(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】画像処理装置
(51)【国際特許分類】
A61B 6/00 20240101AFI20240409BHJP
G06T 5/73 20240101ALI20240409BHJP
【FI】
A61B6/00 550N
G06T5/73
(21)【出願番号】P 2022188803
(22)【出願日】2022-11-28
(62)【分割の表示】P 2021016283の分割
【原出願日】2017-03-30
【審査請求日】2022-11-28
(73)【特許権者】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110001254
【氏名又は名称】弁理士法人光陽国際特許事務所
(72)【発明者】
【氏名】山村 拓也
(72)【発明者】
【氏名】▲高▼木 達也
【審査官】亀澤 智博
(56)【参考文献】
【文献】特開2008-142178(JP,A)
【文献】国際公開第02/045019(WO,A1)
【文献】特開2004-086598(JP,A)
【文献】特開2015-100543(JP,A)
【文献】特開2005-020127(JP,A)
【文献】特開2011-239833(JP,A)
【文献】特開2005-012505(JP,A)
【文献】特開2016-198469(JP,A)
【文献】特開2005-004438(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00 - 6/58
G06T 1/00 - 7/90
H04N 5/30 - 5/325
(57)【特許請求の範囲】
【請求項1】
入力された一の画像データの信号値を周波数帯域が異なる複数の帯域制限信号成分に分解する画像分解手段と、
一の帯域制限信号成分に対して周波数の応答特性が異なる複数のテーブルを設定するテーブル設定手段と、
前記画像分解手段によって分解された複数の帯域制限信号成分を、前記テーブル設定手段が設定した前記複数のテーブルに基づいて変換する画像変換手段と、を備え、
前記画像変換手段によって変換された複数の帯域制限信号成分のうち、信号値が所定の閾値以上となる帯域制限信号成分の周波数応答特性を弱め、
前記画像変換手段によって変換された前記複数の帯域制限信号成分に基づいて周波数強調画像を生成することを特徴とする画像処理装置。
【請求項2】
前記複数のテーブルを組み合わせたプリセットを複数格納する記憶部と、
ユーザーが操作可能な操作部を備え、
前記テーブル設定手段は、前記操作部になされた操作に基づいて複数の前記プリセットの中からいずれかのプリセットを設定することを特徴とする請求項1に記載の画像処理装置。
【請求項3】
前記複数のテーブルを組み合わせたプリセットを複数格納する記憶部を備え、
前記テーブル設定手段は、前記一の画像データから算出した特徴量に基づいて複数の前記プリセットの中からいずれかのプリセットを自動で設定することを特徴とする請求項1に記載の画像処理装置。
【請求項4】
前記特徴量は、画素の濃度、標準偏差値、分散値又は微分値であることを特徴とする請求項3に記載の画像処理装置。
【請求項5】
前記特徴量は、濃度、標準偏差値、分散値及び微分値の中の二種以上の数値を組み合わせたものであることを特徴とする請求項3に記載の画像処理装置。
【請求項6】
前記画像変換手段によって変換された前記複数の帯域制限信号成分を一の強調画像データに再構成する画像再構成手段と、
前記強調画像データに所定の強調係数を乗じたものを前記一の画像データに加算して周波数強調画像を生成する加算手段と、を備えることを特徴とする請求項1に記載の画像処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像処理装置に関する。
【背景技術】
【0002】
従来、放射線画像撮影装置で撮影した放射線画像を読影し易いものとするため、放射線画像における特定の周波数成分を強調する各種技術が提案されている。
例えば、複数の帯域制限画像信号のうち少なくとも1つの信号について少なくとも一部を小さくするような変換処理を施し、変換された帯域制限画像信号を積算して積算信号を作成し、積算信号に所定の強調係数を乗じて原画像の信号に加算することにより高周波成分が強調された周波数強調画像を得るといったもの(特許文献1参照)や、放射線線量が小さいほど抑制の度合いが大きくなるように定義された変換関数を用いて、画像信号の各周波数帯域成分を抑制するような非線形処理を行うもの(特許文献2参照)がある。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平10-075395号公報
