(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-11
(45)【発行日】2024-04-19
(54)【発明の名称】アンテナ及びその製造方法
(51)【国際特許分類】
H01Q 1/38 20060101AFI20240412BHJP
H01P 11/00 20060101ALI20240412BHJP
C01B 32/194 20170101ALI20240412BHJP
【FI】
H01Q1/38
H01P11/00
C01B32/194
(21)【出願番号】P 2023044811
(22)【出願日】2023-03-21
(62)【分割の表示】P 2021189069の分割
【原出願日】2017-10-12
【審査請求日】2023-04-01
【新規性喪失の例外の表示】特許法第30条第2項適用 1.発行者名 American Institute of Physics 2.刊行物名 APPLIED PHYSICS LETTERS,Volume 110,Issue 23 3.発行日 平成29年6月5日 4.該当ページ 第233102-1頁から第233102-3頁 〔刊行物等〕 1.発行者名 公益社団法人 応用物理学会 2.刊行物名 第78回応用物理学会秋季学術講演会講演予稿集 3.発行日 平成29年8月25日 4.該当ページ 第100000001-140頁 〔刊行物等〕 1.学会名 第78回応用物理学会秋季学術講演会 2.開催日 平成29年9月6日 3.開催場所 福岡国際センター
(73)【特許権者】
【識別番号】502050729
【氏名又は名称】黄 晋二
(73)【特許権者】
【識別番号】517358937
【氏名又は名称】小菅 祥平
(73)【特許権者】
【識別番号】517358948
【氏名又は名称】須賀 良介
(73)【特許権者】
【識別番号】599049288
【氏名又は名称】橋本 修
(74)【代理人】
【識別番号】100142550
【氏名又は名称】重泉 達志
(72)【発明者】
【氏名】黄 晋二
(72)【発明者】
【氏名】小菅 祥平
(72)【発明者】
【氏名】須賀 良介
(72)【発明者】
【氏名】橋本 修
【審査官】赤穂 美香
(56)【参考文献】
【文献】米国特許出願公開第2017/0040711(US,A1)
【文献】韓国公開特許第10-2017-0044529(KR,A)
【文献】特開2016-151558(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01Q 1/38
H01P 11/00
C01B 32/194
(57)【特許請求の範囲】
【請求項1】
単層のグラフェン又は複数層に積層したグラフェンからなるアンテナエレメントと、導電材料を含む給電線と、が基体上に形成されるアンテナであって、
前記アンテナエレメント及び前記給電線は、前記基体上で隣接して形成され、
前記給電線は、グラフェンを含み、
前記アンテナエレメントの前記グラフェンと、前記給電線の前記グラフェンは、連続的に形成されているアンテナ。
【請求項2】
請求項1に記載のアンテナの製造方法であって、
パターンニング前のグラフェン膜を前記基体へ転写する工程と、
前記グラフェン膜上に前記導電材料を蒸着する工程と、
前記導電材料に前記アンテナエレメント及び前記給電線のパターニングを行い、前記導電材料における前記アンテナエレメント及び前記給電線以外の部分を除去する工程と、
前記導電材料から露出している前記グラフェン膜を除去する工程と、
前記導電材料に前記給電線のパターニングを行い、前記アンテナエレメント上の前記導電材料における前記給電線以外の部分を除去する工程と、を有するアンテナの製造方法。
【請求項3】
前記グラフェン膜の前記基体への転写を、樹脂材料からなる支持層を用いて行う請求項2に記載のアンテナの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グラフェンをアンテナエレメントとして用いたマイクロ波帯アンテナに関する。
【背景技術】
【0002】
透明な基板上に、透明導電膜からなるアンテナエレメントを形成した透明なアンテナが知られている。現在、透明導電膜として主流であるITO(indium tin oxide)は、レアメタルを含有していることや、可塑性が低いといった問題があり、ITOに代わる透明導電膜が求められている。
