IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱瓦斯化学株式会社の特許一覧 ▶ MGCフィルシート株式会社の特許一覧

特許7470597透明樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-10
(45)【発行日】2024-04-18
(54)【発明の名称】透明樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料
(51)【国際特許分類】
   B32B 27/30 20060101AFI20240411BHJP
   B32B 27/36 20060101ALI20240411BHJP
   B32B 27/18 20060101ALI20240411BHJP
   C08L 25/08 20060101ALI20240411BHJP
   G06F 3/041 20060101ALI20240411BHJP
【FI】
B32B27/30 A
B32B27/30 B
B32B27/36 102
B32B27/18 A
C08L25/08
G06F3/041 660
G06F3/041 490
G06F3/041 495
【請求項の数】 15
(21)【出願番号】P 2020133300
(22)【出願日】2020-08-05
(65)【公開番号】P2022029793
(43)【公開日】2022-02-18
【審査請求日】2023-06-06
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(73)【特許権者】
【識別番号】597003516
【氏名又は名称】MGCフィルシート株式会社
(74)【代理人】
【識別番号】100092783
【弁理士】
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100110663
【弁理士】
【氏名又は名称】杉山 共永
(74)【代理人】
【識別番号】100104282
【弁理士】
【氏名又は名称】鈴木 康仁
(72)【発明者】
【氏名】平林 正樹
(72)【発明者】
【氏名】高崎 雅登
【審査官】岩本 昌大
(56)【参考文献】
【文献】特開2016-193600(JP,A)
【文献】国際公開第2020/075619(WO,A1)
【文献】国際公開第2017/150646(WO,A1)
【文献】国際公開第2015/133530(WO,A1)
【文献】特開2019-044109(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B32B 1/00-43/00
C08L 25/08
G06F 3/041
(57)【特許請求の範囲】
【請求項1】
ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有する樹脂積層体であって、
前記熱可塑性樹脂(B)がビニル共重合体(C)とスチレン共重合体(D)とを含有し、該ビニル共重合体(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記ビニル共重合体(C)の含有量は20~45質量部であり、前記スチレン共重合体(D)の含有量は80~55質量部であり、
前記ビニル共重合体(C)が、下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)を60~80モル%と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)を40~20モル%とを含む共重合体であり、
前記スチレン共重合体(D)が、ビニル芳香族単量体単位(d1)を80~90モル%と、環状酸無水物単量体単位(d2)を10~20モル%とを含む共重合体である、
前記樹脂積層体。
【化1】
(式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す。)
【化2】
(式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
【請求項2】
熱プレス機で50mmRの熱成形した後に、クラックが発生しない、請求項1に記載の樹脂積層体。
【請求項3】
前記熱可塑性樹脂(B)が、前記ビニル共重合体(C)と前記スチレン共重合体(D)とのポリマーアロイである、請求項1または2に記載の樹脂積層体。
【請求項4】
前記ビニル共重合体(C)が、少なくとも1種の(メタ)アクリル酸エステル単量体と少なくとも1種の芳香族ビニル単量体とを重合した後、芳香族ビニル単量体由来の芳香族二重結合の70%以上を水素化して得られたものである、請求項1~3のいずれかに記載の樹脂積層体。
【請求項5】
前記スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、請求項1~4のいずれかに記載の樹脂積層体。
【請求項6】
前記スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、請求項1~5のいずれかに記載の樹脂積層体。
【請求項7】
前記熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.4~4.0mmの範囲である、請求項1~6のいずれかに記載の樹脂積層体。
【請求項8】
前記ポリカーボネート系樹脂(A)を含む層、前記熱可塑性樹脂(B)を含む層、および、前記ハードコート層の少なくとも一層が紫外線吸収剤を含有する、請求項1~7のいずれかに記載の樹脂積層体。
【請求項9】
前記ハードコート層がアクリル系ハードコートである、請求項1~8のいずれかに記載の樹脂積層体。
【請求項10】
前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、請求項1~9のいずれかに記載の樹脂積層体。
【請求項11】
請求項1~10のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体。
【請求項12】
請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、透明基板材料。
【請求項13】
請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、透明保護材料。
【請求項14】
請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、タッチパネル前面保護板。
【請求項15】
請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、カーナビ用、OA機器用または携帯電子機器用の前面板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明な基板材料や保護材料に使用される樹脂積層体に関する。より詳しくは、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体に関する。
【背景技術】
【0002】
アクリル樹脂は表面硬度、透明性、耐擦傷性および耐候性などに優れる。一方、ポリカーボネート樹脂は耐衝撃性などに優れる。このことからアクリル樹脂層とポリカーボネート樹脂層とを有する積層体は、表面硬度、透明性、耐擦傷性、耐候性および耐衝撃性などに優れ、自動車部品、家電製品、電子機器および携帯型情報端末の表示窓に用いられている。
【0003】
近年、デザインニーズの多様化に伴い、ディスプレイデバイスの前面板などにも真空成形や圧空成形などの熱成形によってデザイン性を高めた製品が求められている。アクリル樹脂層とポリカーボネート樹脂層とを有する積層体は、上記のような優れた性能面から前面板への適用が試みられている。しかし、アクリル樹脂層とポリカーボネート樹脂層とを有する積層体を熱成形すると、ポリカーボネート樹脂が十分に伸びる温度までシートを加熱する必要があり、アクリル樹脂に対して過剰な熱を加えることとなるため、アクリル樹脂層とポリカーボネート樹脂層との界面に剥離が生じて、表面が白化したり、クラックが生じたりすることがある。
【0004】
特許文献1には、160℃温度下で熱成形するのにスチレン-無水マレイン酸共重合体とメタクリル樹脂のアロイ層とポリカーボネート樹脂層との積層体が開示されている。かかる積層体は160℃温度下で熱成形する場合は不具合を生じない。しかし、かかる積層体のスチレン-無水マレイン酸共重合体とメタクリル樹脂のアロイ層の表面にハードコート層を有する樹脂積層体は、160℃温度下で熱成形すると樹脂積層体の曲げ部分にクラックが発生するという問題があった。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2015/133530号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明を完成させた。具体的には、本発明は以下の通りである。
【0008】
[1]ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有する樹脂積層体であって、
前記熱可塑性樹脂(B)がビニル共重合体(C)とスチレン共重合体(D)とを含有し、該ビニル共重合体(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記ビニル共重合体(C)の含有量は20~45質量部であり、前記スチレン共重合体(D)の含有量は80~55質量部であり、
前記ビニル共重合体(C)が、下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)を60~80モル%と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)を40~20モル%とを含む共重合体であり、
前記スチレン共重合体(D)が、ビニル芳香族単量体単位(d1)を80~90モル%と、環状酸無水物単量体単位(d2)を10~20モル%とを含む共重合体である、
前記樹脂積層体である。
【化1】
