IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社IHIの特許一覧

<>
  • 特許-固液分離装置及び固液分離システム 図1
  • 特許-固液分離装置及び固液分離システム 図2
  • 特許-固液分離装置及び固液分離システム 図3
  • 特許-固液分離装置及び固液分離システム 図4
  • 特許-固液分離装置及び固液分離システム 図5
  • 特許-固液分離装置及び固液分離システム 図6
  • 特許-固液分離装置及び固液分離システム 図7
  • 特許-固液分離装置及び固液分離システム 図8
  • 特許-固液分離装置及び固液分離システム 図9
  • 特許-固液分離装置及び固液分離システム 図10
  • 特許-固液分離装置及び固液分離システム 図11
  • 特許-固液分離装置及び固液分離システム 図12
  • 特許-固液分離装置及び固液分離システム 図13A
  • 特許-固液分離装置及び固液分離システム 図13B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-08
(45)【発行日】2024-04-16
(54)【発明の名称】固液分離装置及び固液分離システム
(51)【国際特許分類】
   B03B 5/00 20060101AFI20240409BHJP
   B01J 19/00 20060101ALI20240409BHJP
   B01J 19/10 20060101ALI20240409BHJP
   G01N 37/00 20060101ALI20240409BHJP
   G01N 1/04 20060101ALI20240409BHJP
【FI】
B03B5/00 Z
B01J19/00 321
B01J19/10
G01N37/00 101
G01N1/04 M
【請求項の数】 10
(21)【出願番号】P 2022571424
(86)(22)【出願日】2021-12-20
(86)【国際出願番号】 JP2021046912
(87)【国際公開番号】W WO2022138525
(87)【国際公開日】2022-06-30
【審査請求日】2023-10-19
(31)【優先権主張番号】P 2020211418
(32)【優先日】2020-12-21
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100111235
【弁理士】
【氏名又は名称】原 裕子
(74)【代理人】
【識別番号】100170575
【弁理士】
【氏名又は名称】森 太士
(72)【発明者】
【氏名】池田 諒介
(72)【発明者】
【氏名】磯 良行
(72)【発明者】
【氏名】山下 達也
【審査官】壷内 信吾
(56)【参考文献】
【文献】特表2019-527614(JP,A)
【文献】特開2015-036631(JP,A)
【文献】国際公開第2011/078115(WO,A1)
【文献】特表2015-535728(JP,A)
【文献】国際公開第2020/139210(WO,A1)
【文献】中国特許出願公開第109967150(CN,A)
【文献】米国特許出願公開第2011/0096327(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B03B 1/00-13/06
B01J 10/00-12/02,14/00-19/32
B81B 1/00-7/04
B81C 1/00-99/00
G01N 35/00-37/00
G01N 1/00-1/44
(57)【特許請求の範囲】
【請求項1】
固体粒子が分散された流体から前記固体粒子を分離させる固液分離装置であって、
前記流体が導入される直線状の流路が形成されている流路部と、
前記流路の上流側を流通している前記流体に横断面方向の二次流れを発生させる二次流れ発生機構と、を備え、
前記流路は、流路幅と当該流路幅に対して垂直な流路高さとで規定される矩形の横断面を有し、
前記流路における前記二次流れ発生機構よりも下流側の前記横断面では、流通する前記流体の主流が揚力を誘起させるように、前記流路幅と前記流路高さとの比で表されるアスペクト比は、10から100までの範囲にある一定値であり、
前記流路における上流側の前記横断面は、下流側の前記横断面と同一の形状、又は、前記下流側の前記横断面の形状の中に前記二次流れ発生機構の一部を含む形状に規定される、固液分離装置。
【請求項2】
前記固体粒子の粒子径が1μmから1mmまでの範囲にある場合、前記流路高さは、分離対象としての前記固体粒子の前記粒子径の10倍以上かつ100倍以下の寸法に設定される、請求項1に記載の固液分離装置。
【請求項3】
前記流路における前記二次流れ発生機構よりも下流側の延伸方向の長さは、前記流路幅の100倍以上かつ10,000倍以下の寸法に設定される、請求項2に記載の固液分離装置。
【請求項4】
前記二次流れ発生機構は、前記流路部に設置され、前記流路の長辺側の側壁から前記流路の内部に向けて超音波を発する超音波振動子である、請求項1~3のいずれか1項に記載の固液分離装置。
【請求項5】
前記二次流れ発生機構は、前記流路部に形成され、前記流路の延伸方向に進むにつれて少なくとも一部の前記横断面の形状を変化させる流路形状変更部である、請求項1~3のいずれか1項に記載の固液分離装置。
【請求項6】
固体粒子が分散された流体から前記固体粒子を分離させる固液分離装置と、
流体を貯留する貯留槽と、
前記貯留槽から前記固液分離装置に流体を送る送液部と、
少なくとも、前記送液部の動作を制御することで流体の少なくとも流量又は速度を調整させる制御部と、を備え、
前記固液分離装置は、
前記流体が導入される直線状の流路が形成されている流路部と、
前記流路の上流側を流通している前記流体に横断面方向の二次流れを発生させる二次流れ発生機構と、を備え、
前記流路は、流路幅と当該流路幅に対して垂直な流路高さとで規定される矩形の横断面を有し、
前記流路における前記二次流れ発生機構よりも下流側の前記横断面では、流通する前記流体の主流が揚力を誘起させるように、前記流路幅と前記流路高さとの比で表されるアスペクト比は、10から100までの範囲にある一定値であり、
前記流路における上流側の前記横断面は、下流側の前記横断面と同一の形状、又は、前記下流側の前記横断面の形状の中に前記二次流れ発生機構の一部を含む形状に規定される、固液分離システム。
【請求項7】
前記流体に分散されている前記固体粒子は、前記二次流れに誘起された抗力と、前記流体の前記主流に誘起された揚力とを受け、
前記揚力は、分離対象としての前記固体粒子の粒子径を基準として求められる、請求項6に記載の固液分離システム。
【請求項8】
前記流路高さは、分離対象としての前記固体粒子の粒子径を基準として求められた前記揚力に基づいて決定される、請求項7に記載の固液分離システム。
【請求項9】
前記抗力は、前記流体の境界層の内部の横断面方向において前記揚力とつり合うように決定される、請求項7又は8に記載の固液分離システム。
【請求項10】
前記二次流れ発生機構は、前記流路部に設置され、前記流路の長辺側の側壁から前記流路の内部に向けて超音波を発する超音波振動子であり、
前記固液分離システムは、前記超音波振動子に電力を供給する超音波発振器を備え、
