IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-燃料電池システム 図1
  • 特許-燃料電池システム 図2
  • 特許-燃料電池システム 図3
  • 特許-燃料電池システム 図4
  • 特許-燃料電池システム 図5
  • 特許-燃料電池システム 図6
  • 特許-燃料電池システム 図7
  • 特許-燃料電池システム 図8
  • 特許-燃料電池システム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】燃料電池システム
(51)【国際特許分類】
   H01M 8/0432 20160101AFI20240409BHJP
   H01M 8/04 20160101ALI20240409BHJP
   H01M 8/04225 20160101ALI20240409BHJP
   H01M 8/04302 20160101ALI20240409BHJP
   H01M 8/04746 20160101ALI20240409BHJP
   H01M 8/0606 20160101ALI20240409BHJP
   H01M 8/0662 20160101ALI20240409BHJP
   H01M 8/12 20160101ALN20240409BHJP
【FI】
H01M8/0432
H01M8/04 J
H01M8/04 N
H01M8/04225
H01M8/04302
H01M8/04746
H01M8/0606
H01M8/0662
H01M8/12 101
H01M8/12 102A
H01M8/12 102B
【請求項の数】 4
(21)【出願番号】P 2021080410
(22)【出願日】2021-05-11
(65)【公開番号】P2022174542
(43)【公開日】2022-11-24
【審査請求日】2023-08-07
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110001128
【氏名又は名称】弁理士法人ゆうあい特許事務所
(72)【発明者】
【氏名】森 快貴
(72)【発明者】
【氏名】長田 康弘
(72)【発明者】
【氏名】小代 卓史
(72)【発明者】
【氏名】瀬戸 博邦
【審査官】橋本 敏行
(56)【参考文献】
【文献】特許第5173326(JP,B2)
【文献】特開2020-047399(JP,A)
【文献】特開2016-119151(JP,A)
【文献】特開2007-200609(JP,A)
【文献】特開2014-010944(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00-8/2495
(57)【特許請求の範囲】
【請求項1】
燃料電池システムであって、
燃料ガスと酸化剤ガスとを用いた電気化学反応により発電する固体酸化物型の燃料電池(10)と、
前記燃料電池の燃料入口に接続され、前記燃料電池に前記燃料ガスを供給するための燃料通路(30)と、
前記燃料通路に設けられ、改質されて前記燃料ガスとなる原料ガスを吸入して吐出する燃料ブロア(32)と、
前記燃料通路のうち前記燃料ブロアの上流側に設けられ、前記燃料通路への前記原料ガスの供給と停止とを切り替える原料ガス供給弁(31)と、
前記燃料通路のうち前記燃料ブロアの下流側に設けられ、流体を噴射するノズル部(601)、前記燃料電池の燃料出口側から流体を吸引する吸引部(602)および前記ノズル部から噴射される流体と前記吸引部から吸引される流体とを混合して吐出する吐出部(603)を有するエジェクタ(60)と、
前記燃料通路のうち前記エジェクタの前記吐出部の下流側に設けられ、触媒による改質反応によって前記原料ガスを改質して前記燃料ガスを生成する改質器(34)と、
前記燃料電池から排出された未反応の前記燃料ガスを含む燃料オフガスの一部を、リサイクルガスとして前記エジェクタの前記吸引部に導くリサイクル通路(61)と、
前記改質器から前記燃料電池に向かって流れる流体の一部を、アシストガスとして前記燃料通路のうち前記燃料ブロアの上流側かつ前記原料ガス供給弁の下流側に導くアシスト通路(70)と、
前記アシスト通路に設けられ、前記アシストガスの流量を調整するアシスト調整部(71)と、
前記燃料電池システムの起動時に、前記改質器の温度が前記改質反応を生じさせることができる改質可能温度になるように、前記改質器を昇温させる暖機装置(80)と、
前記燃料ブロア、前記原料ガス供給弁、前記アシスト調整部および前記暖機装置の作動を制御する制御部(100)と、を備え、
前記制御部は、前記燃料電池システムの起動時であって、前記改質器の温度が前記暖機装置が前記改質器を昇温させる前の温度以上、かつ、前記改質可能温度よりも低い温度範囲内のときに、前記原料ガス供給弁を開き、前記燃料ブロアの作動を開始させることで、前記燃料通路および前記リサイクル通路に前記原料ガスを流し、前記アシスト通路に前記原料ガスが流れるように、前記アシスト調整部の作動を制御する、燃料電池システム。
【請求項2】
前記燃料電池システムは、前記燃料通路のうち前記燃料ブロアの下流側かつ前記エジェクタの上流側に設けられ、触媒反応を利用して、前記原料ガスに含まれる硫黄成分を除去する水添脱硫器(35)を備える、請求項1に記載の燃料電池システム。
【請求項3】
前記制御部は、前記燃料電池システムの起動時であって、前記改質器の温度が前記改質器の前記触媒の酸化劣化が加速して進行し始める温度である触媒劣化温度よりも低い温度のときに、前記原料ガス供給弁を開き、前記燃料ブロアの作動を開始させる、請求項1または2に記載の燃料電池システム。
【請求項4】
前記制御部は、前記燃料電池システムの起動時であって、前記改質器の温度が前記暖機装置が前記改質器を昇温させる前の温度のときに、前記原料ガス供給弁を開き、前記燃料ブロアの作動を開始させる、請求項1または2に記載の燃料電池システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システムに関する。
【背景技術】
【0002】