(式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す 。)
【化2】
(式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
[2]熱プレス機で50mmRの熱成形した後に、クラックが発生しない、上記[1]に記載の樹脂積層体である。
[3]前記熱可塑性樹脂(B)が、前記ビニル共重合体(C)と前記スチレン共重合体(D)とのポリマーアロイである、上記[1]または[2]に記載の樹脂積層体である。
[4]前記ビニル共重合体(C)が、少なくとも1種の(メタ)アクリル酸エステル単量体と少なくとも1種の芳香族ビニル単量体とを重合した後、芳香族ビニル単量体由来の芳香族二重結合の70%以上を水素化して得られたものである、上記[1]~[3]のいずれかに記載の樹脂積層体である。
[5]前記スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、上記[1]~[4]のいずれかに記載の樹脂積層体である。
[6]前記スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、上記[1]~[5]のいずれかに記載の樹脂積層体である。
[7]前記熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.4~4.0mmの範囲である、上記[1]~[6]のいずれかに記載の樹脂積層体である。
[8]前記ポリカーボネート系樹脂(A)を含む層、前記熱可塑性樹脂(B)を含む層、および、前記ハードコート層の少なくとも一層が紫外線吸収剤を含有する、上記[1]~[7]のいずれかに記載の樹脂積層体である。
[9]前記ハードコート層がアクリル系ハードコートである、上記[1]~[8]のいずれかに記載の樹脂積層体である。
[10]前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、上記[1]~[9]のいずれかに記載の樹脂積層体である。
[11]上記[1]~[10]のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体である。
[12]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、透明基板材料である。
[13]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、透明保護材料である。
[14]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、タッチパネル前面保護板である。
[15]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、カーナビ用、OA機器用または携帯電子機器用の前面板である。
【発明の効果】
【0009】
本発明によれば、低温での熱成形に優れ、かつ、干渉縞の発生を抑制した熱成形品を成形可能である樹脂積層体が提供される。すなわち、本発明の樹脂積層体によれば、熱成形時の白化・クラックの発生が抑制され、良好な外観を有する成形品が得られる。該樹脂積層体は透明基板材料や透明保護材料として用いることができる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、カーナビ液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用することができる。
【発明を実施するための形態】
【0010】
以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。
【0011】
<ポリカーボネート系樹脂(A)>
本発明に使用されるポリカーボネート系樹脂(A)は、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)である。ここで、「ポリカーボネート樹脂を主成分とする」とは、ポリカーボネート樹脂の含有量が50質量%を超えることを意味する。ポリカーボネート系樹脂(A)は、75質量%以上のポリカーボネート樹脂を含んでいるのが好ましく、90質量%以上のポリカーボネート樹脂を含んでいるのがより好ましく、実質的にポリカーボネート樹脂からなるのがさらに好ましい。ポリカーボネート系樹脂(A)は分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(式中、Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つものを示す)を含むものであれば特に限定されるものではないが、特に下記式(3)の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
【化3】
具体的には、ポリカーボネート系樹脂(A)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス株式会社から市販されている、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能である。
本発明に使用されるポリカーボネート系樹脂(A)のガラス転移温度は、120~160℃が好ましく、125~155℃がより好ましく、130℃~150℃が特に好ましい。
近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート系樹脂(A)は、下記一般式(4)で表わされる1価フェノールを末端停止剤として用いて合成することが好ましい。
【化4】
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、
~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
【0012】
一般式(4)の1価フェノールは、下記一般式(5)で表わされる1価フェノールであることがより好ましい。
【化5】
(式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
【0013】
一般式(4)又は一般式(5)におけるRの炭素数は特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい。
【0014】
一般式(4)又は一般式(5)で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。
【0015】
一般式(4)又は一般式(5)におけるRとして、例えば、炭素数16のアルキル基を有する1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明に用いるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。
【0016】
一方、一般式(4)又は一般式(5)におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。
一般式(4)又は一般式(5)におけるRの炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。
【0017】
ポリカーボネート系樹脂(A)に含まれる他の樹脂としては、ポリエステル系樹脂がある。ポリエステル系樹脂は、ジカルボン酸成分として、テレフタル酸を主成分として含んでいればよく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。例えば、主成分であるエチレングリコール80~60(モル比率)に対して1,4-シクロヘキサンジメタノールを20~40(モル比率、合計100)含むグリコール成分とジカルボン酸成分とが重縮合してなるポリエステル系樹脂、所謂「PETG」が好ましい。また、ポリカーボネート系樹脂(A)には、エステル結合とカーボネート結合をポリマー骨格中に有するポリエステルカーボネート系樹脂が含まれていてもよい。
【0018】
本発明において、ポリカーボネート系樹脂(A)の重量平均分子量は、樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート系樹脂(A)を含む層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また、成形法によっては高い温度が必要になるので、ポリカーボネート系樹脂(A)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート系樹脂(A)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。
【0019】
<ポリカーボネート系樹脂(A)の重量平均分子量の測定法>
ポリカーボネート系樹脂(A)の重量平均分子量は、特開2007-179018号公報の段落0061~0064の記載に基づいて測定することができる。測定法の詳細を以下に示す。
【表1】
【0020】
標準ポリマーとしてポリスチレン(PS)を使用して測定を行った後、ユニバーサルキャリブレーション法により、溶出時間とポリカーボネート(PC)の分子量との関係を求めて検量線とする。そして、PCの溶出曲線(クロマトグラム)を検量線の場合と同一の条件で測定し、溶出時間(分子量)とその溶出時間のピーク面積(分子数)とから各平均分子量を求める。分子量Miの分子数をNiとすると、重量平均分子量は、以下のように表される。また換算式は以下の式を使用した。
(重量平均分子量)
Mw=Σ(NiMi)/Σ(NiMi)
(換算式)
MPC=0.47822MPS1.01470
なお、MPCはPCの分子量、MPSはPSの分子量を示す。
【0021】
本発明に使用されるポリカーボネート系樹脂(A)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。
【0022】
<熱可塑性樹脂(B)>
本発明に使用される熱可塑性樹脂(B)は、後述のビニル共重合体(C)とスチレン共重合体(D)とを含む。それぞれの構成要素について以下に説明する。
【0023】
<ビニル共重合体(C)>