前記制御部は、前記超音波発振器に対して前記超音波振動子の振動数又は音圧を変更させて前記二次流れの前記速度を変化させることで、前記抗力を調整する、請求項7~9のいずれか1項に記載の固液分離システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、固液分離装置及びそれを用いた固液分離システムに関する。
【背景技術】
【0002】
従来、工業や医学等の各種分野では、製造又は分析処理等において、流体中に分散している固体粒子を所望の条件で分離する技術が利用されている。特許文献1は、上流側に設けられた配列用流路と、下流側に設けられた分離用流路との2種類の流路を用いて微粒子を分離させる固液分離装置に関する技術を開示している。配列用流路は、慣性力により、流体中の微粒子を配列させる。一方、分離用流路は、配列用流路から微粒子が配列された流体を受け入れ、多数の支柱で規定された軌道により、最終的に所望の粒子径ごとに微粒子を分離する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2018-89557号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示されている固液分離装置では、分離用流路は、多数の支柱が形成された複雑な幾何形状を有する。一方、配列用流路の横断面形状は、分離用流路の横断面形状とは別に、微粒子を配列させるという観点から様々に設定されるものである。したがって、固液分離装置に設けられている流路全体としては、決して簡易的な形状又は構成であるとは言えない。
【0005】
そこで、本開示は、簡易的な形状又は構成で分離効率を向上させるのに有利な固液分離装置及び固液分離システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示の一態様は、固体粒子が分散された流体から固体粒子を分離させる固液分離装置であって、流体が導入される直線状の流路が形成されている流路部と、流路の上流側を流通している流体に横断面方向の二次流れを発生させる二次流れ発生機構と、を備え、流路は、流路幅と当該流路幅に対して垂直な流路高さとで規定される矩形の横断面を有し、流路における少なくとも二次流れ発生機構よりも下流側の横断面では、流通する前記流体の主流が揚力を誘起させるように、流路幅と流路高さとの比で表されるアスペクト比は、10から100までの範囲にある。
【0007】
上記の固液分離装置では、固体粒子の粒子径が1μmから1mmまでの範囲にある場合、流路高さは、分離対象としての固体粒子の粒子径の10倍以上かつ100倍以下の寸法に設定されてもよい。流路における二次流れ発生機構よりも下流側の延伸方向の長さは、流路幅の100倍以上かつ10,000倍以下の寸法に設定されてもよい。また、二次流れ発生機構は、流路部に設置され、流路の長辺側の側壁から流路の内部に向けて超音波を発する超音波振動子であってもよい。又は、二次流れ発生機構は、流路部に形成され、流路の延伸方向に進むにつれて少なくとも一部の横断面の形状を変化させる流路形状変更部であってもよい。
【0008】
本開示の他の態様に係る固液分離システムは、固体粒子が分散された流体から固体粒子を分離させる固液分離装置と、流体を貯留する貯留槽と、貯留槽から固液分離装置に流体を送る送液部と、少なくとも、送液部の動作を制御することで流体の少なくとも流量又は速度を調整させる制御部と、を備え、固液分離装置は、流体が導入される直線状の流路が形成されている流路部と、流路の上流側を流通している流体に横断面方向の二次流れを発生させる二次流れ発生機構と、を備え、流路は、流路幅と当該流路幅に対して垂直な流路高さとで規定される矩形の横断面を有し、流路における少なくとも二次流れ発生機構よりも下流側の横断面では、流通する前記流体の主流が揚力を誘起させるように、流路幅と流路高さとの比で表されるアスペクト比は、10から100までの範囲にある。
【0009】
上記の固液分離システムでは、流体に分散されている固体粒子は、二次流れに誘起された抗力と、流体の主流に誘起された揚力とを受け、揚力は、分離対象としての固体粒子の粒子径を基準として求められてもよい。流路高さは、分離対象としての固体粒子の粒子径を基準として求められた揚力に基づいて決定されてもよい。抗力は、流体の境界層の内部の横断面方向において揚力とつり合うように決定されてもよい。また、二次流れ発生機構は、流路部に設置され、流路の長辺側の側壁から流路の内部に向けて超音波を発する超音波振動子であり、固液分離システムは、超音波振動子に電力を供給する超音波発振器を備え、制御部は、超音波発振器に対して超音波振動子の振動数又は音圧を変更させて二次流れの速度を変化させることで、抗力を調整してもよい。
【発明の効果】
【0010】
本開示によれば、簡易的な形状又は構成で分離効率を向上させるのに有利な固液分離装置及び固液分離システムを提供することができる。
【図面の簡単な説明】
【0011】
図1図1は、本開示の第1実施形態に係る固液分離装置の構成を示す概略図である。
図2図2は、第1実施形態に係る固液分離装置による固液分離の原理を説明する図である。
図3図3は、輝度値を基準とした流路幅方向での粒子濃度を示すグラフである。
図4図4は、固体粒子の粒子径と、固体粒子が受ける揚力との関係を示すグラフである。
図5図5は、流路高さと、固体粒子が受ける揚力との関係を示すグラフである。
図6図6は、固体粒子の粒子径に対する揚力及び抗力の設定範囲を示すグラフである。
図7図7は、本開示の第2実施形態に係る固液分離装置の構成を示す概略図である。
図8図8は、本開示の第3実施形態に係る固液分離装置の構成を示す概略図である。
図9図9は、本開示の第4実施形態に係る固液分離装置の構成を示す概略図である。
図10図10は、図9のC-C断面に対応した、流路部の一部を切断した断面図である。
図11図11は、邪魔板の形状及び配置関係を説明するための概略図である。
図12図12は、複数の邪魔板を通過した流体中の固体粒子の挙動を示す流体画像である。
図13A図13Aは、本開示の固液分離システムとしての細胞培養装置の構成を示す概略図である。
図13B図13Bは、本開示の固液分離システムとしての析出装置の構成を示す概略図である。
【発明を実施するための形態】
【0012】
以下、いくつかの例示的な実施形態について図面を参照して説明する。ここで、各実施形態に示す寸法、材料、その他、具体的な数値等は例示にすぎず、特に断る場合を除き、本開示を限定するものではない。また、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本開示に直接関係のない要素については図示を省略する。
【0013】
(固液分離装置)
図1は、第1実施形態に係る固液分離装置1の構成を示す概略図である。固液分離装置1は、固体粒子pが分散された流体から固体粒子pを分離させる。固体粒子pが分散された流体とは、一般的な意味として、多数の固体粒子pを包含する液体(粒子分散液)である。本実施形態において、固液分離とは、流体には様々な粒子径D(粒子サイズ)の固体粒子pが予め分散していることを前提として、基本的には、その中から特定の粒子径Dの固体粒子pを分離することをいう。また、本実施形態では、固体粒子pとして、粒子径Dが微小である微粒子が想定されている。具体的には、固液分離装置1が分離対象とする固体粒子pの取り得る粒子径Dは、1μmから1mmまでの範囲にある。
