IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コンチネンタル エレクトロニクス コーポレーションの特許一覧

特許7471035Loranの送信機、受信機、システム、およびこれを動作させる方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-11
(45)【発行日】2024-04-19
(54)【発明の名称】Loranの送信機、受信機、システム、およびこれを動作させる方法
(51)【国際特許分類】
   G01S 5/10 20060101AFI20240412BHJP
   H03H 17/02 20060101ALI20240412BHJP
   H03H 17/00 20060101ALI20240412BHJP
【FI】
G01S5/10
H03H17/02 601C
H03H17/02 615E
H03H17/00 621C
H03H17/00 621E
【請求項の数】 20
(21)【出願番号】P 2023512044
(86)(22)【出願日】2021-08-18
(65)【公表番号】
(43)【公表日】2024-02-19
(86)【国際出願番号】 US2021071225
(87)【国際公開番号】W WO2022040687
(87)【国際公開日】2022-02-24
【審査請求日】2023-03-22
(31)【優先権主張番号】63/067,015
(32)【優先日】2020-08-18
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】523055156
【氏名又は名称】コンチネンタル エレクトロニクス コーポレーション
【氏名又は名称原語表記】CONTINENTAL ELECTRONICS CORP.
【住所又は居所原語表記】4212 S. Buckner Blvd. Dallas, Texas 75227 U.S.A.
(74)【代理人】
【識別番号】110001863
【氏名又は名称】弁理士法人アテンダ国際特許事務所
(72)【発明者】
【氏名】デイヴィッド エル. ハーシュバーガー
【審査官】藤田 都志行
(56)【参考文献】
【文献】特開平05-164832(JP,A)
【文献】特開昭55-000452(JP,A)
【文献】米国特許第4742357(US,A)
【文献】米国特許第5181041(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 5/00- 5/14
H03H 17/02
H03H 17/00
(57)【特許請求の範囲】
【請求項1】
送信機であって、
Loranパルス信号を生成するように構成されたLoranパルス生成器と、
前記Loranパルス生成器に結合された、前記Loranパルス信号に応じた分散信号を生成するように構成された分散フィルタと、
前記分散フィルタに結合された、前記分散信号に応じた等化分散信号を生成するように構成されたイコライザと、
前記イコライザに結合された、前記等化分散信号に応じた増幅信号を生成するように構成された電力増幅器と、
前記電力増幅器に結合された、前記増幅信号に応じた同調信号を生成するように構成されたアンテナチューナと、
前記アンテナチューナに結合された、前記同調信号に応じた送信信号を放射するように構成されたアンテナと
を含む。
【請求項2】
請求項1に記載の送信機であって、前記分散フィルタは、
前記Loranパルス信号を受信し、第1の信号、および前記第1の信号から位相が90度ずれた第2の信号を生成するように構成されたヒルベルト変換デバイスと、
前記ヒルベルト変換デバイスに結合された、少なくとも第1の搬送波信号、前記第1の信号、および前記第2の信号に応じて周波数シフト信号を生成するように構成された第1の乗算器と、
前記第1の乗算器に結合された、前記周波数シフト信号に応じてダウンサンプリング信号を生成するように構成されたデシメータと、
前記デシメータに結合された、前記ダウンサンプリング信号に応じてフィルタリング済みダウンサンプリング信号を生成するように構成された第1のフィルタと、
前記第1のフィルタに結合された、前記フィルタリング済みダウンサンプリング信号に応じてアップサンプリング信号を生成するように構成された補間器と、
前記補間器に結合された、少なくとも前記アップサンプリング信号および第2の搬送波信号に応じて前記分散信号を生成するように構成された第2の乗算器であり、前記第2の搬送波信号は前記第1の搬送波信号の共役である、第2の乗算器と
を含む。
【請求項3】
請求項2に記載の送信機であって、前記デシメータは、
前記第1の乗算器に結合された、前記周波数シフト信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタであり、前記第1のフィルタリング済み信号は第1のサンプル周波数を有する、ローパスフィルタと、
前記ローパスフィルタに結合された、前記第1のフィルタリング済み信号のN個のサンプルのうちのN-1個のサンプルを削除することによってダウンサンプリング信号を生成するように構成された第1の回路であり、Nは整数であり、前記ダウンサンプリング信号は前記第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路と
を含む。
【請求項4】
請求項2に記載の送信機であって、前記補間器は、
前記第1のフィルタに結合された、前記フィルタリング済みダウンサンプリング信号にN-1個のゼロを追加することによって第1の信号を生成するように構成された第1の回路であり、Nは整数であり、前記第1の信号は第1のサンプル周波数を有し、前記フィルタリング済みダウンサンプリング信号は前記第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路と、
前記第1の回路に結合された、前記第1の信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタと
を含む。
【請求項5】
請求項2に記載の送信機であって、前記第1のフィルタは、
有限インパルス応答(FIR)フィルタ、
無限インパルス応答(IIR)フィルタ、または
高速フーリエ変換(FFT)フィルタ
を含む。
【請求項6】
請求項5に記載の送信機であって、前記IIRフィルタは、ランダムに生成された係数を有するオールパスフィルタに対応する。
【請求項7】
請求項6に記載の送信機であって、前記IIRフィルタは、
第1の受信信号に応じた第1の時間反転信号を生成するように構成された第1の時間反転回路であり、前記第1の受信信号は前記ダウンサンプリング信号に対応する、第1の時間反転回路と、
前記第1の時間反転回路に結合された、前記第1の時間反転信号に応じた前記第1の時間反転信号の共役を生成するように構成された第1の回路と、
前記第1の回路に結合された、前記第1の時間反転信号の前記共役をフィルタリングすることによってフィルタリング済みの第1の信号を生成するように構成された第1のフィルタと、
前記第1のフィルタに結合された、前記フィルタリング済みの第1の信号に応じた前記フィルタリング済みの第1の信号の共役を生成するように構成された第2の回路と、
前記第2の回路に結合された、前記フィルタリング済みの第1の信号の前記共役に応じた第2の時間反転信号を生成するように構成された第2の時間反転回路であり、前記第2の時間反転信号は前記フィルタリング済みダウンサンプリング信号に対応する、第2の時間反転回路と
を含む。
【請求項8】
請求項5に記載の送信機であって、前記FIRフィルタ、前記IIRフィルタ、または前記FFTフィルタは、Loranパルスの各セット毎に固定されたフィルタ係数を含み、前記Loranパルス信号は前記Loranパルスのセットの一部である。
【請求項9】
請求項5に記載の送信機であって、前記FIRフィルタ、前記IIRフィルタ、または前記FFTフィルタは、Loranパルスのセットにわたって時間変化している動的なフィルタ係数を含み、前記Loranパルス信号は前記Loranパルスのセットの一部である。
【請求項10】
Loranシステムであって、
Loranパルス信号を生成するように構成されたLoranパルス生成器、
前記Loranパルス生成器に結合された、前記Loranパルス信号に応じた等化パルス信号を生成するように構成されたイコライザ、
前記イコライザに結合された、前記等化パルス信号に応じた分散Loran信号を生成するように構成された分散フィルタ、
前記分散フィルタに結合された、前記分散Loran信号に応じた増幅信号を生成するように構成された電力増幅器、
前記電力増幅器に結合された、前記増幅信号に応じた同調信号を生成するように構成されたアンテナチューナ、および
前記アンテナチューナに結合された、前記同調信号に応じた送信信号を放射するように構成されたアンテナ
を含む送信機と、
受信信号を受信するように構成された第2のアンテナ、
前記第2のアンテナに結合された、前記受信信号に応じた分散解除パルス信号を生成するように構成された分散解除フィルタであり、前記受信信号は前記送信信号に対応する、分散解除フィルタ、および
前記分散解除フィルタに結合された、前記分散解除パルス信号に応じたLoran信号を生成するように構成されたLoran受信機
を含む受信機と
を含む。
【請求項11】
請求項10に記載のLoranシステムであって、前記分散解除フィルタは、
前記受信信号を受信し、第1の信号、および前記第1の信号から位相が90度ずれた第2の信号を生成するように構成されたヒルベルト変換デバイスと、
