(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-10
(45)【発行日】2024-04-18
(54)【発明の名称】異常検出装置、異常検出方法、及びプログラム
(51)【国際特許分類】
G01M 99/00 20110101AFI20240411BHJP
G01H 17/00 20060101ALI20240411BHJP
【FI】
G01M99/00 A
G01H17/00 A
(21)【出願番号】P 2023120310
(22)【出願日】2023-07-24
(62)【分割の表示】P 2020019207の分割
【原出願日】2020-02-06
【審査請求日】2023-07-24
(31)【優先権主張番号】P 2019038525
(32)【優先日】2019-03-04
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100149548
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】広江 隆治
(72)【発明者】
【氏名】井手 和成
(72)【発明者】
【氏名】井川 芳克
(72)【発明者】
【氏名】佐瀬 遼
【審査官】中村 圭伸
(56)【参考文献】
【文献】特開2018-163135(JP,A)
【文献】特開昭60-076640(JP,A)
【文献】特開2001-201433(JP,A)
【文献】特開2001-289728(JP,A)
【文献】特開2011-127527(JP,A)
【文献】特開2003-014537(JP,A)
【文献】特開2008-146353(JP,A)
【文献】特開2004-239911(JP,A)
【文献】特開2018-013380(JP,A)
【文献】米国特許出願公開第2005/0171742(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 13/00 - 13/045
G01M 99/00
G01H 1/00 - 17/00
(57)【特許請求の範囲】
【請求項1】
回転機械の異常の有無を検出する異常検出装置であって、
前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得する計測値取得処理と、
前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得する成分取得処理と、
前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比する対比処理と、
前記対比処理における複数の対比結果に基づいて異常判定を行う判定処理と、
を実行するプロセッサを備える、
異常検出装置。
【請求項2】
回転機械の異常の有無を検出する異常検出方法であって、
前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、
前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得するステップと、
前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比するステップと、
前記対比するステップにおける複数の対比結果に基づいて異常判定を行うステップと、 を有する異常検出方法。
【請求項3】
回転機械の異常の有無を検出する異常検出装置のコンピュータに、
前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、
前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得するステップと、
前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比するステップと、
前記対比するステップにおける複数の対比結果に基づいて異常判定を行うステップと、
を実行させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異常検出装置、回転機械、異常検出方法、及びプログラムに関する。
【背景技術】
【0002】
検査対象の健全性を診断する技術として、MT(マハラノビス・タグチ)法を用いて異常を検知する方法が知られている。MT法では、基準データ(例えば、正常状態における各種特性項目の計測値の集団)の共分散行列の逆行列を用いてマハラノビス距離を計算する。そして、計算されたマハラノビス距離が所定の閾値を超える場合、検査対象の状態が異常であると判断することができる。
【0003】
例えば、回転機械の状態を評価する場合、回転軸の回転に起因する振動を周波数解析して得られる振幅、位相等の時系列データを基準データとしたマハラノビス距離を計算することが知られている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第3692106号公報