本発明による熱可塑性樹脂(B)に含まれるビニル共重合体(C)は、下記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)と、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)とを含み、前記(メタ)アクリル酸エステル単量体単位(c1)と前記脂肪族ビニル単量体単位(c2) との合計割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル単量体単位(c1)の割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して60~80モル%であり、下記一般式(2)で表される脂肪族ビニル単量体単位(c2)の割合が前記ビニル共重合体(C)中の全単量体単位の合計に対して40~20モル%であることを特徴とするものである。
【0024】
【化6】
(式中、R1は水素原子又はメチル基を表し、R2は炭素数1~18のアルキル基を表す 。)
【0025】
【化7】
(式中、R3は水素原子又はメチル基を表し、R4は炭素数1~4の炭化水素置換基を有することのあるシクロヘキシル基を表す。)
【0026】
前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)において、R2は炭素数1~18のアルキル基であり、好ましくは炭素数1~12のアルキル基であり、具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。前記(メタ)アクリル酸エステル単量体単位(c1)のうち、好ましいのはR2がメチル基及び/又はエチル基である(メタ)アクリル酸エステル単量体単位であり、更に好ましいのはR1がメチル基であり、R2がメチル基であるメタクリル酸メチル単量体単位である。
【0027】
前記一般式(2)で表される脂肪族ビニル単量体単位(c2)としては、R3が水素原子又はメチル基であり、R4がシクロヘキシル基又は炭素数1~4の炭化水素置換基を有するシクロヘキシル基であるものが挙げられる。前記脂肪族ビニル単量体単位(c2)のうち、好ましいのはR3が水素原子であり、R4がシクロヘキシル基である脂肪族ビニル単量体単位である。
【0028】
本発明で用いるビニル共重合体(C)は、主として前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)と、前記一般式(2)で表される脂肪族ビニル単量体単位(c2)とからなる。ビニル共重合体(C)は、前記(メタ)アクリル酸エステル単量体単位(c1)を1種又は2種以上含有していてもよく、前記脂肪族ビニル単量体単位(c2)を1種又は2種以上含有していてもよい。前記(メタ)アクリル酸エステル単量体単位(c1)と前記脂肪族ビニル単量体単位(c2)との合計割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。すなわち、前記ビニル共重合体(C)は、全単量体単位の合計に対して10モル%以下の範囲で、前記(メタ)アクリル酸エステル単量体単位(c1)及び前記脂肪族ビニル単量体単位(c2)以外の単量体単位を含有していてもよい。
前記(メタ)アクリル酸エステル単量体単位(c1)及び前記脂肪族ビニル単量体単位(c2)以外の単量体単位としては、例えば、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたビニル共重合体(C)における、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の単量体単位などが挙げられる。また、前記一般式(1)で表される(メタ)アクリル酸エステル単量体単位(c1)の割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して60~80モル%であり、好ましくは70~80モル%であり、前記一般式(2)で表される脂肪族ビニル単量体単位(c2)の割合は、前記ビニル共重合体(C)中の全単量体単位の合計に対して40~20モル%であり、好ましくは30~20モル%である。ビニル共重合体(C)中の全単量体単位の合計に対する(メタ)アクリル酸エステル単量体単位(c1)の割合が60モル%未満であると、ポリカーボネート系樹脂(A)との密着性や表面硬度が低下し、実用的でない場合がある。また80モル%を超えると、積層体の吸水による反りが発生し、実用的でない場合がある。また、ビニル共重合体(C)中の全単量体単位の合計に対する脂肪族ビニル単量体単位(c2)の割合が20モル%未満であると、ガラス転移温度が低く、耐熱寸法安定性に劣り、実用的でない場合がある。一方、40モル%を超えると、耐溶剤性に劣り、実用的でない場合がある。
【0029】
ビニル共重合体(C)の製造方法は、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。なお、(メタ)アクリル酸とは、メタクリル酸及び/又はアクリル酸を示す。この際に使用される芳香族ビニルモノマーとしては、具体的にはスチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、及びそれらの誘導体などが挙げられる。これらの中で好ましいのはスチレンである。
【0030】
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法や溶液重合法などにより製造することができる。塊状重合法は、上記モノマー、重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。
【0031】
重合開始剤は特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
【0032】
連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。
【0033】
溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。
【0034】
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。
【0035】
上記のようにして(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後、芳香族ビニルモノマー由来の芳香族二重結合を水素化することにより、本発明に用いられるビニル共重合体(C)が得られる。水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。
【0036】
水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属又はそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。
【0037】
前記ビニル共重合体(C)は、芳香族ビニルモノマー由来の芳香族二重結合の70%以上が水素化されたものであることが好ましい。即ち、芳香族ビニルモノマー由来の単量体単位中の芳香族二重結合の未水素化部位の割合は30%以下であることが好ましい。30%を超える範囲であるとビニル共重合樹脂(C)の透明性が低下する場合がある。より好ましくは10%未満の範囲であり、さらに好ましくは5%未満の範囲である。
【0038】
前記ビニル共重合体(C)の重量平均分子量は、特に制限はないが、強度及び成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
【0039】
前記ビニル共重合体(C)には、透明性を損なわない範囲で他の樹脂をブレンドすることができる。例えば、メタクリル酸メチル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフィン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、各種エラストマーなどが挙げられる。
【0040】
前記ビニル共重合体(C)のガラス転移温度は、110~190℃の範囲であることが好ましく、110~160℃の範囲であることがさらに好ましい。ガラス転移温度が110℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少なく、また190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、昇温速度10℃/分で測定し中点法で算出したときの温度である。
【0041】
<スチレン共重合体(D)>
本発明による熱可塑性樹脂(B)に含まれるスチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と、環状酸無水物単量体単位(d2)とを含み、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して90~100モル%であり、前記ビニル芳香族単量体単位(d1)の割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して80~90モル%であり、前記環状酸無水物単量体単位(d2)の割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して10~20モル%であることを特徴とするものである。
【0042】
前記スチレン共重合体(D)の前記ビニル芳香族単量体単位(d1)としては、特に限定されず、任意の公知の芳香族ビニル単量体を用いる事が出来るが、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は2種以上を混合してもよい。
【0043】
前記スチレン共重合体(D)の前記環状酸無水物単量体単位(d2)としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、アクリル樹脂との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合してもよい。
【0044】