前記ヒルベルト変換デバイスに結合された、少なくとも第1の搬送波信号、前記第1の信号、および前記第2の信号に応じて周波数シフト信号を生成するように構成された第1の乗算器と、
前記第1の乗算器に結合された、前記周波数シフト信号に応じてダウンサンプリング信号を生成するように構成されたデシメータと、
前記デシメータに結合された、前記ダウンサンプリング信号に応じてフィルタリング済みダウンサンプリング信号を生成するように構成された第1のフィルタと、
前記第1のフィルタに結合された、前記フィルタリング済みダウンサンプリング信号に応じてアップサンプリング信号を生成するように構成された補間器と、
前記補間器に結合された、少なくとも前記アップサンプリング信号および第2の搬送波信号に応じて前記分散解除パルス信号を生成するように構成された第2の乗算器であり、前記第2の搬送波信号は前記第1の搬送波信号の共役である、第2の乗算器と
を含む。
【請求項12】
請求項11に記載のLoranシステムであって、前記デシメータは、
前記第1の乗算器に結合された、前記周波数シフト信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタであり、前記第1のフィルタリング済み信号は第1のサンプル周波数を有する、ローパスフィルタと、
前記ローパスフィルタに結合された、前記第1のフィルタリング済み信号のN個のサンプルのうちのN-1個のサンプルを削除することによってダウンサンプリング信号を生成するように構成された第1の回路であり、Nは整数であり、前記ダウンサンプリング信号は前記第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路と
を含む。
【請求項13】
請求項11に記載のLoranシステムであって、前記補間器は、
前記第1のフィルタに結合された、前記フィルタリング済みダウンサンプリング信号にN-1個のゼロを追加することによって第1の信号を生成するように構成された第1の回路であり、Nは整数であり、前記第1の信号は第1のサンプル周波数を有し、前記フィルタリング済みダウンサンプリング信号は前記第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路と、
前記第1の回路に結合された、前記第1の信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタと
を含む。
【請求項14】
請求項11に記載のLoranシステムであって、前記第1のフィルタは、
有限インパルス応答(FIR)フィルタ、
無限インパルス応答(IIR)フィルタ、または
高速フーリエ変換(FFT)フィルタ
を含む。
【請求項15】
請求項14に記載のLoranシステムであって、前記FIRフィルタ、前記IIRフィルタ、または前記FFTフィルタは、Loranパルスのセットにわたって時間変化している動的なフィルタ係数を含み、前記Loranパルス信号は前記Loranパルスのセットの一部である。
【請求項16】
請求項14に記載のLoranシステムであって、前記FIRフィルタ、前記IIRフィルタ、または前記FFTフィルタは、Loranパルスの各セット毎に固定されたフィルタ係数を含み、前記Loranパルス信号は前記Loranパルスのセットの一部である。
【請求項17】
請求項14に記載のLoranシステムであって、前記FFTフィルタは、
第1の信号に対してFFTを実行することによってFFT信号を生成するように構成された第1の回路であり、前記第1の信号は前記ダウンサンプリング信号に対応する、第1の回路と、
前記第1の回路に結合された、前記FFT信号のサンプルに重み付きフィルタ係数を追加することによって重み付きFFT信号を生成するように構成された第2の回路と、
前記第2の回路に結合された、前記重み付きFFT信号に対して逆FFTを実行することによって第2の信号を生成するように構成された第3の回路であり、前記第2の信号は前記フィルタリング済みダウンサンプリング信号に対応する、第3の回路と
を含む。
【請求項18】
方法であって、
Loranパルス生成器によって、Loranパルス信号を生成するステップと、
分散フィルタによって、前記Loranパルス信号に基づいて分散Loran信号を生成するステップと、
イコライザによって、
(a)前記イコライザが前記Loranパルス生成器と前記分散フィルタの間に結合されている場合には前記Loranパルス信号に応じて、または
(b)前記イコライザが前記分散フィルタと電力増幅器の間に結合されている場合には前記分散Loran信号に応じて、
等化信号を生成するステップと、
前記電力増幅器によって、前記分散Loran信号に基づいて増幅信号を生成するステップと、
前記電力増幅器に結合されたアンテナチューナによって、前記増幅信号に応じた同調信号を生成するステップと、
前記アンテナチューナに結合されたアンテナによって、前記同調信号に応じた送信信号を放射するステップと
を含む。
【請求項19】
請求項18に記載の方法であって、前記等化信号は、(a)前記Loranパルス信号に応じて生成され、
前記分散Loran信号を生成するステップは、
前記等化信号に応じた前記分散Loran信号を生成するステップを含み、
前記増幅信号を生成するステップは、
前記分散Loran信号に応じた前記増幅信号を生成するステップを含む。
【請求項20】
請求項18に記載の方法であって、前記等化信号は、(b)前記分散Loran信号に応じて生成され、
前記分散Loran信号を生成するステップは、
前記Loranパルス信号に応じた前記分散Loran信号を生成するステップを含み、
前記増幅信号を生成するステップは、
前記等化信号に応じた前記増幅信号を生成するステップを含む。
【発明の詳細な説明】
【技術分野】
【0001】
優先権の主張
本出願は、参照によりその全体を本明細書に組み込む、2020年8月18日出願の米国仮出願第63/067015号の利益を主張するものである。
【背景技術】
【0002】
一部の手法のLoran信号は、高振幅パルスの短バーストをいくつか含み、非常に「ピーキー」であると言われる。一部の手法のLoran信号のピーク電力対平均電力比は、非常に高い。真空管送信機では、パルスサービス用に設計された真空管を使用して、高ピークパワーを生成していた。パルス幅は約200マイクロ秒であり、これはパルスサービス用に設計された真空管の熱時定数より短い。このような真空管は、非常に高いパワーを生み出すことができるが、短い時間でしか生み出すことができない。
【0003】
いくつかの手法の現代のソリッドステート送信機は、一般に、ピークパワーが制限されている。ソリッドステートデバイスをパルスサービス用に設計することは、真空管でそれを行うよりも困難であり、効果も低い。いくつかの手法の半導体パワーデバイスの熱時定数は、パルスタイプ真空管よりはるかに短い。Loranパルス形状が保持される場合には、Loranパルス形状を生み出すために使用されるソリッドステート送信機は、生み出される平均パワー対して比較的多数のパワートランジスタを有することになる。
【図面の簡単な説明】
【0004】
本開示の態様は、以下の詳細な説明を添付の図面と合わせて読んだときに最もよく理解される。業界の標準慣行によれば、様々な特徴は、正しい縮尺では描かれないことに留意されたい。実際に、様々な特徴の寸法は、説明を分かりやすくするために任意に拡大または縮小されていることがある。
【0005】
図1A図1Bは、いくつかの実施形態による送信機を示すブロック図である。
【0006】
図2は、いくつかの実施形態による受信機を示すブロック図である。
【0007】
図3は、いくつかの実施形態による分散フィルタを示すブロック図である。
【0008】
図4は、いくつかの実施形態によるデシメータを示すブロック図である。
【0009】
図5は、いくつかの実施形態による補間器を示すブロック図である。
【0010】
図6Aは、いくつかの実施形態によるFIRフィルタを示すブロック図である。
【0011】
図6Bは、いくつかの実施形態によるIIRフィルタを示すブロック図である。
【0012】
図6Cは、いくつかの実施形態によるFFTフィルタを示すブロック図である。
【0013】
図7Aは、いくつかの実施形態によるLoranパルス群を示す波形図である。
【0014】
図7Bは、いくつかの実施形態によるLoranパルスを示す波形図である。
【0015】
図7Cは、いくつかの実施形態によるパルス群信号のRFパワー密度スペクトルを示す波形図である。
【0016】
図8Aは、いくつかの実施形態によるヒルベルト変換デバイスの出力を示す波形図である。
【0017】
図8Bは、いくつかの実施形態によるゼロ周波数にダウンコンバートされた後のヒルベルト変換信号を示す波形図である。
【0018】
図9は、いくつかの実施形態による分散フィルタの振幅応答および群遅延応答を示す波形図である。
【0019】
図10Aは、いくつかの実施形態によるFIRフィルタのインパルス応答を示す波形図である。
【0020】
図10Bは、いくつかの実施形態による図3の分散フィルタの出力におけるベースバンド信号を示す波形図である。
【0021】
図10Cは、いくつかの実施形態による分散Loran信号の包絡線および理想的なLoran信号の包絡線を示す波形図である。
【0022】
図10Dは、いくつかの実施形態による分散Loranパルス群を示すRF波形図である。
【0023】
図11Aは、いくつかの実施形態によるパルス群信号およびこのパルス群信号の包絡線を示す波形図である。
【0024】
図11Bは、いくつかの実施形態による理想的な分散解除Loran信号および回復Loran信号のパワー密度スペクトルを示す波形図である。