特許文献1に燃料電池システムが開示されている。燃料電池システムの起動時では、触媒反応が可能な温度になるように、改質器が昇温される。このとき、改質器が有する触媒が空気の存在下で高温になって活性状態になると、触媒が酸化劣化する。そこで、特許文献1の燃料電池システムでは、燃料電池システムの起動時に、アノード電極の電極面に原料ガスを一旦供給することにより、燃料通路に残存する空気を排出する。これによれば、燃料電池システムの起動時に、燃料通路内が原料ガスにより還元雰囲気になる。このため、改質器が有する触媒の酸化劣化を抑制することができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第5173326号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、燃料電池システムとして、エジェクタとリサイクル通路とを備える燃料電池システムがある。エジェクタは、燃料通路のうち改質器の上流側に設けられる。改質器は、触媒によって、炭化水素を含む原料ガスを、水素を含む燃料ガスに改質する。リサイクル通路は、燃料電池から排出された燃料オフガスの一部をエジェクタの吸引側へリサイクルさせる通路である。
【0005】
燃料通路およびリサイクル通路は、オフガス燃焼器でオフ燃料ガスが燃焼して生成した燃焼排ガスが流れる燃焼排ガス通路を介して、燃焼排ガスの出口に通じている。このため、燃料電池システムが停止すると、燃料通路、リサイクル通路、燃焼排ガス通路等の各通路内のガスの熱収縮により、燃焼排ガスの出口から空気が逆流し、燃料通路およびリサイクル通路に空気が存在する。
【0006】
燃料電池システム1の起動時では、触媒による改質反応を生じさせることができる改質可能温度まで、改質器が昇温される。改質器に連通する燃料通路およびリサイクル通路に空気が存在する状態で、改質器が昇温されると、改質器が有する触媒の酸化劣化が生じる。そこで、この対策として、燃料電池システムの起動時に、燃料通路およびリサイクル通路に原料ガスを流すことで、空気を排出することが考えられる。燃料通路に原料ガスが流れると、燃料電池から排出された原料ガスの一部がエジェクタに吸引されることで、リサイクル通路に原料ガスが流れる。これによって、燃料通路およびリサイクル通路に存在する空気が原料ガスに置換される。
【0007】
しかし、リサイクル通路を備える燃料電池システムでは、リサイクル通路を備えていない燃料電池システムと比較して、燃料電池システムの起動時に、リサイクル通路の容積分の空気が多く存在する。このため、燃料電池システムの起動時に、燃料通路に多くの原料ガスを流し続ける必要がある。このときに燃料通路に流す原料ガスは、燃料電池の発電に用いられず、燃料電池システムの外部に排出されるため、原料ガスを多く流すことは好ましくない。
【0008】
本発明は上記点に鑑みて、燃料電池システムの起動時に生じる改質器の触媒の酸化劣化を抑制するとともに、触媒の酸化劣化の抑制のために、燃料電池システムの外部から燃料電池システムに供給する原料ガスの供給量を少なく抑えることができる燃料電池システムを提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するため、請求項1に記載の発明によれば、燃料電池システムは、
燃料ガスと酸化剤ガスとを用いた電気化学反応により発電する固体酸化物型の燃料電池(10)と、
燃料電池の燃料入口に接続され、燃料電池に燃料ガスを供給するための燃料通路(30)と、
燃料通路に設けられ、改質されて燃料ガスとなる原料ガスを吸入して吐出する燃料ブロア(32)と、
燃料通路のうち燃料ブロアの上流側に設けられ、燃料通路への原料ガスの供給と停止とを切り替える原料ガス供給弁(31)と、
燃料通路のうち燃料ブロアの下流側に設けられ、流体を噴射するノズル部(601)、燃料電池の燃料出口側から流体を吸引する吸引部(602)およびノズル部から噴射される流体と吸引部から吸引される流体とを混合して吐出する吐出部(603)を有するエジェクタ(60)と、
燃料通路のうちエジェクタの吐出部の下流側に設けられ、触媒による改質反応によって原料ガスを改質して燃料ガスを生成する改質器(34)と、
燃料電池から排出された未反応の燃料ガスを含む燃料オフガスの一部を、リサイクルガスとしてエジェクタの吸引部に導くリサイクル通路(61)と、
改質器から燃料電池に向かって流れる流体の一部を、アシストガスとして燃料通路のうち燃料ブロアの上流側かつ原料ガス供給弁の下流側に導くアシスト通路(70)と、
アシスト通路に設けられ、アシストガスの流量を調整するアシスト調整部(71)と、
燃料電池システムの起動時に、改質器の温度が改質反応を生じさせることができる改質可能温度になるように、改質器を昇温させる暖機装置(80)と、
燃料ブロア、原料ガス供給弁、アシスト調整部および暖機装置の作動を制御する制御部(100)と、を備え、
制御部は、燃料電池システムの起動時であって、改質器の温度が暖機装置が改質器を昇温させる前の温度以上、かつ、改質可能温度よりも低い温度範囲内のときに、原料ガス供給弁を開き、燃料ブロアの作動を開始させることで、燃料通路およびリサイクル通路に原料ガスを流し、アシスト通路に原料ガスが流れるように、アシスト調整部の作動を制御する。
【0010】
これによれば、燃料電池システムの起動時であって、改質器の温度が改質可能温度よりも低いときに燃料通路およびリサイクル通路に原料ガスを流すことで、燃料通路およびリサイクル通路に存在する空気を排出する。このため、改質器の温度が改質可能温度以上になったときに、燃料通路およびリサイクル通路に原料ガスを流す場合と比較して、改質器の触媒の酸化劣化を抑制することができる。
【0011】
エジェクタのノズル部から原料ガスが噴射されることによって、燃料電池から排出された原料ガスの一部が、エジェクタの吸引部に向かってリサイクル通路を流れる。このとき、ノズル部を流れる原料ガスの流れである駆動流の流量によって、リサイクル通路から吸引部に流入する原料ガスの流れである吸引流の流量が決まる。
【0012】
アシスト通路に原料ガスが流れることで、エジェクタの駆動流の流量が増大し、吸引流の流量が増大する。これにより、リサイクル通路を流れる原料ガスの流量を増大させることができる。このため、アシスト通路を備えていない場合と燃料ブロアが送る原料ガスの流量を同じとして比較して、リサイクル通路に存在する空気を排出するまでに必要な燃料通路に原料ガスを流し続ける時間を減らすことができる。よって、燃料電池システムの外部から燃料電池システムに供給される原料ガスの供給量を少なく抑えることができる。