【0014】
固液分離装置1は、流路部2と、二次流れ発生機構とを備える。
【0015】
流路部2は、流体が導入されて流通する直線状の流路7を有する本体部である。本実施形態では、流路部2は、横断面が矩形である流路7を有する直線管である。ここで、流路7の全体形状を表す直線状とは、流路7の延伸方向が、一方向である図中のX方向に沿っていることをいう。ただし、ここでの直線状とは、厳密に一直線であることには限定されず、若干の曲がりを許容する。例えば、流路7を流通する流体が流路形状に起因した二次流れが誘起する抗力の影響を受けづらいという限度の上で、流路部2は、若干の曲がりを有する管でもよい場合もあり得る。また、横断面の形状について、ここでの矩形とは、幾何学的に厳密に解釈される形状ではなく、辺自体での若干の曲がり、又は、辺同士の連続部分での若干の曲部の存在を許容する。
【0016】
また、図1では、流路7への流体の導入方向(IN)と、流路7からの流体の排出方向(OUT)とを、白抜きの矢印で表記している。流体が導入する側の流路部2の開口部は、流体の供給機構に接続される。一方、流体が排出される側の流路部2の開口部は、少なくとも、分離された固体粒子pの受け入れ機構に接続される。なお、図1では、流体の供給機構、及び、固体粒子pの受け入れ機構については、図示を省略している。
【0017】
流路部2は、流路7の形状を規定する4つの側壁、すなわち、第1側壁2a、第2側壁2b、第3側壁2c及び第4側壁2dを有する。流路部2は、本実施形態では直線管であるので、これらの側壁は、それぞれ管壁である。これらの側壁のうち、第1側壁2aと第2側壁2bとは、互いに対向し、横断面でのそれぞれの長辺側に相当する側壁である。一方、第3側壁2cと第4側壁2dとは、互いに対向し、横断面でのそれぞれの短辺側に相当する側壁である。流路7の延伸方向がX方向に沿っているとすると、これらの側壁によって規定される流路7の横断面は、YZ断面である。この場合、流路7の横断面での長辺は、Y方向に沿っており、以下、流路幅wと定義する。一方、流路7の横断面での短辺は、Z方向に沿っており、以下、流路高さhと定義する。つまり、流路高さhは、横断面上では流路幅wに対して垂直である。以下、Y方向を流路幅方向と、Z方向を流路高さ方向と、それぞれ表現する場合がある。
【0018】
ここで、本実施形態では、流路幅wと流路高さhとの比で表されるアスペクト比A(A=w/h)は、10から100までの範囲にある。また、分離対象としての固体粒子pの粒子径Dが1μmから1mmまでの範囲にある場合、流路高さhは、粒子径Dの10倍以上かつ100倍以下の寸法に設定される。なお、流路幅wは、アスペクト比Aと流路高さhとの具体的な値から導き出される。
【0019】
二次流れ発生機構は、流路7の上流側を流通している流体に横断面方向の二次流れを発生させる。本実施形態では、二次流れ発生機構は、流路7の内部に向けて超音波を発する超音波振動子3である。二次流れ発生機構が超音波振動子3である場合、固液分離装置1は、更に、超音波振動子3に電力を供給する超音波発振器(超音波増幅器)4と、超音波発振器4から超音波振動子3に電力を供給する電力ケーブル5とを備える。その他、固液分離装置1は、超音波発振器4に電力を供給する電源ケーブル等を備える。
【0020】
超音波振動子3は、例えば、流路部2の外側面に設置することができ、また、MHz帯の超音波を発生させることができる平板型圧電素子である。超音波振動子3は、流路7の横断面の長辺側の側壁に相当する少なくとも第2側壁2bの外側面で、かつ、流路7の上流側に設置される。ここで、本実施形態では、一例として、第2側壁2bの外側面に、1つの超音波振動子3が設置されるものとする。ただし、例えば、第2側壁2bの外側面に加えて、同じく流路7の横断面の長辺側の側壁に相当する第1側壁2aの外側面にも、もう1つの超音波振動子3を設置してもよい。また、一方の側壁、例えば第2側壁2bの外側面には、1つの超音波振動子3だけでなく、複数の超音波振動子3が設置されてもよい。また、超音波振動子3は、流路幅方向では、流路幅wの中央領域に設置されることが望ましい。
【0021】
また、二次流れ発生機構である超音波振動子3の設置位置、すなわち、流体に二次流れが発生する位置を基準として、流路7の延伸方向の長さのうち超音波振動子3よりも下流側の長さLを規定する。この長さLは、流路幅wの100倍以上かつ10,000倍以下の寸法に設定される。
【0022】
次に、固液分離装置1による固液分離の原理について説明する。
【0023】
図2は、固液分離装置1による固液分離の原理を説明するための概念図である。図2では、流路7のうち超音波振動子3よりも下流側の領域における流体の流れと、流体に分散している固体粒子pの状態とが示されている。また、図2では、流路7内の各方向がアスタリスク付きの3軸方向で示されている。特に、流路幅方向に相当するy方向と、流路高さ方向に相当するz方向との長さについては、具体的な寸法値ではなく、比率で示されている。
【0024】
まず、超音波発振器4が超音波振動子3に対してMHz帯の正弦波の電圧信号を負荷すると、流路7の上流側を流通する流体では、流路高さ方向に超音波の進行波が生成される。そして、進行波の粘性減衰による音圧の空間勾配を駆動力として、流路7内の流体には、渦状の音響流が発生する。この音響流が横断面方向の二次流れである。横断面方向の二次流れにより、流体に分散されている固体粒子pは、二次流れに誘起された抗力Fを受ける。これにより、超音波振動子3が設置されている部分よりも下流側の流路7では、固体粒子pは、二次流れが誘起した抗力Fにより、徐々に短辺側の側壁である第3側壁2c又は第4側壁2dに向けて輸送される。
【0025】
一方、流路7の横断面は、アスペクト比Aが10から100までの範囲にあるように予め設定されているので、直線状の流路7を流通する流体の主流は、揚力Fを誘起する。これにより、流体に分散されている固体粒子pは、主流に誘起された揚力Fを受けて、流路7における短辺側の双方の側壁である第3側壁2c及び第4側壁2dの近傍に捕捉される(チューブラ・ピンチ効果)。なお、図2では、任意の横断面C1における境界層の中央での速度分布を例示している。
【0026】
つまり、固液分離装置1では、流体中の固体粒子pは、二次流れに誘起された抗力Fによって第3側壁2c又は第4側壁2dの方向に輸送され、更に、主流に誘起された揚力Fによって第3側壁2c又は第4側壁2dの近傍に捕捉されることになる。
【0027】
以下、固液分離装置1による固液分離の原理についての個々の検証について説明する。
【0028】
まず、横断面のアスペクト比Aが上記のような高アスペクト比に設定されている場合の流路7における固体粒子pの挙動については、以下の検証から明らかである。
【0029】
検証用の装置として、流路7が形成されている流路部2を想定した、透明のアクリル製の矩形断面の直線管を準備した。この直線管における流路は、流路部2における流路7の形状条件を満たしており、以下、各部に同一の符号を付して説明する。ただし、ここでは流路7の横断面形状に依拠した固体粒子pの挙動について検証するため、二次流れ発生機構は採用していない。
【0030】