本発明で用いる前記スチレン共重合体(D)において、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)との合計割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して90~100モル%であり、好ましくは95~100モル%であり、より好ましくは98~100モル%である。
すなわち、前記スチレン共重合体(D)は、全単量体単位の合計に対して10モル%以下の範囲で、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位を含有していてもよい。前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位としては、例えば、メタクリル酸エステル単量体単位やN-置換型マレイミド単量体などが挙げられる。メタクリル酸エステル単量体単位としては、アクリロニトリル、メタアクリロニトリル、アクリル酸、メタクリル酸、(メタ)アクリル酸エステル等が挙げられる。(メタ)アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル及びメタクリル酸2エチルヘキシル等が挙げられる。その中でも、アクリル樹脂との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのアクリル化合物単量体は2種以上を混合してもよい。また、N-置換型マレイミド単量体としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられ、アクリル樹脂との相溶性の観点からN-フェニルマレイミドが好ましい。これらのN-置換型マレイミド単量体は2種以上を混合してもよい。
【0045】
前記ビニル芳香族単量体単位(d1)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して80~90モル%であり、好ましくは81~89モル%であり、より好ましくは82~88モル%であり、さらに好ましくは、83~87モル%である。前記環状酸無水物単量体単位(d2)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して10~20モル%であり、好ましくは11~19モル%であり、より好ましくは12~18モル%であり、さらに好ましくは、13~17モル%である。
前記スチレン共重合体(D)中の全単量体単位の合計に対する前記ビニル芳香族単量体単位(d1)の割合が80モル%未満、もしくは、90モル%を超えると、ビニル共重合体(C)との相溶性が悪くなる。スチレン共重合体(D)中の全単量体単位の合計に対する前記環状酸無水物単量体単位(d2)の割合が10モル%未満、もしくは、20モル%を超えると、ビニル共重合体(C)との相溶性が悪くなる
【0046】
前記スチレン共重合体(D)の製造方法は、特に限定されないが、公知の溶液重合法、塊状重合法等、適宜選択できる。
【0047】
前記スチレン共重合体(D)の重量平均分子量は、特に制限はないが、ビニル共重合体(C)との相溶性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
【0048】
前記スチレン共重合体(D)のガラス転移温度は、前記ビニル共重合体(C)のガラス転移温度より高いことが好ましく、120~190℃の範囲であることが好ましく、125~185℃の範囲であることがさらに好ましい。ガラス転移温度が120℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少ない。また190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、昇温速度10℃/分で測定し中点法で算出したときの温度である。
【0049】
前記スチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とを含む二元共重合体であるが、ビニル共重合体(C)を組み合わせて用いることで、スチレン共重合体(D)のみを用いた場合よりも硬度が高く、ビニル共重合体(C)のみを用いた場合よりも高温高湿下での形状安定性に優れた樹脂積層体が得られる。
【0050】
本発明において、前記ビニル共重合体(C)と前記スチレン共重合体(D)の質量比は、ビニル共重合体(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、前記ビニル共重合体(C)が20~45質量部であり、前記スチレン共重合体(D)が80~55質量部である。好ましくは、前記ビニル共重合体(C)が25~45質量部であり、前記スチレン共重合体(D)が75~55質量部であり、より好ましくは、前記ビニル共重合体(C)が25~40質量部であり、前記スチレン共重合体(D)が75~60質量部である。この質量比内にすることにより、透明性を維持しつつ、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な熱可塑性樹脂(B)となる。
【0051】
前記ビニル共重合体(C)と前記スチレン共重合体(D)とをアロイする温度は、230~320℃の範囲であることが好ましく、240~300℃の範囲であることがさらに好ましい。アロイ温度が230℃未満であると相溶性が悪くなり、Hazeが高くなる傾向がある。また、320℃を超えるとビニル共重合体(C)及び/又は前記スチレン共重合体(D)が熱分解することがある。
【0052】
本発明において、熱可塑性樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後、バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。
本発明に使用される熱可塑性樹脂(B)のガラス転移温度は、比較的高いことが特徴の一つであり、120~185℃の範囲であることが好ましく、123~160℃の範囲であることがより好ましく、125~140℃の範囲であることが特に好ましい。本発明に使用される熱可塑性樹脂(B)のガラス転移温度は比較的高く、前記ポリカーボネート系樹脂(A)のガラス転移温度との差が少ないため、熱プレス成形や熱曲げ加工時にポリカーボネート系樹脂(A)のガラス転移温度に近づけても、熱可塑性樹脂(B)を含む層に外観不良が発生するという問題が少ないというメリットがある。ポリカーボネート系樹脂(A)のガラス転移温度と熱可塑性樹脂(B)のガラス転移温度との差は、0~25℃の範囲であることが好ましく、0~20℃の範囲であることがより好ましく、10~20℃の範囲であることが特に好ましい。
【0053】
<ハードコート層>
本発明によるハードコート層と熱可塑性樹脂(B)を含む層との間にさらなる層が存在していてもよいが、好ましくは、ハードコート層は熱可塑性樹脂(B)を含む層の片側表面又は両面に積層される。ハードコート層は、アクリル系ハードコートであることが好ましい。本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー2~98質量%、(メタ)アクリル系オリゴマー2~98質量%および表面改質剤0~15質量%を含むことが好ましく、さらに、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.001~7質量部の光重合開始剤を含むことが好ましい。
【0054】
ハードコート層は、より好ましくは、(メタ)アクリル系モノマーを5~50質量%、(メタ)アクリル系オリゴマーを50~95質量%および表面改質剤を1~10質量%含み、特に好ましくは、(メタ)アクリル系モノマーを20~40質量%、(メタ)アクリル系オリゴマーを60~80質量%および表面改質剤を2~5質量%含む。
光重合開始剤の量は、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.01~5質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。
【0055】
(メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用でき、1官能モノマー、2官能モノマー、または3官能以上のモノマーであってよい。
1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示でき、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できる。
ハードコート層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。
【0056】
(メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー〔以下、多官能ウレタン(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー〔以下、多官能ポリエステル(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー〔以下、多官能エポキシ(メタ)アクリレートオリゴマーともいう〕などが挙げられる。ハードコート層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。
多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。
【0057】
ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
【0058】
ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。
【0059】
ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。
【0060】
ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。
【0061】
また、多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。