【0025】
図12は、いくつかの実施形態によるオールパスフィルタを示すブロック図である。
【0026】
図13は、いくつかの実施形態による分散フィルタの群遅延応答を示す波形図である。
【0027】
図14は、いくつかの実施形態によるランダムオールパス分散を有するLoranパルス群を示す波形図である。
【0028】
図15は、いくつかの実施形態による時間反転フィルタを示す図である。
【0029】
図16は、いくつかの実施形態による図1A図1Bの送信機または図2の受信機のうちの1つまたは複数で使用可能な制御装置を示す概略図である。
【0030】
図17は、いくつかの実施形態によるシステムを動作させる方法を示す流れ図である。
【発明を実施するための形態】
【0031】
以下の開示は、提供される主題の特徴を実装するための様々な実施形態または例を提供するものである。以下では、本開示を単純化するために、構成要素、材料、値、ステップ、または配列などの具体例を記載する。もちろん、これらは単なる例であり、限定のためのものではない。他の構成要素、材料、値、ステップ、または配列なども考えられる。例えば、以下の説明において第2の特徴の上方または上に第1の特徴が形成されるということは、第1の特徴と第2の特徴が直接接触して形成される実施形態を含み得、また第1の特徴と第2の特徴の間に追加の特徴が形成されて、第1の特徴と第2の特徴が直接接触しないこともある実施形態も含み得る。さらに、本開示は、様々な例において参照番号および/または参照文字を繰り返すことがある。この繰返しは、簡略性および明瞭性のためのものであり、それ自体は、記載される様々な実施形態および/または構成の間の関係を規定するものではない。
【0032】
さらに、本明細書では、図面に図示されているある要素または特徴と別の要素または特徴との関係を説明する際に、説明を容易にするために、「下」、「下方」、「下側」、「上方」、および「上側」などの空間的な相対的用語が使用されることがある。これらの空間的な相対的用語は、図中に示されている配向だけでなく、使用時または動作時のデバイスの異なる配向も包含するものとして意図されている。装置は、他の配向になる(90度回転される、または他の配向になる)こともあるが、本明細書で使用される空間的な相対的用語は、それに応じて同様に解釈され得る。
【0033】
本開示の1つまたは複数の実施形態は、Loran信号のピーク電力対平均電力比(PAPR)を低減する。いくつかの手法では、パルス信号のピーク対平均比の低減は、チャープレーダを用いて実行されていた。例えば、チャープレーダは、パルス信号のピーク対平均比を低減するために開発された。非常に短い高出力レーダパルスを生成するのではなく、いくつかの手法のチャープレーダは、レーダパルスの帯域幅にわたって一定の群遅延傾き(すなわち周波数とともに変化する遅延関数)を有するネットワークを用いてパルスを線形に分散させることによって、sincまたはsin(πx)/(πx)パルスを周波数変調スイープに変換する。受信機において相補または整合フィルタを通過するときに、FMスイープは高振幅の短持続時間パルスに変換される。時間遅延の変化が大きくなるほど、FMスイープが長くなり、受信パルスの有効パワーが増大する。
【0034】
1950年代および1960年代には、現代のデジタル信号処理が利用できなかったため、チャープレーダに使用される整合フィルタは、複雑で高価であった。いくつかの手法における最初期のこれらのフィルタは、高次のアナログ集中素子オールパスフィルタとして組み込まれていた。フィルタリングが非常に高価であったため、レーダシステムは、1つの送信フィルタおよび1つの受信フィルタを含むことになる。1970年代には、このようなチャープレーダシステムは、信号分散のために表面弾性波(SAW)フィルタを使用していた。
【0035】
送信機技術はハイパワーパルス真空管からピークパワー制限ソリッドステートに変化したが、信号処理技術も変化して、数百キロワットの能力を有する大型の送信アンテナおよび送信機のコストと比較して非常に安価な方法で複雑なフィルタリングを行う技術が生まれている。いくつかの実施形態では、Loran信号のピークパワー要件を大幅に低減して、ソリッドステート送信機に、より良好に適合させることができる。いくつかの実施形態では、Loran信号のピークパワー要件を他の手法と同様に維持することができ、平均パワーを大幅に増大させることによって、他の手法と比較して信号をさらにロバストにして大気雑音を克服することができる。
【0036】
いくつかの手法のチャープレーダと異なり、本開示の1つまたは複数の実施形態は、Loranパルスの新たな形状を作ったり、または「側波帯」振幅を低減したりはしない。さらに、本開示の受信される上空波信号と地上波信号を区別する能力は、分散フィルタの使用による影響を受けない。いくつかの実施形態では、フィルタリングは伝播経路を含めて全て線形であるので、フィルタの順番は問題にならない。いくつかの実施形態では、Loranパルスを分散させ、次いでそれらを伝播経路(別の線形フィルタ)に通し、次いで受信機においてそれらを分散解除フィルタ(すなわち逆フィルタ)に通すことは、分散フィルタ、分散解除フィルタ、および伝播経路の配列を並べ替えたものと等価である。いくつかの実施形態では、分散解除フィルタとカスケード接続された分散フィルタはLoranパルス形状を保存し、地上波を上空波と区別する能力を含めてLoranと等価である。いくつかの実施形態では、受信信号が分散解除されると、信号処理を行うLoran受信機が使用され得る。本開示の1つまたは複数の実施形態は、分散フィルタおよびその逆フィルタ、または特定の信号についての送信機のピークパワー要件を最小限に抑えるフィルタ対の大きなセットを含む。いくつかの実施形態では、分散フィルタは、分散フィルタリングを実行するように構成される。いくつかの実施形態では、分散フィルタは、デジタル信号処理によって実行される。いくつかの実施形態では、デジタル信号処理は、過去のアナログ的方法と比較してはるかに安価であり、大量生産のLoran受信機で実際に実施することができる。いくつかの実施形態では、ピークパワーを最小限に抑えることにより、アンテナ電圧を最小限に抑える。いくつかの実施形態では、電気的に短いアンテナでの低周波数では、所与のアンテナのパワーは、通常はアンテナ電圧によって制限される。いくつかの実施形態では、アンテナ電圧が低減された場合には、低いタワーが使用され、送信機サイトに必要とされる土地の大きさも対応して小さくなる。いくつかの実施形態では、分散信号は、Loran信号の暗号化または選択的可用性のために使用される。いくつかの実施形態では、平均パワーを増大させることにより、十分な信号対雑音比(SNR)の改善が得られ、Loranデータチャネル(LDC)の通信時間が長くなる。いくつかの実施形態では、分散フィルタは、平坦な振幅応答を有する。いくつかの実施形態では、平坦な振幅応答とは、送信信号のスペクトル形状が、分散フィルタがない場合と同じであることを意味する。いくつかの実施形態では、送信信号のスペクトル形状が不変であるので、分散Loran信号は、Loranの既存の割当と互換性があり、Loran信号の「ヘイスタック」スペクトル形状が保持されて、送信機からのより大きな電流(または電圧)を使用するように構成されないというさらなる利点を有する。電気的に短いアンテナをLoranに使用することができ、その結果、アンテナ整合ネットワークにより側波帯周波数におけるリアクタンス性インピーダンスが送信機に与えられることになる。Loran信号のスペクトルがさらに矩形に変化した場合には、より多くのパワーがチャネル中心から放射され、送信機の出力電流(または電圧)要件は、同じ放射パワーでも増大することになる。送信機の負荷インピーダンスがリアクタンス性である周波数でより多くのパワーが放射されると、放射されるパワーは増加しないが、より多くの電流(または電圧)が送信機に必要とされる。送信機がより多くの電流または電圧を生み出すかどうかは、使用されるアンテナ整合ネットワークのタイプによって決まる。いくつかの実施形態では、送信信号の同じスペクトル形状を保持することの少なくとも2つの利点は、(1)既存の割当との互換性、および(2)より大きなパワーを放射する能力である。
【0037】
図1Aは、いくつかの実施形態による送信機100Aを示すブロック図である。
【0038】
送信機100Aは、放射または送信信号TXを生成して送信するように構成される。いくつかの実施形態では、放射または送信信号TXは、Loran信号である。いくつかの実施形態では、送信機100Aは、分散型Loran送信機である。
【0039】
送信機100Aは、Loranパルスまたは信号LPOのセットを生成するように構成されたLoranパルス生成器102を含む。
【0040】
送信機100Aは、Loranパルス生成器102に結合された、Loran信号LPOのセットのLoran信号に応じた分散信号DFOを生成するように構成された分散フィルタ104をさらに含む。分散信号DFOは、Loran信号と比較して時間的に分散している。
【0041】
いくつかの実施形態では、送信機100Aにおいて、パルス分散は、Loran信号を分散フィルタ104(例えばオールパスフィルタ)に通すことによって実施され、分散フィルタ104は、短パルスを分散してさらに持続時間の長い信号にし、ピークパワーを低減する効果を有する。
【0042】
