(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-09
(45)【発行日】2024-04-17
(54)【発明の名称】RF及び/またはマイクロ波エネルギーを生体組織内に送達するための電気外科装置
(51)【国際特許分類】
A61B 18/14 20060101AFI20240410BHJP
A61B 18/18 20060101ALI20240410BHJP
【FI】
A61B18/14
A61B18/18 100
【外国語出願】
(21)【出願番号】P 2022195777
(22)【出願日】2022-12-07
(62)【分割の表示】P 2019570407の分割
【原出願日】2018-08-15
【審査請求日】2022-12-16
(32)【優先日】2017-08-17
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】512008495
【氏名又は名称】クレオ・メディカル・リミテッド
【氏名又は名称原語表記】CREO MEDICAL LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ハンコック,クリストファー・ポール
(72)【発明者】
【氏名】モニコ,ローハン
(72)【発明者】
【氏名】モリス,スティーブ
(72)【発明者】
【氏名】クレイブン,トム
(72)【発明者】
【氏名】ポールマン,ステファニア
【審査官】滝沢 和雄
(56)【参考文献】
【文献】特表2015-521873(JP,A)
【文献】特表2005-512726(JP,A)
【文献】特表2005-523059(JP,A)
【文献】特表2014-511190(JP,A)
【文献】国際公開第2017/109929(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/00-18/18
(57)【特許請求の範囲】
【請求項1】
生体組織へ電磁エネルギーを送達するための電気外科器具であって、前記
電気外科器具は、
遠位端アセンブリを備え、前記遠位端アセンブリは、
第1の誘電材料で作られた平面体を含むアクティブチップであって、第1の誘電材料は、前記平面体の第1の表面上の第1の導電素子と前記平面体の第2の表面上の第2の導電素子とを分離し、前記第2の表面は前記第1の表面の反対方向に面する、前記アクティブチップと、
前記アクティブチップの下側に取り付けられた導電性の保護外殻であって、前記平面体から離れた方向に面する滑らかな輪郭の凸状下面を有する前記保護外殻と、
内部導体、前記内部導体と同軸の外部導体、及び前記内部導体と前記外部導体とを分離する第2の誘電材料を含む同軸給電ケーブルであって、RF EMエネルギーまたはマイクロ波EMエネルギーを伝達するための同軸給電ケーブルと、
を備え、
前記内部導体は前記第1の導電素子と電気的に接続され、前記外部導体は前記保護外殻を介して前記第2の導電素子に電気的に接続され
、
前記第1及び第2の導電素子は、前記平面体の遠位側部分において、前記同軸
給電ケーブルから前記RF EMエネルギーまたは前記マイクロ波EMエネルギーを放出するように構成され、
前記遠位端アセンブリは、前記保護外殻の近位端に接続された可撓性シャフトを備え、前記
可撓性シャフトは、前記同軸
給電ケーブルを運ぶためのルーメンを画定し、
前記可撓性シャフトは、
その近位端から前記遠位端アセンブリへ
のトルク伝達を支援するために編組が中に形成された近位カニューレ管と、
前記
近位カニューレ管の遠位端に接合された遠位非編組管状部分と、
前記近位カニューレ管と前記
遠位非編組管状部分との間の接合部に取り付けられた支持管とを含む、電気外科器具。
【請求項2】
前記保護外殻は、生体組織との摩擦係数が低い導電材料から形成される、請求項1に記載の電気外科器具。
【請求項3】
前記保護外殻は、ステンレス鋼片を含む、請求項1または2に記載の電気外科器具。
【請求項4】
前記保護外殻は、前記第2の導電素子にはんだ付けされる、請求項1~3のいずれか1項に記載の電気外科器具。
【請求項5】
前記保護外殻は、前記平面体の前記第2の表面に当接する上面を含み、前記上面は、はんだプリフォームを保持するための陥凹部を含む、請求項4に記載の電気外科器具。
【請求項6】
前記陥凹部は、前記平面体の側縁から後退した側縁を有する、請求項5に記載の電気外科器具。
【請求項7】
前記保護外殻は、前記外部導体の一部を収容するためのU字形陥凹部を有する、請求項1~6のいずれか1項に記載の電気外科器具。
【請求項8】
前記同軸
給電ケーブルは、締り嵌めにより前記U字形陥凹部内に保持される、請求項7に記載の電気外科器具。
【請求項9】
前記同軸
給電ケーブルは、前記U字形陥凹部内で変形するように圧着される、請求項7または8に記載の電気外科器具。
【請求項10】
前記近位カニューレ管と前記
遠位非編組管状部分との間の接合部は、熱収縮スリーブに包まれる、請求項1に記載の電気外科器具。
【請求項11】
前記第1及び第2の導電素子はそれぞれ金属化層を備え、前記金属化層は前記第1の誘電材料の反対表面上に形成される、請求項1~10のいずれか1項に記載の電気外科器具。
【請求項12】
各金属化層は、チタンまたはタングステンなどの1500℃を超える高融点の金属から形成されたメッキ領域を有する、請求項11に記載の電気外科器具。
【請求項13】