【0013】
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
【図面の簡単な説明】
【0014】
図1】第1実施形態の燃料電池システムの概略構成図である。
図2】第1実施形態の燃料電池システムの制御装置を示す模式図である。
図3】第1実施形態の燃料電池システムの制御装置が実行する制御処理を示すフローチャートである。
図4】第1実施形態の燃料電池システムの制御装置が実行する起動処理を示すフローチャートである。
図5】第1実施形態の燃料電池システムの制御装置が実行する空気排出処理を示すフローチャートである。
図6】第1実施形態の燃料電池システムの制御装置が実行する停止処理を示すフローチャートである。
図7】第2実施形態の燃料電池システムの概略構成図である。
図8】第3実施形態の燃料電池システムの概略構成図である。
図9】第4実施形態の燃料電池システムの概略構成図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
【0016】
(第1実施形態)
図1に示すように、燃料電池システム1は、作動温度が高温(例えば、500℃~1000℃)となる固体酸化物型の燃料電池(すなわち、SOFC)10を備えている。燃料電池10は、燃料ガスと酸化剤ガスとを用いた電気化学反応により発電する複数の発電セルを積層したスタック構造を有している。なお、発電セルの形状は、平板型および円筒型のいずれであってもよい。
【0017】
図示しないが発電セルは、固体酸化物電解質、空気極(すなわち、カソード)、燃料極(すなわち、アノード)を含んで構成されている。燃料極には、シフト反応等に活性の高いニッケルと電解質材料であるイットリア安定化ジルコニアのサーメット等が用いられている。本実施形態の発電セルは、都市ガス(すなわち、メタンを主成分とするガス)を原料ガスとして用い、都市ガスを改質して生成される水素および一酸化炭素を燃料ガスとして用いる。原料ガスは、改質されて燃料ガスとなるものであり、原燃料とも呼ばれる。原料ガスとしては、炭化水素系のガスであれば、都市ガス以外のガスが採用されてもよい。また、本実施形態の発電セルは、空気中の酸素を酸化剤ガスとして用いる。
【0018】
燃料電池10は、以下の反応式F1、F2に示す水素および酸素の電気化学反応により電気エネルギを出力する。
【0019】
(燃料極)2H+2O2-→2HO+4e (F1)
(空気極)O+4e→2O (F2)
【0020】
また、燃料電池10は、以下の反応式F3、F4に示す一酸化炭素および酸素の電気化学反応により電気エネルギを出力する。
【0021】
(燃料極)2CO+2O →2CO+4e (F3)
(空気極)O+4e→2O (F4)
【0022】
燃料電池10には、燃料電池10の電池温度Tcを検出する電池温度センサ101、燃料電池10から出力される出力電圧Vcsを検出する電池電圧センサ102が設けられている。
【0023】
燃料電池システム1は、ハウジング11を備える。燃料電池10は、後述する空気予熱器22、改質器34、蒸発器33、オフガス燃焼器53、暖機用燃焼器80等とともにハウジング11の内側に配置されている。
【0024】
燃料電池システム1は、空気通路20、空気ブロア21および空気予熱器22を備える。空気通路20は、燃料電池10の空気入口に接続されている。空気通路20は、空気が流れる通路であり、燃料電池10に空気を供給するための通路である。
【0025】
空気ブロア21は、空気通路20に設けられており、燃料電池10に向けて空気を吐出する。空気ブロア21は、大気中の空気を吸い込んで燃料電池10に供給する酸化剤ポンプである。空気ブロア21は、後述する制御装置100からの制御信号によって作動が制御される電動ポンプで構成されている。
【0026】
空気予熱器22は、空気通路20のうち空気ブロア21の下流側に設けられている。空気予熱器22は、空気ブロア21から送られた空気を後述するオフガス用燃焼器73で生成された燃焼排ガスと熱交換させて加熱する熱交換器である。空気予熱器22は、燃料電池10に供給する空気と燃料ガスとの温度差を縮小して、燃料電池10の発電効率の向上を図るために設けられている。
【0027】
燃料電池システム1は、燃料通路30、都市ガス供給弁31、燃料ブロア32、蒸発器33および改質器34を備える。燃料通路30は、燃料電池10の燃料入口に接続されている。燃料通路30は、都市ガスまたは燃料ガスが流れる通路であり、燃料電池10に燃料ガスを供給するための通路である。
【0028】
都市ガス供給弁31は、燃料通路30のうち燃料ブロア32の上流側に設けられている。都市ガス供給弁31は、原料ガスである都市ガスを供給するための原料ガス供給弁である。都市ガス供給弁31は、燃料通路30への都市ガスの供給と停止とを切り替える。都市ガス供給弁31は、後述する制御装置100からの制御信号によって作動が制御される電動弁で構成されている。
【0029】
燃料ブロア32は、燃料通路30のうち都市ガス供給弁31の下流側に設けられたブロアであり、燃料通路30にガス流れを形成する。燃料ブロア32は、都市ガスを吸入して吐出する。燃料ブロア32は、燃料電池10側に向けて都市ガスを供給するためのポンプである。燃料ブロア32は、後述する制御装置100からの制御信号によって作動が制御される電動ポンプで構成されている。
【0030】
蒸発器33は、燃料通路30のうち燃料ブロア32の下流側に設けられる。蒸発器33は、改質器34へ供給する水蒸気を生成する。蒸発器33は、燃焼排ガスによって昇温するように構成されている。蒸発器33は、水を燃焼排ガスと熱交換させて蒸発させる。
【0031】
改質器34は、燃料通路30のうち後述するエジェクタ60の吐出部603の下流側に設けられている。改質器34は、水蒸気を用いて、触媒による水蒸気改質反応によって、都市ガスを改質して燃料ガスを生成する。改質器34は、触媒と、反応器とを含む。改質器34の触媒としては、水蒸気改質触媒であるルテニウムが用いられる。
【0032】
具体的には、改質器34は、都市ガスおよび水蒸気を混合した混合ガスを燃焼排ガスと熱交換させて加熱するとともに、以下の反応式F5に示す改質反応、および反応式F6に示すシフト反応により燃料ガス(すなわち、水素、一酸化炭素)を生成する。
【0033】