【文献】特開2003-141306号公報
【文献】特許第5101396号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来の技術では、回転軸の振動の振幅及び位相がそれぞれ独立した計測値として基準データに入力される。しかしながら、振幅及び位相は、ある時点における振動の特徴量を表す一対の情報であるので、上述のように振幅及び位相を独立した計測値として個別に扱ってしまうと、回転機械の異常を精度よく検出できない可能性があった。
【0006】
また、MT法では、基準データから求められる共分散行列の性質によっては、マハラノビス距離の計算精度が低下する可能性がある。具体的には、例えば、基準データを構成する特性項目間に強い相関がある(相関係数の絶対値が1に近い)場合、特性項目の項目数よりも基準データに含まれるデータ数が少ない場合、共分散行列の逆行列が計算できなくなり、マハラノビス距離の計算精度が低下する可能性がある。この対策として、例えば特許文献2では、逆行列に代えて共分散行列の余因子行列を計算し、この余因子行列を用いてマハラノビス距離を計算する方法(MTA法)を用いることが考えられている。
【0007】
特許文献2に記載されたMTA法では、共分散行列のランクが特性値の個数よりも1つだけ落ちる場合は有効であるが、2以上落ちる場合はマハラノビス距離を計算できない可能性がある。このため、他の方法として、特許文献3には、共分散行列の特異値分解を利用して近似逆行列を求め、この近似逆行列を用いてマハラノビス距離を計算する方法が考えられている。
【0008】
しかしながら、特許文献3に記載されたような従来の方法では、共分散行列の特異値の小さな成分がマハラノビス距離に影響しないように、この特異値の小さな成分を取り除いて近似逆行列を求めている。したがって、検査対象に異常が発生し、且つ、この異常の影響が特異値の小さな成分に現れるようなケースでは、従来の近似逆行列を代用した方法では、異常検出の感度が低下してしまう可能性があった。
【0009】
本発明は、回転機械における異常検出の精度を向上させることができる異常検出装置、回転機械、異常検出方法、及びプログラムを提供する。
【課題を解決するための手段】
【0010】
本発明の第1の態様によれば、回転機械の異常の有無を検出する異常検出装置は、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得する計測値取得処理と、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を基準として、前記回転機械を評価する時点において取得された前記計測値のマハラノビス距離を算出するマハラノビス距離算出処理と、算出された前記マハラノビス距離が所定の閾値を超える場合、前記回転機械に異常が発生していると判定する判定処理と、を実行するプロセッサを備える。
このようにすることで、異常検出装置は、回転機械の回転に起因する振動の特徴量を、振幅及び位相からなる一つの計測値として扱うことができるので、回転機械の異常検出の精度を向上させることができる。
【0011】
本発明の第2の態様によれば、第1の態様に係る異常検出装置の前記プロセッサは、前記計測値取得処理において、複数の異なる観測位置で前記振動を計測し、複数の前記観測位置それぞれに対応する複数の前記計測値を取得する。
このようにすることで、異常検出装置は、回転機械の異常をより精度よく検出することができる。
【0012】
本発明の第3の態様によれば、第1又は第2の態様に係る異常検出装置において、前記計測値は、前記振動の振幅及び位相を複素数に変換したものである。
このようにすることで、異常検出装置は、振動の振幅及び位相をそれぞれ独立した計測値ではなく、複素数で表された一つの計測値として扱うことができるので、回転機械の異常検出の精度をさらに向上させることができる。
【0013】
本発明の第4の態様によれば、回転機械は、回転軸と、前記回転軸の振動を計測する振動センサと、第1から第3の何れか一の態様に係る異常検出装置と、を備える。
【0014】
本発明の第5の態様によれば、回転機械の異常の有無を検出する異常検出方法は、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を基準として、前記回転機械を評価する時点において取得された前記計測値のマハラノビス距離を算出するステップと、算出された前記マハラノビス距離が所定の閾値を超える場合、前記回転機械に異常が発生していると判定するステップと、を有する。
【0015】
本発明の第6の態様によれば、プログラムは、回転機械の異常の有無を検出する異常検出装置のコンピュータに、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を基準として、前記回転機械を評価する時点において取得された前記計測値のマハラノビス距離を算出するステップと、算出された前記マハラノビス距離が所定の閾値を超える場合、前記回転機械に異常が発生していると判定するステップと、を実行させる。
