(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】空気調和システム、空気調和装置及び制御方法
(51)【国際特許分類】
F24F 11/86 20180101AFI20240409BHJP
F24F 11/64 20180101ALI20240409BHJP
F24F 11/46 20180101ALI20240409BHJP
F24F 11/56 20180101ALI20240409BHJP
F25B 1/00 20060101ALI20240409BHJP
F24F 110/10 20180101ALN20240409BHJP
F24F 110/12 20180101ALN20240409BHJP
F24F 140/00 20180101ALN20240409BHJP
【FI】
F24F11/86
F24F11/64
F24F11/46
F24F11/56
F25B1/00 371F
F24F110:10
F24F110:12
F24F140:00
(21)【出願番号】P 2022048114
(22)【出願日】2022-03-24
【審査請求日】2023-03-09
(73)【特許権者】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】丹野 哲規
【審査官】石田 佳久
(56)【参考文献】
【文献】特開2013-221637(JP,A)
【文献】国際公開第2014/115247(WO,A1)
【文献】国際公開第2022/044325(WO,A1)
【文献】国際公開第2014/013528(WO,A1)
【文献】特開2020-067270(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F24F 11/00-11/89
F25B 1/00
(57)【特許請求の範囲】
【請求項1】
圧縮機を備える室外機と、当該室外機に冷媒配管で接続される複数の室内機と、前記室外機及び前記複数の室内機を制御する制御装置と、前記制御装置と通信可能なサーバ装置と、を有する空気調和システムであって、
前記サーバ装置は、
空調運転に関わる複数の運転状態量を用いて、前記複数の室内機が設置された空調空間の室内温度を予測する第1の予測部と、
前記第1の予測部で予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記複数の室内機の内、各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測する第2の予測部と、を有し、
前記制御装置は、
前記第2の予測部の予測結果を用いて、前記各室内機が前記サーモON又は前記サーモOFFとなる時点に応じて、前記複数の室内機の内、2台以上の室内機における前記サーモONとなる時点が重なるように、前記各室内機の設定温度を変更して、前記圧縮機の駆動を制御する制御部を有することを特徴とする空気調和システム。
【請求項2】
前記制御部は、
前記第2の予測部の予測結果を用いて、前記圧縮機の駆動の停止及び再起動の回数を減少させるように前記圧縮機の駆動を制御することを特徴とする請求項1に記載の空気調和システム。
【請求項3】
前記制御部は、
前記第2の予測部の予測結果を用いて、所定期間内の前記圧縮機の駆動の停止及び再起動の回数を予測し、前記所定期間内において最後にサーモOFFになると予測される前記室内機を基準室内機として特定し、当該基準室内機以外の他の室内機の前記サーモONとなる時点が前記基準室内機の前記サーモONとなる時点と重なるように、前記
基準室内機以外の他の室内機の設定温度を変更することを特徴とする請求項1に記載の空気調和システム。
【請求項4】
前記制御部は、
前記室内機の前記設定温度を所定温度単位で変更することを特徴とする請求項3に記載の空気調和システム。
【請求項5】
前記第1の予測部は、
前記複数の運転状態量の中から予測に使用する運転状態量を選択して回帰分析を行うことで前記室内温度を予測することを特徴とする請求項1~4の何れか一つに記載の空気調和システム。
【請求項6】
前記予測に使用する前記運転状態量は、少なくとも前記設定温度、前記室内温度及び外気温度を含むことを特徴とする請求項5に記載の空気調和システム。
【請求項7】
前記第1の予測部は、
前記制御部にて前記室内機の設定温度が変更されると、変更後の設定温度に基づき、前記各室内機の室内空間の室内温度を予測し、
前記第2の予測部は、
前記第1の予測部で予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測し、
前記制御部は、
前記第2の予測部の予測結果を用いて、前記圧縮機の駆動を制御することを特徴とする請求項3又は4に記載の空気調和システム。
【請求項8】
圧縮機を備える室外機と、当該室外機に冷媒配管で接続される複数の室内機と、前記室外機及び前記複数の室内機を制御する制御装置と、を有する空気調和装置であって、
前記制御装置は、
空調運転に関わる複数の運転状態量を用いて、前記複数の室内機が設置された空調空間の室内温度を予測する第1の予測部と、
前記第1の予測部で予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記複数の室内機の内、各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測する第2の予測部と、
前記第2の予測部の予測結果を用いて、前記各室内機が前記サーモON又は前記サーモOFFとなる時点に応じて、前記複数の室内機の内、2台以上の室内機における前記サーモONとなる時点が重なるように、前記各室内機の設定温度を変更して、前記圧縮機の駆動を制御する制御部と、
を有することを特徴する空気調和装置。
【請求項9】
前記制御部は、
前記第2の予測部の予測結果を用いて、前記圧縮機の駆動の停止及び再起動の回数を減少させるように前記圧縮機の駆動を制御することを特徴とする請求項8に記載の空気調和装置。
【請求項10】
前記制御部は、
前記第2の予測部の予測結果を用いて、所定期間内の前記圧縮機の駆動の停止及び再起動の回数を予測し、前記所定期間内において最後にサーモOFFになると予測される前記室内機を基準室内機として特定し、当該基準室内機以外の他の室内機の前記サーモONとなる時点が前記基準室内機の前記サーモONとなる時点と重なるように、前記
基準室内機以外の他の室内機の設定温度を変更することを特徴とする請求項8に記載の空気調和装置。
【請求項11】
前記制御部は、
前記室内機の前記設定温度を所定温度単位で変更することを特徴とする請求項10に記載の空気調和装置。
【請求項12】
前記第1の予測部は、
前記複数の運転状態量の中から予測に使用する運転状態量を選択して回帰分析を行うことで前記室内温度を予測することを特徴とする請求項8~11の何れか一つに記載の空気調和装置。
【請求項13】