検証時の各種の設定条件としては、以下のとおりである。分離対象とする固体粒子pは、粒子径Dが10μmの中立浮遊粒子である。この固体粒子pが多数分散された流体を、流量を250mL/minの一定とし、かつ、レイノルズ数Reを1500とした状態で、検証用の流路7内に流通させる。検証用の流路7に関して、流路幅wを5mm、流路高さhを0.4mm、流路7における流体の入口から下流側への延伸方向の長さを1200mmと設定する。この場合、アスペクト比Aは、12.5である。流路高さhは、粒子径Dの40倍である。また、流路7の延伸方向の長さは、上記規定した二次流れ発生機構よりも下流側の長さLと同等とみなすと、流路幅wの240倍である。したがって、これらの寸法値は、すべて、図1を用いた説明で提示した各種条件を満たしている。
【0031】
上記の設定条件のもと、固体粒子pが分散された流体を流路7内に流通させている間、流路7に対して光を照射して、輝度を計測した。
【0032】
図3は、輝度値を基準とした流路幅方向での粒子濃度を示すグラフである。図3の横軸は、流路幅方向の位置yであり、図2に示したy方向の定義に従い、第3側壁2cの位置を0、第4側壁2dの位置を5mmと規定している。図3の縦軸は、輝度値である。輝度値は、粒子濃度に比例する。凡例として、xの各値は、図2に示したx方向の定義に従い、流路7における流体の入口から下流側への延伸方向の距離を示している。
【0033】
図3を参照すると、流路7における流体の入口(x=0)から下流側に向けて流体が進むにつれて、第3側壁2c(y=0)の近傍及び第4側壁2d(y=5mm)の近傍の輝度値が上昇し、すなわち、粒子濃度が増大していることがわかる。このとき、高濃度領域と低濃度領域との濃度比は、最大で3~4程度である。また、流体の境界層厚さは、流路高さhと同等である。このことから、アスペクト比Aが10から100までの範囲にある矩形断面の直線状の流路7では、第3側壁2cの近傍及び第4側壁2dの近傍で急峻な速度勾配が発現すると考えられる。そして、流体の境界層の内部では、固体粒子pに対して流路幅方向の揚力Fが作用し、第3側壁2cの近傍及び第4側壁2dの近傍に固体粒子pが集中すると予測される。
【0034】
また、主流に誘起される揚力Fと、二次流れに誘起される抗力Fとには、以下のような関係性がある。
【0035】
二次流れに誘起される抗力Fの有効範囲は、流体の粘性による減衰により、二次流れ発生機構である超音波振動子3の位置から流路7の延伸方向に有限である。この点、本実施形態では、抗力Fを誘起する二次流れは、揚力Fを誘起する主流が流通する領域と同じ横断面である直線状の流路7の一部で発生される。したがって、固体粒子pに対して、抗力Fが作用している間に揚力Fを効果的に作用させる点で有利である。
【0036】
図4は、固体粒子pの粒子径Dと、固体粒子pが受ける揚力Fとの関係を示すグラフである。固体粒子pの流体中の位置は、図2に示すように境界層の中央に設定され、かつ、流路7を流通する流体の流量が100mL/minで一定であるものとする。主流に誘起される揚力Fは、図4に示すように、粒子径Dの4乗に比例して増加する。一方、二次流れに誘起される抗力Fは、以下の図6に関連して示されるが、粒子径Dに比例して増加する。
【0037】
図5は、流路高さhと、固体粒子pが受ける揚力Fとの関係を示すグラフである。この場合の流量等の各条件は、図4における各条件と同一である。揚力Fは、流路高さhの約-6乗に比例して減少する。つまり、図4及び図5を参照することでわかるとおり、分離対象である固体粒子pの粒子径Dを基準としつつ、流路高さhを適切に設定することで、揚力Fを効果的な大きさに調整することができる。
【0038】
図6は、固体粒子pの粒子径Dに対する揚力F及び抗力Fのそれぞれの設定範囲を示すグラフである。図6では、粒子径Dの4乗に比例する揚力Fを、主流のレイノルズ数Reを3段階に変化させて示している。第1揚力FL1は、レイノルズ数Reが0.01に調整されたとき、第2揚力FL2は、レイノルズ数Reが0.05に調整されたとき、また、第3揚力FL3は、レイノルズ数Reが0.1に調整されたときのそれぞれの揚力Fである。一方、図6では、粒子径Dに比例する抗力Fを、二次流れの代表速度Uを2段階に変化させて示している。第1抗力FD1は、代表速度Uが0.05m/sに調整されたとき、また、第2抗力FD2は、代表速度Uが0.01m/sに調整されたときのそれぞれの抗力Fである。
【0039】
ここで、図6において、第1揚力FL1と第3揚力FL3との間を、揚力Fの設定範囲である第1設定範囲R1と規定する。一方、第1抗力FD1と第2抗力FD2との間を、抗力Fの設定範囲である第2設定範囲R2と規定する。このとき、第1設定範囲R1と第2設定範囲R2との重複範囲が、揚力Fと抗力Fとがつり合う範囲、すなわち、力学的に平衡となる範囲である。つまり、固液分離に二次流れを利用する場合には、主流に誘起される揚力F又は二次流れに誘起される抗力Fに依存して、分離対象である固体粒子pに関する平衡径や平衡位置が定まる。ここで、平衡径とは、力学的平衡にある揚力Fと抗力Fとを基準として定められる、流路7内の特定の位置に集中する固体粒子pの粒子径Dをいう。一方、平衡位置とは、分離対象である固体粒子pの特定の粒子径Dを基準として定められる、力学的平衡にある揚力Fと抗力Fとの取り得る値(それらの値によって固体粒子pが集中する位置)をいう。
【0040】
つまり、分離対象である固体粒子pの粒子径Dを考慮しつつ、揚力Fと抗力Fとが力学的平衡となるように、主流のレイノルズ数Reや二次流れの代表速度Uを適切に設定すれば、流路7の短辺側の側壁近傍に固体粒子pをより集中させやすくなる。
【0041】
次に、本実施形態に係る固液分離装置1の効果について説明する。
【0042】
固体粒子pが分散された流体から固体粒子pを分離させる固液分離装置1は、流体が導入される直線状の流路7が形成されている流路部2と、流路7の上流側を流通している流体に横断面方向の二次流れを発生させる二次流れ発生機構とを備える。流路7は、流路幅wと当該流路幅wに対して垂直な流路高さhとで規定される矩形の横断面を有する。流路7における少なくとも二次流れ発生機構よりも下流側の横断面では、流路幅wと流路高さhとの比で表されるアスペクト比Aは、10から100までの範囲にある。
【0043】
まず、流路部2に形成されている流路7の横断面は、アスペクト比Aが上記の範囲にあるように予め設定されているので、流路7を流通する流体の主流は揚力Fを誘起し、流体に分散されている固体粒子pは、主流に誘起された揚力Fを受ける。これにより、流路7における短辺側の側壁である第3側壁2c及び第4側壁2dの近傍に固体粒子pを捕捉させることができる。
【0044】
また、二次流れ発生機構により、流路7の上流側を流通する流体には横断面方向の二次流れが発生するので、流体に分散されている固体粒子pは、二次流れに誘起された抗力Fを受ける。これにより、二次流れ発生機構が設置又は形成されている部分よりも下流側の流路7では、短辺側の側壁である第3側壁2c及び第4側壁2dに向けて固体粒子pを輸送させることができる。したがって、固液分離装置1によれば、例えば、単に流体の主流が誘起する揚力Fのみで固体粒子pを分離させる場合よりも、分離効率を向上させることができる。
【0045】