前記第1の導電素子は、そのメッキ領域と前記内部導体との間に第1の接続部分を有し、前記第2の導電素子は、そのメッキ領域と前記保護外殻との間に第2の接続部分を有し、前記第1及び第2の接続部分は、融点が1200℃未満の導電材料でできている、請求項12に記載の電気外科器具。
【請求項14】
前記遠位端アセンブリは、前記
電気外科器具から送り出す流体を運ぶための流体供給導管を含む、請求項1~13のいずれか1項に記載の電気外科器具。
【請求項15】
前記保護外殻の前記
滑らかな輪郭の凸状下面は、長手方向に延在する陥凹チャネルが中に形成され、前記流体供給導管は、前記長手方向に延在する陥凹チャネル内に取り付けられる、請求項14に記載の
電気外科器具。
【請求項16】
前記流体供給導管は、針案内管を含み、その中には格納式針が摺動可能に取り付けられる、請求項14または15に記載の
電気外科器具。
【請求項17】
前記支持管の遠位端は、前記保護外殻の前記近位端の近位に位置している、請求項1~16のいずれか1項に記載の電気外科器具。
【請求項18】
前記遠位非編組管状部分の遠位端は、前記支持管の遠位端の遠位に位置している、請求項1~17のいずれか1項に記載の電気外科器具。
【請求項19】
前記可撓性シャフトは、前記近位カニューレ管の遠位端に前記遠位非編組管状部分を接合する接合部を備える、請求項1~18のいずれか1項に記載の電気外科器具。
【請求項20】
前記接合部は、前記近位カニューレ管の遠位端に前記遠位非編組管状部分を接合する接着剤を含む、請求項19に記載の電気外科器具。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高周波及び/またはマイクロ波周波数エネルギーを生体組織内に送達するための電気外科装置及びデバイスに関する。特に、本発明は、組織を切断するための高周波(RF)エネルギー、及び/または止血(すなわち血液凝固の促進)のためのマイクロ波周波数エネルギーを送達することが可能な電気外科器具に関する。本発明は、下部及び上部胃腸管(GI管)に関連する胃腸(GI)処置、例えば腸のポリープ除去など、すなわち内視鏡的粘膜切除術または内視鏡的粘膜下層剥離術に、特に好適であり得る。本発明はまた、例えば一般外科手術または腹腔鏡手術における他の処置にも適し得る。本発明は、耳、鼻、及び喉の処置、並びに肝臓切除において用途が見出され得る。デバイスはまた、例えば門脈または膵管の極めて近接に存在する腫瘍または異常の切除または除去など、膵臓に関連する処置に対応するために、使用され得る。
【背景技術】
【0002】
外科的切除は、人間または動物の体内から臓器の一部を除去する手段である。このような臓器には、血管が非常に多く存在し得る。組織が切断(分割または横切開)されると、細動脈と呼ばれる小さい血管が損傷または裂傷する。最初の出血に続いて、出血点を塞ぐように血液が凝血塊に変わる凝固カスケードが起こる。手術中に患者が失う血液はできるだけ少量であることが望ましいため、無血切断を提供するように様々なデバイスが開発されてきた。内視鏡的処置においても出血は望ましくなく、血流が手術者の視界を遮り得、これにより、外科手術が長引き、処置を終了して代わりに別の方法、例えば開腹手術を用いる必要性が生じる可能性があり得るため、適切な方法で対処する必要がある。
【0003】
電気外科ジェネレータは、病院の手術室で広く使用されており、多くの場合、開腹及び腹腔鏡処置で使用され、例えば内視鏡などの外科用スコープデバイスと共に使用されることが増えている。内視鏡的処置では、電気外科装備品は通常、内視鏡内部のルーメンを通して挿入される。腹腔鏡手術の同等のアクセスチャネルと対比して考察すると、このようなルーメンは、比較的ボアが狭く、長さが長い。
【0004】
鋭い刃の代わりに、高周波(RF)エネルギーを使用して生体組織を切断することが知られている。RFエネルギーを使用して切断する方法は、電流が組織マトリックスを通過する時(細胞のイオン成分及び細胞間電解質に支援されて)、組織を横切る電子の流れに対するインピーダンスが熱を生じるという原理を使用して作動する。実際には、器具は、細胞内で熱を生じて組織内の水分を蒸発させるのに十分なRF電圧を、組織マトリックスに印加するように構成される。しかし、この脱水状態の増加の結果、特に器具のRF放射領域(組織を通る電流経路の電流密度が最も高い)の隣接箇所では、組織と器具との直接の物理的接触が失われ得る。次いで、印加された電圧は、この小さな隙間にわたり電圧降下を生じ、隙間内のイオン化を引き起こし、プラズマに至る。プラズマは、組織と比較して、体積抵抗率が非常に高い。器具に供給されるエネルギーは、プラズマを維持し、すなわち器具と組織との間の電気回路を完成させる。プラズマに入る揮発性物質は気化され得、よって組織切開プラズマと認識される。
【0005】
GB 2 523 246では、RF電磁エネルギー及び/またはマイクロ波周波数EMエネルギーを生体組織に当てる電気外科器具が説明される。器具は、外科用スコープデバイスの器具チャネルを通して挿入可能なシャフトを備える。シャフトの遠位端には、器具チップが存在し、器具チップは、平面伝送路を備え、平面伝送路は、第1の誘電材料のシートから形成され、その反対表面に第1及び第2の導電層を有する。平面伝送路は、シ
ャフトにより運ばれる同軸ケーブルに接続される。同軸ケーブルは、マイクロ波またはRFエネルギーを平面伝送路に送達するように構成される。同軸ケーブルは、内部導体、内部導体と同軸の外部導体、及び内部導体と外部導体とを分離する第2の誘電材料を含み、内部導体及び外部導体は、接続インターフェースで第2の誘電材料を越えて延在し、伝送路の反対表面に重なり、それぞれ第1の導電層及び第2の導電層に電気的に接触する。器具はさらに、平面伝送路から離れた方向に面する滑らかな輪郭の凸状下面を有する保護外殻を備える。下面内には、長手方向に延びる陥凹チャネルが形成される。器具内には格納式針が取り付けられ、これは、陥凹チャネルを通って延びて器具の遠位端から突出するように、動作可能である。針は、RFまたはマイクロ波エネルギーを当てる前に、治療領域に流体を注入するために使用され得る。
