御部111は、初期条件が入力されるとステップS12に進む。
【0052】
ステップS12においては、制御部111は記憶部113に記憶されている駆動解析機能130及び解決解析機能140を読み込んで実行する。これにより、駆動解析機能130及び解決解析機能140は協働することにより、前記ステップS11にて入力された初期条件に対応する1つ以上の推奨加工条件を生成する。具体的に、駆動解析機能130は、前記ステップS11にて入力された初期条件(入力情報)を探索条件として知識データベース120の内部を探索し、図8に示すように、第一解としての複数の要因である「工具要求性能」や「工具緒言」等を抽出して解決解析機能140に出力する。
【0053】
解決解析機能140は、出力された複数の要因について熟練作業者によって登録された複数の要因の各々に紐付けされた「ランク」や「レンジ」等を用いることにより、予測解として、複数の要因を指標及び作業条件とする推奨加工条件を複数生成する。ここで、本例においては、解決解析機能140は、「指標」として「作業能率」である「加工能率」を採用し、複数の「加工能率」について各々の「加工能率」を実現する推奨加工条件を生成する。
【0054】
ここで、「加工能率」は、図9に示すように、基準となる「標準」に対して、「低能率」、「高能率」及び「ユーザ」を備える。「低能率」は、「標準」に対して1つの工作物Wの切削加工に要する加工時間が長くなるものの加工精度が高くなる指標である。「高能率」は、「標準」に対して1つの工作物Wの切削加工に要する加工時間が短くなるものの加工精度が低くなる指標である。「ユーザ」は、「標準」を含め、「低能率」と「高能率」との間で未熟作業者が任意に決定する指標である。
【0055】
但し、「指標」については、「作業能率」に限定されるものではない。例えば、作業である機械加工(切削加工)に伴う「加工コスト」や、機械加工(切削加工)に伴う工作物Wの「表面粗さ」、或いは、機械加工(切削加工)に要する「加工時間」等を、「指標」として設定することができる。
【0056】
解決解析機能140は、知識データベース120に記憶された知識モデル121を探索することにより、各々の「加工能率」について、基本出力情報として出力される推奨加工条件を構成する複数の要因である送り速度V、切込量t、送り量f、表面粗さR及び加工時間S等を取得(予測)する。尚、解決解析機能140が取得(予測)する複数の要因としては、送り速度V、切込量t、送り量f、表面粗さR及び加工時間Sに限定されるものではなく、他の要因、例えば、クーラントの有無や予測される加工コスト等を取得(予測)することも可能である。そして、制御部111は、駆動解析機能130及び解決解析機能140を実行して予測解である推奨加工条件を加工能率に応じて生成すると、ステップS13に進む。
【0057】
ステップS13においては、制御部111は、前記ステップS12にて生成した推奨加工条件(即ち、上述した複数の要因を含む基本出力情報)を出力する。具体的に、制御部111は、取得(予測)した推奨加工条件(基本出力情報)を出力部114に出力する。これにより、出力部114を構成する表示器114aは、加工能率に応じた各々の推奨加工条件の基本出力情報(複数の要因)を文字、数字及び図形(写真も含む)により表示し、未熟作業者に対して複数の推奨加工条件を提供する。以下、複数の推奨加工条件の提供について、具体的に説明する。尚、制御部111は、生成した推奨加工条件を記憶部113に記憶する。
【0058】
(5-1.基本出力情報及び追加出力情報を表示する第一表示画面G1について)
制御部111は、複数の推奨加工条件を生成すると、図9に示すように、表示器114aに第一表示画面G1を表示させる。第一表示画面G1は、入力された初期条件に関連する各種情報を表示する第一表示領域R11及び第二表示領域R12と、工具に関連する各種情報を表示する第三表示領域R13と、出力された複数の推奨加工条件に関連する基本出力情報及び追加出力情報を表示する第四表示領域R14及び第五表示領域R15とを備える。
【0059】
又、第五表示領域R15には、「決定部」を構成するスライダR15Bが表示される。更に、第一表示画面G1は、後述する加工結果予測を表示する第二表示画面G2への画面切り替えを可能とする「切替部」としての加工結果予測ボタンHを表示する。
【0060】
第一表示領域R11は、上述したように、前記ステップS11にて入力された初期条件が表示される。ここで、第一表示領域R11に表示される項目については、図9にて小さな黒三角により示すように、プルダウンメニューが表示されるようになっており、初期条件を入力した後であっても適宜入力内容を変更することができる。
【0061】
尚、本例においては、作業支援ツールプログラムの前記ステップS11にて初期条件を入力する。この場合、制御部111は、前記ステップS11にて出力部114の表示器114aに図9の第一表示画面G1を表示させることにより、第一表示領域R11に直接的に初期条件を入力するようにすることも可能である。