前記予測に使用する前記運転状態量は、少なくとも前記設定温度、前記室内温度及び外気温度を含むことを特徴とする請求項12に記載の空気調和装置。
【請求項14】
前記第1の予測部は、
前記制御部にて前記室内機の設定温度が変更されると、変更後の設定温度に基づき、前記各室内機の室内空間の室内温度を予測し、
前記第2の予測部は、
前記第1の予測部で予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測し、
前記制御部は、
前記第2の予測部の予測結果を用いて、前記圧縮機の駆動を制御することを特徴とする請求項10に記載の空気調和装置。
【請求項15】
圧縮機を備える室外機と、当該室外機に冷媒配管で接続される複数の室内機とを有する空気調和装置が前記圧縮機の駆動を制御する制御方法であって、
空調運転に関わる複数の運転状態量を用いて、前記複数の室内機が設置された空調空間の室内温度を予測するステップと、
予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記複数の室内機の内、各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測するステップと、
予測した前記サーモON及び前記サーモOFFとなる時点を用いて、前記各室内機が前記サーモON又は前記サーモOFFとなる時点に応じて、前記複数の室内機の内、2台以上の室内機における前記サーモONとなる時点が重なるように、前記各室内機の設定温度を変更して、前記圧縮機の駆動を制御するステップと、
を実行することを特徴とする制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気調和システム、空気調和装置及び制御方法に関する。
【背景技術】
【0002】
空気調和装置は、室外機側冷媒回路を備える室外機と、当該室外機に冷媒配管で接続される室内機側冷媒回路を備える複数の室内機と、を有する。空気調和装置は、各室内機から要求される空調能力に応じて室外機側冷媒回路内の圧縮機を駆動制御する。空気調和装置内の各室内機には室温センサを備え、室温センサで検出した空調空間の室内温度が空調運転の目標温度である設定温度付近(例えば、設定温度±0.5℃以内の温度)に到達した場合には室内機の空調運転を中断するサーモOFF状態とされ、室内温度が設定温度付近に到達するまでは室内機の空調運転を継続するサーモON状態とされる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記のような空気調和装置では、全ての室内機がサーモOFFであると、室外機側冷媒回路内の圧縮機が停止される。一方、サーモONである室内機が1台でも存在した場合、圧縮機の駆動が必要になる。
【0005】
また、空気調和装置では、例えば、発揮される空調能力の最低値より当該空気調和装置が空調を行う空間(以降、空調空間と記載する場合がある)における空調負荷が小さい場合、圧縮機を駆動して短時間で室内温度が設定温度付近になってすべての室内機がサーモOFFとなって圧縮機が停止される。その後、空気調和装置では、室内温度が上昇(冷房運転時)又は低下(暖房運転時)して室内温度が設定温度付近ではない温度になると、いずれかの室内機がサーモONとなって圧縮機が再起動される。この後、再び短時間で室内温度が設定温度付近の温度となって圧縮機が停止される。このように圧縮機の停止及び再起動が繰り返される。
【0006】
このように、空調負荷が小さい空調空間における空気調和装置の空調運転では、サーモのON/OFFの切替が頻繁に発生し、その度に圧縮機の駆動の停止及び再起動が頻繁に生じる。圧縮機が再起動される際には多大な電力を消費することになる。以上のことから、圧縮機の停止及び再起動が頻繁に生じると消費電力が増大するという問題があった。
【0007】
以上に説明したような、空調負荷が小さい空調空間で空調運転を行う場合の消費電力を削減するために、圧縮機の停止及び再起動を行わず、圧縮機を低回転数で駆動し続けることも考えられる。しかし、空調空間の空調負荷が小さい場合は、圧縮機を低回転数で駆動したとしても室内温度が設定温度から外れる状態となってしまい、利用者の快適性が低下するおそれがある。
【0008】
本発明ではこのような問題に鑑み、一つの側面では、圧縮機の停止及び再起動の回数を抑制することで、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる空気調和システム等を提供することを目的とする。
【課題を解決するための手段】
【0009】
一つの態様の空気調和システムは、圧縮機を備える室外機と、当該室外機に冷媒配管で接続される複数の室内機と、前記室外機及び前記複数の室内機を制御する制御装置と、前記制御装置と通信可能なサーバ装置と、を有する。前記サーバ装置は、空調運転に関わる複数の運転状態量を用いて、前記複数の室内機が設置された空調空間の室内温度を予測する第1の予測部と、前記第1の予測部で予測した前記室内温度と前記空調運転の目標値である設定温度とを用いて、前記複数の室内機の内、各室内機がサーモONとなる時点及びサーモOFFとなる時点を予測する第2の予測部と、を有する。前記制御装置は、前記第2の予測部の予測結果を用いて、前記各室内機が前記サーモON又は前記サーモOFFとなる時点に応じて前記圧縮機の駆動を制御する制御部を有する。
【発明の効果】
【0010】
一つの側面として、圧縮機の駆動の停止及び再起動の回数を抑制することで、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる。
【図面の簡単な説明】
【0011】
【
図1】
図1は、実施例1の空気調和システムの構成の一例を示す説明図である。
【
図2】
図2は、サーバ装置の構成の一例を示すブロック図である。
【
図3】
図3は、予測モデルの特徴量の一例を示す説明図である。
【
図4】
図4は、集中コントローラの構成の一例を示すブロック図である。
【
図5】
図5は、メモリのメモリ構成の一例を示す説明図である。
【
図6】
図6は、室内温度変化量の予測結果の一例を示す説明図である。
【
図7】
図7は、サーモON/OFF時刻の予測結果の一例を示す説明図である。
【
図8】
図8は、実施例1の各室内機のサーモON/OFFのタイミング調整による圧縮機の消費電力の変動の一例を示す説明図である。
【
図9】
図9は、予測開始時刻から最初にサーモONとなる室内機を特定する際の処理動作の一例を示す説明図である。
【
図10】
図10は、予測開始時刻から最後にサーモOFFとなる室内機(基準室内機)を特定する際の処理動作の一例を示す説明図である。
【
図11】
図11は、他の室内機の設定温度の変更に関わる第1の変更時刻及び第2の変更時刻を予測する際の処理動作の一例を示す説明図である。
【
図12】
図12は、次の予測開始時刻を設定する際の処理動作の一例を示す説明図である。
【
図13】