【発明の概要】
【課題を解決するための手段】
【0006】
最も一般的には、本発明は、GB 2 523 246において論述される概念の発展を提供する。発展には、保護外殻を、生体組織との摩擦係数が低い導電性の生体適合性材料(例えばステンレス鋼)の成形部品として形成することが含まれ得、形成される保護外殻は、(i)アクティブチップの下にある組織を物理的に保護することと、(ii)同軸給電路とアクティブチップとの間の電気接続を提供すること、という二重機能を有する。
【0007】
保護外殻は、腫瘍または他の異常を切除、切開、または除去する時に、腸穿孔が懸念される胃腸管において、または門脈もしくは膵管への損傷が起こり得る膵臓において、行う処置に特に有用であり得る。
【0008】
保護外殻は、様々な機能に適合した平面器具チップに適用され得る。例えば、本明細書で企図される本発明の態様には、生体組織を切断するための高周波(RF)エネルギーを送達するように適合された器具と、RF及びマイクロ波の両方の周波数エネルギーを個別にまたは同時に送達するように適合された器具と、RF及び/またはマイクロ波エネルギーを送達するように適合された器具であって、流体(液体または気体)を治療部位へ送達するまたは治療部位から除去するための格納式針を有する器具と、が含まれる。例えば、表面凝固(熱性)または滅菌(非熱性)のための熱プラズマまたは非熱プラズマを生成するために、針を使用して、例えばアルゴンなどの気体が導入され得る。このプラズマは、RF及び/またはマイクロ波場を使用して、打ち出され維持される、すなわち生成される。保護外殻は、例えば陥凹チャネルなどの通路を含み得、これを通して、例えば臨床または洗浄目的で、格納式針は移動し、または針を使用せずに流体を送達することができる。
【0009】
本発明によれば、生体組織へ電磁エネルギーを送達するための電気外科器具が提供され、器具は、遠位端アセンブリを備え、遠位端アセンブリは、第1の誘電材料で作られた平面体を含むアクティブチップであって、第1の誘電材料は、平面体の第1の表面上の第1の導電素子と平面体の第2の表面上の第2の導電素子とを分離し、第2の表面は第1の表面の反対方向に面する、アクティブチップと、アクティブチップの下側に取り付けられた導電性の保護外殻であって、平面体から離れた方向に面する滑らかな輪郭の凸状下面を有する保護外殻と、内部導体、内部導体と同軸の外部導体、及び内部導体と外部導体とを分離する第2の誘電材料を含む同軸給電ケーブルであって、RF EMエネルギーまたはマイクロ波EMエネルギーを伝達するための同軸給電ケーブルと、を備え、内部導体は第1の導電素子と電気的に接続され、外部導体は保護外殻を介して第2の導電素子に電気的に接続され、これにより器具チップは、RF及び/またはマイクロ波信号を受信することが可能となり、第1及び第2の導電素子は、平面体の遠位側部分において、同軸ケーブルからRF EMエネルギーまたはマイクロ波EMエネルギーを放出するように構成される。この構成では、保護外殻自体が、同軸ケーブルとアクティブチップとの間に導電経路を提供するため、追加の接続構成要素が必要ない。
【0010】
第1及び第2の導電素子は、(i)RF EMエネルギーを放出するアクティブ及びリターン電極、または(ii)アクティブチップの遠位側部分からマイクロ波EMエネルギーを放出するためのアンテナ構造、これらのいずれかまたは両方として機能するように構成され得る。
【0011】
保護外殻は、生体組織との摩擦係数が低く、生体適合性のある導電材料から形成され得る。ステンレス鋼が好ましくあり得る。
【0012】
必要な電気接続を提供するために、保護外殻は、第2の導電素子にはんだ付けされ得る。はんだ付けは、保護外殻及びアクティブチップが一緒に配置された後に行われ得る。はんだ付けは、誘導はんだ付けであり得る。はんだ接続の材料を提供するために、はんだプリフォームが、保護外殻とアクティブチップとの間に取り付けられ得る。保護外殻は、平面体の第2の表面に当接するための上面を有し得る。上面は、はんだプリフォームを保持するための陥凹部を有し得る。陥凹部は、長方形であり得る。陥凹部は、平面体の側縁から後退した側縁を有し得る。これにより、RF EMエネルギーまたはマイクロ波EMエネルギーの送達を妨げ得るアクティブチップの側面へのはんだの流出または漏出を、確実に防ぐことができる。
【0013】
保護外殻は、外部導体の一部を収容するためのU字形陥凹部を有し得る。例えば、外部導体は、同軸ケーブルの長さに沿って露出し得、ここで保護外殻に係合する。同軸ケーブルは、締り嵌めによりU字形陥凹部内に保持され得る。一例では、同軸ケーブルは、U字形陥凹部に当接し係合するように、例えば圧着などにより変形され得る。同軸ケーブルは、その断面が楕円形になるように押しつぶされ得、これにより、U字形陥凹部の側壁に係合する。
【0014】