【0062】
第二表示領域R12は、第一表示領域R11に表示されたワーク材質(本例においては、図9に示す「金属A」)の材料特性を表示する。具体的に、第二表示領域R12は、例えば、図8に示す「被削材諸元」に対応するように、ワーク材質(被削材)の硬さ、引張強さ、伸び、熱特性をグラフ化して表示する。
【0063】
ここで、第二表示領域R12における材料特性の表示については、切削加工において基準となる任意の基準金属(例えば、S45C等)と今回使用するワーク材質(「金属A」)とが対比されて表示される。尚、本例では、図9に示すように、ワーク材質である「金属A」を太実線により表し、基準金属を太破線により表すようにしている。そして、図9における各々の四角形の面積の大きさは、面積が小さい程、切削加工が容易であることを表している。これにより、未熟作業者は、今回使用するワーク材質(「金属A」)を切削加工する際の容易性或いは難易度を把握することができる。
【0064】
第三表示領域R13は、入力された初期条件に基づいて加工に適した工具であるバイト240の諸元情報を表示する。具体的に、第三表示領域R13では、バイト240の工具材質(図9では「超硬合金」が例示される)、バイト240のノーズRの大きさ、及び、バイト240のブレーカの有無が表示されると共に、バイト240の形状が画像として表示される。これにより、未熟作業者は、例えば、初めて扱うバイト240であっても、形状等を容易に確認することができる。尚、ブレーカは、切削加工により生じる切り屑がバイト240に絡み付くことを防止する、換言すれば、切り屑をバイト240から逃がすものである。
【0065】
第四表示領域R14は、生成された予測解である複数の推奨加工条件の詳細、即ち、複数の要因からなる基本出力情報を表示する。具体的に、第四表示領域R14は、指標としての「加工能率」である「標準」、「低能率」、「高能率」及び「ユーザ」の各々の要因について、前記ステップS13にて取得した、送り速度V、切込量t、送り量f、表面粗さR及び加工時間Sの複数の要因を表示する。尚、第四表示領域R14において表示される推奨加工条件としては、送り速度V、切込量t、送り量f、表面粗さR及び加工時間Sの要因に限定されるものではなく、例えば、クーラントの有無や予測される製造コスト等の他の要因を表示することも可能である。
【0066】
第五表示領域R15は、第四表示領域R14に表示された基本出力情報即ち各々の推奨加工条件を構成する複数の要因がプロットされることにより線図化された線図R15Aと、線図R15A上の値を任意に決定する「決定部」を構成するスライダR15Bとを表示する。線図R15Aは、「加工能率」を指標軸とすると共に各々の推奨加工条件を条件軸とし、推奨加工条件の各要因を正規化してプロットし、且つ、各要因のプロットを線で繋ぐことにより線図化される。
【0067】
これにより、線図R15Aは、「加工能率」が「低能率」から「高能率」に向けて変化する程、例えば、送り速度Vが最小から最大に向けて変化し、加工時間Sは最大から最小に向けて変化する。又、線図R15Aは、図9にて太い実線で示される一般部分とは異なる表示態様となるように、図9にて太い長破線により示される工具変更部分R15A1を有する。
【0068】
工具変更部分R15A1は、切削加工においてより高能率化を図りたい場合において、例えば、現在、工具情報として提供しているバイト240の材質やノーズRの大きさ、或いは、ブレーカの有無を変更したり、バイト240の種類を変更したりする必要があることを示している。尚、後述するように、スライダR15Bによって工具変更部分R15A1に含まれる加工能率が選択された場合には、この加工能率に適したバイト240が第三表示領域R13に表示される。
【0069】
(5-2.追加出力情報について)
「決定部」を構成するスライダR15Bは、線図R15Aの指標軸である「加工能率」に沿ってスライドされることにより、「複数の前記要因のうちの少なくとも1つの要因」である「指標」即ち「加工能率」を決定することができる。尚、本例の線図R15Aにおいては、図9に示すように、「加工能率」について中央値が「標準」に相当し、「低能率」が最低値に相当し、「高能率」が最高値に相当する。
【0070】
加えて、図9にて細い破線により示すように、線図R15Aは、「低能率」と「標準」との間が3分割されると共に「標準」と「高能率」との間も3分割される。即ち、線図R15Aは、スライダR15Bをスライドさせることにより、「標準」を含めて予め設定された7段階により、値を決定することができる。以下、本例においては、「標準」に対応する推奨加工条件を基準として説明する。尚、「低能率」と「標準」との間を3分割すると共に「標準」と「高能率」との間を3分割する値については、スライダR15Bがスライドされた際に、又は、「低能率」、「標準」、「高能率」に対応する推奨加工条件を探索する際に、知識モデル121を探索することによって得られる。