【0016】
本発明の第7の態様によれば、第1の態様に係る異常検出装置の前記プロセッサは、前記計測値取得処理において、単数または複数の観測位置で前記振動を計測し、単数または複数の前記観測位置の振動に含まれる複数の周波数の振幅及び位相の前記計測値を取得する。
このようにすることで、異常検出装置は、回転機械の異常をより精度よく検出することができる。
【0017】
本発明の第8の態様によれば、回転機械の異常の有無を検出する異常検出装置は、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得する計測値取得処理と、前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得する成分取得処理と、前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比する対比処理と、前記対比処理における複数の対比結果に基づいて異常判定を行う判定処理と、を実行するプロセッサを備える。
このように、異常検出装置は、特異ベクトルの方向別に成分と特異値とを対比することにより、特異値がゼロ又は小さな値であっても、これらを除外することなく異常判定に用いることができる。この結果、異常検出装置は、異常検出の感度の低下を抑制するとともに、異常検出の精度を向上させることができる。
【0018】
本発明の第9の態様によれば、回転機械の異常の有無を検出する異常検出方法は、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得するステップと、前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比するステップと、前記対比するステップにおける複数の対比結果に基づいて異常判定を行うステップと、を有する。
【0019】
本発明の第10の態様によれば、プログラムは、回転機械の異常の有無を検出する異常検出装置のコンピュータに、前記回転機械の回転に起因する振動を計測する振動センサから出力された検出信号に基づいて、前記振動の振幅及び位相からなる計測値を取得するステップと、前記計測値を、過去の複数の時点において取得された複数の前記計測値により構成される単位空間を特異値分解して得る特異ベクトルの方向に分解した複数の成分を取得するステップと、前記計測値を前記特異ベクトルの方向に分解した複数の成分それぞれの大きさと、前記単位空間を特異値分解して得る特異値とを、前記特異ベクトルの方向別に個々に対比するステップと、前記対比処理における複数の対比結果に基づいて異常判定を行うステップと、を実行させる。
【発明の効果】
【0020】
上述の何れか一の態様に係る異常検出装置、回転機械、異常検出方法、及びプログラムによれば、回転機械における異常検出の精度を向上させることができる。
【図面の簡単な説明】
【0021】
【
図1】本発明の一実施形態に係る回転機械の構成を示す図である。
【
図2】本発明の一実施形態に係る異常検出装置の処理の一例を示すフローチャートである。
【
図3】本発明の一実施形態に係る異常検出装置のハードウェア構成の一例を示す図である。
【
図4】本発明の一実施形態の変形例に係る回転機械の構成を示す図である。
【
図5】本発明の一実施形態の変形例に係る異常検出装置の処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0022】
(回転機械の全体構成)
以下、本発明の一実施形態に係る回転機械100について、図を参照しながら説明する。
図1は、本発明の一実施形態に係る回転機械の構成を示す図である。
図1に示すように、回転機械100は、回転軸10と、振動計測器11と、異常検出装置2と、制御装置3と、を備えている。回転機械100は、例えばガスタービン、蒸気タービン、圧縮機、電動機、車輪、車軸、及び、これらを内部に配置する設備等である。
【0023】
振動計測器11は、振動センサ110と、周波数分析装置111とを有している。
【0024】
振動センサ110は、回転軸10が回転することにより生じる振動波形を所定周期ごとに計測する。本実施形態では、
図1に示すように、複数の振動センサ110A、110B、110Cが、回転軸10の異なる観測位置P1、P2、P3にそれぞれ設けられる。なお、
図1には、振動センサ110が3個設けられている例が示されているが、これに限られることはない。振動センサ110は2個であってもよいし、4個以上であってもよい。さらに、振動センサは回転軸の振動を直接的に計測するものに限らない。例えば、ガスタービンや圧縮機または車両の車軸などの取付け架台の振動を計測するものであってもよい。さらに、振動センサが複数の周波数成分の振幅及び位相またはこれを表す複素数を提供するものであるならば、振動センサが複数であるのと等価であるので、振動センサは1つであってもよい。