保護外殻の下面は、平面体の下側に接触するように、その外周が滑らかに先細くなり得る。保護外殻の厚さも、器具チップの遠位端に向かって減少し得る。従って、保護外殻の外部は、凸形状を有し得る。下面内には、長手方向に延びる陥凹チャネルが形成され得る。先細りの縁形状及び陥凹したチャネルにより、保護外殻の下面には一対の隆起が存在し得る。外殻の先細りの等角流動形態は、器具が側副組織に食い込むリスクを軽減し、滑る能力を補助し得る。例えば、この形状により、器具が腸壁に食い込んで腸穿孔を引き起こすリスクが軽減され得る、または門脈または膵管の損傷が防止され得る。外殻の具体的な寸法(例えば長さ、幅、厚さなど)は、使用目的及び手術される身体の対象領域に合うように適合され得る。
【0015】
遠位端アセンブリは、保護外殻の近位端に接続された可撓性シャフトを備え得、シャフトは、同軸ケーブルを運ぶためのルーメンを画定する。
【0016】
可撓性シャフトは、その近位端から遠位端アセンブリへのトルク伝達を支援するために編組が中に形成された近位カニューレ管と、カニューレ管の遠位端に接合された遠位非編組管状部分とを含み得る。編組は、長手方向に延在し得る。編組は、金属で作られ得る。非編組管状部分を設けることにより、同軸ケーブルからアクティブチップへのエネルギー伝達を編組が妨げることを抑制することができる。
【0017】
可撓性シャフトは、近位カニューレ管と非編組管状部分との間の接合部に取り付けられた支持管を含み得る。支持管は、接合部に機械的強度を提供し得る。支持管は、近位カニューレ管及び非編組管状部分が結合されるポリマースリーブであり得る。付加的または代替的に、近位カニューレ管と非編組管状部分との間の接合部は、熱収縮スリーブに包まれ得る。
【0018】
第1及び第2の導電素子は、RFエネルギーの局所リターンパス、すなわち第1及び第2の導電素子間で運ばれるRFエネルギーの低インピーダンス経路を提供するように構成され得る。一方で、マイクロ波信号の場合、器具チップは、平行プレート伝送路としてモデル化され得、平面体は、2つの導電プレートを分離する誘電材料を表す。
【0019】
第1及び第2の導電素子はそれぞれ、第1の誘電材料の反対表面上に形成された金属化層を有し得る。第1及び第2の導電素子は、器具チップが生体組織と接触する接触領域に局所電場を作り出すように構成され得る。局所電場は非常に高くなり得、これにより、平面体の遠位側部分、例えば生体組織と接触する場所で、マイクロプラズマ(すなわち高温熱プラズマ)が形成され得る。マイクロプラズマは、効率的な切断を達成するという点で、望ましくあり得る。第1及び第2の導電素子は、チタンまたはタングステンなどの例えば1500℃以上の高融点を有する導電材料で作られた部分、例えば遠位側部分における及びその近傍のメッキ領域を含み得る。このような材料を使用することで、マイクロプラズマの高温により第1及び第2の導電素子が腐食されることが防がれ得る。第1及び第2の導電素子はまた、融点のより低い導電材料(例えば銀及び金など)が融点のより高い導体上に堆積またはメッキされて作られた接続部分を含み得る。接続部分は、同軸ケーブルの内部導体及び外部導体の接続を、例えばはんだ付けなどにより、容易にし得る。一実施形態では、上部に銀(Ag)または金(Au)の層を堆積させて、チタンタングステン(TiW)シード層が使用され得る。例えば、シード層の厚さは30nmのであり得、各金属化層の厚さは0.03mmであり得る。各金属化層は、2つのステップによりシード層上に堆積されることが好ましい。第1のステップでは、760nmの銀または金の層が、シード層上にスパッタリングされ得る。第2のステップでは、29μmの厚さの銀または金の層が、電気分解により堆積され得る。融点のより低い材料は、融点のより高い材料上の内部導体及び保護外殻が取り付けられる領域、すなわちアクティブチップの近位端にのみ堆積され得、マイクロプラズマが生成されるその側面沿いには堆積され得ない。
【0020】
一実施形態では、導電素子を分離する第1の誘電材料は、内部導体(アクティブ)と外部導体(リターン)との間に優先リターンパスを提供し得る。第1の誘電材料の誘電率が高く(例えば空気の誘電率より高い)、遠位側部分における第1の誘電材料の厚さ、すなわち遠位側部分の縁における第1の導電素子と第2の導電素子の分離が、小さい、すなわち1mm未満である場合、RF組織切断は、器具チップの遠位側部分で行われ得る。この構成により、電流が流れるために必要な優先リターンパスが提供され得る。
【0021】
平面体の近位領域における電場強度を低減させるために、金属化層は、平面体の近位領域における第1の誘電材料の側縁から後退して(例えば0.2mm分)形成され得る。近位領域は、遠位端に近接した平面体の領域を含み得る。
【0022】
いくつかの実施形態では、平面体を形成する第1の誘電材料は、セラミック、好ましくはアルミナなどの生体適合性材料であり得る。例えば、第1の誘電材料は、第1の導電素子及び第2の導電素子を形成し得る金属化層に強固に接着するための研磨表面を有する少なくとも99%純粋なアルミナであり得る。
【0023】
遠位端アセンブリは、器具から送り出す流体を運ぶための流体供給導管を含み得る。保護外殻の下面内には、長手方向に延びる陥凹チャネルが形成され得る。流体供給導管は、長手方向に延びる陥凹チャネル内に取り付けられ得る。同軸給電ケーブルは、RF及び/またはマイクロ波周波数エネルギー並びに流体(液体または気体)を器具に送達するためのマルチルーメン導管アセンブリの一部を形成し得る。流体は、マルチルーメン導管アセンブリ内に形成された対応する通路を通して運ばれ得る。流体供給導管はまた、他の材料、例えば気体または固体(例えば粉末)を治療部位に送達するために使用され得る。一実