【0071】
これにより、未熟作業者がスライダR15Bを「標準」から「低能率」側にスライドさせた場合には、送り速度Vは「標準」よりも小さな値に変更される一方で、加工時間Sは「標準」よりも大きな値に変更される。又、図9に示すように、未熟作業者がスライダR15Bを「標準」から「高能率」側にスライドさせた場合には、送り速度Vは「標準」よりも大きな値に調整される一方で、加工時間Sは「標準」よりも小さな値に調整される。
【0072】
このように、未熟作業者がスライダR15Bをスライドさせた場合、線図R15Aには、スライダR15Bのスライドに連動して白抜きの丸印R15Cが追加出力情報として追加されて表示される。即ち、第五表示領域R15は、基本出力情報として「標準」を含む線図R15Aを表示すると共に、スライダR15Bがスライドされることにより決定される「加工能率」に対応して追加出力情報としての丸印R15Cを表示する。このため、「標準」から「加工能率」を変更した場合における各要因の変化の程度即ち変更に伴う影響を視覚的に容易に確認することができる。
【0073】
又、未熟作業者は、上述した7段階に加えて、更にスライダR15Bを任意の位置、即ち、任意の「加工能率」にスライドさせることができる。このスライダR15Bのスライドに連動して、第四表示領域R14の「ユーザ」には、「複数の要因のうちの他の要因」である送り速度V、切込量t、送り量f、表面粗さR及び加工時間Sが追加出力情報として表示される。これにより、未熟作業者は、スライダR15Bを任意の位置にスライドさせて任意の「加工能率」を決定することにより、第四表示領域R14に表示される「ユーザ」の各要因の値を連動して変化させることができる。
【0074】
従って、未熟作業者は、第四表示領域R14に表示される「ユーザ」の各要因即ち追加出力情報を確認しながら、任意の推奨加工条件に変更(選択)して決定することができる。そして、未熟作業者は、スライダR15Bをスライドさせることにより、最終的に1つの推奨加工条件を決定することができる。
【0075】
尚、本例においては、第四表示領域R14に「標準」、「低能率」、「高能率」及び「ユーザ」の各々に対応する推奨加工条件を基本出力情報として表示すると共に、第五表示領域R15に基本出力情報を線図化した線図R15Aを表示することができる。又、本例においては、未熟作業者がスライダR15Bをスライドさせることにより、丸印R15C、及び、「ユーザ」の各要因の値を追加出力情報として表示することができる。このため、例えば、第四表示領域R14に「ユーザ」のみを表示し、且つ、第五表示領域に線図化された基本出力情報である線図R15Aを表示し、スライダR15Bのスライドに応じて変化する丸印R15C及び「ユーザ」の要因の値を追加出力情報として表示するように変更することも可能である。
【0076】
(5-3.加工結果の予測を表示する第二表示画面G2について)
又、本例においては、未熟作業者は、1つの推奨加工条件を決定する際には、各々の推奨加工条件(自身が調整した推奨加工条件を含む)に従って工作物Wを加工した場合の加工結果の予測を確認することができる。この場合、未熟作業者は、第一表示画面G1に表示されている「切替部」としての加工結果予測ボタンHを選択(クリック又はタップ)する。これにより、表示器114aは、図9に示す第一表示画面G1から図10に示す第二表示画面G2を表示する。
【0077】
尚、本例においては、第一表示画面G1と第二表示画面G2とを切り替えて表示するために加工結果予測ボタンHを設ける。しかしながら、第一表示画面G1と第二表示画面G2とを区別しない場合には、加工結果予測ボタンHを省略可能であることは言うまでもない。
【0078】
第二表示画面G2は、図10に示すように、第一表示領域R21、第二表示領域R22及び第三表示領域R23を備える。第一表示領域R21は、図10に示すように、上述した第一表示画面G1における第一表示領域R11、第三表示領域R13及び第四表示領域R14に表示される項目を一覧表示する。尚、第一表示領域R21に表示される「加工条件」は、上述したように、未熟作業者によって決定された推奨加工条件(任意に調整した推奨加工条件を含む)が表示される。
【0079】
第二表示領域R22は、上述した第一表示画面G1の第四表示領域R14に表示された加工状態に関する項目(図10においては、「表面粗さR」及び「加工時間S」)を表示する。加えて、第二表示領域R22は、決定された(或いは、選択された)推奨加工条件に従ってワーク材質を切削加工した際に、物理的に算出可能な項目も表示する。物理的に算出可能な項目としては、図10に示すように、「切り屑排出量」や、「切削抵抗」、「切削温度」、「切削動力」、「ワークの最大撓み量」等を挙げることができる。これらの各項目は、ワーク材質(被削材)の材料特性と、推奨加工条件における「切込量t」や「送り量f」とに基づいて、物理的に算出することができる。