【0062】
多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。
【0063】
本発明で使用される表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコート層の表面性能を変えるものである。
レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。
【0064】
帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。
無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。
有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。
界面活性剤および撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。
【0065】
ハードコート層は、光重合開始剤を含んでいてよい。本明細書において、光重合開始剤とは光ラジカル発生剤を指す。
【0066】
本発明で使用することができる単官能光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α'-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。
【0067】
ハードコート層の形成方法は特に限定されないが、例えば、ハードコート層の下に位置する層上にハードコート液を塗布した後、光重合させることにより形成することができる。
【0068】
ハードコート液(重合性組成物)を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。
【0069】
光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられ、その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。
【0070】
上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cmの範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cmとすることが好ましい。
【0071】
光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。
【0072】
光照射をイナート雰囲気下で行なう場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。
【0073】
ハードコート層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。
【0074】
ハードコート層は、UV光(254nm)の照射出力が20mW/cmのメタルハライドランプを用いて紫外線照射した場合に、鉛筆硬度が2H以上であることが好ましい。
【0075】
ハードコート層の膜厚としては、1μm以上40μm以下が望ましく、2μm以上10μm以下がより望ましい。膜厚が1μm以上であることにより十分な硬度を得ることができる。また、膜厚が40μm以下であることにより、曲げ加工時のクラックの発生を抑制することができる。なお、ハードコート層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。
【0076】
<Haze>
本発明の樹脂積層体は、Haze≦1.0%が好ましく、Haze≦0.8%がより好ましく、Haze≦0.7%がよりさらに好ましく、Haze≦0.5%が特に好ましい。Hazeが1.0%を超えると、目視で樹脂積層体が白っぽく見える場合がある。本発明において、Hazeの測定方法としては、後述する実施例に記載された方法を採用することができる。
【0077】
<樹脂積層体>
本発明において、熱可塑性樹脂(B)を含む層の厚さは、樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、熱可塑性樹脂(B)を含む層の厚さが薄すぎると表面硬度が低くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さが大きすぎると耐衝撃性が悪くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さは10~250μmが好ましく、20~200μmがより好ましい。さらに好ましくは30~150μmである。
【0078】
本発明において、ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層とハードコート層との合計厚みは、薄すぎても、厚すぎても成形が難しい。樹脂積層体の全体厚みは、好ましくは0.4~4.0mm、より好ましくは0.5~3.5mm、さらに好ましくは0.5~3.0mmである。
【0079】
本発明において、ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差は、0~0.07の範囲であることが好ましく、0~0.06の範囲であることがより好ましく、0~0.05の範囲であることがさらに好ましい。ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差が0.07より大きいと、ポリカーボネート系樹脂(A)を含む層/熱可塑性樹脂(B)を含む層の界面の反射光強度が大きく、干渉縞等の不具合が発生することがある。
【0080】
本発明の樹脂積層体には、その片面または両面に耐指紋処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。
【0081】
<任意の添加剤>
本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上述の主たる成分以外の成分を含めることができる。
【0082】
例えば、ポリカーボネート系樹脂(A)を含む層および/または熱可塑性樹脂(B)を含む層には、紫外線吸収剤を混合して使用することができる。なお、本発明においては、ハードコート層に紫外線吸収剤を含有させてもよい。紫外線吸収剤の含有量が多過ぎると、成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散し、成形環境を汚染するため不具合を起こすことがある。このことから紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルアクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルメタクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルアクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルメタクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルアクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルメタクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、2-(メタクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5カルボキシレート、2-(アクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(メタクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(アクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート等などのセサモール型ベンゾトリアゾール系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
【0083】
本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上記紫外線吸収剤以外にも、各種添加剤を混合して使用することができる。そのような添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
【0084】
本発明におけるポリカーボネート系樹脂(A)を含む層、熱可塑性樹脂(B)を含む層及びハードコート層の各材料、例えば、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して精製あるいは積層する事により異物や欠点といった外観不良が少ない樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。
【0085】
使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。
【0086】
ろ過精度は、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。また、ハードコート剤のろ過精度は、樹脂積層体の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは2μm以下である。
【0087】
ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。
【0088】
<熱曲げ加工>
本発明の樹脂積層体の熱曲げ加工は、特に限定されない。例えば、プレス機に凸型(オス型)と凹型(メス型)の型を取り付け、加熱軟化させた積層シートをその2つの型で挟む「熱プレス成形」、加熱軟化させた積層シートと凸型(オス型)の型を真空状態にすることで積層シートを型に密着させ、望む形状に仕上げる「真空成形」、加熱軟化させた積層シートと凸型(オス型)の型を大気圧よりも大きな圧力を加えることで積層シートを型に密着させ、望む形状に仕上げる「圧空成形」がある。
【0089】
<熱成形体>