CH+HO→CO+3H (F5)
CO+HO→CO+H (F6)
ここで、改質器34における水蒸気改質反応は吸熱反応であり、高温となる条件下にて改質率が向上する特性を有している。このため、改質器34は、燃料電池10の発電時に周囲に放出される熱を吸熱できるように、燃料電池10の周囲に配設されていることが望ましい。
【0034】
燃料電池システム1は、改質器34の温度を検出するための改質器温度センサ103を備える。改質器温度センサ103は、改質器34に設置されている。改質器温度センサ103は、改質器34を通過した後の流体の温度を検出する温度センサである。なお、改質器温度センサ103は、改質器34の温度を直接的に検出する温度センサで構成されていてもよい。
【0035】
燃料電池システム1は、蒸発器33の温度を検出するための蒸発器温度センサ104を備える。蒸発器温度センサ104は、蒸発器33に設置されている。蒸発器温度センサ104は、蒸発器33を通過した後の流体の温度を検出する温度センサである。なお、蒸発器温度センサ104は、蒸発器33の温度を直接的に検出する温度センサで構成されていてもよい。
【0036】
燃料電池システム1は、水供給通路40および水ポンプ41を備える。水供給通路40は、改質器34に水蒸気を供給するための通路である。水供給通路40の一端は、蒸発器33に接続されている。
【0037】
水ポンプ41は、水供給通路40に設けられている。水ポンプ41は、燃料電池システム1の外部からの水を送る。水ポンプ41は、蒸発器33を介して改質器34側に水蒸気を供給するためのポンプである。水ポンプ41は、後述する制御装置100からの制御信号によって作動が制御される電動ポンプで構成されている。
【0038】
燃料電池システム1は、燃料電池10から排出するオフガスが流れるオフガス通路50を備える。オフガス通路50は、空気排出通路51と、燃料排出通路52とを有する。空気排出通路51は、燃料電池10の空気出口に接続されている。空気排出通路51には、燃料電池10から排出される酸化剤オフガスが流れる。燃料排出通路52は、燃料電池10の燃料出口に接続されている。燃料排出通路52には、燃料電池10から排出される燃料オフガスが流れる。燃料オフガスは、燃料電池10での電気化学反応に用いられなかった未反応の燃料ガスと燃料電池10での電気化学反応による生成物とを含む。
【0039】
燃料電池システム1は、エジェクタ60を備える。エジェクタ60は、燃料通路30のうち燃料ブロア32の下流側かつ改質器34の上流側の位置に設けられている。エジェクタ60は、流体を噴射するノズル部601、燃料電池10の燃料出口側から流体を吸引する吸引部602、ノズル部601から噴射される流体と吸引部602から吸引される流体とを混合して改質器34に向けて吐出する吐出部603を有する。
【0040】
ノズル部601は、流体を噴射可能な絞り構造を有している。ノズル部601は、絞り開度が固定された固定絞り構造で構成されている。吸引部602は、ノズル部601の出口側の負圧を利用して流体を吸引する。また、吐出部603は、ノズル部601からの流体および吸引部602からの流体が混合された後に昇圧されるように流路断面積が下流側に向かって拡大している。なお、ノズル部601は、絞り開度を変更可能な可変絞り構造で構成されていてもよい。
【0041】
燃料電池システム1は、リサイクル通路61を備える。リサイクル通路61の一端は、燃料排出通路52の途中に接続されている。リサイクル通路61の他端は、エジェクタ60の吸引部602に接続されている。リサイクル通路61は、燃料電池10から排出された燃料オフガスの一部を、リサイクルガスとして吸引部602に導く通路である。
【0042】
燃料電池システム1は、アシスト通路70およびアシスト調整弁71を備える。アシスト通路70の一端は、燃料通路30のうち改質器34と燃料電池10との間の位置に接続されている。アシスト通路70の他端は、燃料通路30のうち燃料ブロア32の上流側かつ後述する三方弁83の下流側の位置に接続されている。アシスト通路70は、改質器34から燃料電池10に向かって流れる流体の一部を、アシストガスとして燃料通路30のうち燃料ブロア32の上流側に導く通路である。
【0043】
アシスト調整弁71は、アシスト通路70に設けられている。アシスト調整弁71は、アシスト通路70を流れるアシストガスの流量を調整するアシスト調整部である。アシストガスの流量を調整することには、アシストガスの流量を0にすることが含まれる。アシスト調整弁71は、アシスト通路70を開閉するとともに、弁開度を調整することができる。アシスト調整弁71は、後述する制御装置100からの制御信号によって作動が制御される電動弁で構成されている。
【0044】
燃料電池システム1は、脱硫器35を備える。脱硫器35は、燃料通路30のうち燃料ブロア32の下流側であって、蒸発器33およびエジェクタ60の上流側に設けられている。脱硫器35は、触媒反応を利用して、都市ガスに含まれる硫黄成分を除去する。脱硫器35は、水添脱硫器であり、都市ガスに含まれる硫黄化合物を触媒上で水素と反応させて硫化水素に変換し、変換した硫化水素を酸化亜鉛に取り込んで除去する。脱硫器35で用いる水素は、アシスト通路70から供給される。脱硫器35の触媒としては、Ni、Cu等が用いられる。脱硫器35は、蒸発器33からの熱伝導が可能な状態で、ハウジング11の外側に配置されている。
【0045】
燃料電池システム1は、オフガス燃焼器53および燃焼排ガス通路54を備える。オフガス燃焼器53は、オフガス通路50に接続されている。オフガス燃焼器53は、燃料オフガスを燃焼させて燃焼排ガスを生成する。オフガス燃焼器53は、例えば、燃料電池10の発電時に、酸化剤オフガスおよび燃料オフガスを混合した混合ガスを可燃ガスとして燃焼させることで、燃料電池システム1の各機器を昇温させるための燃焼排ガスを生成する。
【0046】
燃焼排ガス通路54は、オフガス燃焼器53に接続されている。燃焼排ガス通路54は、オフガス燃焼器53で生成した燃焼排ガスを流通させる通路である。燃焼排ガス通路54は、内部を流れる燃焼排ガスの熱を有効活用すべく、上流側から順に、改質器34、空気予熱器22、蒸発器33の順に接続されている。
【0047】