【0003】
特許文献1には、グラフェンベースの層を含む各種電子デバイスが提案され、電子デバイスの1つとしてアンテナが例示されている。特許文献1では、グラフェンベースの層を基板に支持させ、グラフェンベースの層の一部をエッチングし、グラフェンベースの層の他部と比較して薄くしてアンテナとしている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1のアンテナは具体的構造が不明であり、当業者によりこのアンテナを作ることができるようには記載されていない。また、グラフェンをアンテナエレメントに使用した際に、アンテナとして利用可能な帯域などは一切明らかにされていない。本願発明者らはグラフェンのアンテナエレメントへの適用について鋭意研究を重ねていた。
【0006】
本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、グラフェンをアンテナエレメントとして使用したアンテナを提供することにある。
【課題を解決するための手段】
【0007】
前記目的を達成するため、本発明では、基体と、前記基体上に形成され、単層のグラフェン又は複数層に積層したグラフェンからなる透明なアンテナエレメントと、を有するマイクロ波帯アンテナが提供される。本願発明者らは、グラフェンがマイクロ波帯アンテナのアンテナエレメントとして動作することを実験的に確認した。
【0008】
上記マイクロ波帯アンテナにおいて、前記基体は、透明であってもよい。
【0009】
上記マイクロ波帯アンテナにおいて、前記アンテナエレメントは、単層のグラフェンからなってもよい。
【0010】
上記マイクロ波帯アンテナにおいて、前記マイクロ波帯アンテナは、ダイポールアンテナであってもよい。
【発明の効果】
【0011】
本発明によれば、グラフェンをマイクロ波帯アンテナのアンテナエレメントとして使用することができる。
【図面の簡単な説明】
【0012】
【
図1】本発明の一実施形態を示すマイクロ波帯アンテナの平面図である。
【
図2】マイクロ波帯アンテナの製造過程を示す説明図である。
【
図3】比較例のマイクロ波帯アンテナの平面図である。
【
図4】実施例及び比較例の反射特性の測定結果を示すグラフである。
【
図5】実施例の反射特性の測定結果に、実施例の放射特性の測定結果を重ねて示したグラフである。
【発明を実施するための形態】
【0013】
図1及び
図2は本発明の一実施形態を示すものであり、
図1はマイクロ波帯アンテナの平面図、
図2はマイクロ波帯アンテナの製造過程を示す説明図である。尚、
図1及び
図2では、理解を容易とするため、透明なグラフェンの部分をハニカム模様で示している。
【0014】
図1に示すように、マイクロ波帯アンテナ1は、基体としての基板2と、基板2上に形成されたアンテナエレメント3及び給電線4と、を有する。本実施形態のマイクロ波帯アンテナ1は、ダイポールアンテナである。
【0015】
基板2は、平面視矩形状の透明材料からなる。本実施形態においては、基板2は石英ガラスからなる。本明細書中で「透明」とは透過率が80%以上であることをいうものとする。尚、基板2を石英ガラス以外のガラス材料としてもよい。さらに、基板2を、例えばポリエチレンテレフタラートのような透明な樹脂材料とする等、ガラス材料以外の透明材料とすることもできる。本実施形態においては、基板2の表面の算術平均表面粗さ(Ra)は、2.0nm以下である。それは、基板2の表面のRaが2.0nmを超えると、グラフェンからなるアンテナエレメント3の電気的特性が損なわれるおそれがあるからである。アンテナエレメント3のアンテナとしての電気的特性を考慮すると、基板2の表面のRaは、好ましくは1.0nm以下であり、より好ましくは0.8nm以下である。
【0016】
アンテナエレメント3は、透明であり、単層のグラフェン又は複数層に積層したグラフェンからなる。本願発明者らは、グラフェンがマイクロ波帯アンテナ1のアンテナエレメント3として動作することを実験的に確認した。グラフェンが形成される基板2上の表面は、グラフェンの基板2への良好な固着を実現するため、親水性であることが好ましい。アンテナエレメント3は、基板2上の仮想線21について対称に設けられた2つの直線部31を有する。本実施形態においては、2つの直線部31が仮想線を挟んで長手方向に並んで形成されている。グラフェンの透過率T(%)は、層数をNとすると、T(%)=100-2.3Nとなる。従って、例えば、アンテナエレメント3の透過率を80%以上とするには8層以下に積層されたグラフェンとすればよいし、90%以上とする場合は4層以下に積層されたグラフェンとすればよい。本実施形態においては、アンテナエレメント3は単層のグラフェンであり、透過率は97.7%である。