ポリカーボネート樹脂を含む層上に熱可塑性樹脂を含む層を有し、該熱可塑性樹脂を含む層の表面にハードコート層を有する樹脂積層体を、120℃~130℃の低温での熱プレス成形を行うと、樹脂積層体の曲げ部分にクラックが生じることがある。
【0090】
これに対して、本発明の実施形態の樹脂積層体は、特定の熱可塑性樹脂(B)を用いているため、低温(例えば120~130℃)で熱曲げ加工した場合、樹脂積層体の曲げ部分にクラックが発生せず、低温での意匠性に優れた熱成形体を得ることができる。
【0091】
<用途>
実施形態の成形品(例えば熱成形体)は、上述した各種の好ましい形態、構成を含む本発明の樹脂積層体を含む成形品である。成形品の形状、模様、色彩、寸法等に制限はなく、その用途に応じて任意に設定すればよい。
実施形態の樹脂積層体、熱成形体は、低温(例えば120~130℃)での熱成形性に優れ、かつ、干渉縞の発生を抑制することができる。したがって、透明基板材料や透明保護材料などとして好適に用いられる。具体的には、携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、カーナビ液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどの透明基板材料および透明保護材料(例えば、前面板)として使用することができ、中でも、高意匠性が要求されるタッチパネル前面保護板や、カーナビ用、OA機器用または携帯電子機器用の前面板として好適に用いられる。
【実施例
【0092】
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
【0093】
実施例および比較例で得られた樹脂積層体の物性評価は以下のように行った。
【0094】
<全光線透過率測定>
(株)村上色彩技術研究所製 反射・透過率計HR-100型を用いて全光線透過率を測定した。
【0095】
<Haze測定>
日本電色工業(株)製 COH-400を用いてHazeを測定した。
【0096】
<共重合体中の単量体単位のモル比>
日本電子(株)製 JNM-AL400を用いて、H-NMR及び13C-NMR(400MHz:溶媒はCDCl)の測定値から計算した。
【0097】
<共重合体の水素化率>
水素化反応前後のUVスペクトル測定における260nmの吸収の減少率により求めた。各種共重合体をテトラヒドロフランに任意の割合で溶解させ、水素化反応前の樹脂の濃度C1における吸光度A1、水素化反応後の樹脂の濃度C2における吸光度A2から、以下の式より算出した。水素化率=100×[1-(A2×C1)/(A1×C2)]
【0098】
<ガラス転移温度>
セイコーインスツルメンツ(株)製 示差走査熱量測定装置DSC6200を用いた。窒素30ml/min.流通下、10℃/min.で30℃から200℃まで昇温し、次に50℃/min.で200℃から30℃まで降温し、再度10℃/min.で30℃から200℃まで昇温した。2回目の昇温における中間点ガラス転移温度(Tmg)をガラス転移温度として用いた。
【0099】
<ペレット外観>
ペレット作製時、目視でペレット外観を評価した。下記の基準でペレット外観の合否判定を行い、〇を合格とした。
○:透明
×:半透明か、白濁
【0100】
<屈折率測定>
(株)アタゴ製 多波長アッベ屈折計DR-M2で測定した。測定温度は20℃、測定波長は589nmであり、中間液にはモノブロモナフタレンを使用した。
【0101】
<鉛筆引っかき硬度試験>
JIS K 5600-5-4に準拠し、樹脂積層体の中央付近の熱可塑性樹脂(B)を含む層上のハードコート層の表面に対して角度45度、荷重750gで表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
【0102】
<干渉縞>
樹脂積層体のポリカーボネート系樹脂(A)を含む層側に黒テープ(3Mジャパン(株)製 黒色ビニールテープ型番117BLA)を貼り付け、熱可塑性樹脂(B)を含む層の表面から三波長型蛍光ランプ((有)テクニカ インバータライト60 AL-60231)で照らし、干渉縞を評価した。下記の基準で干渉縞の合否判定を行い、〇を合格とした。
○:干渉縞が見えないか、干渉縞が弱く見える
×:干渉縞が強く見える
【0103】
<熱プレス成形加工性>
1mmtの樹脂積層体が50mmRに曲がる凸型(オス型)と凹型(メス型)の型を作製した。樹脂積層体は成形前に90℃で1分間予備加熱し、ハードコート塗装前は熱可塑性樹脂(B)表面が凸になるように、ハードコート塗装後はハードコート表面が凸になるように、金型に置き、金型温度120℃で3分間プレスを行い、自然冷却することにより、熱プレス成形体を作製した。
【0104】
<曲げ部分のクラック>
上記熱プレス成形体の曲げ部分のクラックを目視で評価した。下記の基準で曲げ部分のクラックの合否判定を行い、〇を合格とした。
○:熱プレス成形体の曲げ部分にクラックが見えない
×:熱プレス成形体の曲げ部分にクラックが見える
【0105】
実施例のために、ポリカーボネート系樹脂(A-1)~(A-2)、熱可塑性樹脂(B-1)~(B-2)、ビニル共重合体(C-1)、及びスチレン共重合体(D-1)として、下記に示す材料を使用したが、これらに限定されるわけではない。一方、比較製造例のために、それぞれ下記に示すスチレン共重合体(E-1)~(E-3)を使用した。
【0106】
<ポリカーボネート系樹脂(A-1)、スチレン共重合体(D-1)及びスチレン共重合体(E-1)~(E-3)>
ポリカーボネート系樹脂(A-1):三菱エンジニアリングプラスチックス株式会社製ユーピロンS-1000(重量平均分子量:33,000、ガラス転移温度:147℃、温度300℃・1.2kg荷重下のメルトフローレイト:7.5g/10分、屈折率1.59)
スチレン共重合体(D-1):Polyscope社製XIBOND140(重量平均分子量:114,000、ガラス転移温度:134℃、(d1)/(d2)=スチレン/無水マレイン酸=85モル%/15モル%)
スチレン共重合体(E-1):Polyscope社製XIBOND120(重量平均分子量:163,000、ガラス転移温度:116℃、(d1)/(d2)=スチレン/無水マレイン酸=93モル%/7モル%)
スチレン共重合体(E-2):Polyscope社製XIBOND160(重量平均分子量:69,500、ガラス転移温度:147℃、(d1)/(d2)=スチレン/無水マレイン酸=77モル%/23モル%)
スチレン共重合体(E-3):Polyscope社製XIBOND180(重量平均分子量:50,100、ガラス転移温度:165℃、(d1)/(d2)=スチレン/無水マレイン酸=66モル%/34モル%)
【0107】
<ポリカーボネート系樹脂(A-2)の合成>
合成例1 〔ポリカーボネート樹脂末端停止剤の合成〕
有機化学ハンドブックP143~150に基づき、東京化成工業(株)製4-ヒドロキシ安息香酸と東京化成工業(株)製1-ヘキサデカノールを用いて脱水反応によるエステル化を行い、パラヒドロキシ安息香酸ヘキサデシルエステル(CEPB)を得た。
【0108】
合成例2 〔ポリカーボネート系樹脂(A-2)ペレットの製造〕
9w/w%の水酸化ナトリウム水溶液57.2kgに、新日鐵住友化学(株)製のビスフェノールA(以下、BPAという)7.1kg(31.14mol)とハイドロサルファイト30gとを加えて溶解した。これにジクロロメタン40kgを加え、撹拌しながら、溶液温度を15℃~25℃の範囲に保ちつつ、ホスゲン4.33kgを30分かけて吹き込んだ。ホスゲンの吹き込み終了後、9w/w%の水酸化ナトリウム水溶液6kg、ジクロロメタン11kg、及び末端停止剤としてのパラヒドロキシ安息香酸ヘキサデシルエステル(CEPB)443g(1.22mol)をメチレンクロライド10kgに溶解させた溶液を加え、激しく撹拌して乳化させた。さらにその後、重合触媒として10mlのトリエチルアミンを溶液に加え、約40分間重合させた。
重合液を水相と有機相に分離し、有機相をリン酸で中和し、洗液のpHが中性になるまで純水で水洗を繰り返した。この精製されたポリカーボネート樹脂溶液から有機溶媒を蒸発留去することによりポリカーボネート樹脂粉末を得た。
得られたポリカーボネート樹脂粉末を、スクリュー径35mmの2軸押出機を用い、シリンダー温度260℃で溶融混練して、ストランド状に押出してペレタイザーでペレット化した。
ポリカーボネート系樹脂(A-2)の重量平均分子量:29,000、ガラス転移温度:127℃、温度300℃・1.2kg荷重下のメルトフローレイト:12.1g/10分、屈折率1.59であった。
【0109】
合成例3〔ビニル共重合体(C-1)の製造〕
モノマー成分として、精製したメタクリル酸メチル(三菱ガス化学社製)75.000モル%、及び精製したスチレン(和光純薬工業社製)24.998モル%、並びに重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状の共重合体を得た。得られた共重合体のメタクリル酸メチル由来の(メタ)アクリル酸エステル単量体単位(c1)の割合は73モル%であった。また、ゲル浸透クロマトグラフィーにより測定した重量平均分子量(標準ポリスチレン換算)は124,000であった。この共重合体をイソ酪酸メチル(関東化学社製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置に、この共重合体の10質量%イソ酪酸メチル溶液を500質量部、水素化触媒として10質量%Pd/C(NEケムキャット社製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、共重合体のスチレン部位の芳香族二重結合を水素化した。スチレン部位の水素化反応率は99%であった。また、得られたビニル共重合体(C-1)において、メタクリル酸メチル由来の構成単位の割合は73モル%であり、ビニル共重合体(C-1)はガラス転移温度:121℃であった。
【0110】
製造例1〔熱可塑性樹脂(B-1)のペレット製造〕