【0025】
周波数分析装置111は、振動センサ110から出力された計測結果(検出信号)を周波数解析して、周波数ごとの振動の振幅A及び位相Φの二つの値からなる検出信号を異常検出装置2に出力する。
図1の例では、周波数分析装置111は、複数の観測位置P1、P2、P3それぞれに設けられた振動センサ110A、110B、110Cから、時刻tにおける計測結果をそれぞれ取得する。そして、周波数分析装置111は、振動センサ110A、110B、110Cから取得した計測結果をそれぞれ周波数解析して、観測位置P1における振動の振幅A
1及び位相Φ
1、観測位置P2における振動の振幅A
2及び位相Φ
2、観測位置P3における振動の振幅A
3及び位相Φ
3を求める。また、周波数分析装置111は、時刻tにおける各観測位置P1~P3の検出信号として、{A
1,Φ
1,A
2,Φ
2,A
3,Φ
3}
tを異常検出装置2に出力する。
【0026】
異常検出装置2は、振動計測器11(振動センサ110)から出力された検出信号を取得して、回転機械100に異常が発生しているか否かを判定し、制御装置3に判定結果を出力する。異常検出装置2の機能構成については後述する。
【0027】
制御装置3は、回転機械100を制御するための制御信号を生成する。例えば、制御装置3は、異常検出装置2から回転機械100に異常が発生していることを示す判定結果を受信した場合、回転機械100の運転を停止する制御信号を生成する。
【0028】
(異常検出装置の機能構成)
次に、
図1を参照しながら、異常検出装置2の機能構成について説明する。
図1に示すように、異常検出装置2は入出力部20と、プロセッサ21と、記憶媒体22と、を備えている。
【0029】
入出力部20は、振動計測器11から所定周期ごとに回転軸10の振動に関する検出信号の入力を受け付ける。また、入出力部20は、異常検出装置2の検出結果を制御装置3に出力する。
【0030】
プロセッサ21は、異常検出装置2の動作全体を司る。プロセッサ21は、プログラムに従って動作することにより、計測値取得部210、単位空間生成部211、マハラノビス距離算出部212、及び判定部213としての機能を発揮する。
【0031】
計測値取得部210は、振動計測器11(振動センサ110)から出力された検出信号に基づいて、振動の振幅及び位相からなる計測値を取得する処理を実行する。より具体的には、計測値取得部210は、振動の振幅及び位相を複素数に変換したものを計測値として取得する。
【0032】
単位空間生成部211は、過去の複数の時点において取得された複数の計測値を含む単位空間を生成する処理を実行する。また、単位空間生成部211は、生成した単位空間を記憶媒体22に記憶する処理を実行する。
【0033】
マハラノビス距離算出部212は、単位空間を基準として、回転機械100を評価する時点において取得された計測値のマハラノビス距離を算出する処理を実行する。
【0034】
判定部213は、算出されたマハラノビス距離に基づいて、回転機械100に異常が発生しているか否かを判定する処理を実行する。具体的には、判定部213は、算出されたマハラノビス距離が所定の閾値を超える場合、回転機械100に異常が発生していると判定する。
【0035】
記憶媒体22には、振動計測器11から取得した検出信号、単位空間生成部211が生成した単位空間が記憶される。
【0036】
(異常検出装置の処理フロー)
図2は、本発明の一実施形態に係る異常検出装置の処理の一例を示すフローチャートである。
以下、
図2を参照しながら、本実施形態に係る異常検出装置2が回転機械100の状態を監視する処理の流れについて詳細に説明する。
【0037】
図2に示すように、計測値取得部210は、振動計測器11から時刻tにおける複数の観測位置P1、P2、P3それぞれの検出信号を受信する(ステップS11)。本実施形態では、計測値取得部210は、振動計測器11の周波数分析装置111から、複数の観測位置P1、P2、P3それぞれの振動の振幅及び位相からなる検出信号{A
1,Φ
1,A
2,Φ
2,A
3,Φ
3}
tを受信する。さらに、検出信号{A
1,Φ
1,A
2,Φ
2,A
3,Φ
3}
tは1つの振動センサが提供する複数の周波数成分の振幅及び位相であっても良い。
【0038】
次に、計測値取得部210は、受信した検出信号に含まれる振幅及び位相からなる計測値yを取得する(ステップS12)。
【0039】
従来の方法では、観測位置P1、P2、P3それぞれの振動の振幅A1、A2、A3及び位相Φ1、Φ2、Φ3は、それぞれ別のセンサから取得した情報であるかのように扱われる。したがって、従来の方法では、各観測位置における振動の計測値yは、以下の式(1)のように表されていた。
【0040】
【0041】