【0017】
給電線4は、導電材料からなり、アンテナエレメント3に高周波電力を伝送するため、及び/又は、アンテナエレメント3から高周波電力が伝送されるために用いられる。本実施形態においては、給電線4はAu/グラフェンからなる。本実施形態においては、給電線4は、コプレーナ線部41と、コプレーナ線部41及びアンテナエレメント3を接続する伝送線部42と、を有する。コプレーナ線路41は、信号線41aと、信号線41aと間隔をおいて形成される一対の接地線41bとから構成される。本実施形態においては、伝送線部42は、コプレーナ線路41の信号線41aと、一方の接地線41bと、をアンテナエレメント3側へ延長することにより構成される。
【0018】
次に、本実施形態のマイクロ波帯アンテナ1の製造方法について、
図2を参照して説明する。
まず、
図2(a)に示すように、銅箔101上に単層のグラフェン膜103を、化学気相成長法(CVD法)により作製する。次いで、
図2(b)に示すように、作製されたグラフェン膜103を基板2上へ転写する。具体的に、転写は、例えば、樹脂材料からなる支持層を銅箔101上に形成し、銅箔101を酸等により除去してグラフェン膜103と支持層からなる積層体とした後、基板2上に積層体を載置して支持層を溶融させることにより行われる。ここで、基板2は石英ガラスからなり、転写に先立って親水性となるよう予め表面処理が施されている。
【0019】
この後、
図2(c)に示すように、グラフェン膜103上にAu膜104を蒸着する。そして、
図2(d)に示すように、フォトリソグラフィ技術及びエッチング技術により、Au膜104にアンテナエレメント3及び給電線4のパターニングを行い、Au膜104の不要な部分を除去する。さらに、
図2(e)に示すように、露出しているグラフェン膜103をUV-オゾン処理により除去する。そして、
図2(f)に示すように、フォトリソグラフィ技術及びエッチング技術により、Au膜104に給電線4のパターニングを行い、アンテナエレメント3上のAu膜104を除去して、マイクロ波帯アンテナ1が完成する。
【0020】
以上のように構成されたマイクロ波帯アンテナ1によれば、アンテナエレメント3をグラフェンとしたので、ITOのようにレアメタルを用いることなく透明なアンテナエレメント3を実現することができる。また、グラフェンはITOと比較して可塑性に富んでいることから、平坦面だけでなく湾曲面にアンテナエレメント3を形成することも可能となる。さらに、基板2を可撓性を有する樹脂材料とした場合にも、アンテナエレメント3を基板2の変形に追従させることができ、アンテナ全体に可撓性を付与することができる。
【0021】
尚、前記実施形態においては、ダイポールアンテナとして構成したマイクロ波帯アンテナ1を示したが、アンテナエレメント3の形状、配置等を変更すれば、例えばモノポールアンテナ、ループアンテナ、ログペリオディックアンテナのようなダイポールアンテナ以外の線状アンテナとすることも可能である。さらには、例えばパッチアンテナのような平面アンテナとしてもよく、アンテナの種類は特に限定されるものではない。
【0022】
また、前記実施形態においては、基板2上に給電線4を形成したものを示したが、基板2上に給電線4を形成せずに、アンテナ外部から非接触でアンテナエレメント3に給電するよう構成してもよい。この場合、透明な基板2及び透明なアンテナエレメント3からなるマイクロ波帯アンテナ1を全体的に透明とすることができる。尚、給電線4が不透明であっても、給電線4を基板2の外縁付近に配置することによって、給電線4を目立たないようにすることは可能である。
【0023】
また、前記実施形態においては、基板2上にアンテナエレメント3が形成されたものを示したが、基板2以外の基体にアンテナエレメント3を形成してマイクロ波帯アンテナ1とすることも可能である。さらに、基板2が透明であるものを示したが、基板2は不透明であってもよい。
【0024】
以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