送信機100Aは、分散フィルタ104に結合された、分散信号DFOに応じた等化分散信号DFOEを生成するように構成されたイコライザ106をさらに含む。いくつかの実施形態では、イコライザ106は、リニアイコライザである。イコライザ106は、アンテナ112のシステム応答(例えば線形歪み)を補正するように構成される。等化分散信号DFOEは、分散信号DFOを等化したものである。いくつかの実施形態では、等化分散信号DFOEは、アンテナ112のアンテナ電流がLoran設計要件を満たすように等化される。いくつかの実施形態では、等化分散信号DFOEは、放射信号TXがLoran設計要件を満たすように等化される。
【0043】
イコライザ106は、分散フィルタ104と電力増幅器108の間にある。いくつかの実施形態では、イコライザ106は、図1Bに示すように、分散フィルタ104とLoranパルス生成器102の間にある。
【0044】
送信機100Aは、イコライザ106に結合された、等化分散信号DFOEに応じた増幅信号DFAを生成するように構成された電力増幅器108をさらに含む。増幅信号DFAは、等化分散信号DFOEを増幅したものである。電力増幅器108は、イコライザ106とアンテナチューナ110の間にある。
【0045】
送信機100Aは、電力増幅器108に結合された、増幅信号DFAに応じた同調信号POutを生成するように構成されたアンテナチューナ110をさらに含む。同調信号POutは、増幅信号DFAを同調したものである。
【0046】
送信機100Aは、アンテナチューナに結合された、同調信号POutに応じた送信信号TXを放射するように構成されたアンテナ112をさらに含む。いくつかの実施形態では、送信または放射信号TX(例えばアンテナ112から出力される)は、分散された理想的な波形に対応する。
【0047】
いくつかの実施形態では、送信機信号(例えば信号DFA)または送信機出力電圧(例えば電力増幅器108から出力される)は、送信または放射信号TXと異なる。いくつかの実施形態では、送信機信号(例えば信号DFA)は、送信または放射信号TXがアンテナシステム応答を占めるように等化を含む。いくつかの実施形態では、電力増幅器108の送信機出力電圧(例えば信号DFA)は、アンテナ112からの放射信号TXと異なる。
【0048】
図1Bは、いくつかの実施形態による送信機100Bを示すブロック図である。
【0049】
いくつかの実施形態では、送信機100Bは、分散型Loran送信機である。
【0050】
送信機100Bは、図1Aの送信機100Aの変形形態であるので、同様の詳細な説明は省略する。図1Aの送信機100Aと比較すると、送信機100Bのイコライザ106は、分散フィルタ104とLoranパルス生成器102の間にあり、したがって、同様の詳細な説明は省略する。
【0051】
イコライザ106は、分散フィルタ104とLoranパルス生成器102の間にある。イコライザ106は、Loranパルス生成器102の出力および分散フィルタ104の入力に結合される。
【0052】
分散フィルタ104は、イコライザ106の出力および電力増幅器108の入力に結合される。
【0053】
電力増幅器108は、分散フィルタ104に結合される。電力増幅器108は、分散フィルタ104とアンテナチューナ110の間にある。
【0054】
イコライザ106は、Loranパルス信号LPOに応じた等化パルス信号DFOEを生成するように構成される。分散フィルタ104は、等化パルス信号DFOEに応じた分散Loran信号DFOを生成するように構成される。電力増幅器108は、分散Loran信号DFOに応じた増幅信号DFAを生成するように構成される。
【0055】
図2は、いくつかの実施形態による受信機200を示すブロック図である。
【0056】
いくつかの実施形態では、受信機200は、分散型Loran受信機である。
【0057】
受信機200は、受信信号RXを受信して復調するように構成される。受信機200において、受信信号RXは、送信機200からのパルス分散を除去することによってLoranパルス形状を復元する相補ネットワークに通される。これらの実施形態では、Loran信号に分散を追加して除去するプロセス全体が線形である。いくつかの実施形態では、伝播も線形である。
【0058】
受信機200は、受信信号RXを受信し、信号Pinを生成するように構成されたアンテナ202を含む。受信信号RXは、図1の送信信号TXに対応する。
【0059】
受信機200は、アンテナ202に結合された分散解除フィルタ204をさらに含む。分散解除フィルタ204は、受信アンテナ202とLoran受信機206の間に結合される。分散解除フィルタ204は、信号Pinに応じた分散解除パルス信号LPINを生成するように構成される。いくつかの実施形態では、分散解除パルス信号LPINは、分散していないLoran信号のセットに対応する。
【0060】
いくつかの実施形態では、分散解除フィルタ204は、分散Loran信号(例えばPin)のセットから分散を除去するように構成され、Loran信号(例えばLPIN)のセットを生成または復元する。いくつかの実施形態では、Loran信号(例えばLPIN)のセットは、他の手法のLoran信号と同様である。いくつかの実施形態では、分散解除フィルタ204は、開発およびシステム試験に使用可能であり、分散解除LoranパルスLPINによって他の手法のLoran受信機を駆動するように構成される。
【0061】
いくつかの実施形態では、分散解除フィルタ204の出力は、復元された高振幅Loranパルスを出力するように構成される。いくつかの実施形態では、他の手法の受信機技術を再利用し、この分散解除フィルタ204を用いることによって最新化することができる。
【0062】
いくつかの実施形態では、送信機100A~100Bの分散フィルタ104は、Loran信号に分散を導入するように構成され、受信機200の分散解除フィルタ204は、Loran信号から分散(分散フィルタ104によって以前に追加された分散)を除去するように構成されるので、分散フィルタ104と分散解除フィルタ204とは、相補的に動作するように構成される。
【0063】
分散解除パルス信号LPINの例は、以下で図11A図11Bに波形1100A~1100Bとして示す。
【0064】
受信機200は、分散解除フィルタ204に結合されたLoran受信機206をさらに含む。Loran受信機206は、分散解除パルス信号LPINに応じた出力信号LSを生成するように構成される。Loran受信機206は、分散解除パルス信号LPIN(例えばLoran信号)を復調するように構成される。いくつかの実施形態では、出力信号LSは、他の手法のLoran受信機の出力信号に対応する。
【0065】
いくつかの実施形態では、Loran受信機206は、他の手法と同様である。いくつかの実施形態では、分散型Loran受信機206の下流側部分は、他の手法のLoran受信機と同じであり、30マイクロ秒などの第4のRFサイクルの開始時にゼロ交差を探索するように構成される。
【0066】
いくつかの実施形態では、分散解除フィルタ204は、Loran受信機206から分離可能である。いくつかの実施形態では、分散解除フィルタ204とLoran受信機206とは、互いに分離可能な構成要素である。いくつかの実施形態では、分散解除フィルタ204とLoran受信機206とは、1つのデバイスに一体化される。
【0067】
いくつかの実施形態では、Loranパルス群を(例えば分散フィルタ104によって)分散させ、それを送信し、それを受信し、分散を(例えば分散解除フィルタ204によって)除去することは、ピークパワーがはるかに低いことを除けば、他の手法のLoranパルス群を送信して受信することと等価である。いくつかの実施形態では、他の手法のLoranサービスの技術を、本開示の1つまたは複数の実施形態と共に使用可能であり、それにより、ソリッドステート送信機により受信信号RXを他の手法より有意に強くすることができる。いくつかの実施形態では、分散Loran信号のパワー密度スペクトルは、他の手法のLoran信号と同様であり、それにより、他の手法と比較してスペクトル形状に変化を生じず、100kHzでの割当構造に変化を生じないようにする。
【0068】
いくつかの実施形態では、Loran信号が強くなると、所望のレベルの精度を得るために必要とされるパルス平均化は少なくなる。例えば、いくつかの実施形態では、使用されるパルスが少ない場合には、より高いデータレートでのLoranデータチャネル(LDC)の伝送に利用可能な通信時間が長くなり、それにより、他のリソースにより多くのチャネル利用が見込むことができる。
【0069】
Loranデータチャネル伝送は、比較的低いデータスループット(GRI当たり5ビットなど)で他の手法と共に使用可能である。これらの他の手法は、様々な方法で、ただし通常はいくつかの異なる形態の位相変調によってLoranパルスのうちの1つまたは複数を変調することによって作動するシステムを有する。これらの他の手法は、様々な方式を使用してLoran信号のナビゲーションおよびタイミングの側面と共存し、平均化に依拠してLDC変調を打ち消す。ただし、これらの他の手法は、LDC容量の増大を必要とし、既存のLDC変調方法と共に利用することができない、向上させたLoran精度を有していない。
【0070】
本開示の1つまたは複数の実施形態は、高められたLoran精度を有する。本開示の1つまたは複数の実施形態は、効果的により高いパワーのパルスを同じアンテナ電圧で送信することを可能にし、これにより、Loranのナビゲーションおよびタイミングパルスから分離している新たなLDC信号に、より長い「通信時間」を割り当てることを可能にする。いくつかの実施形態では、別個のLDC信号を、Loranのナビゲーションおよびタイミングパルスとは異なる変調フォーマット(BPSKなど)と共に使用することによって、本開示の1つまたは複数の実施形態がより高いデータ容量を有するようにする。