図13は、制御処理に関わる集中コントローラの処理動作の一例を示すフローチャートである。
【
図14】
図14は、制御処理に関わる集中コントローラの処理動作の一例を示すフローチャートである。
【
図15】
図15は、設定処理に関わる集中コントローラの処理動作の一例を示すフローチャートである。
【
図16】
図16は、実施例2の空気調和装置の構成の一例を示す説明図である。
【
図17】
図17は、集中コントローラの構成の一例を示すブロック図である。
【
図18】
図18は、制御処理に関わる集中コントローラの処理動作の一例を示すフローチャートである。
【発明を実施するための形態】
【0012】
以下、図面に基づいて、本願の開示する空気調和システム等の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜変形しても良い。
【実施例1】
【0013】
<空気調和システムの構成>
図1は、実施例1の空気調和システム1の構成の一例を示す説明図である。
図1に示す空気調和システム1は、空気調和機2と、集中コントローラ5と、サーバ装置6とを有する。空気調和機2は、1台の室外機3と、N台の室内機4とを有する。集中コントローラ5は、空気調和機2全体を制御する。サーバ装置6は、通信網7を介して集中コントローラ5と通信し、集中コントローラ5を介して空気調和機2に各種サービスを提供する。
【0014】
空気調和機2内のN台の室外機3は、例えば、液管及びガス管で並列に各室内機4と接続される。そして、室外機3と室内機4とが液管及びガス管等の冷媒配管で接続されることで、空気調和機2の冷媒回路が形成されている。室内機4は、室内空間毎に設置され、室内空間内を冷房もしくは暖房する。
【0015】
室外機3は、室外機側冷媒回路3Aと、室外機側制御回路3Bと、外気温度センサ3Cとを有する。室外機側冷媒回路3Aは、例えば、圧縮機3A1を使用して冷媒を循環させ、冷媒を各室内機4に供給する。室外機側制御回路3Bは、圧縮機3A1の駆動制御を含む室外機3全体を制御する。外気温度センサ3Cは、室外機3の外気温度を検出するセンサである。
【0016】
更に、各室内機4は、室内機側冷媒回路40Aと、室温センサ40Bと、室内機側制御回路40Cとを有する。室内機側冷媒回路40Aは、室外機3からの冷媒を熱交換する熱交換器等を備え、熱交換器を通過した冷媒で空調空間の室内温度を調節する。室温センサ40Bは、室内機4が設置された空調空間内の室内温度を検出するセンサである。室内機側制御回路40Cは、室内機4全体を制御する。
【0017】
室内機側制御回路40Cには、例えば、冷房運転時に室内温度が設定温度に到達した場合に一時的に冷房運転を停止する機能がある。尚、設定温度は、利用者が室内機4に設定した室内機4の空調運転の目標温度である。室内機側制御回路40Cは、例えば、冷房運転時に室内温度がサーモON温度(設定温度+0.5℃)を超えた場合に室内機4の冷房運転を行うサーモONにする。そして、室内機側制御回路40Cは、サーモON期間中に室内温度がサーモOFF温度(設定温度-0.5℃)に到達するまでサーモONを継続する。更に、室内機側制御回路40Cは、室内温度がサーモOFF温度に到達した場合に室内機4の冷房運転を中断するサーモOFFにする。
【0018】
室外機3は、N台の室内機4の内、何れかの室内機4がサーモON中の場合、室外機側冷媒回路3A内の圧縮機3A1の駆動を継続するのに対し、全ての室内機4がサーモOFF中の場合、圧縮機3A1の駆動を停止することになる。
【0019】
<サーバ装置の構成>
図2は、サーバ装置6の構成の一例を示すブロック図である。
図2に示すサーバ装置6は、通信部6Aと、記憶部6Bと、制御回路6Cとを有する。通信部6Aは、通信網7を介して集中コントローラ5と通信する。制御回路6Cは、サーバ装置6全体を制御する。記憶部6Bは、各種情報を記憶する。
【0020】
記憶部6Bは、予測モデルメモリ11を有する。予測モデルメモリ11は、後述する各室内機4のサーモON/OFFの時点であるサーモON時刻及びサーモOFF時刻を予測する予測モデルを格納する。
【0021】
制御回路6Cは、第1の予測部21と、第2の予測部22とを有する。第1の予測部21は、空調運転に関わる複数の運転状態量を用いる予測モデルを用いて、複数の室内機4が設置された空調空間の室内温度、例えば、30分毎の予測タイミングで予測開始時刻から30分間の各室内温度を予測する。
【0022】
第2の予測部22は、第1の予測部21で予測した各室内機4の室内温度と空調運転の目標値である設定温度とを用いて、各室内機4がサーモONとなる時点及びサーモOFFとなる時点を予測する。サーモONとなる時点とは、室内機4がサーモONとなるサーモON時刻である。サーモOFFとなる時点とは、室内機4がサーモOFFとなるサーモOFF時刻である。
【0023】
<予測モデル>
図3は、予測モデルの特徴量の一例を示す説明図である。サーバ装置6内の予測モデルメモリ11に格納する予測モデルは、サーモOFFの予測モデルと、サーモONの予測モデルとを有する。サーモOFFの予測モデルは、室内機4毎に、サーモOFF時の予測開始時刻から30分間分の室内空間の室内温度の変化量を予測するモデルである。サーモONの予測モデルは、室内機4毎に、サーモON時の予測開始時刻から30分間分の室内空間の室内温度の変化量を予測するモデルである。
【0024】
サーモOFFの予測モデルは、本実施例では、Lasso回帰のアルゴリズムを使用して目的変数として室内温度の秒単位の変化量を予測する。サーモOFFの予測モデルの特徴量としては、例えば、各室内機4から得た室内空間の設定温度と室内温度、サーモOFF時の予測開始時刻から1時間前~20時間前までの時間毎の外気温度を含む運転状態量である。設定温度は、室内機4に設定された目標温度である。室内温度は、室温センサ40Bで検出した温度である。外気温度は、室外機3の外気温度センサ3Cで検出した外気温度である。
【0025】
サーモONの予測モデルは、Lasso回帰のアルゴリズムを使用して目的変数として室内温度の秒単位の変化量を予測する。サーモONの予測モデルの特徴量としては、各室内機4から得た室内空間の設定温度、室内温度、サーモON時の予測開始時刻から1時間前~20時間前までの時間毎の外気温度の他に、各室内機4のセンサ値及び室外機3のセンサ値や、各室内機4や室外機3に搭載されている装置の駆動状態などを含む運転状態量である。室内機4の特徴量は、例えば、FAN制御、室内膨張弁開度、上下風向板の駆動状態及び左右風向板の駆動状態を有する。FAN制御は、室内機4内の図示しないファンの駆動状態である。室内膨張弁開度は、室内機4内の膨張弁の開度を調整するステッピングモータに入力されるパルス信号のパルス数換算で得られる。上下風向板運転は、室内機4内の空気吹き出し口にある上下の風向板の角度である。左右風向板運転は、室内機4内の空気吹き出し口にある左右の風向板の角度である。
【0026】