更に、従来の固液分離装置では、例えば、揚力と抗力とを流路内の同一領域で誘起させて固体粒子を分離したり、流路の幾何形状が複雑化していたりする場合がある。これらの場合、所望の分離の分解能を得る、すなわち、分離させたい固体粒子の粒子径の選択範囲を広げようとすれば、処理量が減少し、反対に、処理量を増加させようとすれば、所望の分解能を得ることが難しくなることも考えられる。これに対して、固液分離装置1では、流体に抗力Fを誘起させる部分と、流体に揚力Fを誘起させる部分とは、流路7の上流側と下流側とで互いに独立している。つまり、固液分離装置1は、揚力Fと抗力Fとをそれぞれ独立して調整することができるので、処理量を維持しつつ、所望の分解能を得やすくすることができる。例えば、固液分離装置1によれば、原理的には、粒子径Dが1μmから1mmまでの範囲にある固体粒子pを、100mL/minの処理量で分離することができる。
【0046】
一方、流路7における少なくとも二次流れ発生機構よりも下流側の横断面は、一定の寸法で統一された簡易的な形状となる。また、二次流れ発生機構の構成又は形状によっては、流路7において、二次流れ発生機構により二次流れが発生する領域の横断面形状を、揚力Fを誘起させる主流が流通する領域の横断面形状と同一とすることもできる。したがって、固液分離装置1では、流路部2の形状又は構成が簡易化される。
【0047】
このように、本実施形態によれば、簡易的な形状又は構成で分離効率を向上させるのに有利な固液分離装置1を提供することができる。
【0048】
また、固液分離装置1では、固体粒子pの粒子径Dが1μmから1mmまでの範囲にある場合、流路高さhは、分離対象としての固体粒子pの粒子径Dの10倍以上かつ100倍以下の寸法に設定されてもよい。
【0049】
この固液分離装置1によれば、流体の主流が誘起する揚力Fと、流体の二次流れが誘起する抗力Fとによる分離効果をより向上させることができる。
【0050】
また、固液分離装置1では、流路7における二次流れ発生機構よりも下流側の延伸方向の長さLは、流路幅wの100倍以上かつ10,000倍以下の寸法に設定されてもよい。
【0051】
この固液分離装置1によれば、流体の主流が誘起する揚力Fと、流体の二次流れが誘起する抗力Fとによる分離効果をより向上させることができる。
【0052】
また、固液分離装置1では、二次流れ発生機構は、流路部2に設置され、流路7の長辺側の側壁(第1側壁2a及び/又は第2側壁2b)から流路7の内部に向けて超音波を発する超音波振動子3であってもよい。
【0053】
この固液分離装置1によれば、流路7を流通する流体に対して二次流れを発生させるに際して、二次流れの速度を簡易的な構成で変化させることができる。この場合、固液分離装置1では、超音波振動子3が、いわゆるアクティブ型の固液分離機構として機能し、超音波振動子3が設置されている部分よりも下流側の流路7自体が、いわゆるパッシブ型の固液分離機構として機能する。したがって、二次流れを誘起する抗力Fを調整しやすくなるなど流体力の制御性が向上し、分離対象とし得る固体粒子pの幅が広がる。結果として、固液分離装置1の汎用性を向上させることができる。
【0054】
(第2実施形態)
図7は、第2実施形態に係る固液分離装置10の構成を示す概略図である。上記の第1実施形態に係る固液分離装置1では、二次流れ発生機構として、流路部2に設置される超音波振動子3を例示した。これに対して、二次流れ発生機構は、超音波振動子3に代えて、例えば、流路部12に形成され、流路17の延伸方向に進むにつれて少なくとも一部の横断面の形状を変化させる流路形状変更部であってもよい。
【0055】
固液分離装置10は、上記の固液分離装置1において直線管であった流路部2に代えて、例えばマイクロデバイスを想定したブロック状の流路部12を備える。流路部12は、第1平板13と第2平板14との2つの平板をZ方向で重ね合わせることで形成されてもよい。この場合、下段の第2平板14には、上面側に、上記の流路部2に設けられていた流路7と同一の設定条件を満たす流路17が、溝部として形成されている。これに対して、上段の第1平板13は、いわゆる蓋体であり、流路17を下面で覆うように第2平板14に接合される。流路部12では、上記の流路部2における第3側壁2c、第4側壁2d及び第2側壁2bが、第2平板14の溝部の一部である第1側壁14a、第2側壁14b及び底壁14cに対応する。また、流路部12では、上記の流路部2における第1側壁2aが、第1平板13の下面側の一部に対応する。
【0056】
また、固液分離装置10では、二次流れ発生機構を構成する流路形状変更部は、複数の支柱である。本実施形態における複数の支柱は、第2平板14の底壁14c上で、かつ、流路17内に位置するように形成される3つの支柱、すなわち、第1支柱14d、第2支柱14e及び第3支柱14fである。これらの支柱は、例えば円柱であり、各支柱の上面は、第1平板13の下面と接触する。流路17内にこれらの複数の支柱が設けられることで、流路17の形状、すなわち、流路17の横断面の形状は、流路17の延伸方向に進むにつれて、支柱が存在する部分で変化する。このような複数の支柱の形状、大きさ、配列又は設置数などを適宜変更することで、固体粒子pが分散されている流体が流路17に導入されたとき、これらの支柱によって、流体に二次流れを発生させることができる。
【0057】
このような固液分離装置10によっても、上記の固液分離装置1と同様に、簡易的な形状又は構成で分離効率を向上させることができる。特に、固液分離装置10によれば、例えば、二次流れ発生機構を、電力を用いることなく簡易的な構成とすることができる。
【0058】
(第3実施形態)
図8は、第3実施形態に係る固液分離装置20の構成を示す概略図である。上記の第2実施形態に係る固液分離装置10では、二次流れ発生機構を構成する流路形状変更部として、複数の支柱を例示した。しかし、流路形状変更部は、このような流路部12に形成される支柱に限定されない。
【0059】
固液分離装置20が備える流路部22は、第2実施形態に係る固液分離装置10における流路部12と同様にブロック状である。流路部22は、固液分離装置10における第1平板13及び第2平板14に対応する、第1平板23及び第2平板24で形成されてもよい。ここで、第2平板24の上面側には、固液分離装置10の第2平板14と同様に、溝部として流路27が形成されているが、流路27の形状が、固液分離装置10の流路17の形状と異なる。
【0060】
まず、流路部22では、上記の流路部12における第1側壁14a、第2側壁14b及び底壁14cが、第2平板24の溝部の一部である第1側壁24a、第2側壁24b及び底壁24cに対応する。また、流路部22では、流路27のZ方向上側の側壁は、第1平板23の下面側の一部である。
【0061】
その上で、固液分離装置20では、流路形状変更部として、上記の固液分離装置10における複数の支柱に代えて、流路27の一部に横断面が縮小する領域を設けることでベンチュリ効果を生じさせるベンチュリ構造部が用いられる。例えば、本実施形態におけるベンチュリ構造部24dは、第2平板24の底壁24c上で、第1側壁24aの一部としてY方向に突出する3つの突出壁、すなわち、第1突出壁24e、第2突出壁24f及び第3突出壁24gで囲まれる突出部である。ベンチュリ構造部24dの上面は、第1平板23の下面と接触する。
【0062】