施形態では、治療部位の生体組織をふっくらとさせるために、流体(生理食塩水など)の注入が使用される。腸壁もしくは食道壁の治療に、または腫瘍またはその他の異常が門脈または膵管の極めて近接に存在する時の門脈もしくは膵管の保護に、器具が使用される場合、これらの組織体を保護して流体のクッションを作るのに、これは特に有用であり得る。このように組織をふっくらとさせると、腸穿孔、食道壁の損傷、膵管からの漏出、または門脈の損傷などのリスクを軽減するのに役立ち得る。この構成により、器具は、傷つきやすい生体組織体の近くに異常(腫瘍、細胞成長、しこりなど)が存在する他の状態を、治療することが可能となり得る。
【0024】
流体供給導管は、針案内管を含み得、その中には、格納式針が摺動可能に取り付けられる。針は、1つ以上の制御ワイヤにより保護外殻に対して摺動自在に移動可能であり得、これは、器具の近位端にある好適な摺動作動器を介して作動され得る。針は、送達用の流体を針へ運ぶ流体供給通路に対して、前後に摺動可能であることが好ましい。流体供給通路は、スリーブの統合された一部であり得る、またはスリーブに静的に取り付けられた管であり得る。スリーブに対して相対的に動かない導管を通して流体を針へ運んでいる間に、針を前後に動かす能力により、流体送達管がスリーブの長さに沿って摺動しなければならないデバイスと比べて、より小さい直径のスリーブの中に、格納式針を設置することが可能となる。
【0025】
本明細書では、用語「外科用スコープデバイス」は、侵襲処置中に患者の体内に導入される剛性または可撓性の(例えば操縦可能な)導管である挿入管を備えた任意の外科デバイスを意味するために使用され得る。挿入管は、器具チャネル及び光学チャネルを含み得る(例えば光を送って、挿入管の遠位端にある治療部位を照らす及び/または治療部位の画像を取り込むために)。器具チャネルは、侵襲外科手術道具を収容するのに好適な直径を有し得る。器具チャネルの直径は、5mm以下であり得る。
【0026】
本明細書において、用語「内部」は、器具チャネル及び/または同軸ケーブルの中心(例えば軸)に、半径方向により近いことを意味する。用語「外部」は、器具チャネル及び/または同軸ケーブルの中心(軸)から、半径方向により遠いことを意味する。
【0027】
本明細書では、用語「導電性」は、文脈による別段の指示がない限り、電気伝導性を意味するために使用される。
【0028】
本明細書では、用語「近位」及び「遠位」は、細長いプローブの端を指す。使用時、近位端は、RF及び/またはマイクロ波エネルギーを提供するジェネレータにより近く、一方、遠位端は、ジェネレータからより遠い。
【0029】
本明細書において、「マイクロ波」は、400MHz~100GHzの周波数範囲を示すように幅広く使用され得るが、1GHz~60GHzの範囲が好ましい。考慮されている特定の周波数は、915MHz、2.45GHz、3.3GHz、5.8GHz、10GHz、14.5GHz、及び24GHzである。対照的に、本明細書は、「高周波」または「RF」を使用して、例えば最大300MHz、好ましくは10kHz~1MHz、最も好ましくは400kHzという、少なくとも3桁低い周波数範囲を示す。
【0030】
本明細書で議論される電気外科器具は、高周波(RF)電磁(EM)エネルギー及び/またはマイクロ波EMエネルギーを生体組織に送達することが可能であり得る。特に、電気外科器具は、組織を切断するための高周波(RF)エネルギー、及び/または止血(すなわち血液凝固を促進することで破れた血管を塞ぐ)のためのマイクロ波周波数エネルギーを送達することが可能であり得る。本発明は、下部及び上部胃腸管(GI管)に関連する胃腸(GI)処置、例えば腸のポリープ除去など、すなわち内視鏡的粘膜下切除術に、
特に好適であり得る。本発明はまた、内視鏡的精密処置、すなわち内視鏡的精密切除に適し、耳、鼻、及び喉の処置、並びに肝臓切除に使用され得る。デバイスはまた、例えば門脈または膵管の極めて近接に存在する腫瘍または異常の切除または除去など、膵臓に関連する処置に対応するために、使用され得る。
【0031】
本発明を具現化する例が、添付の図面を参照して、下記に詳しく論述される。
【図面の簡単な説明】
【0032】
【
図1】本発明が適用される完全な電気外科システムの概略図である。
【
図2】本発明の一実施形態である電気外科器具の遠位端の分解図である。
【
図3】本発明の一実施形態である電気外科器具の遠位端の部分的透過斜視図である。
【
図4】
図4A及び
図4Bは本発明での使用に好適な保護外殻部材のそれぞれ上面図及び断側面図である。
【
図5】本発明の一実施形態である電気外科器具の遠位チップアセンブリの断側面図である。
【発明を実施するための形態】
【0033】
さらなる選択肢及び選好
マイクロ波及びRFエネルギーの両方の制御送達によりポリープ及び悪性細胞成長を除去するための内視鏡的処置で使用する電気外科侵襲器具を提供する電気外科システムの文脈において、本発明の様々な態様が下記に提示される。しかし、本明細書で提示される本発明の態様は、その特定の用途に限定される必要はないことを理解されたい。これらは、RFエネルギーのみが必要とされる実施形態、またはRFエネルギー及び流体送達のみが必要とされる実施形態において、等しく適用可能であり得る。
【0034】
図1は、侵襲電気外科器具の遠位端に、RFエネルギー、マイクロ波エネルギー、及び例えば生理食塩水またはヒアルロン酸などの流体のうちのいずれかまたは全てを、選択的に供給することができる完全な電気外科システム100の概略図である。システム100は、RF電磁(EM)エネルギー及び/またはマイクロ波周波数EMエネルギーを制御可能に供給するジェネレータ102を備える。この目的に好適なジェネレータが、WO2012/076844に記載されており、参照により本明細書に組み込まれるものとする。