室外機3の特徴量は、例えば、FAN回転数、吐出管圧力、液管圧力、吸入管圧力、室外膨張弁開度、コンプ回転数、インバータ電流値、インバータ電圧、高圧ガス飽和温度、低圧ガス飽和温度、高圧飽和温度及び低圧飽和温度を有する。FAN回転数は、室外機3内の室外機側冷媒回路3A内のファンの回転数を検出する回転センサのセンサ値である。吐出管圧力は、室外機側冷媒回路3A内の吐出管の圧力を検出する圧力センサのセンサ値である。液管圧力は、室外機側冷媒回路3A内の液管の圧力を検出する圧力センサのセンサ値である。吸入管圧力は、室外機側冷媒回路3A内の吸入管の圧力を検出する圧力センサのセンサ値である。室外膨張弁開度は、室外機側冷媒回路3A内の電子膨張弁の開度を調整するステッピングモータに入力されるパルス信号のパルス数換算で得られる情報である。コンプ回転数は、室外機側冷媒回路3A内の圧縮機3A1の回転数を検出する回転センサのセンサ値である。インバータ電流値は、室外機側冷媒回路3A内の圧縮機3A1を駆動するためのインバータの電流値を検出する電流センサのセンサ値である。インバータ電圧値は、インバータの電圧値を検出する電圧センサのセンサ値である。高圧ガス飽和温度及び高圧飽和温度は、室外機側冷媒回路3A内の吐出圧力センサで検出した圧力値を温度変換した値である。低圧ガス飽和温度及び低圧飽和温度は、室外機側冷媒回路3A内の吸入圧力センサで検出した圧力値を温度変換した値である。
【0027】
制御回路6Cは、Lasso回帰を用いて、膨大な複数の運転状態量(特徴量)から必要な運転状態量(特徴量)を選択し、選択した運転状態量を用いて回帰分析を行って予測モデルを生成し、生成された予測モデルを予測モデルメモリ11に格納する。Lasso回帰を採用することで、膨大な種類の特徴量から必要な特徴量を自動選択して容易に予測モデルを生成できる。
【0028】
<集中コントローラの構成>
図4は、集中コントローラ5の構成の一例を示すブロック図である。
図4に示す集中コントローラ5は、通信部5Aと、記憶部5Bと、制御回路5Cとを有する。通信部5Aは、空気調和機2内の室内機4及び室外機3と通信すると共に、通信網7を介してサーバ装置6と通信する。記憶部5Bは、各種情報を記憶し、また、メモリ31を有する。記憶部5Bは、メモリ31を有する。制御回路5Cは、集中コントローラ5全体を制御する。
【0029】
制御回路5Cは、制御部51と、設定部52とを有する。制御部51は、制御回路5C全体を制御する。制御部51は、第2の予測部22の予測結果を用いて、各室内機4のサーモON又はサーモOFF時刻に応じて、室外機側冷媒回路3A内の圧縮機3A1の駆動の停止及び再起動の回数を減少させるように圧縮機3A1の駆動を制御する。尚、圧縮機3A1の駆動の停止及び再起動の回数を減少させるように圧縮機3A1を制御する方法としては、複数の室内機4の内、2台以上の室内機4のサーモONとなる期間が重なるように、例えば、各室内機4の設定温度を所定温度単位で変更することで実現する。
【0030】
制御部51は、サーバ装置6内の第2の予測部22の予測結果を、通信網7を介して取得する。制御部51は、取得された第2の予測部22の予測結果である室内機4毎のサーモON時刻及びサーモOFF時刻の予測結果を用いて、例えば、予測開始時刻から30分間の所定期間内の圧縮機3A1の停止及び再起動の回数を予測する。更に、制御部51は、例えば、予測開始時刻から30分間の所定期間内において最後にサーモOFFになると予測される室内機4を基準室内機として特定する。更に、設定部52は、当該基準室内機以外の他の室内機4のサーモONとなる期間が基準室内機のサーモONとなる期間と重なるように、変更対象となる他の室内機4の設定温度を所定温度単位で変更する。尚、所定温度単位は、例えば、1℃単位である。
【0031】
制御部51は、設定部52にて室内機4の設定温度が変更されると、変更後の設定温度に基づき、各室内機4のサーモON時刻及びサーモOFF時刻を予測する予測結果を第2の予測部22から取得する。制御部51は、第2の予測部22の予測結果を用いて、室内機4を制御する。
【0032】
<メモリの構成>
図5は、メモリ31のメモリ構成の一例を示す説明図である。
図5に示すメモリ31は、室内機メモリ41と、サーモON時刻メモリ42と、サーモOFF時刻メモリ43と、基準室内機メモリ44と、変更対象メモリ45とを有する。
【0033】
室内機メモリ41は、空気調和機2の各室内機4を識別する識別番号を記憶する。サーモON時刻メモリ42は、第2の予測部22で予測される各室内機4のサーモON時刻の予測結果を記憶する。サーモON時刻メモリ42は、室内機4を識別する室内機識別番号42A毎にサーモON時刻42Bを記憶する。
【0034】
サーモOFF時刻メモリ43は、第2の予測部22で予測される各室内機4のサーモOFF時刻の予測結果を記憶する。サーモOFF時刻メモリ43は、室内機4を識別する室内機識別番号43A毎にサーモOFF時刻43Bを記憶する。基準室内機メモリ44は、複数の室内機4の内、特定された基準室内機を識別する識別番号を記憶する。
【0035】
変更対象メモリ45は、設定温度を変更する変更対象の室内機4の第1の変更時刻及び第2の変更時刻を記憶する。変更対象メモリ45は、変更対象の室内機4を識別する変更対象の室内機識別番号45Aと、設定温度を変更するタイミングである第1の変更時刻45Bと、設定温度を変更前の設定温度に戻すタイミングである第2の変更時刻45Cとを対応付けて記憶する。
【0036】
<第1の予測部及び第2の予測部の処理>
図6は、室内温度変化量の予測結果の一例を示す説明図である。尚、
図6は、冷房運転時の室内温度変化量の予測結果の一例を示している。第1の予測部21は、予測モデルを用いて、予測開始時刻から各室内機4の30分間分の室内温度の変化量を予測する。
【0037】
図7は、サーモON/OFF時刻の予測結果の一例を示す説明図である。第1の予測部21は、予測開始時刻から30分間分の室内温度の変化量に予測開始時刻に検出した室内温度を加えることで、予測開始時刻から30分間分の室内温度を予測する。
【0038】
更に、第2の予測部22は、30分間分の予測した室内温度と、空調運転の目標値である設定温度とを用いて、各室内機4のサーモON時刻及びサーモOFF時刻を予測する。冷房運転時のサーモON温度は設定温度の+0.5℃、サーモOFF温度は設定温度の-0.5℃とする。例えば、設定温度を27℃とした場合、サーモON温度は27.5℃、サーモOFF温度は26.5℃となる。また、暖房運転時のサーモON温度は設定温度の-0.5℃、サーモOFF温度は設定温度の+0.5℃とする。例えば、設定温度を20℃とした場合、サーモON温度は19.5℃、サーモOFF温度は20.5℃となる。
【0039】
第2の予測部22は、予測開始時刻から30分間分の予測した室内温度と、空調運転の目標値である設定温度とを用いて、室内温度がサーモON温度である27.5℃を超えた時点をサーモON時刻として予測する。更に、第2の予測部22は、予測したサーモON時刻から室内温度がサーモOFF温度である26.5℃未満に低下した時点を、サーモOFF時刻として予測する。つまり、第2の予測部22は、予測開始時刻から30分間分の各室内機4のサーモON時刻及びサーモOFF時刻を予測することになる。