【0071】
図3は、いくつかの実施形態による分散フィルタ300を示すブロック図である。
【0072】
分散フィルタ300は、図1の分散フィルタ104または図2の分散解除フィルタ204の実施形態であるので、同様の詳細な説明は省略する。
【0073】
いくつかの実施形態では、分散フィルタ300は、図1A図1Bの送信機100A~100Bの分散フィルタ104として使用可能である。いくつかの実施形態では、図3の分散フィルタ300は、図2の受信機200内の分散解除フィルタ204として使用可能である。
【0074】
分散フィルタ300は、信号IN1を受信し、信号OUT1を生成するように構成される。
【0075】
分散フィルタ300は、Loranパルス信号(例えばIN1)を受信するように構成されたヒルベルト変換デバイス302を含む。図3のLoranパルス信号IN1は、図1AのLoran信号LPOのセット、図1Aの等化信号DFOE、あるいは図2のLoran信号LPOのセットまたは信号Pinに対応する。
【0076】
ヒルベルト変換デバイス302は、信号HTを生成するように構成される。信号HTは、信号I(図示せず)および信号Q(図示せず)を含む。いくつかの実施形態では、信号Qは、位相90度だけ信号Iからずれている。他の位相値も、本開示の範囲内である。
【0077】
いくつかの実施形態では、分散フィルタへの入力信号IN1は、実信号である。実信号は、ヒルベルト変換デバイス302によって複素または解析信号に変換され、それによりヒルベルト変換波形(例えば信号HT)を生成する。いくつかの実施形態では、ヒルベルト変換後は、分散フィルタ300による後続の処理は、I/Q信号対であるヒルベルト変換信号に対して実行される。
【0078】
入力信号IN1の例は、以下で図7A図7Cに波形700A~700Cとして示す。信号HTの例は、以下で図8Aに波形800Aとして示す。
【0079】
分散フィルタ300は、ヒルベルト変換デバイス302および搬送波生成器306に結合された乗算器304をさらに含む。
【0080】
乗算器304は、少なくとも搬送波信号CS1および信号HTに応じた周波数シフト信号HTBBを生成するように構成される。いくつかの実施形態では、乗算器304は、少なくとも搬送波信号CS1、信号I、および信号Qに応じて周波数シフト信号HTBBを生成するように構成される。いくつかの実施形態では、周波数シフト信号HTBBは、ベースバンドにシフトされた、または0Hzの中心周波数を有する信号HTに対応する。いくつかの実施形態では、搬送波信号CS1の周波数は、100kHzである。いくつかの実施形態では、搬送波信号CS1は、100kHzの搬送周波数を有する複素シヌソイド(例えば正弦波および余弦波)である。搬送波信号CS1の他の搬送周波数も、本開示の範囲内である。
【0081】
いくつかの実施形態では、ヒルベルト変換後に、複素信号(例えば信号HT)は、0ヘルツの周波数にダウンコンバートされる。いくつかの実施形態では、複素信号(例えば信号HT)は、実質的に0ヘルツに等しい周波数を有する信号(例えば周波数シフト信号HTBB)にダウンコンバートされる。例えば、いくつかの実施形態では、複素信号(例えば信号HT)は、解析入力信号に100kHzの複素シヌソイド(正弦波および余弦波)を乗算することによってダウンコンバートされる。いくつかの実施形態では、「実質的に」とは、基準からプラスマイナス5%変化するものを含む。
【0082】
周波数シフト信号HTBBの例は、以下で図8Bに波形800Bとして示す。
【0083】
搬送波生成器306は、乗算器304および回路316に結合される。
【0084】
搬送波生成器306は、搬送波信号CS1を生成するように構成される。いくつかの実施形態では、搬送波信号CS1は、100kHzのシヌソイド(例えば正弦波および余弦波)である。いくつかの実施形態では、搬送波信号CS1の実数成分および複素数成分は、同様の基本周波数を有する連続波信号である。
【0085】
分散フィルタ300は、乗算器304に結合されたデシメータ308をさらに含む。
【0086】
デシメータ308は、周波数シフト信号HTBBに応じてダウンサンプリング信号DSを生成するように構成される。デシメータ308は、周波数シフト信号HTBBのサンプリングレートを低減または減少させるように構成される。ダウンサンプリング信号DSは、同じ持続時間について周波数シフト信号HTBBより少ないサンプルを有する。
【0087】
いくつかの実施形態では、乗算器304によるダウンコンバージョンに続いて、デシメータ308によってLoran信号のサンプリングレートはデシメートされる。いくつかの実施形態では、デシメートされるとは、Loran信号のサンプリングレートが低減されることを意味する。いくつかの実施形態では、デシメータは、信号のサンプリングレートを低減する。
【0088】
分散フィルタ300は、デシメータ308に結合されたフィルタ310をさらに含む。フィルタ310は、ダウンサンプリング信号DSに応じてフィルタリング済み段サンプリング信号FSを生成するように構成される。フィルタリング済みダウンサンプリング信号FSの例は、以下で図10Bに波形1000Bとして示す。
【0089】
いくつかの実施形態では、分散フィルタ300は、送信機100A~100Bに分散フィルタ104として含まれ、フィルタ310は、Loran信号に分散を導入するように構成される。いくつかの実施形態では、分散フィルタ300は、受信機200に分散解除フィルタ204として含まれ、フィルタ310は、Loran信号から分散(以前に分散フィルタ104によって追加された分散)を除去するように構成され、したがって、分散フィルタ104と分散解除フィルタ204とは、相補的に動作するように構成される。
【0090】
いくつかの実施形態では、フィルタ310は、オールパスフィルタを含む。いくつかの実施形態では、フィルタ310の振幅関数は、実質的に平坦であり、Loran信号のスペクトル形状を乱さないようにユニティゲインを有する。いくつかの実施形態では、フィルタ310の群遅延および位相関数は、Loran信号のピーク包絡線レベルを低減するように構成される。
【0091】
いくつかの実施形態では、フィルタ310は、複素フィルタである。いくつかの実施形態では、フィルタ310は、少なくとも有限インパルス応答(FIR)フィルタ、無限インパルス応答(IIR)フィルタ、または高速フーリエ変換(FFT)フィルタを含む。他のフィルタタイプも、本開示の範囲内である。
【0092】
分散フィルタ300は、フィルタ310に結合された補間器312をさらに含む。補間器312は、フィルタリング済みダウンサンプリング信号FSに応じてアップサンプリング信号ISを生成するように構成される。
【0093】
いくつかの実施形態では、フィルタリングが完了した後で、フィルタリング済み信号(例えばフィルタリング済みダウンサンプリング信号FS)は、補間器312によって補間されて元のサンプリングレートに戻される。
【0094】
分散フィルタ300は、補間器312および回路316に結合された乗算器314をさらに含む。乗算器314は、少なくともアップサンプリング信号ISおよび搬送波信号CS1*に応じて信号OUT1を生成するように構成される。いくつかの実施形態では、搬送波信号CS1*は、搬送波信号CS1の共役である。いくつかの実施形態では、図3の信号OUT1は、分散信号であり、図1A図1Bの分散信号DFOに対応する。いくつかの実施形態では、図3の信号OUT1は、分散解除信号であり、図2の分散解除LoranパルスLPINに対応する。
【0095】
いくつかの実施形態では、補間の後で、ベースバンド信号(例えばFS)に複素シヌソイドの共役(例えばCS1*)が乗算され、それにより中心周波数を元の100kHzの周波数にシフトさせて戻す。いくつかの実施形態では、信号(例えばOUT)は、ベースバンド信号に複素シヌソイドの共役が乗算された後も複素数のままである。いくつかの実施形態では、信号の虚数成分または直交成分が破棄され、信号の実数部が、下流側で例えば他のデバイスによって使用される。いくつかの実施形態では、この信号は、以下の図10Dに波形1000Dとして示すように、100kHzのRFに変換されて戻される。いくつかの実施形態では、他の中心周波数の値も、本開示の範囲内である。
【0096】
回路316は、搬送波生成器306および乗算器314に結合される。回路316は、搬送波信号CS1*を生成するように構成される。いくつかの実施形態では、回路316は、搬送波信号CS1の虚数部分の符号をシフトすることによって搬送波信号CS1の共役を生成するように構成される。いくつかの実施形態では、回路316は、搬送波信号CS1の共役化を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路316は、搬送波信号CS1の共役化を実行するように構成された図16のプロセッサ1602などのDSPである。
【0097】
いくつかの実施形態では、図3の分散フィルタ300は、Loranパルスの各セット毎に固定されたフィルタ係数を有する。いくつかの実施形態では、図3の分散フィルタ300は、Loranパルスの各セット毎に時間とともに変化するフィルタ係数を有する。いくつかの実施形態では、フィルタ係数は、パルス群にわたって時間変化する。いくつかの実施形態では、この時間変化するフィルタ係数を、データを暗号化する方法または選択的可用性として使用することができる。いくつかの実施形態では、時間変化するフィルタ係数は、位相変調を含む変調ストリームであり、したがってLoran信号のスペクトルを改変する。