【0035】
ジェネレータ102は、インターフェースケーブル104により、インターフェース接続部106に接続される。インターフェース接続部106はまた、注射器などの流体送達デバイス108からの流体供給107を受け取るように接続される。インターフェース接続部106は、トリガー110を摺動させることにより動作可能な針移動機構を収容する。インターフェース接続部106の機能は、ジェネレータ102、流体送達デバイス108、及び針移動機構から入るものを、インターフェース接続部106の遠位端から延びる単一の可撓性シャフト112内にまとめることである。インターフェース接続部106の内部構成は、下記により詳しく論述される。
【0036】
可撓性シャフト112は、外科用スコープデバイス114の器具(作業)チャネルの全長にわたり、挿入可能である。インターフェース接続部106と外科用スコープデバイス114との間で、シャフト112の近位の長さに、トルク伝達ユニット116が取り付けられる。トルク伝達ユニット116は、シャフトと係合することで、外科用スコープデバイス114の器具チャネル内で回転することができる。
【0037】
可撓性シャフト112は、外科用スコープデバイス114の器具チャネルを通り、内視鏡の管の遠位端で(例えば患者の体内で)突出するように成形された電気外科器具チップ
118を有する。器具チップは、RF EMエネルギー及び/またはマイクロ波EMエネルギーを生体組織内に送達するためのアクティブチップと、流体を送達するための格納式皮下注射針とを含む。これらの複合技術により、望ましくない組織を切断及び破壊するための独自の解決策と、標的領域の周囲の血管を塞ぐ能力とが提供される。格納式皮下注射針の使用により、外科医は、マーカ色素が加えられた生理食塩水及び/またはヒアルロン酸を組織層の間に注入して、治療する病変部の位置を膨張させて印を付けることができる。このように流体を注入することにより、組織層が持上げられて分離されるため、病変部の周囲が切除しやすくなり、かつ粘膜下層を平面に削り取りやすくなり、腸壁穿孔及び筋肉層への不必要な熱損傷のリスクが軽減される。
【0038】
下記により詳しく論述されるように、器具チップ118はさらに、保護外殻を含み、保護外殻は、組織平滑化型切除動作を支援するために、アクティブチップの下に配置され、さらに不慮の穿孔を防いで残りの組織の生存可能性を確保するのに役立ち、これにより、今度はより迅速な治癒及び術後の回復が促される。
【0039】
下記で論述される器具チップの構造は、内径が少なくとも3.3mmでありチャネルの長さが60cm~170cmである作業チャネルを有する従来の操縦可能な可撓性内視鏡と共に使用するように、特別に設計され得る。よって、比較的小さな直径(3mm未満)の器具の大部分は、はるかに大きく主にポリマー絶縁デバイスのルーメン、すなわち通常11mm~13mmの外径を有する可撓性内視鏡チャネルの中に、収容される。実際には、視界を遮ることまたはカメラの合焦に悪影響を与えることがないように、遠位アセンブリの15mm~25mmのみが、内視鏡チャネルの遠位端から突出する。遠位アセンブリの突出部は、患者と常に直接接触する唯一の器具部分である。
【0040】
患者から50cm~80cmに通常保持される内視鏡作業チャネルの近位端で、可撓性シャフト112が作業チャネルポートから出て、インターフェース接続部106までさらに30cm~100cm延びる。使用時、インターフェース接続部106は通常、処置の間中、手袋をはめた助手により保持される。インターフェース接続部106は、延長した沿面隙間距離により一次及び二次電気絶縁を提供するように、ポリマー材料で設計及び製造される。インターフェースケーブル104は、連続的な時計回りまたは反時計回りの回転を可能にするように設計されたQMAタイプの同軸インターフェースを用いて、ジェネレータ102に接続される。これにより、ユーザの制御の下、インターフェース接続部106は、トルク伝達ユニット116により回転することが可能となる。助手は、処置の間中、共振器具回転、針制御、及び流体注入でユーザを支援するように、インターフェース接続部106を支援する。
【0041】
図2は、本発明の一実施形態である電気外科器具の遠位端アセンブリ214(器具チップと称されることもある)の分解図を示す。遠位端アセンブリ214は、例えば
図1を参照して上述された可撓性シャフト112に該当する可撓性シャフトの外部カニューレ管216の遠位端に、取り付けられる。カニューレ管216は、器具チップへ流体を運ぶためのルーメンを画定する可撓性スリーブを形成し、その遠位端に器具チップが固定される。トルク伝達機能を提供するために、外部カニューレ管216は、編組管で形成され、編組管は、例えば半径方向内部ポリマー層と半径方向外部ポリマー層との間に取り付けられた編組線(例えばステンレス鋼)ラップを含み、ポリマーは、例えばPebax(登録商標)であり得る。
【0042】
この実施形態では、外部カニューレ管216は、その遠位端で、可撓性導管であり得る非編組管状部分218に接続される。管状部分218は、例えばPebax(登録商標)などの任意の好適なポリマー材料から形成され得る。管状部分218は、軸方向の長さ、すなわちシャフト軸に沿った長さが、1mm以上であり得る。これにより、編組の端部と