【0040】
図8は、実施例1の各室内機4のサーモON/OFFのタイミング調整による圧縮機3A1の消費電力の変動の一例を示す説明図である。尚、説明の便宜上、室外機3は1台、運転中の室内機4は2台とし、冷房運転時の動作について説明する。
図8は、60分間の各室内機4(
図8では室内機4Aと室内機4Bと表示)が設置された部屋の室温の予測結果およびサーモONもしくはサーモOFFとなるタイミングの予測結果および圧縮機3A1の停止及び再起動のタイミングの予測結果と、各室内機4A,4BにおけるサーモON/OFFに応じた消費電力の変動の検出結果を示し、図中の左側は各室内機4A,4BのサーモON/OFFのタイミング調整前の予測結果を、図中の右側はサーモON/OFFのタイミング調整後の予測結果を、それぞれ示している。なお、消費電力の変動の検出結果は、予測される室内機4Aと室内機4Bの、室温の予測結果およびサーモONもしくはサーモOFFとなるタイミングの予測結果を実機で実現させた際の、圧縮機3A1の停止/駆動とその際の消費電力の変動をそれぞれ検出している。
【0041】
先ず、タイミング調整前の圧縮機3A1の消費電力の変動予測の一例について説明する。室内機4Aは、設定温度を24℃、サーモON温度を24.5℃、サーモOFF温度を23.5℃とされている。室内機4Aの60分間の予測結果では、まずサーモONとなっている状態から、経過時間10分で室内温度がサーモOFF温度未満に低下してサーモOFFとなる。次に、室内機4Aは、経過時間が30分と40分の間で室内温度がサーモON温度まで上昇してサーモOFFからサーモONとなる。次に、室内機4Aは、経過時間が40分で再び室内温度がサーモOFF温度未満に低下してサーモOFFとなり、その後は60分が経過するまではサーモOFFが維持されている。つまり、
図8に示すタイミング調整前の例では、60分間でサーモON期間は2回、サーモOFF期間は2回となる。
【0042】
これに対して、室内機4Bは、設定温度を28℃、サーモON温度を28.5℃、サーモOFF温度を27.5℃とされている。室内機4Bの60分間の予測結果では、サーモOFFとなっている状態から経過時間が20分で室内温度がサーモON温度に到達すると、サーモONとなる。次に、室内機4Bは、経過時間が25分で室内温度がサーモOFF温度未満に低下してサーモONからサーモOFFとなる。次に、室内機4Bは、経過時間が50分で室内温度がサーモON温度に到達すると、サーモONとなる。次に、室内機4Bは、経過時間55分で室内温度がサーモOFF温度未満に低下してサーモOFFとなる。つまり、
図8に示すタイミング調整前の例では、60分間でサーモON期間は2回、サーモOFF期間は2回となる。
【0043】
室外機3では、室内機4A、4Bの何れか一方がサーモON期間の場合、圧縮機3A1がONとなり、室内機4A,4Bの両方がサーモOFF期間の場合、圧縮機3A1がOFFとなる。つまり、
図8に示すタイミング調整前の予測例では、室内機4A,4Bの両方がサーモOFFとなる期間が、経過時間が10分から20分の間、25分から30分の間、40分から50分の間、および、55分から60分までの間の4回あり、60分間における圧縮機3A1の停止回数が4回、圧縮機3A1の再起動の回数は3回と予測されている。前述したように、圧縮機3A1の再起動には多大な消費電力を要し、タイミング調整前の空気調和システム1では多大な電力を消費する再起動の機会が3回あることが予想されている。
【0044】
本発明では、複数の室内機4のサーモON期間が重なるようにサーモON/OFFのタイミングを調整することで圧縮機3A1の停止及び再起動の回数を減らすことで、圧縮機3A1の再起動に伴う消費電力を削減する。具体的には、ここまでに説明したタイミング調整前の予測結果を参照し、室内機4AのサーモON期間が室内機4BのサーモON期間に重なるように、室内機4Bの設定温度を調整して室内機4BのサーモON期間を調整する。
【0045】
具体的には、
図8の右側に示すように、室内機4Bにおいて、経過時間が0分の時点で設定温度を下げることで、室内機4BのサーモONとなるタイミングを
図8の左側に示す予測結果より早める。その結果、室内機4BのサーモON期間が、経過時間0分から10分までの間で室内機4AのサーモON期間と重なるため、圧縮機3A1の駆動の停止及び再起動の回数は0分~30間で1回となる。また、経過時間が35分の時点で設定温度を下げることで、室内機4BのサーモONとなるタイミングを
図8の左側に示す予測結果より早める。その結果、室内機4BのサーモON期間が、経過時間35分から40分までの間で室内機4AのサーモON期間と重なるため、圧縮機3A1の駆動の停止及び再起動の回数は30分~60間で1回となる。つまり、
図8に示すタイミング調整後の例では、圧縮機3A1の再起動の回数が60分間で2回となるため、圧縮機3A1の再起動による消費電力を低減できる。タイミング調整後の空気調和システム1では、タイミング調整前の消費電力に比較して消費電力を大幅に低減できる。
【0046】
<空気調和システムの動作>
次に、複数の室内機4のサーモON期間が重なるようにサーモON/OFFのタイミングを調整する処理について詳細に説明する。
【0047】
図9は、予測開始時刻から最初にサーモONとなる室内機4を特定する際の処理動作の一例を示す説明図である。尚、説明の便宜上、冷房運転中の室内機4を3台(室内機4A、室内機4B及び室内機4Cとして図中表記する)として説明する。第2の予測部22は、第1の予測部21において予測開始時刻から30分間の予測期間内の各室内機4(4A,4B,4C)の室内温度を予測した後、予測される室内温度と設定温度とを用いて各室内機4のサーモON時刻及びサーモOFF時刻を予測する。制御部51は、第2の予測部22の予測結果を取得する。制御部51は、第2の予測部22の予測結果に基づき、予測開始時刻にサーモON中の室内機4があるか否かを判定する。制御部51は、予測開始時刻にサーモON中の室内機4がない場合、予測開始時刻以降に最初にサーモONとなると予測される室内機4を特定する。ここでの説明では、制御部51は、最初にサーモONとなる室内機4として、
図9において室内機4Aを特定することになる。
【0048】
図10は、予測開始時刻から最後にサーモOFFとなる室内機4(基準室内機)を特定する際の処理動作の一例を示す説明図である。制御部51は、最初にサーモONとなる室内機4を特定した後、特定された室内機4AがサーモOFFするまでの期間内にサーモONする他の室内機4があるか否かを判定する。制御部51は、サーモONする他の室内機4がない場合、室内機4AのサーモOFF時刻をサーモOFF時刻メモリ43に記憶する。ここでは、