【0098】
分散フィルタ300の他の構成、構成要素の数、または構成要素の順序も、本開示の範囲内である。例えば、いくつかの実施形態では、分散フィルタ300は、ヒルベルト変換デバイス302、乗算器304、搬送波生成器306、デシメータ308、補間器312、乗算器314、および回路316を含まない。換言すれば、これらの実施形態では、分散フィルタ300は、信号IN1をフィルタリングするように構成され、ここで、信号IN1は、ベースバンドにダウンコンバートされ、ダウンサンプリングされ、その後にフィルタ310によるフィルタリングの後でさらにアップサンプリングされ、アップコンバートされていない実信号(例えば複素数でない)である。
【0099】
図4は、いくつかの実施形態によるデシメータ400を示すブロック図である。
【0100】
デシメータ400は、図3のデシメータ308の実施形態であるので、同様の詳細な説明は省略する。いくつかの実施形態では、デシメータ400は、図3の分散フィルタ300中のデシメータ308として使用可能である。
【0101】
デシメータ400は、信号IN2を受信し、信号OUT2を生成するように構成される。図4の信号IN2は、図2の周波数シフト信号HTBBに対応する。図4の信号OUT2は、図2のダウンサンプリング信号DSに対応する。
【0102】
デシメータ400は、ローパスフィルタ402を含む。ローパスフィルタ402は、図3の乗算器304に結合される。ローパスフィルタ402は、周波数シフト信号HTBBに応じてフィルタリング済み信号FIS1を生成するように構成される。周波数シフト信号HTBBは、サンプル周波数FS1を有する。フィルタリング済み信号FIS1も、このサンプル周波数FS1を有する。
【0103】
デシメータ400は、ローパスフィルタ402の出力に結合された回路404をさらに含む。回路404の出力は、図3のフィルタ310の入力に結合される。回路404は、フィルタリング済み信号FIS1のN個のサンプルのうちN-1個のサンプルを削除することによって、ダウンサンプリング信号DSを生成するように構成される。いくつかの実施形態では、ダウンサンプリング信号DSは、サンプル周波数FS1をN個のサンプルで割った値(例えば、FS1/N)に等しいサンプル周波数FS2を有する。ここで、Nは整数である。
【0104】
いくつかの実施形態では、サンプリングレートFD2は、フィルタリング済み信号FIS1の帯域幅より大きい。いくつかの実施形態では、Loran受信機200の帯域幅は、少なくとも30kHzであり、デシメート済み信号OUT2は、十分なヘッドルームを提供するために、少なくとも100kHz帯域幅信号(50から150kHz)を有する。以下に記載するシミュレーションのうちの1つまたは複数では、125kHzのサンプリングレートを、ゼロ周波数シフトLoran信号に使用する。いくつかの実施形態では、他のサンプリングレートも、本開示の範囲内である。
【0105】
いくつかの実施形態では、ローパスフィルタ402は、出力サンプリングレート(例えばFS2)におけるエイリアシングを防止するように構成される。いくつかの実施形態では、回路404は、廃棄機能を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路404は、廃棄機能を実行するように構成された図16のプロセッサ1602などのDSPである。
【0106】
いくつかの実施形態では、廃棄機能は、未使用のサンプルを廃棄する。いくつかの実施形態では、例えば、デシメーション比が8である場合には、8個毎に1つのサンプルがデシメータ400の出力に現れ、残りの7個のサンプルは廃棄機能(例えば回路404)によって廃棄される。いくつかの実施形態では、効率的なデシメータは、未使用の出力サンプルを計算しない。
【0107】
いくつかの実施形態では、デシメータ400のサンプリングレートが低減されるにつれて、フィルタ310中のフィルタ項の数も比例して低減される。したがって、デシメータ400は、分散フィルタ300のデジタル信号処理リソースを効率的に使用するように構成される。いくつかの実施形態では、逓倍比もデシメーション比の二乗によって改善される。
【0108】
デシメータ400の他の構成、構成要素の数、または構成要素の順序も、本開示の範囲内である。
【0109】
図5は、いくつかの実施形態による補間器500を示すブロック図である。
【0110】
補間器500は、図3の補間器312の実施形態であるので、同様の詳細な説明は省略する。いくつかの実施形態では、補間器500は、図3の分散フィルタ300中の補間器312として使用可能である。
【0111】
補間器500は、信号IN3を受信し、信号OUT3を生成するように構成される。図5の信号IN3は、図2のフィルタリング済みダウンサンプリング信号FSに対応する。図5の信号OUT3は、図2のアップサンプリング信号ISに対応する。
【0112】
補間器500は、回路502を含む。いくつかの実施形態では、回路502の入力は、図3のフィルタ310の出力に結合される。回路502は、フィルタリング済みダウンサンプリング信号FSにN-1個のゼロを追加することによって信号FIS2を生成するように構成される。いくつかの実施形態では、信号FIS2は、サンプル周波数FS1を有する。
【0113】
いくつかの実施形態では、回路502は、フィルタリング済みダウンサンプリング信号FSをサンプリングレートFS2で補間して元のサンプリングレートFS1に戻すように構成される。いくつかの実施形態では、回路502は、フィルタリング済みダウンサンプリング信号FSにゼロ詰めする、またはゼロ値サンプルを挿入することによって、サンプリングレートを信号FIS2のサンプリングレートFS2に増大させるように構成される。いくつかの実施形態では、サンプリングレートを増大させるためのゼロ値サンプルの挿入は、実質上は変調プロセスである。
【0114】
いくつかの実施形態では、回路502は、時間領域でゼロ詰め機能を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路502は、時間領域でゼロ詰め機能を実行するように構成された図16のプロセッサ1602などのDSPである。
【0115】
補間器500は、ローパスフィルタ504をさらに含む。ローパスフィルタ504の入力は、回路502の出力に結合される。ローパスフィルタ504の出力は、図3の乗算器314に結合される。ローパスフィルタ504は、信号FIS2に応答しアップサンプリング信号ISを生成するように構成される。
【0116】
いくつかの実施形態では、回路502によって実行されるゼロ挿入プロセスの後に、FS1/Nの高調波を中心とする望ましくない反復スペクトルを除去するローパスフィルタ504によって実行されるローパスフィルタリング動作が続く。
【0117】
補間器500の他の構成、構成要素の数、または構成要素の順序も、本開示の範囲内である。
【0118】
図6Aは、いくつかの実施形態によるFIRフィルタ600Aを示すブロック図である。
【0119】
FIRフィルタ600Aは、図3のフィルタ310の実施形態であるので、同様の詳細な説明は省略する。いくつかの実施形態では、FIRフィルタ600Aは、図3の分散フィルタ300中のフィルタ310として使用可能である。
【0120】
FIRフィルタ600Aは、ダウンサンプリング信号DS(図3に示す)のx[n]個の値を受信し、フィルタリング済みダウンサンプリング信号FS(図3に示す)のy[n]個の値を生成するように構成される。FIRフィルタ600Aは、次数Nであり、ここでNは整数である。
【0121】
FIRフィルタ600Aは、互いに直列に結合されたN個の遅延要素602(1)、602(2)、…、602(N)(以下「遅延要素602のセット」と呼ぶ)を含む。
【0122】
FIRフィルタ600Aは、N+1個の乗算器要素604(0)、604(1)、604(2)、…、604(N)(以下「乗算器要素604のセット」と呼ぶ)をさらに含む。各乗算要素は、対応する乗算係数b、b、…、bを有する。いくつかの実施形態では、各乗算係数b、b、…、bは、別の乗算係数と同じである。いくつかの実施形態では、少なくとも1つの乗算係数b、b、…、bは、別の乗算係数と異なる。いくつかの実施形態では、少なくとも1つまたは複数の乗算係数b、b、…bは、時間的に変化する、または動的である。
【0123】
FIRフィルタ600Aは、互いに直列に結合されたN個の加算要素606(1)、606(2)、…、606(N)(以下「加算要素606のセット」と呼ぶ)をさらに含む。
【0124】
遅延要素602のセットと、乗算器要素604のセットと、加算要素606のセットとは、互いに結合されて、出力信号y[n]を生成する。
【0125】
いくつかの実施形態では、少なくともx[n]の値、bの値、またはy[n]の値は、複素数である。いくつかの実施形態では、FIRフィルタ600Aは、複素フィルタである。
【0126】
FIRフィルタ600Aの他のフィルタタイプも、本開示の範囲内である。例えば、いくつかの実施形態では、FIRフィルタ600Aは、少なくともIIRフィルタまたはFFTフィルタを含む。
【0127】
図6Bは、いくつかの実施形態によるIIRフィルタ600Bを示すブロック図である。
【0128】
IIRフィルタ600Bは、図3のフィルタ310の実施形態であるので、同様の詳細な説明は省略する。いくつかの実施形態では、IIRフィルタ600Bは、図3の分散フィルタ300中のフィルタ310として使用可能である。
【0129】