第1突出壁24eは、流路27の延伸方向であるX方向に対して垂直な壁部であり、第2側壁24bとは接触しない。第2突出壁24fは、第1側壁24a及び第2側壁24bと並行な壁部であり、第1突出壁24eと連続し、かつ、第2側壁24bとは接触しない。また、第3突出壁24gは、X方向の一端が第2突出壁24fと連続し、X方向の他端が、ベンチュリ構造部24dよりも下流側の第1側壁24aと連続する壁部である。つまり、第3突出壁24gは、流路27の延伸方向に進むにつれて第2突出壁24f側から第1側壁24a側に徐々に寄る。
【0063】
ベンチュリ構造部24dによれば、上流側に、流路幅wよりも狭い流路幅w1で規定される横断面(流路幅w1×流路高さh)となる縮小部27aが形成される。縮小部27aは、流路27の延伸方向では、第2突出壁24fのX方向の長さ分の領域となる。そして、縮小部27aよりも下流側では、第3突出壁24gにより、流路27の延伸方向に進むにつれて徐々に流路幅が拡大していき、最終的に流路幅wと流路高さhとで規定される横断面に戻る拡大部27bが形成される。なお、縮小部27aは、流路27を流通する流体の流速を一時的に増加させるための領域であるので、縮小部27aを形成する第2突出壁24fのX方向の長さは、拡大部27bを形成する第3突出壁24gのX方向成分の長さよりも十分に短くてよい。流路27内にベンチュリ構造部24dが設けられることで、流路27の横断面の形状は、流路27の延伸方向に進むにつれて、縮小部27aと拡大部27bとで変化する。このようなベンチュリ構造部24dの形状又は大きさなどを適宜変更することで、固体粒子pが分散されている流体が流路27に導入されたとき、ベンチュリ構造部24dによって、流体に二次流れを発生させることができる。
【0064】
このような固液分離装置20によっても、上記の固液分離装置10と同様に、例えば、二次流れ発生機構を、電力を用いることなく簡易的な構成とすることができる。
【0065】
(第4実施形態)
図9は、第4実施形態に係る固液分離装置30の構成を示す概略図である。二次流れ発生機構を構成する流路形状変更部は、第2実施形態における第1支柱14d等の複数の支柱、又は、第3実施形態におけるベンチュリ構造部24dに代えて、複数の邪魔板35であってもよい。
【0066】
固液分離装置30が備える流路部32は、第2実施形態に係る固液分離装置10における流路部12と同様にブロック状である。流路部32は、固液分離装置10における第1平板13及び第2平板14に対応する、第1平板33及び第2平板34で形成されてもよい。ここで、第2平板34の上面側には、固液分離装置10の第2平板14と同様に、溝部として流路37が形成されているが、流路37の形状が、固液分離装置10の流路17の形状と異なる。なお、図9では、流路37の形状を全体的に明示させるために、第1平板33が二点鎖線で描画されている。
【0067】
流路部32では、固液分離装置10の流路部12における第1側壁14a、第2側壁14b及び底壁14cが、第2平板34の溝部の一部である第1側壁34a、第2側壁34b及び底壁34cに対応する。また、流路部32では、流路37のZ方向上側の側壁は、第1平板33の下面側の一部である。更に、流路37の横断面についても、上記の各実施形態と同様に、(流路幅w×流路高さh)で規定される。
【0068】
固液分離装置30では、二次流れ発生機構を構成する流路形状変更部は、複数の邪魔板35である。例えば、本実施形態における邪魔板35は、第2平板34の底壁34cから第1平板33の下面に向けて突出する突出部である。邪魔板35の上面は、第1平板33とは接触しない。複数の邪魔板35は、互いに同一形状で、以下で詳説するような一定の規則性をもって流路37内に配置される。図9では、第1板35a、第2板35b、第3板35c、第4板35d及び第5板35eで表される五つの邪魔板35が例示されている。なお、図9では、二次流れ発生機構の入口又は出口と交差する邪魔板35は、描画上の例示として、当該交差位置又はその近傍から二次流れ発生機構の外方に向かう一部位が存在しない形状で表されている。
【0069】
図10は、図9中のC-C断面に対応し、流路37の延伸方向であるX方向に対して垂直な面で流路部32の一部を切断した断面図である。図10では、流路37内を流通する流体の当該切断面における流れの様子がベクトルで例示されている。また、図11は、複数の邪魔板35をZ方向に沿って見た、邪魔板35の形状及び複数の邪魔板35の配置関係を説明するための概略平面図である。
【0070】
邪魔板35の形状は、XY平面に沿った底壁34cと平行で、かつ、X方向に対して傾斜角θで傾いた方向を延伸方向とする棒状である。ただし、各々の邪魔板35の両先端部は、XZ平面に沿って切り欠かれていてもよい。邪魔板35の延伸方向での長さを邪魔板長さLとすると、流路幅方向であるY方向での邪魔板35の長さ成分Lは、Lsinθで表され、流路幅wよりも短い。また、邪魔板35は、第1側壁34a及び第2側壁34bのいずれとも接触しない。流路37では、このような形状を有するn個の邪魔板35が、ピッチPの等間隔で、X方向に沿って配列されている。
【0071】
邪魔板35の延伸方向に対して垂直となる断面の形状は、おおよそ矩形である。以下、邪魔板35の断面に関して、高さを邪魔板高さhと、幅を邪魔板幅wと、それぞれ表記する。
【0072】
邪魔板高さhは、例えば、流路37の流路高さhを基準として、以下のように設定される。まず、流路37を流通する流体に関する流速を、次のように規定する。Vは、流路37の延伸方向であるX方向に沿って流路37に導入される流体の主流流速である。Vは、邪魔板35の延伸方向に沿った方向での第1流速である。Vは、流路幅方向であるY方向での第2流速であり、主流速度Vを用いて、式(1)で表される。
【0073】
【数1】
【0074】
また、複数の邪魔板35が設けられている区間を流体の主流が通過する時間tは、式(2)で表される。
【0075】
【数2】
【0076】
更に、流体中に分散されている固体粒子pを第1側壁34a又は第2側壁34bの近傍に捕捉させるためには、複数の邪魔板35が設けられている区間を流体の主流が通過する間に、流路幅方向の流れが流路27の横断面を少なくとも一周する必要がある。したがって、式(3)が成り立つ。
【0077】
【数3】
【0078】
ここで、第一に、邪魔板高さhが、流路高さhの半分の高さ、すなわち、0.5hであるとき、複数の邪魔板35は、最も効率的に二次流れを生成することができる。
【0079】
第二に、邪魔板高さhが0.5hよりも低いときには、二次流れの流量が少なくなる。したがって、邪魔板高さhが低くなるに従って二次流れの流量が比例的に少なくなることを想定して、流路幅方向の流れが流路27の横断面を少なくとも一周するという上記の条件は、少なくとも(0.5h/h)周するという条件に変更されてもよい。この場合、式(3)は、式(4)に修正される。
【0080】
【数4】
【0081】
式(4)に式(1)及び式(2)を代入して整理すると、式(5)が導かれる。
【0082】
【数5】
【0083】
したがって、邪魔板高さhが0.5hよりも低いときには、任意の流路幅w及び流路高さhを有する流路37に対して、式(5)の条件を満たすように、邪魔板35の配列に係るピッチP、邪魔板35の設置数n及び邪魔板高さhが設定されればよい。
【0084】
第三に、邪魔板高さhが0.5hよりも高いときも、二次流れの流量が少なくなる。したがって、邪魔板高さhが高くなるに従って二次流れの流量が比例的に少なくなることを想定して、流路幅方向の流れが流路27の横断面を少なくとも一周するという上記の条件は、少なくとも(0.5h/(h-h))周するという条件に変更されてもよい。この場合、式(3)は、式(6)に修正される。