図10においてサーモONする他の室内機4が2台(室内機4B及び室内機4C)あるため、制御部51はこれらの内、室内機4Bより遅く3台の室内機4のうち最後にサーモOFFとなる室内機4Cを基準室内機とする。
【0049】
制御部51は、最後にサーモOFFとなるの室内機4Cを基準室内機として特定し、特定された基準室内機の識別番号を基準室内機メモリ44に記憶する。
【0050】
図11は、他の室内機4の設定温度の変更に関わる第1の変更時刻及び第2の変更時刻を予測する際の処理動作の一例を示す説明図である。制御部51は、室内機4Cを基準室内機として特定した後、基準室内機のサーモOFF時刻から最初にサーモONとなる室内機4を設定温度の変更対象の室内機4として特定する。制御部51は、設定変更対象の室内機4の識別番号を変更対象メモリ45に記憶する。ここでは、制御部51は、
図10に示すように、基準室内機のサーモOFF時刻から最初にサーモONとなる室内機4として室内機4Aを設定温度の変更対象の室内機4として特定することになる。
【0051】
更に、制御部51は、基準室内機のサーモOFF時刻である基準時刻からt分前を第1の変更時刻とし、基準時刻からt分後を第2の変更時刻とする。尚、基準時刻からt分前とする理由は、基準室内機のサーモOFF時刻より前に室内機4AをサーモONさせることで、全ての室内機4がサーモOFFとなることを防ぐためである。また、基準時刻からt分後とする理由は、設定温度が低い状態(過剰な冷房能力が発揮される状態)を長時間続けないようにして使用者の快適性を担保するためである。尚、説明の便宜上、基準時刻前後のt分とする場合を例示したが、基準時刻前後で同一であるt分ではなく、異なる時間でも良い。
【0052】
制御部51は、設定温度の変更対象の室内機4の識別番号、第1の変更時刻及び第2の変更時刻を変更対象メモリ45に記憶する。設定部52は、第1の変更時刻になれば設定温度の変更対象である室内機4Aの設定温度を現在の温度より1℃低い温度に設定し、その後、第2の変更時刻となれば設定変更対象である室内機4Aの設定温度を変更前の設定温度に戻す。その結果、設定温度を下げたままだと過剰な(使用者が好まない)空調能力が発揮されてしまうため、変更前の設定温度に戻すことで、使用者の快適性を担保できる。
【0053】
このように、設定変更対象である室内機4Aの設定温度を現在の温度より1℃低い温度に変更することでサーモONとなる温度も1℃低くなるため、第1の変更時刻において室温がサーモONとなる温度よりも高くなって室内機4AがサーモONとなる。つまり、
図9に示す予測結果における室内機4Aの2回目のサーモONタイミングよりサーモONとなるタイミングが早まるため、基準室内機と定めた室内機4CがサーモONとなっている間に設定変更対象の室内機4AがサーモONとなるので、
図9に示す最初に全ての室内機4がサーモOFFとなる期間がなくなる。室外機3は、各室内機4のサーモON期間が継続するため、圧縮機3A1の再起動の機会が減ることになる。
【0054】
図12は、次の予測開始時刻を設定する際の処理動作の一例を示す説明図である。設定部52は、基準室内機とした室内機4CのサーモOFF時刻を次の予測開始時刻に設定する。第2の予測部22は、予測開始時刻から30分間の予測期間内の各室内機4の室内温度を予測した後、各室内機4のサーモON時刻及びサーモOFF時刻を予測する。そして、制御部51は、第2の予測部22の予測結果に基づき、予測開始時刻にサーモON中の室内機4があるか否かを判定する。制御部51は、予測開始時刻にサーモON中の室内機4がない場合、予測開始時刻から最初にサーモONとなるとと予測される室内機4を特定する。この場合、制御部51は、最初にサーモONとなる室内機4として、
図12において室内機4Bを特定することになる。
【0055】
更に、制御部51は、最初のサーモON時刻の室内機4を特定した後、特定された室内機4BがサーモOFFするまでの期間内にサーモONする他の室内機4があるか否かを判定する。制御部51は、サーモONする他の室内機4がない場合、室内機4BのサーモOFF時刻をサーモOFF時刻メモリ43に記憶する。ここでの説明では、制御部51は、
図12において、サーモONする他の室内機4があるため、サーモONする室内機4A及び室内機4Cの内、室内機4Cよりも後にサーモOFFとなる室内機4Aを基準室内機とする。そして、制御部51は、基準室内機のサーモOFF時刻から最初にサーモONとなる室内機4を設定変更対象の室内機4として特定する。そして、設定部52は、設定変更対象の室内機4の設定温度を変更して設定変更対象の室内機4のサーモON期間を調整して基準室内機のサーモON期間に重なるようにする。尚、
図12では、基準室内機及び設定変更対象の室内機4を特定するまでの動作を表現しているに過ぎず、また、
図9~
図12の処理動作を繰り返すことになる。
【0056】
図13は、制御処理に関わる集中コントローラ5の処理動作の一例を示すフローチャートである。尚、制御処理は、30分毎の予測タイミングで開始する。
図13において集中コントローラ5内の制御回路5C内の制御部51は、電源ON中の室内機4が2台以上であるか否かを判定する(ステップS11)。制御部51は、電源ON中の室内機4が2台以上の場合(ステップS11:Yes)、サーバ装置6内の第2の予測部22の予測結果を取得する(ステップS12)。尚、第2の予測部22の予測結果は、予測開始時刻から予測期間分、例えば、30分間分の各室内機4のサーモON/サーモOFF時刻である。
【0057】
制御部51は、第2の予測結果を参照して予測開始時刻前からサーモON中の室内機4があるか否かを判定する(ステップS13)。制御部51は、予測開始時刻前からサーモON中の室内機4がある場合(ステップS13:Yes)、サーモON中の室内機4の内、最後にサーモOFFとなる室内機4を特定する(ステップS14)。
【0058】
制御部51は、特定された最後にサーモOFFとなる室内機4の室内機識別番号を特定する(ステップS15)。尚、特定された最後にサーモOFFとなる室内機4が基準室内機となる。制御部51は、室内機4の室内機識別番号が特定されると、特定された室内機4のサーモOFF時刻をサーモOFF時刻メモリ43に記憶する(ステップS16)。そして、制御部51は、記憶されたサーモOFF時刻以降で最初にサーモONとなる室内機4を特定し(ステップS17)、
図14に示すM1の処理に移行する。
【0059】
制御部51は、予測開始時刻前からサーモON中の室内機4がない場合(ステップS13:No)、予測期間内に最初にサーモONとなる室内機4を特定する(ステップS18)。最初にサーモONとなる室内機4は、
図9に示す例では、室内機4Aである。制御部51は、特定された最初にサーモONとなる室内機4がサーモOFFするまでの期間にサーモONとなる他の室内機4があるか否かを判定する(ステップS19)。尚、サーモONとなる他の室内機4は、
図9に示す例では、室内機4B及び室内機4Cである。