【文献】特開平10-105701号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載された技術を用いれば、周波数強調画像におけるエッジ付近にアーチファクトを生じにくくすることができるし、特許文献2に記載された技術を用いれば、低濃度部の周波数の強調を抑えることにより、ノイズが抑えられた強調を行うことができる。
しかしながら、特許文献1,2に記載された画像処理は、必ずしも被写体にふさわしいもの、あるいはユーザーの好みに合ったものであるとは限らない。
【0005】
本発明は、上記の問題点に鑑みてなされたものであり、被写体の組成や、ユーザーの好みに応じた周波数強調を行うことができる画像処理装置を提供することを課題とする。
【課題を解決するための手段】
【0006】
前記の問題を解決するために、本発明は、画像処理装置であって、
入力された一の画像データの信号値を周波数帯域が異なる複数の帯域制限信号成分に分解する画像分解手段と、
一の帯域制限信号成分に対して周波数の応答特性が異なる複数のテーブルを設定するテーブル設定手段と、
前記画像分解手段によって分解された複数の帯域制限信号成分を、前記テーブル設定手段が設定した前記複数のテーブルに基づいて変換する画像変換手段と、を備え、
前記画像変換手段によって変換された複数の帯域制限信号成分のうち、信号値が所定の閾値以上となる帯域制限信号成分の周波数応答特性を弱め、
前記画像変換手段によって変換された前記複数の帯域制限信号成分に基づいて周波数強調画像を生成することを特徴とする。
【発明の効果】
【0007】
本発明によれば、被写体の組成や、ユーザーの好みに応じた周波数強調を行うことができる。
【図面の簡単な説明】
【0008】
【
図1】本発明の第1(第2)実施形態に係る画像処理装置の全体構成を示すブロック図である。
【
図2】
図1の画像処理装置が備える表示部に表示される画面の一例である。
【
図3】
図1の画像処理装置が実行する画質調節処理のフローチャートである。
【
図4】
図3の画質調節処理において用いるプリセットの内容を表すグラフである。
【
図5】
図4のプリセットの元となる変換関数の一例を表すグラフである。
【
図6】本発明の第2実施形態に係る画像処理装置が実行する画質調節処理のフローチャートである。
【発明を実施するための形態】
【0009】
以下、図面を参照して本発明の実施の形態を詳細に説明する。ただし、発明の範囲は、図示例に限定されない。
【0010】
<第1実施形態>
〔放射線画像撮影システムの構成〕
まず、本発明の第1実施形態に係る放射線画像撮影システム100の構成について説明する。
図1は本実施形態に係る放射線画像撮影システム100の機能的構成を表すブロック図である。
【0011】
本実施形態の放射線画像撮影システム100は、放射線照射装置1や、放射線画像撮影装置2、画像処理装置3等で構成されている。
また、放射線画像撮影システム100には、必要に応じて、図示しないコンソールやサーバー(例えば、医療用画像管理システム(Picture Archiving and Communication System:PACS)を構成するもの)等が接続される。
放射線画像撮影システム100を構成する各装置は、DICOM(Digital Image and Communications in Medicine)規格に準じており、各装置間の通信は、DICOMに則って行われる。
【0012】
放射線照射装置1は、図示を省略するが、放射線を生成可能な回転陽極や回転陽極に電子ビームを照射するフィラメント等を有する放射線源や、設定された管電圧や管電流、照射時間(mAs値)等に応じた線量の放射線を放射線源から照射させるジェネレーター等を備えている。
そして、ユーザーの操作に基づいて、放射線画像撮影装置2へ放射線を照射するようになっている。
【0013】
放射線画像撮影装置2は、図示を省略するが、放射線を受けることで線量に応じた電荷を蓄積する複数の放射線検出素子が二次元状(マトリクス状)に配列された基板や、各放射線検出素子に蓄積された電荷を画像データとして読み出す読み出し回路、外部装置と通信したり画像データを送信したりするための通信部等を備えている。
そして、放射線画像撮影装置2は、放射線照射装置1から放射線の照射を受け、画像データを読み出すと、その画像データを、通信部を介して外部へ送信するようになっている。
なお、放射線画像撮影装置2と放射線照射装置1は、一体化されたものでもよい。
【0014】
画像処理装置3は、放射線画像撮影装置2と直接的又は間接的に接続され、放射線画像撮影装置2から受信した画像データに所定の画像処理を施すことが可能に構成されている。