【0085】
【数6】
【0086】
式(6)に式(1)及び式(2)を代入して整理すると、式(7)が導かれる。
【0087】
【数7】
【0088】
したがって、邪魔板高さhが0.5hよりも高いときには、任意の流路幅w及び流路高さhを有する流路37に対して、式(7)の条件を満たすように、邪魔板35の配列に係るピッチP、邪魔板35の設置数n及び邪魔板高さhが設定されればよい。
【0089】
つまり、二次流れ発生機構として複数の邪魔板35が採用される場合の邪魔板高さhの上限値は、式(7)に基づいて規定され、邪魔板高さhの下限値は、式(5)に基づいて規定され得る。
【0090】
また、邪魔板幅wは、例えば、流路37内での圧損を低減させるためには流路37の横断面の閉塞率を0.5以下とすることが望ましいという条件に基づいて、以下のように設定される。邪魔板35が存在しないと仮定した場合の流路37の横断面は、(流路幅w×流路高さh)で表される。そこで、ある横断面における邪魔板35の数をm個とすると、閉塞率が0.5以下であるという条件を満たすためには、邪魔板幅wの上限値を、式(8)を満たすように設定すればよい。一方、邪魔板幅wの下限値は、可能な限り小さく設定されることが望ましい。
【0091】
【数8】
【0092】
更に、邪魔板35の傾斜角θは、式(5)及び式(7)に基づいた上限値及び下限値で規定される範囲を決定し、当該範囲に含まれる値に設定されてもよい。ただし、傾斜角θが大きすぎる場合、流れの剥離が起こり、二次流れが意図しないものとなることも考えられる。そこで、傾斜角θは、45°以下であることが望ましく、更には30°以下であることがより望ましい。
【0093】
固液分離装置30では、流路形状変更部として複数の邪魔板35を採用することで、図10に示す流路37内での各位置におけるベクトルの向く方向から明らかなように、流路37を流通する流体には、横断面方向での二次流れが生じていることがわかる。また、流路形状変更部として、第2実施形態において例示した第1支柱14d等の複数の円柱を採用する場合、二次流れは、円柱の直後では強く生じるものの、下流側に向かうにつれて徐々に減衰する。これに対して、流路形状変更部として複数の邪魔板35を採用する場合には、二次流れが減衰しにくいという利点がある。
【0094】
図12は、二次流れ発生機構を通過した流体中の固体粒子pの挙動を示す流体画像である。この流体画像は、流路37の一部を流通する流体をZ方向に沿って撮影することで得られたものである。ここで、複数の邪魔板35で構成される二次流れ発生機構は、X方向に沿った流路37の上流側に位置している。なお、図12では、流体画像が取得された流路37中の位置に対する二次流れ発生機構の位置を例示するために、二次流れ発生機構に相当する部位が、流体画像に隣接して二点鎖線で示されている。
【0095】
図12に示すように、固液分離装置30においても、固体粒子pが分散されている流体が流路37を流通することで、固体粒子pは、少なくとも、第1側壁34a又は第2側壁34bの近傍に捕捉されることがわかる。一例として、図12に示す流体画像が得られたとき、流路37の入口領域RINでの粒子濃度は、0.55vol%であった。これに対して、流路37の出口側において、固体粒子pが集まってきた高濃度領域Rでの粒子濃度は、1.33vol%であった。一方、流路37の出口側において、固体粒子pが少ない低濃度領域Rでの粒子濃度は、0.11vol%であった。
【0096】
また、固液分離装置30は、二次流れ発生機構として複数の邪魔板35を採用することで、固体粒子pを、第1側壁34a又は第2側壁34bの近傍のみならず、図12に示すように流路37の流路幅方向の中央領域にも捕捉させることができる可能性がある。
【0097】
更に、固液分離装置30によっても、上記の固液分離装置10等と同様に、例えば、二次流れ発生機構を、電力を用いることなく簡易的な構成とすることができる。
【0098】
なお、上記の固液分離装置30の例では、複数の邪魔板35が、流路床側である第2平板34の底壁34cに設けられ、底壁34cから第1平板33の下面に向けて突出する。これに対して、複数の邪魔板35は、天井側である第1平板33に設けられ、第1平板33から底壁34cに向けて突出するものであってもよい。又は、複数の邪魔板35は、流路床側である第2平板34の底壁34cと、天井側である第1平板33との双方に設けられるものであってもよい。
【0099】
また、上記の固液分離装置30の例では、二次流れ発生機構全体において、複数の邪魔板35が一つの値のピッチPで配列されている。これに対して、複数の邪魔板35は、二次流れ発生機構全体において複数の値のピッチPで配列される、すなわち、途中でピッチPの値が変更されて配列されるものであってもよい。ただし、ピッチPの値が小さすぎる場合、粘性抵抗が大きくなるため、ピッチPの値は、流路高さhよりも大きく設定されることが望ましい。
【0100】
更に、上記の固液分離装置30の例では、複数の邪魔板35が、流路37の流路幅wの中央部に設けられている。つまり、流路幅方向において、邪魔板35から第1側壁34aまでの距離と、邪魔板35から第2側壁34bまでの距離とは、同一である。これに対して、複数の邪魔板35は、流路幅方向において、第2側壁34bの側よりも第1側壁34aの側に寄るように設けられてもよいし、反対に、第1側壁34aの側よりも第2側壁34bの側に寄るように設けられてもよい。
【0101】
また、図7に示す固液分離装置10、図8に示す固液分離装置20及び図9等に示す固液分離装置30では、流路形状変更部がブロック状の流路部12、流路部22又は流路部32に形成される場合を例示した。これに対して、例えば、固液分離装置1における直線管である流路部2に、二次流れ発生機構として、超音波振動子3に代えて流路形状変更部が設けられてもよい。また、図7に示す固液分離装置10、図8に示す固液分離装置20及び図9等に示す固液分離装置30では、ブロック状の流路部12、流路部22又は流路部32が共に2つの平板の組み合わせで構成される場合を例示した。これに対して、例えば、三次元金属積層造形技術を利用することで、流路17を有する流路部12、流路27を有する流路部22、又は、流路37を有する流路部32が一体的に形成されてもよい。
【0102】
(固液分離システム)
次に、上記実施形態に係る固液分離装置(固液分離装置1等)の応用例として、少なくともいずれかの固液分離装置を採用した固液分離システムについて説明する。
【0103】
図13A及び図13Bは、上記実施形態に係る固液分離装置(固液分離装置1等)を備える固液分離システムの構成を示す概略図である。なお、図13A及び図13Bでは、固液分離システムが固液分離装置1を備える場合を例示する。
【0104】