燃料電池システム1は、暖機用燃焼器80、暖機用燃焼排ガス通路81、暖機用燃料通路82、三方弁83、暖機用ブロア84を備える。暖機用燃焼器80は、都市ガスを燃焼して燃焼排ガスを生成する。暖機用燃焼器80は、燃料電池システム1の起動時に、燃料電池10、空気予熱器22および改質器34を暖機するために用いられる。
【0048】
暖機用燃焼排ガス通路81は、暖機用燃焼器80で生成した燃焼排ガスが流れる。暖機用燃焼排ガス通路81は、オフガス燃焼器53に接続されている。暖機用燃焼排ガス通路81は、燃料電池10、空気予熱器22および改質器34の周辺に配置されている。暖機用燃焼排ガス通路81を流れる燃焼排ガスの熱によって、燃料電池10、空気予熱器22および改質器34を加熱することができる。
【0049】
暖機用燃料通路82は、暖機用燃焼器80へ都市ガスを導く通路である。暖機用燃料通路82の上流側端部は、三方弁83を介して、燃料通路30のうちアシスト通路70の他端の接続部の上流側かつ都市ガス供給弁31の下流側の位置に接続されている。三方弁83は、後述する制御装置100からの制御信号によって作動が制御される電動弁で構成されている。暖機用ブロア84は、暖機用燃料通路82に設けられている。暖機用ブロア84は、暖機用燃焼器80へ都市ガスを送る。暖機用ブロア84は、後述する制御装置100からの制御信号によって作動が制御される電動ポンプで構成されている。
【0050】
図2に示すように、燃料電池システム1は、制御装置100を備える。制御装置100は、燃料電池システム1の電子制御部である。制御装置100は、プロセッサ、メモリを含むマイクロコンピュータと、その周辺回路で構成されている。制御装置100は、メモリに記憶された制御プログラムに基づいて各種演算、処理を行い出力側に接続された各種制御機器の作動を制御する。
【0051】
制御装置100の入力側には、電池温度センサ101、電池電圧センサ102、改質器温度センサ103、蒸発器温度センサ104を含む各種センサが接続されており、各種センサの検出結果が制御装置100に入力されるようになっている。
【0052】
また、制御装置100には、操作パネル105が接続されている。操作パネル105には、燃料電池10の発電をオンオフするための運転スイッチ105a、燃料電池10の作動状態を表示するディスプレイ105b等が設けられている。
【0053】
一方、制御装置100の出力側には、制御機器として、空気ブロア21、都市ガス供給弁31、燃料ブロア32、水ポンプ41、アシスト調整弁71、暖機用燃焼器80、三方弁83、暖機用ブロア84等が接続されている。これら制御機器は、制御装置100から出力される制御信号に応じて、その作動が制御される。
【0054】
次に、燃料電池システム1の作動について、図3のフローチャートを参照して説明する。なお、図中に示したステップは、各種機能を実現する機能部に対応するものである。このことは、他のフローチャートにおいても同様である。
【0055】
図3に示す各制御処理は、運転スイッチ105aがオンされると制御装置100によって実行される。運転スイッチ105aがオンされて、操作パネル105からの起動指示が制御装置100に入力されると、図3に示すように、制御装置100は、ステップS10にて、燃料電池システム1を起動させる起動処理を実行する。制御装置100に起動指示が入力されて、制御装置100が起動処理を実行するときが、燃料電池システム1の起動時である。この起動処理の詳細については、図4のフローチャートを参照して説明する。
【0056】
図4に示すように、制御装置100は、まず、ステップS110にて、燃料通路30およびリサイクル通路61に存在する空気を排出する空気排出処理を実行する。この空気排出処理の詳細については、図5のフローチャートを参照して説明する。
【0057】
制御装置100は、ステップS111にて、都市ガス供給弁31を開くとともに、燃料ブロア32の作動を開始させる。これにより、都市ガスが燃料通路30を流れる。
【0058】
続いて、制御装置100は、ステップS112にて、燃料ブロア32の作動開始からの都市ガス供給量が第1所定量以上か否かを判定する。第1所定量は、燃料通路30のうち燃料ブロア32からエジェクタ60までの部分に存在する空気の排出のために必要な都市ガスの供給量である。第1所定量は、計測または計算によって求められた量に基づいて予め定められている。ステップS112の判定は、燃料ブロア32の作動開始からの都市ガスの積算流量を測定する測定装置の測定結果に基づいて行われる。なお、ステップS112の判定は、燃料ブロア32が送る都市ガスの流量の設定値と、タイマーによって計測される燃料ブロア32の作動開始からの燃料ブロア32の作動時間とに基づいて行われてもよい。
【0059】
ステップS112にて、NO判定されると、所定時間経過後に、ステップS112が再度行われる。ステップS112にて、YES判定されると、ステップS113に進む。
【0060】
制御装置100は、ステップS113にて、アシスト調整弁71を開く。都市ガスが燃料通路30を流れるとき、エジェクタ60のノズル部601から都市ガスが噴射されることによって、燃料電池10から排出された都市ガスの一部が、エジェクタ6の吸引部602に向かってリサイクル通路61を流れる。このとき、ノズル部601を流れる都市ガスの流れである駆動流の流量によって、リサイクル通路61から吸引部に流入する都市ガスの流れである吸引流の流量が決まる。アシスト調整弁71が開くことで、エジェクタ60の駆動流の流量が増大し、リサイクル通路61を流れる都市ガスの流量が増大する。
【0061】
続いて、制御装置100は、ステップS114にて、アシスト調整弁71が開いてからの都市ガス供給量が第2所定量以上か否かを判定する。第2所定量は、燃料通路30のうちエジェクタ60の下流側の部分と、燃料電池10と、リサイクル通路61とに存在する空気の排出のために必要な都市ガスの供給量である。第2所定量は、計測または計算によって求められた量に基づいて予め定められている。ステップS114の判定は、ステップS112と同様に行われる。
【0062】
ステップS114にて、NO判定されると、所定時間経過後に、ステップS114が再度行われる。ステップS114にて、YES判定されると、ステップS115に進む。
【0063】
制御装置100は、ステップS115にて、燃料ブロア32を停止させるとともに、都市ガス供給弁31を閉じる。ステップS115が実行されることで、ステップS110の空気排出処理が終了する。