なお、画像処理装置3の詳細については後述する。
【0015】
〔画像処理装置の構成〕
次に、上記放射線画像撮影システム100を構成する画像処理装置3の構成について説明する。
画像処理装置3は、コンピューター又は専用の制御装置として構成されており、
図1に示したように、制御部31、通信部32、記憶部33、操作部34、表示部35、を備えて構成され、各部はバス36により接続されている。
【0016】
制御部31は、CPU、RAM等により構成される。制御部31のCPUは、操作部34の操作に応じて、記憶部33に記憶されているシステムプログラムや、各種処理プログラムを読み出してRAM内に展開し、展開されたプログラムに従って、各種処理を実行したり、表示部35の表示内容を制御したりする等、画像処理装置3各部の動作を集中制御する。
【0017】
通信部32は、LANアダプタやモデム、TA等を備え、通信ネットワークに接続されたモダリティーやサーバー等をはじめとする各装置との間で画像データを含む各種データの送受信を行う。
【0018】
記憶部33は、不揮発性の半導体メモリやハードディスク等により構成されている。
また、記憶部33は、制御部31で画質調節処理(詳細後述)をはじめとする各種処理を実行するためのプログラムや、プログラムにより処理の実行に必要なパラメータ、処理結果等を記憶する。プログラムは、読取可能なプログラムコードの形態で格納される。
また、記憶部33は、通信部が受信した画像データ(静止画像、動画)や、各種処理が施された画像データを記憶することが可能となっている。
また、記憶部33は、複数種類のプリセット(詳細後述)を予め格納している。
【0019】
操作部34は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードや、マウス等のポインティングデバイス等によりユーザーが操作可能に構成されており、キーボードに対するキー操作あるいはマウス操作により入力された指示信号を制御部31に出力する。
なお、操作部34は、表示部35の表示画面に備えられたタッチパネルで構成されていても良く、この場合、タッチパネルを介して入力された指示信号を制御部31に出力する。
【0020】
表示部35は、LCDやCRT等のモニタにより構成され、制御部31から入力される表示信号の指示に従って、各種画像や、操作部34からの入力指示、データ等を表示することが可能となっている。
【0021】
〔画像処理装置の動作〕
次に、本実施形態に係る画像処理装置3の動作について説明する。
図2は表示部35の表示画面の一例であり、
図3は画像処理装置3が実行する画質調節処理のフローチャートである。
【0022】
画像処理装置3の制御部31は、操作部34に所定操作(例えば、電源の投入操作や、処理対象の画像データの選択操作等)がなされたことに基づいて、表示部35に、例えば、
図2に示したような、画像表示領域35aや、プリセット表示領域35b等を含む操作画面を表示するとともに、
図3に示す画質調節処理を実行する。
なお、接続された装置から放射線画像の画像データを受信したことに基づいて自動的に画質調節処理を実行するようにしてもよい。
【0023】
画質調節処理では、まず、特徴量の算出を行う(ステップS1)。特徴量は、例えば、放射線画像を構成する各画素の濃度(信号値)の他、各画素の信号値の標準偏差値、分散値、微分値等、統計的性質に基づいた数値を特徴量としてもよいし、濃度及び分散値等、二種類以上の数値を組み合わせたものを特徴量としてもよい。
なお、以下の説明では、濃度を特徴量とした場合について説明する。
また、特徴量の算出は以下で後述するステップS2の後に行っても構わない。
【0024】
ステップS1の処理を終えた後は、分解処理を行う(ステップS2)。具体的には、入力された一の画像データの各画素の信号値に、ラプラシアンピラミッド法による多重解像度変換や、離散ウェーブレット変換などを施して、周波数帯域(解像度)が異なる複数の帯域制限信号を取得する。ここでは分解回数に応じて帯域制限信号の数は増えるが、少なくとも帯域制限信号は2つ以上のものとする。ここで制御部31は、本発明における画像分解手段をなす。
【0025】
ステップS2の処理を終えた後は、画質調節処理の開始以降に、プリセットの設定がなされたか否か、すなわち、本実施形態においては、ユーザーが、操作部34に、表示部35のプリセット表示領域35bに一のプリセット番号を表示させる操作を行ったか否かを判定する(ステップS3)。つまり、制御部31は、操作部34になされた操作に基づいて、記憶部に格納された複数のプリセットの中からいずれかのプリセットを設定するので、本発明のテーブル設定手段として機能することになる。