遠位端アセンブリ214の近位縁部との間に、安全距離を確実に導入することができ、よって、マイクロ波エネルギーの使用中に容量性コンダクタンスにより編組の加熱が生じるリスクが全て回避される。この構成はまた、平面伝送路の2つのプレートまたは同軸伝送路内の2つの導体が、短絡することまたは一緒に接続されることを防ぎ得る。
【0043】
管状部分218は、「ソフトチップ」218とも称され得る。ソフトチップ218は、いくつかの実施形態では、スリーブまたはカニューレ管216の遠位端に結合された追加的長さのポリマー管であり得る。結合には、例えばエポキシなどの任意の好適な接着剤が使用され得る。追加の機械的強度を提供することで接合箇所を強化するように、管状部分218とカニューレ管216との間の接合部の上に、支持管217が取り付けられ得る。支持管217は、例えば接着により、管状部分218及びカニューレ管216の両方が中に固定される短節ポリマー管であり得る。支持管217は、可撓性であり得、及び/またはシャフトの可撓性に悪影響を与えることが確実にないように選択された長さを有し得る。
【0044】
管状部分218、カニューレ管216、及び支持管217の接合部はまた、シャフトの遠位端にさらなる構造的強度を提供するために、熱収縮スリーブ(図示せず)内に取り込まれ得る。
【0045】
カニューレ管216内の編組により、シャフトの近位端に加えられるトルクを、器具チップの回転運動に変換することが可能となる。便宜上、添付の例示のうちのいくつかは、管状部分218及びカニューレ管216が透明であるように示す。実際の実施形態では、シャフトは不透明であり得る。
【0046】
管状部分218の遠位端は、保護外殻222の対応する近位部220上に適合するように構成される。保護外殻は、例えばステンレス鋼などの生体組織との摩擦性が低い金属材料から形成され、多数の機能、すなわち、
-遠位アセンブリ214を可撓性シャフト上に取り付けること、
-周囲の生体組織にエネルギーを送達するアクティブチップ構造に、保護下面を提供すること、
-格納式針の保護筐体及び支持フレームを提供すること、及び
-組み立て及びその後の使用の間、同軸ケーブルに対するアクティブチップ構造の位置に維持すること、
以上を実行するように成形される。
【0047】
これらの機能を実行する外殻は222の構造部品については、下記においてより詳しく論述される。
【0048】
遠位端アセンブリ214は、アクティブチップ224を含み、これは、誘電材料221(例えばアルミナ)の平面片であり、その上面及び下面に導電層(例えば金属化層)を有する。導電層はそれぞれ、カニューレ管216により運ばれる同軸ケーブル142の内部導体228及び外部導体226のうちのそれぞれに、電気的に接続される。同軸ケーブル142の遠位端では、外部導体226の長さを露出するために、同軸ケーブル142の外部シースが取り除かれる。同軸ケーブルの内部導体228は、外部導体226の遠位端を越えて延在する。後述されるように、同軸ケーブル142及びアクティブチップ224は、内部導体228の突出部がアクティブチップの第1の導電層上に存在し、一方外部導体226が保護外殻222を介して第2の導電層と電気的に接続されるように、相対的に取り付けられる。第1の導電層は、外部導体226から分離され、第2の導電層は、内部導体228から分離される。
【0049】
導電層は、例えばWまたはTiなどの高融点導体で形成され得る。しかし、一例では、同軸ケーブル142の内部導体及び外部導体とアクティブチップ224との間の電気的接続に、はんだを使用することを促進するために、電気的接続が起こる導電層上の近位領域に、より融点の低い導体が堆積され得る。より融点の低い導体は、銀(Ag)または金(Au)であり得る。
【0050】
アクティブチップ224の遠位端は、患者の体内に鋭い角が存在することを避けるために、湾曲されている。
【0051】
外部導体226は、アクティブチップ224の下側にある下部導電層に、保護外殻222を介して電気的に接続される。保護外殻222の近位端には、同軸給電ケーブル142の遠位端を収容して支持するU字形チャネル248が形成される。遠位端アセンブリは、外部導体226の露出部分がU字形チャネル248内に収まるように、構成されるスリーブまたはカラーなどの導電性要素230を使用して、外部導体226の露出部分が圧着される。圧着により引き起こされる圧縮は、同軸ケーブルが、保護外殻222により収容される領域で変形することを意味する。例えば、外部導体226が露出する同軸ケーブルの部分は、楕円形の断面を有し得、これにより、外部導体226は、U字形チャネル248の側面に当接して安定した電気接触を形成する。従って、圧着された外部導体226は、締り嵌めを介して外殻により保持され得る。
【0052】
外部導体226とアクティブチップ224上の下部導電層229との間の電気接続を完了するために、保護外殻222は、例えばはんだ付けにより、下部導電層に電気的に接続される(例えば
図5参照)。この実施形態では、この目的のために、はんだプリフォーム231が提供される。はんだプリフォーム231は、保護外殻222の上面に形成された陥凹部249内に収容できるように成形される。この例では、陥凹部249は長方形であり、はんだプリフォーム231は対応する形状を有するが、任意の形状が使用されてもよい。アクティブチップ224の下面と保護外殻222との間にのみはんだが存在すること、すなわちアクティブチップ224の側縁にはんだが流れないことを確保するように、陥凹部249は、保護外殻の縁から後退している。組み立てられた時に、はんだプリフォーム231は、上述のように低融点導体(例えば金)で被覆されたアクティブチップ224の下面上の領域と、並び得る。はんだ付けプロセスを容易にするために、構成要素を組み立てる時に、はんだプリフォームと共に、好適なフレックス(図示せず)が提供され得る。はんだ付けプロセス自体は、誘導はんだ付けであり得る。誘導はんだ付けの効果は、はんだプリフォーム231におけるアクティブチップ224及び保護外殻222の領域に限定され得る。