しかしながら、「振幅A1及び位相Φ1」、「振幅A2及び位相Φ2」、「振幅A3及び位相Φ3」は、それぞれ観測位置P1、P2、P3における振動波形を表す一対の情報である。したがって、従来のように、各観測位置における振幅及び位相を別のセンサから取得した独立した情報として扱うと、回転機械100の異常を精度よく検出できない(異常に対する感度が低くなる)可能性があった。
【0042】
このため、本実施形態に係る計測値取得部210は、振幅及び位相をそれぞれ独立した情報として扱うのではなく、振幅及び位相からなる一つの計測値として扱うようにした。具体的には、計測値取得部210は、以下の式(2)、式(3)、式(4)に示すように、観測位置P1、P2、P3それぞれの振動の振幅及び位相を複素数化した計測値を取得する。
【0043】
【0044】
【0045】
【0046】
したがって、計測値取得部210は、以下の式(5)で表されるように、観測位置P1、P2、P3の振動の振幅及び位相を複素数化した計測値yを取得する。
【0047】
【0048】
ここで、この複素数化した計測値yを用いて生成された単位空間について説明する。単位空間とは、回転機械100が正常状態にあるときに取得された複数の計測値yの共分散行列Qであり、以下の式(6)及び式(7)で表される。なお、式(6)のY0は複数の計測値yを時間方向に並べたベクトルであり、nはベクトルの長さである。式(7)のY0
*はY0の共役転置を表す。
【0049】
【0050】
【0051】
図2の処理の例では、単位空間生成部211は、このように過去の時点において取得された複数の計測値yに基づいて単位空間を生成済みであり、この単位空間は記憶媒体22に記憶されているとする。
【0052】
次に、マハラノビス距離算出部212は、記憶媒体22に記憶されている単位空間を基準として、時刻tに取得した計測値yのマハラノビス距離を算出する(ステップS13)。具体的には、マハラノビス距離算出部212は、以下の式(8)により時刻tのマハラノビス距離MDを算出する。
【0053】
【0054】
次に、判定部213は、マハラノビス距離算出部212により算出されたマハラノビス距離MDに基づいて、時刻tにおける回転機械100の状態が正常であるか異常であるかを判定する(ステップS14)。
【0055】
なお、計測値yは複素数であるが、マハラノビス距離算出部212により算出されたマハラノビス距離MDは、従来どおり実数値となる。したがって、判定部213は、従来の方法と同様に異常の有無を判定することができる。具体的には、判定部213は、時刻tにおけるマハラノビス距離MDが、記憶媒体22に予め記憶されている閾値を超えるか否かに基づいて、異常の有無を判定する。閾値は、例えば3である。
【0056】
判定部213は、時刻tにおけるマハラノビス距離MDが閾値以下である場合(ステップS14:YES)、回転機械100は正常であると判断する。この場合、判定部213は、入出力部20を介して制御装置3に「正常」を示す判定結果を出力する(ステップS15)。
【0057】
一方、判定部213は、時刻tにおけるマハラノビス距離MDが閾値を超える場合(ステップS14:NO)、回転機械100に異常が発生していると判断する。この場合、判定部213は、入出力部20を介して制御装置3に「異常」を示す判定結果を出力する(ステップS16)。制御装置3は、「異常」を示す判定結果を受信した場合、回転機械100の運転を停止する等の制御を行う。
【0058】
また、単位空間生成部211は、計測値取得部210が取得した時刻tにおける計測値yを単位空間に採用するか否かを判断する(ステップS17)。例えば、単位空間生成部211は、所定の更新周期(例えば、4時間)ごとに、回転機械100の状態が正常である時点の計測値yを単位空間に採用するとする。この場合、単位空間生成部211は、時刻tにおける回転機械100の状態が正常であり(ステップS14:YES)、且つ、前回、単位空間を生成してから所定の更新周期を経過している場合、時刻tの計測値yを単位空間に採用する(ステップS17:YES)。そうすると、単位空間生成部211は、時刻tの計測値yを含む新たな単位空間を、上述の式(6)及び式(7)を用いて生成する(ステップS18)。生成された単位空間は記憶媒体22に記憶される。
【0059】
一方、単位空間生成部211は、時刻tにおける回転機械100の状態が異常である場合(ステップS14:NO)、又は、前回、単位空間を生成してから所定の更新周期を経過していない場合、時刻tの計測値yを単位空間に採用せず(ステップS17:NO)、処理を終了する。
【0060】
異常検出装置2は、上述のステップS11~S18を繰り返すことにより、回転機械100の状態が正常であるか異常であるかを継続して監視する。
【0061】
(実施例)
以下、本実施形態に係る異常検出装置2を用いて、回転機械100の状態を判定した例について説明する。なお、以下では、数値を用いて説明するが、数値は説明を具体的にするためのものであり、数値が実施の範囲を限定するものではない。