【0080】
第三表示領域R23は、決定された推奨加工条件によって工作物Wを切削加工した場合に生じる可能性のある加工現象を表示する。加工現象としては、図10に示すように、切削加工によって生じることが予測される「むしれ」、「びびり」、「チッピング」、「異音」、「異常振動」、「絡み付き」等を例示することができる。
【0081】
ここで、図10においては、各項目に「〇」が表示されており、これらの加工現象が生じない、つまり、良好な加工状態が得られることが予測されている。しかしながら、例えば、未熟作業者によって推奨加工条件が調整された場合、調整後の推奨加工条件では、上述した加工現象が生じることが予測される、即ち、第三表示領域R23に「×」が表示される場合もある。
【0082】
これらの場合、制御部111は、未熟作業者に対して、生じる加工現象を感覚的に知覚できるように、表示器114aに映像を再生させたり、振動器114bに振動を再現させたりすることができる。例えば、第三表示領域R23において各項目について「〇」が表示されている状態で、未熟作業者が「工具のチッピング」や「切り屑の絡み付き」を選択(クリック又はタップ)する。
【0083】
この選択に応じて、制御部111は、「工具のチッピングが無い」や「切り屑の絡み付きが無い」の要因に紐付けられている感覚データ121b(映像データ)を表示器114aに供給する。これにより、表示器114aは、図11に示すように、切削加工に伴って発生する切り屑が少なく、且つ、切り屑によってバイト240にチッピングが生じることなく工作物Wを切削している映像を再現して出力する。
【0084】
又、例えば、第三表示領域R23において各項目について「〇」が表示されている状態で、未熟作業者が「異音」や「異常振動」を選択(クリック又はタップ)する。この選択に応じて、制御部111は、「異音が無い」や「異常振動が無い」の要因に紐付けられている感覚データ121b(波形データ)を振動器114bに供給する。これにより、振動器114bは、図12に示すように、正常な切削加工に伴って発生する音や振動を再現して出力する。
【0085】
一方、例えば、第三表示領域R23において「切り屑の絡み付き」について「×」が表示されている状態では、未熟作業者が「切り屑の絡み付き」を選択(クリック又はタップ)する。この選択に応じて、制御部111は、「切り屑の絡み付きが有る」の要因に紐付けられている感覚データ121b(映像データ)を表示器114aに供給する。これにより、表示器114aは、図13に示すように、切削加工に伴って発生する切り屑が多く、且つ、バイト240に切り屑が絡み付きながら工作物Wを切削している映像を再現して出力する。
【0086】
又、例えば、第三表示領域R23において「切り屑の絡み付き」について「×」が表示され、加えて、「異音」や「異常振動」について「×」が表示されている状態で、未熟作業者が「異音」や「異常振動」を選択(クリック又はタップ)する。この選択に応じて、制御部111は、「異音が有る」や「異常振動が有る」の要因に紐付けられている感覚データ121b(波形データ)を振動器114bに供給する。これにより、振動器114bは、図12に示すように、切削加工に伴って発生する大きな異音や大きな異常振動を再現して出力する。
【0087】
そして、未熟作業者は、上述したように確認して選択可能な推奨加工条件を決定し、決定した推奨加工条件を切削装置200の制御装置250を構成する加工条件入力部254に入力する。これにより、切削装置200においては、制御装置250が、加工条件入力部254に入力された推奨加工条件に基づいて、回転主軸モータ215、X軸駆動装置222及びZ軸駆動装置232を作動させて、工作物Wを切削加工する。
【0088】
そして、未熟作業者は、推奨加工条件に基づいて切削加工された工作物Wについて、上述したように選択した加工条件で切削加工を施した際の形状や面性状等の仕上がり具合を確認し、自身が望む基準に対する処理結果である加工結果の良否を判断する。未熟作業者は、加工結果の良否を、処理結果情報である加工結果情報として入力部112を介して制御部111に入力する。
【0089】
尚、パーソナルコンピュータ110のインターフェース115と切削装置200の制御装置250との間には、計測装置(図示省略)を接続することが可能である。この場合には、未熟作業者が加工結果(処理結果)の良否即ち加工結果情報(処理結果情報)を入力することを省略できる。具体的に、計測装置は、インターフェース115を介して計測結果をパーソナルコンピュータ110に入力する。これにより、制御部111は、自動的に加工結果情報を入力することができる。
【0090】