IIRフィルタ600Bは、ダウンサンプリング信号DS(図3に示す)のx[k]個の値を受信し、フィルタリング済みダウンサンプリング信号FS(図3に示す)のy[k]個の値を生成するように構成される。
【0130】
IIRフィルタ600Bは、互いに直列に結合されたP個の変換要素620(1)、620(2)、…、620(P)(以下「変換要素620のセット」と呼ぶ)を含む。
【0131】
IIRフィルタ600Bは、P+1個の乗算器要素622(0)、622(1)、622(2)、…、622(P)(以下「乗算器要素622のセット」と呼ぶ)をさらに含む。各乗算要素は、対応する乗算係数b(0)、b(1)、…、b(P)を有する。いくつかの実施形態では、各乗算係数b(0)、b(1)、…、b(P)は、別の乗算係数と同じである。いくつかの実施形態では、少なくとも1つの乗算係数b(0)、b(1)、…、b(P)は、別の乗算係数と異なる。いくつかの実施形態では、少なくとも1つまたは複数の乗算係数b(0)、b(1)、…、b(P)は、時間的に変化する、または動的である。
【0132】
IIRフィルタ600Bは、互いに直列に結合されたP個の加算要素624(1)、624(2)、…、624(P)(以下「加算要素624のセット」と呼ぶ)をさらに含む。
【0133】
IIRフィルタ600Bは、互いに直列に結合されたQ個の加算要素634(1)、634(2)、…、634(Q)(以下「加算要素634のセット」と呼ぶ)をさらに含む。いくつかの実施形態では、整数Pは、整数Qに等しい。いくつかの実施形態では、整数Pは、整数Qと異なる。
【0134】
IIRフィルタ600Bは、Q+1個の乗算器要素632(0)、632(1)、632(2)、…、632(Q)(以下「乗算器要素632のセット」と呼ぶ)をさらに含む。各乗算要素は、対応する乗算係数b(0)、b(1)、…、b(Q)を有する。いくつかの実施形態では、各乗算係数b(0)、b(1)、…、b(Q)は、別の乗算係数と同じである。いくつかの実施形態では、少なくとも1つの乗算係数b(0)、b(1)、…、b(Q)は、別の乗算係数と異なる。いくつかの実施形態では、少なくとも1つまたは複数の乗算係数b(0)、b(1)、…、b(Q)は、時間的に変化する、または動的である。
【0135】
IIRフィルタ600Bは、互いに直列に結合されたQ個の変換要素630(1)、630(2)、…、630(Q)(以下「変換要素630のセット」と呼ぶ)を含む。
【0136】
変換要素620および630のセットと、乗算器要素622および632のセットと、加算要素624および634のセットとは、互いに結合されて、出力信号y[k]を生成する。
【0137】
いくつかの実施形態では、少なくともx[k]の値、係数a、係数b、またはy[k]の値は、複素数である。いくつかの実施形態では、IIRフィルタ600Bは、複素フィルタである。
【0138】
いくつかの実施形態では、IIRフィルタ600Bは、実数値ではなく全て複素数値である係数、入力データ、および出力データを含む。いくつかの実施形態では、IIRフィルタ600Bの少なくとも係数、入力データ、および出力データは、複素数値である。
【0139】
IIRフィルタ600Bの他のフィルタタイプも、本開示の範囲内である。例えば、IIRフィルタ600Bは、インパルス不変設計として示されているが、いくつかの実施形態では、IIRフィルタ600Bは、少なくとも双一次変換設計またはステップ不変設計など、インパルス不変以外のフィルタ設計を含む。いくつかの実施形態では、IIRフィルタ600Bは、少なくともFIRフィルタまたはFETフィルタを含む。
【0140】
図6Cは、いくつかの実施形態によるFFTフィルタ600Cを示すブロック図である。
【0141】
FFTフィルタ600Cは、図3のフィルタ310の実施形態であるので、同様の詳細な説明は省略する。いくつかの実施形態では、FFTフィルタ600Cは、図3の分散フィルタ300中のフィルタ310として使用可能である。
【0142】
FFTフィルタ600Cは、信号IN4を受信して、信号OUT4を生成するように構成される。
【0143】
FFTフィルタ600Cは、信号IN4に対してFFTを実行することによってFFT信号F1を生成するように構成される。いくつかの実施形態では、信号IN4は、ダウンサンプリング信号DSに対応する。いくつかの実施形態では、回路680は、信号IN4に対してFFTを実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路680は、信号IN4に対してFFTを実行するように構成された図16のプロセッサ1602などのDSPである。
【0144】
FFTフィルタ600Cは、回路680の出力に結合された回路682をさらに含む。回路682は、FFT信号F1のサンプルに重み付きフィルタ係数を追加することによって重み付きFFT信号F2を生成するように構成される。いくつかの実施形態では、回路680は、FFT信号F1のサンプルに重み付きフィルタ係数を追加するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路680は、FFT信号F1のサンプルに重み付きフィルタ係数を追加するように構成された図16のプロセッサ1602などのDSPである。
【0145】
FFTフィルタ600Cは、回路682の出力に結合された回路684をさらに含む。回路684は、重み付きFFT信号F2に対して逆FFTを実行することによって信号OUT4を生成するように構成される。いくつかの実施形態では、信号OUT4は、フィルタリング済みダウンサンプリング信号FSに対応する。いくつかの実施形態では、回路684は、重み付きFFT信号F2に対して逆FFTを実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路684は、重み付きFFT信号F2に対して逆FFTを実行するように構成された図16のプロセッサ1602などのDSPである。
【0146】
いくつかの実施形態では、図6CのFFTフィルタ600Cの動作は、回路680が複素入力ベースバンド信号(例えば信号IN4)の高速フーリエ変換(または離散フーリエ変換)を決定することを含む。いくつかの実施形態では、回路680によって実行されるFFTまたはDFTのアルゴリズムは、複合アルゴリズムである。その後、所望の周波数領域応答を得るために、回路682が、各フーリエ係数に所望の周波数領域係数を乗算する。その後、回路684が、逆FFTを実行して、信号F2を変換して時間領域に戻す。いくつかの実施形態では、フーリエ係数および周波数領域応答係数は両方とも、複素数値である。いくつかの実施形態では、FFTの代わりにDFTが実行される。いくつかの実施形態では、逆FFTの代わりに逆DFTが実行される。
【0147】
いくつかの実施形態では、FFTフィルタリングは、いくつかの理由から魅力的である。いくつかの実施形態では、第一に、Loran信号は、既に時間領域で「ウィンドウ化」されており、いくつかの離散した変調パルスを含み、前後に無駄時間がある。いくつかの実施形態では、この信号は、フーリエ目的では「繰返し的」とみなされ、繰返し境界点がゼロに設定される。いくつかの実施形態では、第二に、FFTフィルタリングは、大量の群遅延変化を可能にする。いくつかの実施形態では、FFTビン間の位相シフトは、最大で180度に設定される。いくつかの実施形態では、時間遅延
【数1】
と、したがって群遅延とは、FFTビンの隣接するセット間で大きな変化を有することがある。
【0148】
いくつかの実施形態では、上述の図6A図6B、および図6Cにおいて、FIRフィルタ600A、IIRフィルタ600B、またはFFTフィルタ600Cのフィルタ係数は、パルス群の持続時間にわたって一定である。いくつかの実施形態では、少なくとも図3のフィルタ310、FIRフィルタ600A、IIRフィルタ600B、またはFFTフィルタ600Cは時間変化し、上述の図6A図6B、および図6Cの各係数は、新たな入力サンプルがあるたびに変化する。いくつかの実施形態では、新たな入力サンプル毎の係数値の変化は、サンプル間で極端な量の位相および/または振幅の変調を引き起こさないように、比較的小さい。いくつかの実施形態では、時間変化するフィルタを使用することで、Loranスペクトル形状の破壊を最小限に抑え、したがって、サンプル間での係数値の適度な変化が実施される。
【0149】
FFTフィルタ600Cの他のフィルタタイプも、本開示の範囲内である。例えば、いくつかの実施形態では、FFTフィルタ600Cは、少なくともFIRフィルタまたはIIRフィルタを含む。
【0150】
図7Aは、いくつかの実施形態によるLoranパルス群を示す波形図700Aである。
【0151】
いくつかの実施形態では、図7Aの波形図700Aは、Loranパルス生成器102によって生成されるLoranパルス群であり、図1のLoran信号LPOのセットまたは図3の信号IN1に対応するので、同様の詳細な説明は省略する。
【0152】
波形図700Aは、x軸に沿って互いに離間した一連のLoranパルス702a、702b、…、702i(「パルス群信号702」と総称する)を含む。波形図700Aのx軸は、秒を単位とする時間スケールに対応し、波形図700Aのy軸は、Loranパルス群の正規化振幅に対応する。
【0153】