【0053】
上記の構成は、保護外殻222が(i)アクティブチップ224、(ii)はんだプリフォーム231、及び(iii)同軸ケーブル142、以上の全てを、固定された空間関係で保持し、正確にかつ繰り返し組み立てることが保証されるため、有利である。
【0054】
遠位端アセンブリはさらに、保護外殻222の下面に形成された陥凹部内に保持される針案内部232を備える。針案内部232は、例えばポリイミド製の中空管(例えばフェルール)であり、その中に、皮下注射針234が摺動可能に取り付けられる。針234は、カニューレ管216の内容積と流体連通しており、その中に存在する液体を受け取って、治療部位に送達する。
【0055】
遠位端アセンブリ214は、組み立てられた後、締り嵌め及び接着剤(例えばエポキシ)により、管状部分218の遠位端内に固定され得る。接着剤も管状部分218の遠位端のプラグを形成して、流体密封シールを提供し得、すなわち、インターフェース接続部における導入流体の出口は、針234を通り抜けるしかない。同様に、内部導体228と上
部導電層227との間の接合部(例えばはんだ付けされた接続部)は、好適な接着剤(例えばエポキシ)から形成され得る保護カバー251を有し得る(
図5参照)。保護カバー251は、保護外殻222とアクティブチップ224との間の接続を強化し、同時に管状部分218の末端プラグ、すなわち流体密封シールも形成し得るため、インターフェース接続部における導入流体の出口は、針を通り抜けるしかない。
【0056】
使用時、アクティブチップ224は、患者と密接に接触する。制御ワイヤ235(
図3参照)に作用して、針234を展開し引き戻すインターフェース接続部上の摺動機構による制御を介して、針234は、アクティブチップ224の遠位端を越えて延長し、案内管232の中の位置に引き戻され得る。その延長位置において、針は、組織の局所的膨張及び/またはマーキングを行うために、流体を注入するように使用される。アクティブチップ224上の導電層は、RF及び/またはマイクロ波電磁エネルギーを送達するための双極電極を形成する。
【0057】
針案内部232は、遠位アセンブリの内側及び近位に戻って延びて、延長した沿面隙間距離を提供することで、アクティブチップ224の遠位チップ領域にわたってのみRF及び/またはマイクロ波の活性化が起こるように確保する。
【0058】
図3は、組み立てられた構成における遠位端アセンブリ214を示す。管状部分218、支持スリーブ217、及びカニューレ管216は、内部構成要素が見えるように、透明であるように示される。導電性要素230が外部導体226上にどのように適合するかを示すために、管状部分218内の保護外殻222の部品は省略される。
【0059】
図4A及び4Bは、本発明の実施形態で使用することができる保護外殻構造222の形状を示す。保護外殻222の遠位端は、アクティブチップ224上の下部導電層229に接触するための平坦上面250を有する。上述のように、はんだプリフォーム231を収容するために、長方形の陥凹部249が、平坦上面250の近位端に向かって形成される。
【0060】
保護外殻222の近位端には、同軸給電ケーブル142の遠位端を収容して支持するU字形チャネル248が形成される。同様のチャネルが、格納式針234の案内管232を収容するように、保護外殻222の近位端の下側に形成される。保護外殻222の近位端の外面は、円筒形であり、管状部分218の遠位端の内側に適合するように選択された直径を有する。
【0061】
近位端と遠位端との間の保護外殻222の側面に、一対の直立翼部分244が存在し、その内面は、アクティブチップ224のそれぞれの側縁と係合し、その外面は、管状部分218の内面と締り嵌めで係合する。
【0062】
保護外殻222は、ステンレス鋼など、生体組織との摩擦係数が低い金属材料でできていることが好ましい。
【0063】
外殻の遠位端は、アクティブチップ224が、遠位チップの箇所を除いて、遠位縁の周りを約0.2mm突出することができるように、成形されている。従って、アクティブチップの下側に接触する表面は、最大幅の2mmを有し、これは、遠位部分225においてその遠位チップへと先細くなる前に、中間部分223で1.6mmへと狭くなる。遠位チップは、例えば半径0.2mmを有するなど、単一の丸みを帯びた曲線であり得る。
【0064】
一方、外殻の近位端は、アクティブチップの近位端を収容するための長方形陥凹部を画定する。長方形陥凹部は、各側面上の一対の翼部244により縁取られ、これは、アクテ
ィブチップを保持して並べるように機能し、並びに同軸ケーブル142の露出した内部導体228を覆う保護カバー251を収容するための容積を画定する。
【0065】
図5は、完全に組み立てられた時の遠位端アセンブリ214の断面図である。前述の機構には、同じ参照番号が与えられている。この図面では、保護外殻222と下部導電層229との間に、はんだプリフォーム231により提供されるはんだ付けされた導電接続を見ることができる。保護外殻222とアクティブチップ224とのしっかりとした接合を確保するために、それらがはんだ付けされた領域の遠位に当接する平坦面250に、下部導電層229が接合され得る。