制御部111は、図7に示す作業支援ツールプログラムのステップS14において、上述したように入力された加工結果が不良であるか否かを判定する。即ち、制御部111は、未熟作業者によって入力された(判断された)加工結果情報に基づいて加工結果が良好であれば、ステップS14にて「No」と判定してステップS19に進む。そして、制御部111は、ステップS19にて、前記ステップS13にて決定された(選択された)推奨加工条件を知識モデル121に格納(登録)し、知識データベース120の記憶内容を更新する。
【0091】
一方、制御部111は、未熟作業者によって入力された(判断された)加工結果情報に基づいて加工結果が不良であれば、ステップS14にて「Yes」と判定してステップS15に進む。ステップS15においては、制御部111は、未熟作業者による質問を受け付けることができる。具体的に、制御部111は、未熟作業者に対して、推奨加工条件に基づいて切削加工された工作物Wの加工結果を良好とするために改善すべき問題(課題)或いは切削装置200に生じた問題(課題)について質問を入力するように促すことができる。
【0092】
具体的に、制御部111は、例えば、出力部114の表示器114aに対して、例えば、未熟作業者が質問を入力する入力窓(図示省略)を表示させる。ここで、質問としては、例えば、「バイト240に生じる摩耗が大きい場合はどうする?」や、「切削加工において振動が大きく発生する切屑が多い場合どうする?」等のテキストデータを例示することができる。未熟作業者は、質問等を入力情報として入力部112を用いて入力する。尚、この入力に際しては、未熟作業者は、文字、数値及び記号等からなる所定の形式で記述されたテキストデータ(第一情報)、又は、未熟作業者が知覚可能な感覚である映像データや波形データ(第二情報)を入力することができる。
【0093】
続く、ステップS16において、制御部111は、入力された質問等に対する回答を予測解として生成する。具体的に、制御部111は、記憶部113に記憶されている駆動解析機能130及び解決解析機能140を読み込んで実行する。これにより、駆動解析機能130は、未熟作業者による質問等即ち記述している文字、数値及び記号から抽出した文字列等を探索条件とし、協働する解決解析機能140に出力する。解決解析機能140は、駆動解析機能130からの探索条件に基づき、知識データベース120の内部を探索する。
【0094】
駆動解析機能130は、探索過程である複数の要因及び要因の間の関連性を表す探索経路を取得すると共に予測解としての対策案を知識データ121aとして取得し、取得した探索過程、探索経路及び対策案を解決解析機能140に出力する。そして、制御部111は、探索過程、探索経路及び対策案が解決解析機能140に出力されると、ステップS17に進む。
【0095】
ステップS17においては、制御部111は、解決解析機能140が取得した知識データ121a、即ち、未熟作業者による質問等(例えば、「工具の摩耗が大きい」や「振動が大きい」等)に対する回答として、出力部114の表示器114aに探索過程及び探索経路を表示させると共に、予測解である複数の対策案に対策案の質問の解決への確からしさを表す確信度即ち優先順位を付して表示させる。以下、これらのことを具体的に説明する。
【0096】
図14に示すように、制御部111は、出力部114の表示器114aに対して、未熟作業者による質問等に対する回答として「加工診断(なぜなぜ分析)」を表示させる。この回答においては、未熟作業者による質問等に対応する「問題」と、複数の対策案に確信度が大きい程優先されるように付された優先順位である「対策順位」が視覚的に表示器114aに表示される。又、回答においては、「問題」を解決するための複数の要因である「要因A」及び「要因B」(探索過程)及びこれら複数の要因の関連性を表す接続(探索経路)からなる「要因分析」が表示器114aに表示される。尚、図14においては、探索過程を太破線により囲んで示し、探索経路を太実線により示す。
【0097】
図14の例示の場合、「問題」である、例えば、「工具の摩耗が大きい」に対して、駆動解析機能130は、知識データベース120の内部(図1を参照)を探索し、「要因A」である「切削力」と「要因B」である「切込量」を第一解として特定する。又、駆動解析機能130は、「問題」、「要因A」及び「要因B」に付されている「ランク」又は「レンジ」、及び、「ランク」又は「レンジ」に基づく接続(関連性)も第一解として特定する。
【0098】
解決解析機能140は、駆動解析機能130が特定した「要因A」及び「要因B」について、これらの要因に対応して入力されている接続(関連性)に基づいて要因分析を行う。尚、関連性については、例えば、「ランク」又は「レンジ」をスコア化し、スコアを考慮して要因解析を行う周知の方向を採用しても良い。そして、解決解析機能140は、「問題」の解決に対する各要因の間の接続(関連性)の確かさ(大きさ)を表す確信度に基づき、第二解として「対策順位」を決定する。
【0099】