【0060】
制御部51は、特定された最初にサーモONとなる室内機4がサーモOFFするまでの期間にサーモONとなる他の室内機4がない場合(ステップS19:No)、特定された最初にサーモONとなる室内機4のサーモOFF時刻をサーモOFF時刻メモリ43に記憶する(ステップS20)。制御部51は、記憶されたサーモOFF時刻以降で最初にサーモONとなる室内機4を特定すべく、ステップS17の処理に戻る。
【0061】
制御部51は、特定された最初にサーモONとなる室内機4がサーモOFFするまでの期間内にサーモONとなる他の室内機4がある場合(ステップS19:Yes)、他の室内機4の内、予測期間内に最後にサーモOFFとなる他の室内機4を特定する(ステップS21)。尚、最後にサーモOFFとなる室内機4としては、
図9に示す例では室内機4Cである。最後にサーモOFFとなる室内機4が基準室内機となる。
【0062】
制御部51は、特定された最後にサーモOFFとなる他の室内機4のサーモOFF時刻をサーモOFF時刻メモリ43に記憶する(ステップS22)。サーモOFF時刻メモリ43では、最後にサーモOFFとなる室内機4となる室内機4Cの室内機識別番号及びサーモOFF時刻が記憶されることになる。制御部51は、記憶されたサーモOFF時刻以降で最初にサーモONとなる室内機4を特定すべく、ステップS17の処理に戻る。尚、最初にサーモONとなる室内機4としては、
図10に示す例では室内機4Aである。また、制御部51は、電源ON中の室内機4が2台以上でない場合(ステップS11:No)、
図13に示す処理動作を終了する。
【0063】
図14は、制御処理に関わる集中コントローラ5の処理動作の一例を示すフローチャートである。尚、
図14は、
図13に示すM1に続く処理である。
図14に示すM1において制御部51は、ステップS17において記憶されたサーモOFF時刻以降で最初にサーモONとなると特定された室内機4の設定温度を、記憶されたサーモOFF時刻から所定時間t分前の設定温度を変更するタイミングとなる第1の変更時刻を変更対象メモリ45に記憶する(ステップS31)。記憶されたサーモOFF時刻は、
図11の例では室内機4CのサーモOFF時刻である。更に、制御部51は、記憶されたサーモOFF時刻から所定時間t分後の設定温度を元に戻すタイミングとなる第2の変更時刻を変更対象メモリ45に記憶する(ステップS32)。つまり、変更対象メモリ45には、設定温度の変更対象となる室内機4の室内機識別番号、第1の変更時刻及び第2の変更時刻が記憶されることになる。
【0064】
制御部51は、記憶されたサーモOFF時刻から予測期間までの各室内機4のサーモON/OFF時刻を再予測する第2の予測部22の再予測結果を、通信網7を通じて取得する(ステップS34)。尚、ここでの予測期間は、再予測開始時刻ではなく、最初の予測開始時刻から始める予測期間である。具体的には、制御部51から第2の予測部22に対して、新たな予測開始時刻を通知する。更に、新たな予測開始時刻を受信した第2の予測部22が、新たな予測開始時刻から30分間の予測をして制御部51に通知する。
【0065】
制御部51は、再予測結果に基づき、記憶されたサーモOFF時刻以降で最初にサーモONとなる室内機4を特定する(ステップS35)。尚、記憶されたサーモOFF時刻は、
図12の例では室内機4CのサーモOFF時刻である。更に、サーモOFF時刻以降で最初にサーモONとなる室内機4は、
図12の例では室内機4Bである。制御部51は、特定された室内機4のサーモON時刻が予測期間内にあるか否かを判定する(ステップS36)。
【0066】
制御部51は、特定された室内機4のサーモON時刻が予測期間内にある場合(ステップS36:Yes)、記憶されたサーモOFF時刻を次の予測開始時刻に設定する(ステップS37)。そして、制御部51は、第2の予測部22から次の予測結果を取得すべく、
図13に示すステップS12の処理に戻る。
【0067】
制御部51は、特定された室内機4のサーモON時刻が予測期間内にない場合(ステップS36:No)、
図14に示す処理動作を終了する。
【0068】
図15は、設定処理に関わる集中コントローラ5の処理動作の一例を示すフローチャートである。設定処理は、
図13及び14の処理で特定された室内機4(対象室内機)に対する処理である。
図15に示す集中コントローラ5内の制御回路5C内の設定部52は、メモリ31内の変更対象メモリ45内に第1の変更時刻及び第2の変更時刻があるか否かを判定する(ステップS41)。設定部52は、変更対象メモリ45内に変更対象の室内機4の第1の変更時刻及び第2の変更時刻がある場合(ステップS41:Yes)、変更対象の室内機4に対して設定温度を変更する第1の変更時刻及び第2の変更時刻を設定する(ステップS42)。そして、設定部52は、
図15に示す処理動作を終了する。その結果、
図15の処理において、第1の変更時刻及び第2の変更時刻をそれぞれ設定された変更対象の室内機4では、設定された第1の変更時刻に到達した場合、現在の設定温度を-1℃下げるように設定温度を変更する。そして、変更対象の室内機4は、変更後の設定温度によってサーモONとなるため、基準室内機のサーモON期間と重なるようにサーモON期間が早まることになる。そして、変更対象の室内機4は、設定された第2の変更時刻に到達した場合、変更後の設定温度を変更前の元の設定温度に戻す。
【0069】
更に、設定部52は、変更対象メモリ45内に第1の変更時刻及び第2の変更時刻がない場合(ステップS41:No)、
図15に示す処理動作を終了する。
【0070】
実施例1の空気調和システム1内のサーバ装置6は、空調運転に関わる複数の運転状態量を用いて、複数の室内機4が設置された空調空間の室内温度を予測する。サーバ装置6は、予測した室内温度と空調運転の目標値である設定温度とを用いて、複数の室内機4の内、各室内機4のサーモON時刻及びサーモOFF時刻を予測する。集中コントローラ5は、各室内機4のサーモON時刻及びサーモOFF時刻の予測結果を用いて、各室内機4のサーモON時刻又はサーモOFF時刻に応じて圧縮機3A1の停止及び再起動の回数を減少させる。その結果、圧縮機3A1の停止及び再起動の回数を抑制することで、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる。
【0071】
制御部51は、第2の予測部22の予測結果を用いて、複数の室内機4の内、2台以上の室内機4におけるサーモON期間が重なるように、各室内機4の設定温度を変更する。その結果、2台以上の室内機4のサーモON期間が重なるようにすることで圧縮機3A1の停止及び再起動の回数を抑制し、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる。
【0072】