回転機械100の回転軸10は弱減衰系であり、異常となるレベルの振動の原因は共振と考えてよい。つまり、微小な外乱が回転軸10の共振により何百倍に増幅されて感知されると考えてよい。共振であれば、振動センサ110それぞれが設けられた複数の観測位置の振動は、振動モード形状で連結される。したがって、観測位置はそれぞれ独立に動くことはなく、振動に固有のモード形状に従って連動する。または、一つの観測位置に着目するならば、その振動の周波数依存性は有理式による伝達関数などで近似できるので、周波数についても連動する性質を有している。
【0062】
例えば、
図1に示すように、振動センサ110が3箇所の観測位置P1、P2、P3においてそれぞれ振動を計測したとする。そうすると、計測値取得部210は、観測位置P1、P2、P3における振動の振幅及び位相を複素数化した計測値{y
1,y
2,y
3}を取得する(
図2のステップS12)。
【0063】
また、ある観測位置P1における計測値y1を、以下の式(9)で表すようなランダムな複素数で模擬する。なお、式(9)において、N(0,1)は平均がゼロ、分散が1の正規分布に従う乱数である。
【0064】
【0065】
複素数化した計測値y1は、振幅A1及び位相Φ1で表すと、それぞれ以下の式(10)及び式(11)のようになる。
【0066】
【0067】
【0068】
上述のように、各観測位置P1、P2、P3の振動は連動する。観測位置P1と、観測位置P2及び観測位置P3とが連動して振動する様子を伝達関数g21、g31で表すと、観測位置P2の計測値y2及び観測位置P3の計測値y3は、それぞれ以下の式(12)及び式(13)で表される。なお、式(12)及び式(13)において、δ2及びδ3は観測ノイズである。
【0069】
【0070】
【0071】
単位空間生成部211は、過去の複数の時点t1、t2、・・・、tnの計測値y1、y2、y3を時間方向に並べて計測ベクトルY0を構成する。この計測ベクトルY0は、以下の式(14)のように表される。
【0072】
【0073】
また、複素数の共分散行列は、共役転置を*で表すと、以下の式(15)のように表され、実数と同じ形式となる。
【0074】
【0075】
マハラノビス距離算出部212はマハラノビス距離を算出する。監視対象である回転機械100の回転軸10の振動の検出信号(計測値)をyとすると、この計測値yのマハラノビス距離は、以下の式(16)で求められる。
【0076】
【0077】
ここで、伝達関数g21、g31はそれぞれ以下の式(17)、(18)で表され、観測ノイズδ2、δ3はそれぞれ以下の式(19)、(20)で表されるとする。
【0078】
【0079】
【0080】
【0081】
【0082】
そうすると、単位空間生成部211により生成される単位空間Qは以下の式(21)のようになる。
【0083】
【0084】
また、回転機械100の状態が正常であるときの計測値ygoodを以下の式(22)のように定めたとする。
【0085】
【0086】
このとき、上述の式(21)で表される単位空間Qを基準として求められる計測値ygoodのマハラノビス距離MDは、以下の式(23)で示すように「0.707」となる。
【0087】
【0088】
一方、回転機械100の状態が異常であるときの計測値ybadを以下の式(24)のように定めたとする。
【0089】
【0090】
同様に、上述の式(21)で表される単位空間Qを基準として、この計測値ybadのマハラノビス距離MDを求めると、以下の式(25)で示すように「70.1」となる。
【0091】
【0092】
このように、本実施形態に係る異常検出装置2を用いてマハラノビス距離を算出すると、異常時のマハラノビス距離は、正常時のマハラノビス距離の約100倍であるので、異常が発生していることが明確となる。したがって、異常検出装置2は、回転機械100の回転軸10の振動から、回転機械100の異常の有無を感度良く検出することが可能となる。
【0093】
(比較例)
また、従来の方法により回転機械の状態を判定した例を比較例として説明する。
なお、伝達関数g21、g31と、観測ノイズδ2、δ3は、上述の実施例と同様であるとする。
【0094】
従来の方法では、回転軸の振動の振幅及び位相は、それぞれ別のセンサの情報であるとして扱っていた。したがって、上述の実施例と同様に3箇所の観測位置P1、P2、P3で振動の計測を行ったとすると、観測位置P1、P2、P3それぞれに対応する3箇所分の振幅、及び3箇所分の位相の計6個の信号から構成される計測値yが取得される(上述の式(1)を参照)。このため、従来の方法で生成される単位空間Qは、以下の式(26)で表されるように、6×6のサイズとなる。
【0095】
【0096】
また、回転機械100の状態が正常であるときの計測値ygoodを以下の式(27)のように定めたとする。
【0097】
【0098】
このとき、上述の式(27)で表される単位空間Qを基準として求められる計測値ygoodのマハラノビス距離MDは、以下の式(28)で示すように「1.14」となる。