図14の例示の場合、「問題」である「工具の摩耗が大きい」ことを解決するためには、「要因A」として「切削力」の確信度が大きく、「要因A」との関連性が大きい「要因B」として「切込量」の確信度が最も大きく、「送り量」、「工具材質」の順に確信度が小さくなる。従って、「対策順位」としては、「切削力」-「切込量」の確信度が最も大きいため「順位1位」となり、「切削力」-「送り量」が「順位2位」、「切削力」-「工具材質」が「順位3位」となる。
【0100】
そして、制御部111は、解決解析機能140が導いた第二解即ち予測解としての回答(対策案)を、図15に示すように、複数の対策案、具体的には、上述した「対策順位:に沿った対策案を出力部114の表示器114aに表示する。これにより、制御部111は、未熟作業者に予測解として複数の対策案を提案(推薦)する。具体的に、表示器114aには、回答として「改善提案(対策)」として、図15においては、3つの対策案が提案(推薦)されている。
【0101】
ここで、制御部111は、「問題」である「工具の摩耗が大きい」に対して一致する原因が存在する場合には、一致する原因に対する対策案を未熟作業者に提案する。一方、制御部111は、「問題」に対して一致する原因が存在しない場合には、「問題」に近い他の問題の原因を推定し、この推定した原因に対する対策案を未熟作業者に提案する。
【0102】
対策案としては、上述した「対策順位」が「順位1位」となった「切削力」-「切込量」に対応する加工条件として、切込量の低減(〇〇%小さくする)が提案される。同様に、「対策順位」が「順位2位」となった「切削力」-「送り量」に対応する加工条件として、送り量の低減(△△%小さくする)が提案される。又、同様に、「対策順位」が「順位3位」となった「切削力」-「工具材質」に対応する工具条件として、バイト240の「工具材質」を「超硬合金」から「材質××」に変更することが提案される。
【0103】
ここで、対策案として提案される切込量の低減、送り量の低減及び工具材質の変更は、駆動解析機能130が知識データベース120を探索して出力した探索過程及び探索経路である経緯情報、即ち、駆動解析機能130が特定した「要因A」及び「要因B」に対応するように記憶部113に記憶されている情報を取得して解決解析機能140が生成するものである。従って、未熟作業者に提案される複数の対策案は、それぞれ、熟練作業者の知見(知識)や経験即ちノウハウ(知識モデル121)に基づくものである。尚、図15に示すように、未熟作業者による質問等に対する対策案が提案される際には、未熟作業者に一般的な注意事項も合わせて表示され、未熟作業者に注意を促すようになっている。
【0104】
ところで、制御部111は、対策案の提案に合わせて、上述した推奨加工条件の場合と同様に、対策案即ち知識モデル121を構成する知識データ121aに関連した感覚データ121bを出力部114に再現させて出力することができる。これにより、制御部111は、未熟作業者に対して、対策案を提示すると共に対策案に関連して知覚可能な感覚を提供することができる。従って、未熟作業者は、感覚を知覚しながら対策案を含むノウハウを取得することができ、例えば、作業支援システム100を教育分野に用いた場合には教育効果を高めることができる。
【0105】
前記ステップS17にて複数の対策案が提供されると、未熟作業者は、例えば、「順位1位」から順番に対策案に従って加工条件を変更し、変更した各々の加工条件を制御装置250の加工条件入力部254に入力する。そして、未熟作業者は、対策案に従って変更した加工条件により工作物Wを切削加工し、工作物Wの形状や面性状等の仕上がり具合を判断すると共に、バイト240の摩耗状態を判断する。
【0106】
未熟作業者は、バイト240の摩耗状態を含めて加工結果の良否について、入力部112を用いて制御部111に入力する。尚、この場合においても、図示しない計測装置がインターフェース115と切削装置200の制御装置250との間に接続されている場合には、計測装置から自動的に加工結果情報が入力されるように構成することも可能である。
【0107】
制御部111は、作業支援ツールプログラムのステップS18において、未熟作業者によって入力された加工結果が良好であるか否かを判定する。即ち、制御部111は、上述した複数の対策案のうちの少なくとも1つ又は全部に従った加工結果が良好であれば、ステップS18にて「Yes」と判定してステップS19に進む。尚、未熟作業者は、加工結果が良好であることを入力する場合、提供された複数の対策案のうち、「問題」の解決に寄与した対策案又は対策案の寄与順(以下、「寄与情報」と称呼する。)も入力する(例えば、図15に示す「対策案」の番号等)。
【0108】
一方、上述した複数の対策案の全部に従った加工結果が不良であれば、制御部111はステップS18にて「No」と判定して前記ステップS15に戻り、前記ステップS15以降の各ステップ処理を実行する。即ち、未熟作業者は、改めて入力情報として未熟作業者による質問等を第一情報又は第二情報で入力することにより、対策案及び感覚の提供を受ける。そして、制御部111は、提供された対策案に従った加工結果が未熟作業者によって良好と判断されるまで、ステップS18にて判定処理を繰り返す。