【0025】
実施例として実際に
図1に示すマイクロ波帯アンテナ1を作製し、マイクロ波帯アンテナ1の入力電力に対する反射特性及び放射特性を測定した。
【0026】
マイクロ波帯アンテナ1の作製にあたり、まず、銅箔101上に単層のグラフェン膜103を化学気相成長法(CVD法)により作製した。グラフェンの成長は、温度を1000℃、圧力を1500Paとし、2sccmのCH4ガス及び20sccmのH2ガスを30分流通させて行った。そして、このグラフェン膜103を、ポリメタルクリル酸メチルの支持層を用いて、石英ガラスの基板2上へ転写した。転写後のグラフェン膜103のラマンスペクトルを測定したところ、2DバンドとGバンドの強度比が3.5であり、2Dバンドがローレンツ関数でフィッティング可能であったことから、単層のグラフェンであることが確認された。
【0027】
続いて、電子ビーム蒸着法を用いて、グラフェン膜103上へ700nmのAu膜104を形成した。そして、フォトリソグラフィによりAu膜104にアンテナエレメント3及び給電線4のパターニングを行い、KI水溶液を用いて60℃でAu膜104のエッチングを行った。さらに、露出しているグラフェン膜103を、300sccmのO2ガスを流通させて120℃でUV-オゾン処理により除去した。そして、フォトリソグラフィによりAu膜104に給電線4のパターニングを行い、KI水溶液を用いて60℃でアンテナエレメント3上のAu膜104を除去した。このように作製されたマイクロ波帯アンテナ1における、基板2上のグラフェンの存在領域をラマンイメージングにより確認したところ、設計上のアンテナエレメント3の領域とほぼ一致した。
【0028】
具体的なアンテナエレメント3の寸法は、2つの直線部を含めた全体の長手方向寸法を10.7mm、幅方向寸法を1.0mmとした。また、給電部4のコプレーナ線部41の特性インピーダンスは、50Ωとした。
【0029】
また、比較例として、
図3に示すような、石英ガラスの基板202上のアンテナエレメント203にAuを使用したマイクロ波帯アンテナ201を作製した。
図3に示すように、比較例のアンテナエレメント203のパターンは、実施例と同様に、2つの直線部231を有する。比較例の給電部204のパターンは、実施例と同様に、コプレーナ線部241と、コプレーナ線部241及びアンテナエレメント203を接続する伝送線部242と、を有する。アンテナエレメント203及び給電部204の材質は、Au/Cr(700nm/50nm)とし、電子ビーム蒸着法及び熱蒸着法を用いて作製した。
【0030】
図4は、実施例及び比較例の反射特性の測定結果を示すグラフである。
図4では、横軸を周波数、縦軸を反射係数としている。具体的に、給電部4,204への入力電力を0.32mWとし、100MHzから30GHzの周波数で反射係数を測定した。
【0031】
図4に示すように、実施例のアンテナでは、反射損失が最小となる動作周波数は20.7GHzであることが確認された。尚、比較例のアンテナでは、動作周波数は9.2GHzであった。また、実施例においても比較例においても、動作周波数において-10dBを下回っていることから、90%以上の電力が給電されていることが確認された。
【0032】
図5は、実施例の反射特性の測定結果に、実施例の放射特性の測定結果を重ねて示したグラフである。放射特性は、アンテナエレメント3に対して水平な主偏波と、垂直な交差偏波を別個に測定した。
図5では、横軸を周波数、縦軸を反射係数及び透過係数としている。
【0033】
図5に示すように、実施例のアンテナは、動作周波数帯における主偏波の放射量が他の周波数帯より比較的大きいため、アンテナからマイクロ波が放射されていることが理解される。特に、動作周波数帯において、主偏波の放射量は交差偏波と比べて約20dB大きいため、アンテナがダイポールアンテナとして動作していることが示された。
【符号の説明】
【0034】
1 マイクロ波帯アンテナ
2 基板
3 アンテナエレメント
4 給電部
21 仮想線
31 直線部
41 コプレーナ線部
41a 信号線
41b 接地線
42 伝送線部
101 銅箔
103 グラフェン膜
104 Au膜
201 マイクロ波帯アンテナ
202 基板
203 アンテナエレメント
204 給電部
231 直線部
241 コプレーナ線部
242 伝送線部