【0064】
上記した空気排出処理では、制御装置100は、燃料通路30のうち燃料ブロア32からエジェクタ60までの部分に存在する空気を排出できる都市ガスの供給量である第1所定量を供給する。その後、制御装置100は、アシスト通路70に改質器34を通過後の都市ガスの一部を流す。制御装置100は、燃料通路30のうちエジェクタ60の下流側の部分と、燃料電池10と、リサイクル通路61とに存在する空気を排出できる都市ガスの供給量である第2所定量が供給されるまで、都市ガスを流し続ける。
【0065】
このようにして、制御装置100は、燃料通路30、燃料電池10およびリサイクル通路61に存在する空気を排出させる。すなわち、燃料通路30、燃料電池10およびリサイクル通路61に存在する空気を都市ガスに置換させる。
【0066】
続いて、図4に示すように、制御装置100は、ステップS120にて、燃料電池10を含む各種機器を燃料電池10の発電に適した温度まで昇温させる暖機を開始する。具体的には、制御装置100は、暖機用燃焼器80を作動させるために、都市ガス供給弁31を開き、三方弁83の状態を、暖機用燃料通路82が開いて、燃料通路30が閉じた状態にし、暖機用ブロア84を作動させる。そして、制御装置100は、暖機用燃焼器80に都市ガスおよび空気を供給した状態で、暖機用燃焼器80を点火し、都市ガスと空気との混合ガスを燃焼させる。
【0067】
これにより、燃料電池10、空気予熱器22および改質器34が昇温する。暖機用燃焼器80で生成した燃焼排ガスが、オフガス燃焼器53を介して、燃焼排ガス通路54を流れる。燃焼排ガスは、燃焼排ガス通路54を流れる際に、改質器34、空気予熱器22、蒸発器33に放熱する。これによって、改質器34、空気予熱器22、蒸発器33が昇温する。蒸発器33からの熱伝導によって、脱硫器35が昇温する。なお、暖機用燃焼器80に加えて、制御装置100は、オフガス燃焼器53に対して燃料電池10を介さずに都市ガスおよび空気を供給し、都市ガスと空気との混合ガスを燃焼させて燃焼排ガスを生成させてもよい。このように、改質器34、脱硫器35等は、暖機用燃焼器80またはオフガス燃焼器53が作動することによって昇温する。暖機用燃焼器80またはオフガス燃焼器53は、改質器34、脱硫器35等を昇温させる暖機装置に相当する。
【0068】
暖機開始後、制御装置100は、ステップS130にて、蒸発器33の温度が蒸発器33で水を蒸発させることが可能な蒸発可能温度であるか否かを判定する。この判定は、蒸発器温度センサ104の検出温度に基づいて行われる。蒸発可能温度は、例えば、100℃以上の温度である。
【0069】
ステップS130にて、NO判定されると、所定時間経過後に、ステップS130が再度行われる。ステップS130にて、YES判定されると、ステップS140に進む。
【0070】
制御装置100は、ステップS140にて、改質器34の温度が改質反応を生じさせることが可能な改質可能温度であるか否かを判定する。この判定は、改質器温度センサ103の検出温度に基づいて行われる。改質可能温度は、例えば、300℃以上の温度である。このように、暖機用燃焼器80は、燃料電池システム1の起動時に、改質器の温度が改質可能温度になるように、改質器34を昇温させる。
【0071】
ステップS140にて、NO判定されると、所定時間経過後に、ステップS140が再度行われる。ステップS140にて、YES判定されると、制御装置100は、ステップS150に進む。
【0072】
制御装置100は、ステップS150にて、燃料電池10の温度が燃料電池10で発電が可能な発電可能温度であるか否かを判定する。この判定は、電池温度センサ101の検出温度に基づいて行われる。発電可能温度は、例えば、500℃以上である。
【0073】
ステップS150にて、NO判定されると、所定時間経過後に、ステップS150が再度行われる。ステップS150にて、YES判定されると、制御装置100は、ステップS160に進む。
【0074】
制御装置100は、ステップS160にて、暖機を終了させる。制御装置100は、暖機用ブロア84を停止させるとともに、三方弁83の状態を、暖機用燃料通路82が閉じて、燃料通路30が開いた状態にする。これにより、暖機が終了し、図3のステップS10の起動処理が終了する。
【0075】
続いて、制御装置100は、図3のステップS20にて、燃料電池10で電気エネルギを出力する発電処理を実行する。すなわち、制御装置100は、燃料電池10に要求される電力を出力可能なように、燃料ブロア32、水ポンプ41および空気ブロア21の作動を制御する。また、制御装置100は、アシスト通路70に所望の流量のアシストガスが流れるように、アシスト調整弁71を制御する。このとき、制御装置100は、電池電圧センサ102の検出結果が目標値に近づくように、燃料ブロア32、水ポンプ41、空気ブロア21、アシスト調整弁71の作動を制御する。
【0076】
燃料ブロア32の作動によって、都市ガスが燃料通路30を流れる。水ポンプ41の作動によって、水が蒸発器33に供給されて水蒸気が生成する。燃料ガスおよび水蒸気は、エジェクタ60を介して、改質器34に供給される。改質器34では、前述の反応式F5、F6に示す反応により、燃料ガスである水素および一酸化炭素が生成される。改質器34で生成された燃料ガスは、燃料電池10に供給される。空気ブロア21の作動によって、燃料電池10に空気が供給される。これにより、燃料電池10が発電する。
【0077】
このとき、エジェクタ60では、燃料ガスがノズル部601から噴射されることで生ずる負圧によって、燃料電池10の燃料出口側の燃料オフガスの一部がリサイクル通路61を介して吸引部602に吸引される。これにより、燃料オフガスの一部は、燃料電池10の発電に再利用される。燃料オフガスには、未反応の燃料ガスである水素および一酸化炭素と、燃料電池10での電気化学反応の生成物である水と二酸化炭素とが含まれる。
【0078】