【0109】
ステップS19においては、制御部111は、良好な加工結果を反映する推奨加工条件に基づいて、知識データベース120に記憶される知識モデル121の内容を更新する。具体的に、制御部111は、前記ステップS14における判定処理により加工結果が良好であると判定した場合は、最初に教示した推奨加工条件が良品を切削加工するための良品条件であるとする。そして、制御部111は、データベース更新部116と協働して、知識データベース120の知識モデル121を更新する。
【0110】
ここで、制御部111は、次回以降の探索において今回の推奨加工条件を優先的に教示できるようにする。具体的に、制御部111は、今回の推奨加工条件を教示するために、例えば、「ランク」や「レンジ」を変更することにより、駆動解析機能130が探索する要因(探索過程)の確信度を大きくして記憶する。尚、制御部111は、データベース更新部116と協働して、更新した推奨加工条件に対応するように、知識モデル121を構成する知識データ121aと感覚データ121bとの紐付けを更新する。
【0111】
又、制御部111は、前記ステップS18における判定処理により加工結果が良好であると判定した場合には、データベース更新部116と協働して、「問題」の解決に寄与した対策案を優先的に提供できるように、知識データベース120の知識モデル121を更新する。この場合、制御部111は、例えば、寄与情報に応じて対策案の「優先順位」を変更して知識データベース120の知識モデル121を更新する。
【0112】
或いは、制御部111は、対策案を設定するために、例えば、駆動解析機能130が探索する要因(探索過程)の「確信度」が大きくなるように変更する。これらにより、未熟作業者が実際に加工した際の加工条件が知識データベース120の知識データ121a即ち熟練作業者によって入力されたノウハウにフィードバックされる。その結果、推奨加工条件の精度及び未熟作業者による質問等に応じた対策案の精度を高めることができる。
【0113】
又、制御部111は、データベース更新部116と協働して、「優先順位」や「確信度」が更新された対策案に対応するように、各々の対策案と感覚データ121bとの紐付けを更新する。この場合、未熟作業者は、例えば、提供された対策案に従って実施した切削加工(機械加工)において撮影した画像や動画等の映像データ、或いは、振動や音等を表す波形データを、入力部112を利用して入力することができる。
【0114】
これにより、制御部111は、入力された映像データや波形データ即ち感覚データ121bと「優先順位」や「確信度」が更新された対策案とを紐付けして知識データベース120の所定記憶位置に記憶する。従って、制御部111は、他の未熟作業者が作業支援ツールプログラムを実行して対策案を提供する際には、より適切な対策案及び感覚を再現して提供することができる。
【0115】
制御部111は、前記ステップS19にて知識データベース120の更新を行うと、ステップS20に進む。ステップS20においては、制御部111は、作業支援ツールプログラムの実行を終了する。そして、制御部111は、例えば、未熟作業者の指示操作に従い、再び前記ステップS10にて作業支援ツールプログラムの実行を開始する。
【0116】
(6.作業支援システム100の第二例)
上述した第一例においては、入力情報として複数の初期条件を入力すると共に、基本出力情報として複数の推奨加工条件を出力(表示)するようにした。しかしながら、入力情報としては1つの初期条件(例えば、被削材の材質のみ)を入力し、基本出力情報として1つの要因を有する推奨加工条件を出力(表示)することも可能である。この場合、例えば、図9に示した第五表示領域R15に表示される線図R15Aは1つのプロットのみが存在するようになる。しかし、例えば、1つのプロットに基づいて数学的に線が引ける場合には、未熟作業者は、上記第一例と同様に、スライダR15Bをスライドさせることにより、提供された推奨加工条件の値を変更して決定することが可能となる。
【0117】
(7.作業支援システム100の第三例)
上述した第一例においては、知識データベース120に記憶される知識モデル121の構築に際して、未熟作業者及び熟練作業者の入力作業を必要とするように構成した。しかしながら、作業支援システム100は、例えば、図1にて破線により示すように、周知の機械学習技術を適用した(具体的には、機械学習プログラムを実行する)機械学習部122を備えることができる。
【0118】
機械学習部122は、知識データ121aとして切削装置200の構成及び作動に関する推奨加工条件や、探索過程及び探索経路を含む情報、切削加工前の調整作動に関する情報等、又、感覚データ121bとして映像データや波形データ等を周知の方法に従って解析可能である。従って、機械学習部122は、知識モデル121即ち知識データベース120を構築することが可能である。