【0099】
【0100】
一方、回転機械100の状態が異常であるときの計測値ybadを以下の式(29)のように定めたとする。
【0101】
【0102】
同様に、上述の式(27)で表される単位空間Qを基準として、この計測値ybadのマハラノビス距離MDを求めると、以下の式(30)で示すように「5.05」となる。
【0103】
【0104】
このように、従来の方法を用いた比較例においては、異常時のマハラノビス距離は、正常時のマハラノビス距離の約5倍程度である。
【0105】
従来の方法を用いた比較例に対し、本実施形態に係る異常検出装置2を用いた実施例では、上述のように、異常時のマハラノビス距離は正常時の約100倍と大きくなるので、比較例よりも異常の検出精度が大きく向上したことが分かる。
【0106】
(異常検出装置のハードウェア構成)
図3は、本発明の一実施形態に係る異常検出装置のハードウェア構成の一例を示す図である。
以下、
図3を参照しながら、異常検出装置2のハードウェア構成の一例について説明する。
【0107】
図3に示すように、コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
【0108】
上述の異常検出装置2は、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901(プロセッサ21)は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、異常検出装置2が各種処理に用いる記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903(記憶媒体22)に確保する。
【0109】
補助記憶装置903の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置903は、コンピュータ900のバスに直接接続された内部メディアであってもよいし、インタフェース904又は通信回線を介してコンピュータ900に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の記憶媒体である。
【0110】
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【0111】
(作用効果)
以上のように、本実施形態に係る異常検出装置2は、回転機械100の回転軸10の振動を計測する振動センサ110から出力された検出信号に基づいて、振動の振幅及び位相を複素数に変換したものからなる計測値yを取得する計測値取得処理と、過去の複数の時点において取得された複数の計測値yにより構成される単位空間を基準として、回転機械100を評価する時点tにおいて取得された計測値yのマハラノビス距離MDを算出するマハラノビス距離算出処理と、算出されたマハラノビス距離MDが所定の閾値を超える場合、回転機械100に異常が発生していると判定する判定処理と、を実行するプロセッサ21を備える。
従来の方法では、回転軸の振動の振幅及び位相は、それぞれ別のセンサにより検出された情報として扱っていたので、振幅及び位相から回転機械の異常を精度よく検出できない可能性があった。しかしながら、本実施形態に係る異常検出装置2は、回転軸10の振動の特徴量を、振幅及び位相からなる一対の計測値として扱うことができるので、回転機械100の異常検出の精度を向上させることができる。
【0112】
また、異常検出装置2のプロセッサ21は、計測値取得処理において、回転軸10の異なる観測位置P1、P2、P3それぞれに対応する複数の計測値y1、y2、y3を取得する。
このようにすることで、異常検出装置2は、回転機械100の異常をより精度よく検出することができる。
【0113】
また、異常検出装置2のプロセッサ21は、計測値取得処理において、単数または複数の観測位置で振動を計測し、単数または複数の観測位置の振動に含まれる複数の周波数の振幅及び位相の前記計測値を取得する。
このようにすることで、異常検出装置2は、回転機械100の異常をより精度よく検出することができる。
【0114】
また、本実施形態に係る回転機械100は、回転軸10と、回転軸10の振動を計測する振動センサ110と、異常検出装置2と、を備える。
【0115】
以上、本発明の実施形態について詳細に説明したが、本発明の技術的思想を逸脱しない限り、これらに限定されることはなく、多少の設計変更等も可能である。
【0116】
例えば、上述の実施形態において、振動計測器11が周波数分析装置111を有している態様について説明したが、これに限られることはない。他の実施形態では、異常検出装置2が周波数分析装置を有し、振動センサ110から出力された検出信号に基づいて、異常検出装置2の周波数分析装置が周波数解析を行ってもよい。
【0117】
さらに、上述の実施形態において、マハラノビス距離に基づく異常検出方法について述べたが、本願の適用はマハラノビス距離に限らない。以下、上述の実施形態の変形例について、図を参照しながら説明する。