ビニル共重合体(C-1)を25質量部と、スチレン共重合体(D-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、ブレンダーで20分混合後、目開き10μmのポリマーフィルターを取り付けたスクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
熱可塑性樹脂(B-1)のペレットは外観:〇(透明)であり、ガラス転移温度:131℃、屈折率1.57であった。
【0111】
製造例2〔熱可塑性樹脂(B-2)のペレット製造〕
ビニル共重合体(C-1)を40質量部と、スチレン共重合体(D-1)を60質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(B-2)のペレットは外観:〇(透明)であり、ガラス転移温度:129℃、屈折率1.55であった。
【0112】
製造比較例1〔熱可塑性樹脂(F-1)のペレット製造〕
ビニル共重合体(C-1)を50質量部と、スチレン共重合体(D-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-1)のペレットは外観:〇(透明)であり、ガラス転移温度:128℃、屈折率1.54であった。
【0113】
製造比較例2〔熱可塑性樹脂(F-2)のペレット製造〕
ビニル共重合体(C-1)を60質量部と、スチレン共重合体(D-1)を40質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-2)のペレットは外観:〇(透明)であり、ガラス転移温度:127℃、屈折率1.52であった。
【0114】
製造比較例3〔熱可塑性樹脂(F-3)のペレット製造〕
ビニル共重合体(C-1)を75質量部と、スチレン共重合体(D-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-3)のペレットは外観:〇(透明)であり、ガラス転移温度:125℃、屈折率1.52であった。
【0115】
製造比較例4〔熱可塑性樹脂(F-4)のペレット製造〕
ビニル共重合体(C-1)を100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-4)のペレットは外観:〇(透明)であり、ガラス転移温度:121℃、屈折率1.49であった。
【0116】
製造比較例5〔熱可塑性樹脂(F-5)のペレット製造〕
スチレン共重合体(D-1)を100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-5)のペレットは外観:〇(透明)であり、ガラス転移温度:134℃、屈折率1.59であった。
【0117】
製造比較例6〔熱可塑性樹脂(F-6)のペレット製造〕
ビニル共重合体(C-1)を25質量部と、スチレン共重合体(E-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-6)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0118】
製造比較例7〔熱可塑性樹脂(F-7)のペレット製造〕
ビニル共重合体(C-1)を40質量部と、スチレン共重合体(E-1)を60質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-7)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0119】
製造比較例8〔熱可塑性樹脂(F-8)のペレット製造〕
ビニル共重合体(C-1)を25質量部と、スチレン共重合体(E-2)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-8)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0120】
製造比較例9〔熱可塑性樹脂(F-9)のペレット製造〕
ビニル共重合体(C-1)を40質量部と、スチレン共重合体(E-2)を60質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-9)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0121】
製造比較例10〔熱可塑性樹脂(F-10)のペレット製造〕
ビニル共重合体(C-1)を25質量部と、スチレン共重合体(E-3)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-10)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0122】
製造比較例11〔熱可塑性樹脂(F-11)のペレット製造〕
ビニル共重合体(C-1)を40質量部と、スチレン共重合体(E-3)を60質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
熱可塑性樹脂(F-11)のペレットは外観:×(白濁)であり、ガラス転移温度:非相溶のため2つのピーク発生、屈折率:非相溶のため測定不可能であった。
【0123】
【表2】
【0124】
実施例1〔樹脂積層体(G-1)の製造〕
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された650mm幅のTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて、樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1で得た熱可塑性樹脂(B-1)を連続的に導入し、シリンダー温度240℃、吐出量を2.7kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート系樹脂(A-1)を連続的に導入し、シリンダー温度280℃、吐出量を31.8kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)を導入し積層した。
その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、185℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)の樹脂積層体を得た。得られた樹脂積層体の中央部の全体厚みは1000μm、表層(熱可塑性樹脂(B)を含む層)の厚みは80μmであった。
さらに、上記で得られた樹脂積層体の熱可塑性樹脂(B-1)の表面に、6官能ウレタンアクリレートオリゴマー(製品名:U6HA、新中村化学工業株式会社製)60質量部、PEG200#ジアクリレート(製品名:4EG-A、共栄社化学株式会社製)35質量部、および含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(製品名:RS-90、DIC株式会社製)5質量部の合計100質量部に対して、光重合開始剤(製品名:I-184〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕BASF株式会社製)を1質量%加えた塗料を、バーコーターにて塗布し、メタルハライドランプ(20mW/cm)を5秒間当ててハードコートを硬化させ、樹脂積層体(G-1)を作製した。ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(G-1)は全光線透過率:90.9%、Haze:0.4%、鉛筆硬度:2H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:〇であった。
【0125】
実施例2〔樹脂積層体(G-2)の製造〕
ポリカーボネート系樹脂(A-1)の代わりに合成例2で得たポリカーボネート系樹脂(A-2)を使用し、上流側から温度110℃、105℃、110℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却に変更した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-2)との樹脂積層体(G-2)を得た。得られた樹脂積層体(G-2)の中央部の全体厚みは1006μm、表層(B-1)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(G-2)は全光線透過率:90.9%、Haze:0.4%、鉛筆硬度:2H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:〇であった。
【0126】
実施例3〔樹脂積層体(G-3)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(B-2)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-2)とポリカーボネート系樹脂(A-1)との樹脂積層体(G-3)を得た。得られた樹脂積層体(G-3)の中央部の全体厚みは1006μm、表層(B-2)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(G-3)は全光線透過率:90.9%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:〇であった。
【0127】
実施例4〔樹脂積層体(G-4)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(B-2)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-2)とポリカーボネート系樹脂(A-2)との樹脂積層体(G-4)を得た。得られた樹脂積層体(G-4)の中央部の全体厚みは1006μm、表層(B-2)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(G-4)は全光線透過率:90.9%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:〇であった。
【0128】