さらに、アシスト調整弁71が開かれていることで、改質器34から流出した流体の一部は、アシストガスとしてアシスト通路70を流れる。アシストガスには、燃料ガスである水素および一酸化炭素と、リサイクル通路61から流入した水および二酸化炭素とが含まれる。これにより、燃料電池システム1がアシスト通路70を備えていない場合と都市ガスおよび水蒸気の流量が同じ条件で比較して、ノズル部601を流れる駆動流の流量が増加し、吸引部602に吸引される吸引流の流量、すなわち、リサイクルガスの流量が増加する。このように、都市ガスの流量および水蒸気の流量を発電に必要な流量よりも多くしなくても、アシスト通路70にアシストガスを流すことで、駆動流の流量を増加させることでき、エジェクタ60の能力を増大させることができる。リサイクルガスの流量を増加させることで、発電効率を向上させることができる。
【0079】
そして、燃料電池10から排出されるオフガスは、可燃ガスとしてオフガス燃焼器53で燃焼される。オフガス燃焼器53で生成された燃焼排ガスは、燃焼排ガス通路54を流れる際に改質器34、空気予熱器22、蒸発器33に放熱する。
【0080】
燃料オフガスの他の一部および燃料電池10から排出された空気オフガスは、オフガス燃焼器53に供給される。燃料オフガスと空気オフガスとが、オフガス燃焼器53で燃焼されて燃焼排ガスが生成する。生成した燃焼排ガスは、燃焼排ガス通路54を流れる際に改質器34、空気予熱器22、蒸発器33に放熱する。
【0081】
続いて、制御装置100は、ステップS30にて、燃料電池10の発電を停止するか否かを判定する。具体的には、制御装置100は、運転スイッチ105aがオフされたか否かを判定する。
【0082】
運転スイッチ105aがオンに維持されている場合、制御装置100は、発電処理を継続する。また、運転スイッチ105aがオフされた場合、制御装置100は、ステップS40にて、停止処理を実行する。この停止処理の詳細については、図6のフローチャートを参照して説明する。
【0083】
図6に示すように、停止処理では、制御装置100は、ステップS410にて、燃料ブロア32、水ポンプ41、空気ブロア21を停止させるとともに、都市ガス供給弁31を閉じる。これにより、外部から燃料電池システム1への都市ガス、水、空気の供給が停止される。
【0084】
続いて、制御装置100は、ステップS420にて、アシスト調整弁71を閉じる。これにより、停止処理が終了する。
【0085】
次に、本実施形態の燃料電池システム1の効果について、比較例1の燃料電池システムと比較して説明する。比較例1の燃料電池システム1は、本実施形態の燃料電池システム1と異なり、アシスト通路70を備えていない。比較例1の燃料電池システム1の他の構成は、本実施形態の燃料電池システム1と同じである。
【0086】
燃料通路30およびリサイクル通路61は、燃焼排ガス通路54を介して、燃焼排ガス通路54の出口に通じている。燃料電池システム1が停止すると、燃料通路30、リサイクル通路61、燃焼排ガス通路54等の各通路の温度が下がる。このときの各通路内のガガスの熱収縮により、燃焼排ガス通路54の出口から空気が逆流し、燃料通路30およびリサイクル通路61に空気が存在する。
【0087】
燃料電池システム1の起動時では、燃料電池10の発電に適した温度になるように、改質器34、燃料電池10、脱硫器35が暖機される。例えば、改質器34では、触媒による改質反応を生じさせることができる改質可能温度まで、改質器34が昇温される。そして、一般的に、改質器34等の暖機が終了すると、改質反応を生じさせるために燃料通路30に都市ガスが流される。
【0088】
しかし、改質器34、燃料電池10、脱硫器35に連通する燃料通路30およびリサイクル通路61に空気が存在する状態で、改質器34、燃料電池10、脱硫器35が昇温すると、改質器34、燃料電池10、脱硫器35が有する触媒の酸化劣化が生じる。特に、改質器34の触媒として用いられるルテニウムの酸化が加速して進行し始める温度である酸化劣化温度は、150℃であり、改質可能温度以下である。このため、燃料通路30等に空気が存在する状態で、改質器34が改質可能温度まで昇温すると、改質器34が有する触媒の酸化劣化が生じる。同様に、燃料電池10の燃料極の触媒および脱硫器35の触媒として用いられるニッケルの酸化劣化温度は、300℃である。このため、燃料通路30等に空気が存在する状態で、燃料電池10、脱硫器35が酸化劣化温度まで昇温すると、燃料電池10、脱硫器35が有する触媒の酸化劣化が生じる。
【0089】
そこで、比較例1の燃料電池システム1では、本実施形態の燃料電池システム1と同様に、制御装置100は、燃料電池システム1の起動時であって、改質器34の温度が常温のときに、空気排出処理を実行する。改質器34の温度が常温のときとは、改質器34の温度が暖機用燃焼器80が改質器34を昇温させる前の温度のときを意味する。空気排出処理では、制御装置100は、都市ガス供給弁31を開き、燃料ブロア32の作動を開始させることで、燃料通路30およびリサイクル通路61に都市ガスを流す。
【0090】
このように、制御装置100は、燃料電池システム1の起動時であって、改質器34の温度が改質可能温度よりも低いときに燃料通路30およびリサイクル通路61に都市ガスを流すことで、燃料通路30およびリサイクル通路61内の空気を排出する。このため、改質器34の温度が改質可能温度以上になったときに、燃料通路30およびリサイクル通路61に都市ガスを流す場合と比較して、改質器34、燃料電池10、脱硫器35が有する触媒の酸化劣化を抑制することができる。
【0091】
ここで、リサイクル通路61は、容積が大きく、燃焼排ガス通路54に近い。このため、燃料電池システム1が停止すると、リサイクル通路61に空気が多く存在する。このため、比較例1の燃料電池システム1では、リサイクル通路61に存在する空気が排出されるまで、燃料通路30に都市ガスを流し続ける時間が長い。すなわち、燃料電池システム1の外部から燃料電池システム1に供給される原料ガスの供給量が多い。このときに燃料通路30に流す都市ガスは、燃料電池10の発電に用いられず、燃料電池システム1の外部に排出されるため、都市ガスを多く流すことは好ましくない。
【0092】
これに対して、本実施形態の燃料電池システム1は、アシスト通路70を備えている。空気排出処理では、制御装置100は、都市ガス供給弁31を開き、燃料ブロア32の作動を開始させた後に、アシスト通路70に都市ガスが流れるように、アシスト調整弁71を開く。
【0093】