【0118】
(変形例における異常検出装置の機能構成)
図4は、本発明の一実施形態の変形例に係る回転機械の構成を示す図である。
図4に示すように、本変形例に係る異常検出装置2のプロセッサ21は、マハラノビス距離算出部212に代えて、成分算出部214を機能部として有している。
【0119】
成分算出部214は、計測値取得部210が取得した計測値yを、単位空間を特異値分解して得る特異ベクトルの方向に分解して、複数の成分を取得する処理を実行する。
【0120】
また、本実施形態に係る判定部213は、計測値yを特異ベクトルの方向に分解した複数の成分それぞれの大きさと、単位空間を特異値分解して得る特異値とを、特異ベクトルの方向別に個々に対比する処理と、複数の対比結果に基づいて異常判定を行う処理と、を実行する。
【0121】
(変形例における異常検出装置の処理フロー)
図5は、本発明の一実施形態の変形例に係る異常検出装置の処理の一例を示すフローチャートである。
なお、
図5のステップS11、S12、S15、S16、S17、及びS18は、
図2の各ステップと同一であるため、説明を省略する。ここでは、本変形例に係る成分算出部214における処理(ステップS13A)、及び判定部213における処理(ステップS14A)について、
図5を参照しながら詳細に説明する。
【0122】
図5に示すように、成分算出部214は、計測値yの成分ρ
i(i=1,2,…,m)を計算する(ステップS13A)。具体的には、成分算出部214は、以下のような手順で成分ρ
iを計算する。
【0123】
単位空間は、以下の式(31)のように特異値分解することができる。
【0124】
【0125】
ここで、mは計測値の数である。ui(i=1,2,…,m)は特異ベクトルであり、サイズがm×1の複素数ベクトルである。σi(i=1,2,…,m)は特異値であり、非負の実数である。
【0126】
成分算出部214は、計測値yを特異ベクトルui(i=1,2,…,m)の方向に分解した成分ρi(i=1,2,…,m)を、以下の式(32)を用いて求める。
【0127】
【0128】
なお、本変形例に係る成分算出部214は、計測値yを特異ベクトルuiの方向に分解した成分ρiの絶対値を対比処理部に出力する。成分ρiの絶対値は、以下の式(33)で表される。
【0129】
【0130】
判定部213では、計測値yを特異ベクトルuiの方向に分解した成分ρiの絶対値と、特異ベクトルuiに対応する特異値σiの平方根とを、特異ベクトルごとに個々に対比する対比処理を行う。単位空間Qは、回転機械100が正常状態にあるときに取得された複数の計測値yの共分散行列であるので、その特異値σiは正常状態であるときの成分ρiの絶対値の二乗値のばらつきを表している。したがって、ある時刻において回転機械100が正常であるならば、ρiρi
*は特異値σiに近い値となるはずである。このような前提に基づき、判定部213は、成分ρiの絶対値と、特異値σiの平方根とを、特異ベクトルui(i=1,2,…,m)ごとに対比し(ステップS14A)、その判定結果を出力する(ステップS15又はS16)。例えば、判定部213は、成分ρiの絶対値が、特異値σiに基づく閾値未満(ステップS14A:YES)である場合は正常を示す判定結果を出力し(ステップS15)、閾値以上(ステップS14A:NO)である場合は異常を示す判定結果を出力する(ステップS16)。具体的には、判定部213は、次式(34)が成立すれば異常と判定する。
【0131】
【0132】
ここに、式(34)におけるαi及びβiは特異ベクトルui(i=1,2,…,m)ごとに定める正の定数である。
【0133】
上述のように、従来のMT法を用いた技術(例えば、特許文献3に記載の技術)では、異常検出の感度が低下してしまう可能性があった。しかしながら、本変形例に係る異常検出装置2は、計測値yを特異ベクトルuiの方向に分解した成分ρiの絶対値と、特異ベクトルuiに対応する特異値σiの平方根とを、特異ベクトルごとに個々に対比する対比処理を行うことにより、マハラノビス距離を算出することなく、異常判定を行うことができる。これにより、異常検出装置2は、マハラノビス距離を求める際に生じる可能性のあるゼロ除算による計算精度の劣化を考慮する必要がないので、異常の影響が特異値σiの小さな成分に表れるようなケースであっても、これを除外することなく異常判定に用いることができる。この結果、異常検出装置2は、異常検出の感度の低下を抑制するとともに、異常検出の精度を向上させることができる。
【符号の説明】
【0134】
100 回転機械
10 回転軸
11 振動計測器
110、110A、110B、110C 振動センサ
111 周波数分析装置
2 異常検出装置
20 入出力部
21 プロセッサ
210 計測値取得部
211 単位空間生成部
212 マハラノビス距離算出部
213 判定部
214 成分算出部
22 記憶媒体
3 制御装置