ステップS3の処理においてプリセットの設定がなされていないと判定した場合(ステップS3;No)は、なされたと判定するまでステップS3の処理を繰り返す。
なお、このステップS3の処理を実行する代わりに、一のプリセットが設定されたことに基づいて画質調節処理を開始するようにしてもよいし、所定のプリセットを画質調節処理開始の際に自動的に設定するようにしてもよい。
【0026】
一方、ステップS3の処理においてプリセットの設定がなされたと判定した場合(ステップS3;Yes)は、変換処理を行う(ステップS4)。具体的には、ステップS2の処理で得られた複数の帯域制限信号成分を、ステップS1で求めた特徴量及び設定されたプリセットに基づいてそれぞれ非線形変換する。すなわち、制御部31は、本発明における画像変換手段をなす。
【0027】
ここで、ステップS4における非線形変換の詳細について説明する。
図4はプリセットの内容を表すグラフであり、
図5はプリセットの内容を決定するための変換関数の一例である。
上述したように、記憶部33には、複数種類のプリセットが記憶されている。プリセットは、周波数と応答との関係(応答特性)を規定する周波数バランステーブル(以下、テーブル)を予め登録しておいたものであり、テーブル毎に応答特性は異なっている。なお、テーブルの周波数を横軸、周波数に対応する応答を縦軸としてグラフ化すると、例えば
図4に示したような曲線が得られる。
【0028】
複数のプリセットの中には、特徴量に応じて異なる複数のテーブルを組み合わせたものを含めるのが好ましい。
例えば、
図4(a),(b)に示したプリセット1,2は、濃度(信号値)が所定値A未満の低濃度の画素に適用するテーブル(破線)と、濃度が所定値A以上の高濃度の画素に適用するテーブル(実線)を組み合わせたものとなっている。
なお、所定値Aは、定数としてもよいし、濃度分布のヒストグラムに基づいて決定してもよい。
【0029】
この
図4(a)に示したプリセット1を用いて非線形変換を行うと、低濃度の画素については低周波成分が主として強調され、高濃度の画素については高周波成分が主として強調されることとなる。
また、
図4(b)に示したプリセット2を用いて非線形変換を行うと、低濃度の画素については中周波成分が主として強調され、高濃度の画素については高周波成分が主として強調される。
【0030】
各プリセットは、例えば、
図5に示したようなグラフで表される変換関数に基づいて決定される。なお、
図5に示したグラフは、プリセット2に対応するもので、(a)は高濃度用、(b)は低濃度用である。具体的には、高濃度用の変換関数は、
図5(a)に示したように、低周波領域では寝た形になり周波数が高くなるにつれて傾きが大きくなるため、低周波成分の応答は弱め、高周波成分の応答は強めとなる。また、低濃度用の変換関数は、
図5(b)に示したように、高濃度用に比べ高周波領域が寝た形になるため、低濃度側は中周波成分の応答を強め、高周波成分の応答については、高濃度用に比べ弱めとなる。
なお、
図5には、多重解像度分解信号を三つとしたものを例示したが、四つ以上、あるいは二つでもよい。また、変換関数のグラフは図示した形となるものに限られない。
【0031】
プリセット1,2のように、濃度に応じたテーブルの使い分けが無い場合、すなわち、例えばプリセットが
図4(a)の実線で示されたようなテーブルのみの場合、濃度によらず高周波成分のみが強調されることになるので、低濃度の画素においてはノイズが必要以上に強調され、高濃度の画素においては低中周波が強調されないために、コントラストが不十分となる可能性がある。しかし、上述したように、特徴量によって、異なるテーブルを使い分けることにより、ノイズを低減しつつ、十分なコントラストを有する画像を得ることができる。
【0032】
なお、
図4(a),(b)に示したプリセットは一例であり、他のプリセットを格納しておくこともできる。
例えば、
図4(c)に示したように、濃度が所定値A未満の低濃度画素に適用するテーブル(粗い破線)、濃度が所定値A以上所定値B未満の中濃度画素に適用するテーブル(細かい破線)、濃度が所定値B以上の高濃度画素に適用するテーブル(実線)という三つ(或いは四つ以上)のテーブルを組み合わせたプリセットを格納しておいてもよい。
このように、特徴量に応じて異なる複数のテーブルを組み合わせた、選択可能なプリセットを複数用意しておくことにより、より被写体の組成、あるいはユーザーの好みに合った画像を提供することが可能となる。
【0033】
また、ステップS4の処理においては、基本的に、設定されたプリセットのテーブルに従って非線形変換を行うようになっているが、例えば、ある帯域制限信号成分の信号値がある閾値以上の画素に対しては周波数応答を弱めるといった制御を行うようにしてもよい。例えばある帯域制限信号成分の信号値が閾値以上になったら