比較例1〔樹脂積層体(I-1)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-1)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-1)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-1)を得た。得られた樹脂積層体(I-1)の中央部の全体厚みは1006μm、表層(F-1)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-1)は全光線透過率:91.1%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0129】
比較例2〔樹脂積層体(I-2)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-1)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-1)とポリカーボネート系樹脂(A-2)との樹脂積層体(I-2)を得た。得られた樹脂積層体(I-2)の中央部の全体厚みは1006μm、表層(F-1)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-2)は全光線透過率:91.1%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0130】
比較例3〔樹脂積層体(I-3)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-2)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-2)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-3)を得た。得られた樹脂積層体(I-3)の中央部の全体厚みは1006μm、表層(F-2)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-3)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0131】
比較例4〔樹脂積層体(I-4)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-2)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-2)とポリカーボネート系樹脂(A-2)との樹脂積層体(I-4)を得た。得られた樹脂積層体(I-4)の中央部の全体厚みは1006μm、表層(F-2)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-4)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0132】
比較例5〔樹脂積層体(I-5)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-3)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-3)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-5)を得た。得られた樹脂積層体(I-5)の中央部の全体厚みは1006μm、表層(F-3)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-5)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0133】
比較例6〔樹脂積層体(I-6)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-3)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-3)とポリカーボネート系樹脂(A-2)との樹脂積層体(I-6)を得た。得られた樹脂積層体(I-6)の中央部の全体厚みは1006μm、表層(F-3)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-6)は全光線透過率:91.3%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0134】
比較例7〔樹脂積層体(I-7)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-4)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-4)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-7)を得た。得られた樹脂積層体(I-7)の中央部の全体厚みは1006μm、表層(F-4)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-7)は全光線透過率:91.4%、Haze:0.3%、鉛筆硬度:3H、干渉縞:×、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0135】
比較例8〔樹脂積層体(I-8)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-4)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-4)とポリカーボネート系樹脂(A-2)との樹脂積層体(I-8)を得た。得られた樹脂積層体(I-8)の中央部の全体厚みは1006μm、表層(F-4)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-8)は全光線透過率:91.4%、Haze:0.3%、鉛筆硬度:3H、干渉縞:×、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0136】
比較例9〔樹脂積層体(I-9)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-5)を使用した以外は、実施例1の樹脂積層体(G-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-5)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-9)を得た。得られた樹脂積層体(I-9)の中央部の全体厚みは1006μm、表層(F-5)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-9)は全光線透過率:90.7%、Haze:0.4%、鉛筆硬度:H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0137】
比較例10〔樹脂積層体(I-10)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(F-5)を使用した以外は、実施例2の樹脂積層体(G-2)と同様にしてハードコート層(H-1)と熱可塑性樹脂(F-5)とポリカーボネート系樹脂(A-2)との樹脂積層体(I-10)を得た。得られた樹脂積層体(I-10)の中央部の全体厚みは1006μm、表層(F-5)厚みは80μm、ハードコート層(H-1)厚みは6μmであった。
この樹脂積層体(I-10)は全光線透過率:90.7%、Haze:0.4%、鉛筆硬度:H、干渉縞:〇、熱プレス成形加工性の曲げ部分のクラック:×であった。
【0138】
【表3】
【0139】
以上のように、本発明の条件を満たすことで、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体を得ることができるという有利な効果を奏する。
【0140】
即ち、表2に示すように、ペレット化した熱可塑性樹脂(B)について、特定のビニル共重合体(C)と特定のスチレン共重合体(D)とをブレンドした製造例1~2と、特定のビニル共重合体(C)単体の製造比較例4とを比較すると、製造例1~2の方が、屈折率が高かった。
また、製造例1~2と、特定のビニル共重合体(C)と特定のスチレン共重合体(D)以外のスチレン共重合体(E)とを特定の質量比でブレンドした製造比較例6~11とを比較すると、製造例1~2の方が透明で外観良好であった。
【0141】
表3に示すように、ハードコート塗装後の樹脂積層体について、特定のビニル共重合体(C)と特定のスチレン共重合体(D)とを特定の比率でブレンドし、ペレット化した屈折率が高い熱可塑性樹脂(B)と、ポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(B)の片側表面にハードコートを有する実施例1~4と、特定のビニル共重合体(C)と特定のスチレン共重合体(D)とを特定の比率以外でブレンドし、ペレット化した熱可塑性樹脂(F)と、ポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(F)の片側表面にハードコートを有する比較例1~6とを比較すると、実施例1~4の樹脂積層体の方が、熱プレス成形加工時の曲げ部分のクラックを抑制していた。
また、実施例1~4と、特定のビニル共重合体(C)単体をペレット化した熱可塑性樹脂(F)と特定のポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(F)の片側表面にハードコートを有する比較例7~8とを比較すると、実施例1~4の樹脂積層体の方が、干渉縞が良好で、熱プレス成形加工時の曲げ部分のクラックを抑制していた。
さらに、実施例1~4と、特定のスチレン共重合体(D)単体をペレット化した熱可塑性樹脂(F)と特定のポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(F)の片側表面にハードコートを有する比較例9~10とを比較すると、実施例1~4の樹脂積層体の方が、鉛筆硬度が高く、熱プレス成形加工時の曲げ部分のクラックを抑制していた。