図13Aは、本実施形態に係る固液分離システムの一例としての細胞培養装置(動物細胞連続培養装置)100を示す概略図である。細胞培養装置100では、固体粒子pが分散されている流体として培養液が想定されている。細胞培養装置100は、培地を貯留する貯留槽としての培養槽102と、培養液を培養槽102から固液分離装置1に送る送液部としてのポンプ106aとを備える。培地は、第1供給バルブ104aを備える培地追加配管104を介して培養槽102に供給される。培養槽102は、撹拌器102aを備え、培地を培養する。培養槽102内の培養液は、ポンプ106aに接続された培養液供給配管106を介して固液分離装置1に供給される。固液分離装置1は、流路7に導入された培養液を濃縮液と清澄液とに分離することができる。清澄液は、そのまま回収される。一方、濃縮液は、第2供給バルブ108aを備える濃縮液返送配管108を介して培養槽102に戻される。また、細胞培養装置100は、少なくとも、ポンプ106aの動作を制御することで培養液の少なくとも流量又は速度を調整させる制御部110を備える。制御部110は、その他、撹拌器102aの動作や、第1供給バルブ104a又は第2供給バルブ108aの開閉動作などを制御してもよい。
【0105】
図13Bは、本実施形態に係る固液分離システムの一例としての析出装置200を示す概略図である。析出装置200では、固体粒子pが分散されている流体として、結晶化した大径粒子や小径粒子を含む流体が想定されている。析出装置200は、析出液を貯留する貯留槽としての析出槽202と、流体を析出槽202から固液分離装置1に送る送液部としてのポンプ206aと、固液分離装置1により分離された濃縮液から大径粒子のみを抜き出す分離膜207aとを備える。析出液は、第1供給バルブ204aを備える析出液追加配管204を介して析出槽202に供給される。析出槽202は、撹拌器202aを備え、析出を促す。析出槽202内の流体は、ポンプ206aに接続された流体供給配管206を介して固液分離装置1に供給される。固液分離装置1は、流路7に導入された流体を、主に大径粒子を含有する濃縮液と、主に小径粒子を含有する清澄液とに分離することができる。濃縮液は、濃縮液供給配管207を介して分離膜207aに送られる。分離膜207aによって濃縮液から抜き出された大径粒子は、そのまま回収される。その後、大径粒子が抜き出された流体は、清澄液として、第2供給バルブ209aを備える清澄液返送配管209を介して析出槽202に戻される。一方、固液分離装置1で分離された清澄液は、バイパス配管208を介して直接的に清澄液返送配管209に送られ、析出槽202に戻される。また、析出装置200は、少なくとも、ポンプ206aの動作を制御することで流体の少なくとも流量又は速度を調整させる制御部210を備える。制御部210は、その他、撹拌器202aの動作や、第1供給バルブ204a又は第2供給バルブ209aの開閉動作などを制御してもよい。
【0106】
次に、細胞培養装置100や析出装置200のような本実施形態に係る固液分離システムの効果について説明する。
【0107】
固液分離システムは、上記実施形態に係る固液分離装置と、流体を貯留する貯留槽と、貯留槽から固液分離装置に流体を送る送液部と、少なくとも、送液部の動作を制御することで流体の少なくとも流量又は速度を調整させる制御部とを備える。
【0108】
この固液分離システムによれば、上記実施形態に係る固液分離装置を備えるので、システム全体として、分離効率を向上させ、又は、処理量を維持しつつ、所望の分解能を得やすくすることができる。
【0109】
また、固液分離システムでは、流体に分散されている固体粒子pは、二次流れに誘起された抗力Fと、流体の主流に誘起された揚力Fとを受け、揚力Fは、分離対象としての固体粒子pの粒子径Dを基準として求められてもよい。
【0110】
この固液分離システムによれば、分離対象としての固体粒子pに対して、流路(流路7等、以下同様)において短辺側の側壁近傍に集中させやすくするのにより適切な揚力Fを作用させることができる。なお、短辺側の側壁とは、固液分離装置1では、第3側壁2c及び第4側壁2dに相当し、固液分離装置10では、第1側壁14a及び第2側壁14bに相当する。
【0111】
また、固液分離システムでは、流路高さhは、分離対象としての固体粒子pの粒子径Dを基準として求められた揚力Fに基づいて決定されてもよい。
【0112】
この固液分離システムによれば、流路の流路高さhを適切な寸法に設定することで、流路において流体の主流から誘起される揚力Fを所望の大きさに調整することができる。
【0113】
また、固液分離システムでは、抗力Fは、流体の境界層の内部の横断面方向において揚力Fとつり合うように決定されてもよい。
【0114】
この固液分離システムによれば、流体の境界層の内部の横断面方向における揚力Fに対して抗力Fが力学的に平衡となるので、流路の短辺側の側壁近傍に、分離対象としての固体粒子pをより集中させやすくすることができる。
【0115】
また、固液分離システムでは、二次流れ発生機構は、流路部2に設置され、流路7の長辺側の側壁から流路7の内部に向けて超音波を発する超音波振動子3であってもよい。この場合、固液分離システムは、超音波振動子3に電力を供給する超音波発振器4を備えてもよい。制御部110は、超音波発振器4に対して超音波振動子3の振動数又は音圧を変更させて二次流れの速度(例えば代表速度U)を変化させることで、抗力Fを調整してもよい。
【0116】
この固液分離システムによれば、二次流れを誘起する抗力Fを調整しやすくなるなど流体力の制御性が向上し、分離対象とし得る固体粒子pの幅が広がる。また、このように二次流れが音響流であり、特に、液相と固体粒子との音響インピーダンス差が大きい場合には、固体粒子pに対して音響反射力が作用する。したがって、流体に分散されている固体粒子pには、揚力F及び抗力Fに加えて音響反射力Fが加わることになるので、制御部110は、流路7において流体の主流の横断面方向での固体粒子pの平衡位置をより調整しやすくなるという利点もある。
【0117】
なお、ここでは、本実施形態に係る固液分離システムとして、細胞培養装置100や析出装置200を例示したが、適用例はこれらの装置に限定されるものではない。例えば、上記実施形態に係る固液分離装置を採用するものであれば、固液分離システムは、カメラやレーザー機器などの検査機器と組み合わせた、医薬品や食品等の品質検査を行う検査装置であってもよい。
【0118】
いくつかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正又は変形をすることが可能である。上記の実施形態のすべての構成要素、及び請求の範囲に記載されたすべての特徴は、それらが互いに矛盾しない限り、個々に抜き出して組み合わせてもよい。
【0119】
本出願は、2020年12月21日に出願された日本国特許願第2020-211418に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
【符号の説明】
【0120】
1 固液分離装置
2 流路部
2a 第1側壁
2b 第2側壁
3 超音波振動子
4 超音波発振器
7 流路
10 固液分離装置
12 流路部
14d 第1支柱
14e 第2支柱
14f 第3支柱
17 流路
20 固液分離装置
22 流路部
24d ベンチュリ構造部
27 流路
30 固液分離装置
32 流路部
35 邪魔板
37 流路
100 細胞培養装置
102 培養槽
106a ポンプ
110 制御部
200 析出装置
202 析出槽
206a ポンプ
210 制御部
アスペクト比
粒子径
抗力
揚力
h 流路高さ
p 固体粒子
w 流路幅
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13A
図13B