図5(a)の破線の変換関数を用いるなどが考えられる。
このようにすれば、非線形変換を行った後、画像のエッジ近傍にアーチファクトが発生してしまうのを防止することができる。
【0034】
ここで、
図3のフローチャートの説明に戻る。ステップS4の処理を終えた後は、再構成処理を行う(ステップS5)。具体的には、周波数帯域ごとに分解され、ステップS4の処理で非線形変換(バランス調節)された複数の帯域制限信号成分を逆変換することにより、一の強調画像データに再構成する。すなわち、制御部31は、本発明における画像再構成手段をなす。
【0035】
ステップS5の処理を終えた後は、前記強調画像データに所定の強調係数を乗じたものを一の画像データに加算し、周波数強調画像を生成する(ステップS6)。すなわち、制御部31は、本発明における加算手段をなす。
【0036】
ステップS6の処理を終えた後は、周波数強調画像を表示部35に表示する(ステップS7)。本実施形態の表示部35は、画像表示領域35aとプリセット表示領域35bを一緒に表示するようになっているので、設定中のプリセットの情報(番号)が、周波数強調画像とともに表示される。
【0037】
ステップS7の処理を終えた後は、ステップS4の処理の開始以降にプリセットの再設定がなされたか否かを判定する(ステップS8)。ステップS8の処理において、再設定がなされていないと判断した場合(ステップS8;No)は、画質調節処理を終了する。
一方、ステップS8の処理において、プリセットの再設定がなされたと判断した場合(ステップS8;Yes)は、ステップS4の処理に戻り、特徴量と再設定されたプリセットに基づいて非線形変換を行う。
【0038】
このような動作をする本実施形態の画像処理装置3において、例えば、初めにプリセット1が設定されていた場合、表示部35の画像表示領域35aに最初に表示されるプリセット1に基づく強調画像は、低濃度の画素は低中周波成分のみ強調されるため、ノイズがあまり強調されない一方で、高周波成分が強調されないものとなる。このため、この周波数強調画像を見たユーザーは、鮮鋭度が足りないと感じてしまう可能性がある。しかし、このような場合に、ユーザーがプリセット2を設定すると、画像表示領域35aには、プリセット2に基づく新たな周波数強調画像が表示される。プリセット2は、低濃度の画素についても高周波成分をある程度強調するため、鮮鋭性を担保しつつノイズの少ない(よりユーザーの好みに合っている可能性が高い)周波数強調画像が表示される。
【0039】
また、本実施形態の画像処理装置3は、上述したように、設定中のプリセットの情報(番号)が、周波数強調画像とともに表示されるので、ユーザーがプリセットを変えたときに、処理後の周波数強調画像を即座に確認することができるので、作業効率を高めることができる。
【0040】
<第2実施形態>
次に、本発明の第2実施形態に係る画像処理装置について説明する。
図6は本実施形態に係る画像処理装置3Aが行う画質調節処理のフローチャートである。
【0041】
第1実施形態の放射線画像撮影システムでは、使用するプリセットをユーザーが選択するようにしていたが、本実施形態に係る放射線画像撮影システム100Aは、使用するプリセットを画像処理装置3Aが自動で選択するようになっている。
このため、本実施形態に係る画像処理装置3Aは、実行する画質調節処理の内容(記憶部33Aの記憶内容)が第1実施形態と異なっている。なお、記憶部33Aの記憶内容を除く他の構成は第1実施形態と同様である。
【0042】
具体的には、本実施形態の画質調節処理では、
図6に示したように、ステップS1の処理の後に、設定処理を行う(ステップS3A)。具体的には、算出した特徴量に基づいて複数のプリセットの中から何れかのプリセットを設定する。ステップS3Aの処理を終えた後は、ステップS2の処理へ進み、その後、ステップS4の処理へ進む。
【0043】
なお、ステップS3Aの処理は、ステップS2の処理とステップS4の処理との間で行うようにしてもよい。
また、ステップS7の処理の後に、第1実施形態のステップS8の処理(ユーザーによる再設定)を行うようにしてもよい。
【符号の説明】
【0044】
100,100A 放射線画像撮影システム
1 放射線照射装置
2 放射線画像撮影装置
3,3A 画像処理装置
31 制御部(画像分解手段、テーブル設定手段、画像変換手段、画像再構成手段、加算手段)
32 通信部
33 記憶部
33A 記憶部
34 操作部
35 表示部
35a 画像表示領域
35b プリセット表示領域
36 バス