これによれば、アシスト通路70に都市ガスが流れることで、エジェクタ60の駆動流の流量が増大し、エジェクタ60の吸引流の流量が増大する。これにより、リサイクル通路61を流れる都市ガスの流量を増大させることができる。このため、比較例1の燃料電池システム1と燃料ブロア32が送る都市ガスの流量を同じとして比較して、リサイクル通路61に存在する空気を排出するまでに必要な燃料通路30に都市ガスを流し続ける時間を減らすことができる。よって、燃料電池システム1の外部から燃料電池システム1に供給される都市ガスの供給量を少なく抑えることができる。
【0094】
また、本実施形態の燃料電池システム1では、燃料電池システム1の停止処理において、制御装置100は、燃料ブロア32等を停止させて都市ガスの供給を停止した後、アシスト調整弁71を閉じる。これにより、都市ガスの供給を停止した後に、アシスト調整弁71を閉じない場合と比較して、燃焼排ガス通路54の出口からの空気の逆流を抑制することができる。
【0095】
(第2実施形態)
第1実施形態の燃料電池システム1では、蒸発器33は、燃料通路30のうち燃料ブロア32とエジェクタ60との間の位置に設けられている。すなわち、燃料通路30のうち燃料ブロア32とエジェクタ60との間の位置に、水供給通路40が合流する合流部があり、その合流部に蒸発器33が設けられている。
【0096】
これに対して、本実施形態の燃料電池システム1では、図7に示すように、蒸発器33は、水供給通路40のうち水ポンプ41と合流部40aとの間の位置に設けられている。合流部40aは、燃料通路30のうち水供給通路40が合流する部分である。燃料電池システム1の他の構成は、第1実施形態と同じである。このように、蒸発器33は、水供給通路40の途中に設けられてもよい。なお、蒸発器33の位置は、第1実施形態および本実施形態の位置に限られない。蒸発器33は、燃料通路30のうち合流部40aとエジェクタ60との間の位置に設けられてもよい。
【0097】
(第3実施形態)
図8に示すように、本実施形態の燃料電池システム1は、第1実施形態の脱硫器35に替えて、常温脱硫器36を備える。また、本実施形態の燃料電池システム1では、蒸発器33は、ハウジング11の外側に配置されている。燃料電池システム1の他の構成は、第1実施形態の燃料電池システム1と同じである。
【0098】
常温脱硫器36は、燃料通路30のうち都市ガス供給弁31の下流側かつ三方弁83の上流側の位置に設けられている。常温脱硫器36は、都市ガスに含まれる硫化物を吸着剤に物理的に吸着させることで、都市ガスに含まれる硫黄成分を除去する。常温脱硫器36は、触媒を有していないので、触媒の酸化劣化の問題を回避することができる。
【0099】
(第4実施形態)
図9に示すように、本実施形態の燃料電池システム1では、第3実施形態の燃料電池システム1に対して、常温脱硫器36の位置が異なる。常温脱硫器36は、燃料通路30のうちアシスト通路70の他端の接続部の上流側かつ三方弁83の下流側の位置に設けられている。燃料電池システム1の他の構成は、第1実施形態の燃料電池システム1と同じである。本実施形態によっても、第3実施形態と同じ効果が得られる。
【0100】
(他の実施形態)
(1)第1実施形態では、燃料電池システム1の起動時に、制御装置100は、燃料ブロア32の作動を開始させた後、アシスト調整弁71を開いた。しかしながら、制御装置100は、燃料ブロア32の作動を開始させる前に、アシスト調整弁71を開き、アシスト調整弁71が開いた状態で、燃料ブロア32の作動を開始させてもよい。また、燃料ブロア32の作動開始と同時に、アシスト調整弁71を開いてもよい。これらの場合であっても、第1実施形態よりも効果が減少するが、燃料電池システム1がアシスト通路70を備えていない場合と比較して、燃料電池システム1の外部から燃料電池システム1に供給する都市ガスの供給量を減らすことができる。
【0101】
(2)第1実施形態では、制御装置100は、燃料電池システム1の起動時であって、改質器34の温度が常温のときに、空気排出処理を実行する。しかしながら、制御装置100は、燃料電池システム1の起動時であって、改質器34等の暖機が開始された後に、空気排出処理を実行してもよい。この場合、制御装置100は、改質器34の温度が改質可能温度よりも低い温度のときに、空気排出処理を実行する。これによっても、改質器34の温度が改質可能温度以上になったときに、燃料通路30およびリサイクル通路61に都市ガスを流す場合と比較して、改質器34の触媒の酸化劣化を抑制することができる。以上の説明のように、制御装置100は、燃料電池システム1の起動時であって、改質器34の温度が暖機用燃焼器80等の暖房装置が改質器34を昇温させる前の温度以上、かつ、改質可能温度よりも低い温度範囲内のときに、空気排出処理を実行すればよい。
【0102】
なお、触媒の酸化劣化温度の方が、改質可能温度よりも低い場合、制御装置100は、改質器34の温度が触媒劣化温度よりも低い温度のときに、空気排出処理を実行することが好ましい。例えば、改質器34の触媒としてルテニウムが用いられる場合、触媒の酸化劣化温度は150℃である。この場合、制御装置100は、改質器34の温度が150℃よりも低い温度のときに、空気排出処理を実行することが好ましい。
【0103】
(3)第1実施形態では、脱硫器35を昇温させる暖機装置として、暖機用燃焼器80またはオフガス燃焼器53が用いられる。しかしながら、脱硫器35を昇温させる暖機装置として、暖機用燃焼器80、オフガス燃焼器53以外の他の暖機装置が用いられてもよい。
【0104】
(4)第1実施形態では、アシスト調整部として、アシスト調整弁71が用いられている。しかしながら、アシスト調整部として、アシスト通路70を開閉するとともに、アシスト通路70を流れるアシストガスの流量を調整することができるポンプが用いられてもよい。
【0105】
(5)本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能であり、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
【符号の説明】
【0106】
10 燃料電池
30 燃料通路
31 都市ガス供給弁
32 燃料ブロア
34 改質器
60 エジェクタ
61 リサイクル通路
70 アシスト通路
71 アシスト調整弁
80 暖機用燃焼器
100 制御装置
図1
図2
図3
図4
図5
図6
図7
図8
図9