制御部51は、第2の予測部22の予測結果を用いて、所定期間内の圧縮機3A1の停止及び再起動の回数を予測し、所定期間内において最後にサーモOFFになると予測される室内機4を基準室内機として特定する。制御部51は、当該基準室内機以外の他の室内機4のサーモON時刻が基準室内機のサーモON期間と重なるように、他の室内機4の設定温度を変更する。その結果、2台以上の室内機4のサーモON期間が重なるようにすることで圧縮機3A1の停止及び再起動の回数を抑制し、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる。
【0073】
尚、変更対象の室内機4の設定温度を所定温度単位として、例えば、1℃単位で変更する場合を例示したが、これに限定されるものではなく、適宜変更可能である。
【0074】
制御部51は、基準室内機以外の他の室内機4のサーモON時刻が基準室内機のサーモON期間と重なるように他の室内機4の内、最初のサーモON時刻となる室内機4を設定変更対象の室内機4とする場合を例示した。しかしながら、設定変更対象の室内機4は1台に限定されるものではなく、適宜変更可能である。
【0075】
また、実施例1の空気調和システム1内の集中コントローラ5では、サーバ装置6内の制御回路6Cから各室内機4のサーモON時刻及びサーモOFF時刻の予測結果を取得し、予測結果に基づき、制御処理を実行する場合を例示した。しかしながら、第1の予測部21及び第2の予測部22は、集中コントローラ5内に備えても良く、その実施の形態につき、実施例2として以下に説明する。
【実施例2】
【0076】
<空気調和装置の構成>
図16は、実施例2の空気調和装置1Aの構成の一例を示す説明図である。尚、実施例1の空気調和システム1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。
図16に示す空気調和装置1Aは、空気調和機2と、集中コントローラ5とを有する。サーバ装置6はないものとする。
図17は、集中コントローラ5の構成の一例を示すブロック図である。
図17に示す集中コントローラ5内の記憶部5Bは、予測モデルを格納する予測モデルメモリ11Aを有する。予測モデルは、サーモOFFの予測モデルと、サーモONの予測モデルとを有する。
【0077】
更に、制御回路5Cは、制御部51及び設定部52の他に、第1の予測部21A及び第2の予測部22Aを有する。
【0078】
第1の予測部21Aは、空調運転に関わる複数の運転状態量を用いる予測モデルを用いて、複数の室内機4が設置された空調空間の室内温度、例えば、30分毎の予測タイミングで予測時点から30分間の各室内温度を予測する。
【0079】
第2の予測部22Aは、第1の予測部21Aで予測した各室内機4の室内温度と空調運転の目標値である設定温度とを用いて、各室内機4のサーモON時刻及びサーモOFF時刻を予測する。制御部51Aは、第2の予測部22Aの予測結果を用いて、各室内機4のサーモON又はサーモOFF時刻に応じて、室外機側冷媒回路3A内の圧縮機3A1の停止及び再起動の回数を減少させる。尚、圧縮機3A1の停止及び再起動の回数を減少させる方法としては、複数の室内機4の内、2台以上の室内機4のサーモONとなる期間が重なるように、各室内機4の設定温度を所定温度単位で変更することで実現する。
【0080】
制御部51は、第2の予測部22Aの予測結果を用いて、例えば、予測開始時刻から30分間の所定期間内の圧縮機3A1の停止及び再起動の回数を予測する。更に、制御部51は、所定期間内において最後にサーモOFFになると予測される室内機4を基準室内機として特定する。更に、設定部52は、当該基準室内機以外の他の室内機4のサーモON期間が基準室内機のサーモON期間と重なるように、変更対象となる他の室内機4の設定温度を所定温度単位で変更する。
【0081】
第1の予測部21Aは、設定部52にて室内機4の設定温度が変更されると、変更後の設定温度に基づき、各室内機4の室内空間の室内温度を再予測する。そして、第2の予測部22Aは、第1の予測部21Aで予測した室内温度と空調運転の目標値である設定温度とを用いて、各室内機4のサーモON時刻及びサーモOFF時刻を再予測する。制御部51Aは、第2の予測部22Aの再予測結果を用いて、室内機4を制御する。
【0082】
<空気調和装置の動作>
図18は、制御処理に関わる集中コントローラ5の処理動作の一例を示すフローチャートである。尚、制御処理は、30分毎の予測タイミングで開始する。
図18において集中コントローラ5内の制御部51は、電源ON中の室内機4が2台以上であるか否かを判定する(ステップS11)。第1の予測部21Aは、電源ON中の室内機4が2台以上の場合(ステップS11:Yes)、予測開始時刻で予測を開始する(ステップS12A)。
【0083】
第1の予測部21Aは、
図6に示すように、予測開始時刻から予測期間分、例えば、30分間の各室内機4の室内温度の変化量を予測する(ステップS12B)。第2の予測部22Aは、
図7に示すように、予測開始時刻から予測期間分の各室内機4のサーモON/サーモOFF時刻を予測する(ステップS12C)。そして、制御部51は、予測期間内にサーモON中の室内機4があるか否かを判定すべく、ステップS13の処理に移行する。尚、ステップS13の処理以降の動作は、
図13に示すステップS13の処理以降と同一の処理であるため、その重複する処理の説明については省略する。
【0084】
実施例2の集中コントローラ5は、空調運転に関わる複数の運転状態量を用いて、複数の室内機4が設置された空調空間の室内温度を予測する。集中コントローラ5は、第1の予測部21Aで予測した室内温度と空調運転の目標値である設定温度とを用いて、複数の室内機4の内、各室内機4のサーモON時刻及びサーモOFF時刻を予測する。更に、集中コントローラ5は、各室内機4のサーモON時刻及びサーモOFF時刻の予測結果を用いて、各室内機4のサーモON時刻又はサーモOFF時刻に応じて圧縮機3A1の停止及び再起動の回数を減少させる。その結果、圧縮機3A1の停止及び再起動の回数を抑制することで、空調運転に関わる消費電力を抑制しながら、利用者の快適性を確保できる。
【0085】
尚、説明の便宜上、複数台の室内機4の内、少なくとも1台以上の室内機4のサーモON期間を基準室内機のサーモON期間に重なるようにサーモON期間を変更する室内機4の設定温度を変更する場合を例示した。しかしながら、全ての室内機4の設定温度を変更しなくても良く、適宜変更可能である。
【0086】
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
【0087】
更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
【符号の説明】
【0088】
1 空気調和システム
1A 空気調和装置
2 空気調和機
3 室外機
3A1 圧縮機
4 室内機
5 集中コントローラ
5C 制御回路
6 サーバ装置
6C 制御回路
21、21A 第1の予測部
22、22A 第2の予測部
51 制御部
52 設定部