【0119】
具体的に、機械学習部122は、例えば、工作物Wを加工する際の加工条件(推奨加工条件を含む)、工作物Wの加工状態や切削装置200の動作状態即ち加工装置の動作に関する情報、及び、加工の結果を表す加工結果情報を訓練データセットとして学習する。これにより、機械学習部122は、知識データベース120に体系化されて蓄積される知識データ121a及び感覚データ121b即ち知識モデル121の情報量を増やして構築することができる。その結果、未熟作業者に提供する推奨加工条件や対策案の精度を向上させることができる。
【0120】
(8.作業支援システム100の第四例)
上記第一例においては、第二表示画面G2の第三表示領域R23に表示される切削加工における加工現象について、未熟作業者が項目を選択(クリック又はタップ)することに伴って再現された感覚を提供するようにした。しかしながら、作業支援システム100が利用される分野が例えば設計分野等であって感覚の提供が不要の場合には、感覚の提供を省略することも可能である。これにより、作業支援システム100の構成を簡略化することができる。
【0121】
(9.作業支援システム100の第五例)
上記第一例においては、制御部111は、駆動解析機能130及び解決解析機能140を実行することにより、知識データベース120に記憶されている知識モデル121を探索して複数の推奨加工条件を生成するようにした。これに代えて、又は、加えて、例えば、工具メーカ等が開示している加工条件等を予め記憶部113に記憶しておき、制御部111が記憶部113に記憶されている加工条件に基づいて複数の推奨加工条件を未熟作業者に提供するようにすることも可能である。この場合においても、未熟作業者はスライダR15Bをスライドさせることにより、提供された推奨加工条件の要因(例えば、指標に対応する「加工能率」を任意に決定することが可能となる。
【0122】
(10.作業支援システム100の第六例)
上記第一例においては、実際に切削装置200を作動させて工作物Wを加工することにより得られた映像データ及び波形データを感覚データ121bとして知識データベース120に更新可能に記憶するようにした。この場合、未熟作業者に提供される感覚は、類似性の高い感覚データ121bが選択される場合がある(図6を参照)。
【0123】
そこで、制御部111が、例えば、入力情報である初期条件に含まれ得る切削装置200の作動に関連する各種パラメータを、知識データベース120を探索することにより抽出する。そして、これらのパラメータを用いることにより、制御部111が切削装置200の作動状態を計算によりシミュレーションするように構成することも可能である。この場合、制御部111は、計算した結果であるシミュレーションを感覚として出力部114の表示器114a及び/又は振動器114bに出力させる。
【0124】
これにより、表示器114aは、シミュレーションによる静止画又は動画、或いは、文字、数値及び記号を表示することができる。又、振動器114bは、シミュレーションによる振動や音を出力する。従って、作業支援システム100は、より実際に近い感覚を未熟作業者に提供することができる。
【符号の説明】
【0125】
100…作業支援システム、110…パーソナルコンピュータ、111…制御部、112…入力部、113…記憶部、114…出力部、114a…表示器、114b…振動器、115…インターフェース、116…データベース更新部、120…知識データベース、121…知識モデル、121a…知識データ、121b…感覚データ、122…機械学習部、130…駆動解析機能(解析機能)、140…解決解析機能(解析機能)、200…切削装置(加工装置)、201…ベッド、210…工作物保持装置、211…主軸台、212…心押台、213…主軸台本体、214…回転主軸、215…回転主軸モータ、216…心押台本体、217…心押センタ、220…工作物送り装置、221…送り台、222…X軸駆動装置、223…X軸ガイドレール、230…工具保持装置、231…コラム、232…Z軸駆動装置(工作物変位装置)、233…サドル、234…ホルダ、235…Z軸ガイドレール、240…バイト(工具)、250…制御装置、251…工作物回転制御部、252…送り制御部、253…変位制御部、254…加工条件入力部、Aw…回転軸線、G1…第一表示画面、R11…第一表示領域、R12…第二表示領域、R13…第三表示領域、R14…第四表示領域、R15…第五表示領域、R15A…線図、R15A1…工具変更部分、R15B…スライダ(決定部)、R15C…丸印(追加出力情報)、H…加工結果予測ボタン(切替部)、G2…第二表示画面、R21…第一表示領域、R22…第二表示領域、R23…第三表示領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15