いくつかの実施形態では、図7Aの波形図700Aは、いくつかの手法のLoran送信機によって放射される理想的なLoran信号に対応する。いくつかの実施形態では、パルス群信号702は、主局によって送信される。いくつかの実施形態では、パルス群信号702は、Loran送信機によって生成される。いくつかの実施形態では、パルス群信号702は、他の手法で生成される。いくつかの実施形態では、パルス群信号702は、8個の等間隔のRFパルス(例えば702a、702b、…、702h)を含み、その後に孤立した9番目のパルス(例えば702i)が続くが、従信号は、8個のパルスのみを含む。いくつかの実施形態では、このパルス群信号のピーク電力対平均電力比は高く、パルス群702の各パルス間に有意な量の無駄時間があるのでさらに高くなる。
【0154】
図7Bは、いくつかの実施形態によるLoranパルス709を示す波形図700Bである。
【0155】
いくつかの実施形態では、図7Bの波形図700Bは、Loranパルス生成器102によって生成されるLoranパルス709を含み、図1のLoran信号LPOのセットまたは図3の信号IN1に対応するので、同様の詳細な説明は省略する。
【0156】
Loranパルス709は、図7Aのパルス群信号702のLoranパルス702a、702b、…、702iのうちの1つに対応し、例示のために拡大したものであるので、同様の詳細な説明は省略する。
【0157】
波形図700Bは、Loranパルス709を含む。Loranパルス709は、ある周波数で振動するRF波形710と、包絡線関数712とを含む。いくつかの実施形態では、RF波形710は、100kHzの周波数で振動する。他の周波数も、本開示の範囲内である。
【0158】
いくつかの実施形態では、Loranパルス709は、図1のLoranパルス生成器によって生成され、理想的なLoranパルスである。いくつかの実施形態では、図7BのLoranパルスは、理想的なLoranパルスである。いくつかの実施形態では、RF波形710および包絡線関数712の両方が、図7Bに示される。いくつかの実施形態では、Loranパルスは、割り当てられた帯域幅内に留まりながら、可能な限り速い立ち上がり時間(包絡線の立ち上がり縁部)を有する。
【0159】
図7Cは、いくつかの実施形態によるパルス群信号のRFパワー密度スペクトルを示す波形図700Cである。
【0160】
いくつかの実施形態では、波形図700Cは、波形700Aを周波数領域にしたものに対応するので、同様の詳細な説明は省略する。いくつかの実施形態では、図7Cの波形図700Cは、Loranパルス生成器102によって生成され、図1のLoran信号LPOのセットまたは図3の信号IN1に対応する。
【0161】
波形図700Cは、パルス群720のRFパワー密度を含む。波形図700Cのx軸は、ヘルツを単位とする周波数スケールに対応し、波形図700Cのy軸は、デシベルを単位とするLoranパルス群の振幅に対応する。
【0162】
いくつかの実施形態では、波形図700CのRFパワー密度スペクトルの占有帯域幅は20kHzであり、信号パワーの99%はこの占有帯域幅内に含まれる。いくつかの実施形態では、さらなる信号パワーは、この20kHz帯域幅の外側に位置しており、切り捨てるべきではない。いくつかの実施形態では、送信機、アンテナ、および受信機の帯域幅の少なくとも30kHzは、送信機100A~100Bの性能を最大限に高めるために使用される。
【0163】
送信機100A~100Bの他の構成、または波形700A~700Cの他の波形も、本開示の範囲内である。
【0164】
図8Aは、いくつかの実施形態によるヒルベルト変換デバイスの出力を示す波形図800Aである。
【0165】
いくつかの実施形態では、図8Aの波形図800Aは、ヒルベルト変換デバイス302によって生成されるヒルベルト変換Loranパルス809を含み、図3の信号HTに対応するので、同様の詳細な説明は省略する。
【0166】
いくつかの実施形態では、ヒルベルト変換Loranパルス809は、ヒルベルト変換デバイス302によってヒルベルト変換された後は、図7Aのパルス群信号702のLoranパルス702a、702b、…、702iのうちの1つに対応するので、同様の詳細な説明は省略する。
【0167】
波形図800Aは、ヒルベルト変換Loranパルス809を含む。ヒルベルト変換Loranパルス809は、実数部802a(例えばI)および虚数部804a(例えばQ)を含む。
【0168】
いくつかの実施形態では、ヒルベルト変換デバイス302の出力は、理想的なLoranパルスの出力であり、複素信号に対応する。いくつかの実施形態では、ヒルベルト変換信号809の実数部802aは、他の手法のLoranパルスと同様であり、ヒルベルト変換信号809の虚数部804aは、理想的な包絡線に90度だけシフトした位相を有する搬送波信号を乗算したものである。いくつかの実施形態では、搬送波信号は、90度以外の位相シフトを有する。
【0169】
図8Bは、いくつかの実施形態によるゼロ周波数にダウンコンバートされた後のヒルベルト変換信号を示す波形図800Bである。
【0170】
いくつかの実施形態では、図8Bの波形図800Bは、乗算器304によって生成されるベースバンドシフトLoranパルス819を含み、図3の周波数シフト信号HTBBに対応するので、同様の詳細な説明は省略する。
【0171】
いくつかの実施形態では、ベースバンドシフトLoranパルス819は、乗算器304によって周波数シフトされた後の図8Aのヒルベルト変換Loranパルス809に対応するので、同様の詳細な説明は省略する。
【0172】
波形図800Bは、ベースバンドシフトLoranパルス819を含む。ベースバンドシフトLoranパルス819は、実数部802b(例えばI)および虚数部804b(例えばQ)を含む。いくつかの実施形態では、図8Aのダウンコンバート信号の虚数部804bはゼロであり、やはりゼロである理想的なLoranパルスの直交RF成分に対応する。
【0173】
送信機100A~100Bまたは分散フィルタ300の他の構成、あるいは波形800A~800Bの他の波形も、本開示の範囲内である。
【0174】
図9は、いくつかの実施形態による分散フィルタの振幅応答および群遅延応答を示す波形図900である。
【0175】
いくつかの実施形態では、波形図900は、分散フィルタ104、分散解除フィルタ204、または分散フィルタ300の振幅周波数応答902および群遅延応答904であるので、同様の詳細な説明は省略する。
【0176】
いくつかの実施形態では、図9の分散フィルタの振幅応答902および群遅延応答904は、送信機100A~100Bまたは受信機200によってLoran信号を修正するために使用される。
【0177】
波形図900は、周波数応答振幅応答902および群遅延応答904を含む。振幅応答902および群遅延応答904は、分散フィルタの周波数応答とも呼ばれる。いくつかの実施形態では、振幅応答902は100kHzにわたって平坦であり、Loran信号より幅が広いことにより、側波帯振幅が保存されるようにし、これによりパワースペクトル密度は同じままになる。いくつかの実施形態では、振幅応答は他の周波数範囲にわたって平坦である。いくつかの実施形態では、群遅延904の傾きは、チャネルにわたって平坦である。いくつかの実施形態では、二乗余弦群遅延形状が適用され、下側の側波帯ではより小さな時間遅延が生じ、上側の側波帯ではより大きな遅延が生じる。いくつかの実施形態では、遅延変化は4.5ミリ秒である。いくつかの実施形態では、他の遅延変化も、本開示の範囲内である。
【0178】
いくつかの実施形態では、図9の分散フィルタの他の変形形態も、本開示の範囲内であり、これにより振幅応答902および群遅延応答904を変化させる。いくつかの実施形態では、群遅延904の形状は、奇対称性を有する。いくつかの実施形態では、群遅延904の変化は、増大し得る。いくつかの実施形態では、群遅延904の変化は、減少し得る。いくつかの実施形態では、群遅延904の形状は、異なる傾きを有し、それにより下側の側波帯で上側の側波帯よりも遅延を大きくするが、これは、図9に示すものとは逆となる。いくつかの実施形態では、二乗余弦形状の幅は、図9に示すものと異なる。いくつかの実施形態では、フィルタ応答の形状は、二乗余弦と異なり、一定の傾きを含むこともある。いくつかの実施形態では、傾きは単調でない。いくつかの実施形態では、フィルタ応答は、複数の遅延ピークを有する。
【0179】
いくつかの実施形態では、振幅関数902は、実質的に平坦であり、Loran信号のスペクトル形状を乱さないようにユニティゲインを有する。いくつかの実施形態では、群遅延904および位相関数が改変され、それにより信号のピーク包絡線レベルを低減する。
【0180】
いくつかの実施形態では、図9の分散フィルタ応答の他の変形形態も、本開示の範囲内である。例えば、いくつかの実施形態では、図9の分散フィルタ応答は、単調増加群遅延関数を分散に使用する。これは、分散フィルタによって時間的に(また周波数対時間にわたって)分散をスミアアウトすることによって大きなパルス振幅を効果的に得るチャープレーダと同様である。換言すれば、図9は、分散フィルタ応答が非常にチャープ様であり、周波数スイープのように見えるということを示している。ただし、チャープ様フィルタ以外のフィルタタイプで、チャープ様フィルタと同様の結果を生じることもできる。例えば、図9の分散フィルタ応答に使用することができるフィルタ応答/群遅延のさらに別の例は、図13(以下)に示してある。
【0181】
分散フィルタ104、分散解除フィルタ204、または分散フィルタ300の他の振幅応答902または群遅延応答904、あるいは波形900の他の波形も、本開示の範囲内である。
【0182】
図10Aは、いくつかの実施形態によるFIRフィルタのインパルス応答1009を示す波形図1000Aである。
【0183】
いくつかの実施形態では、波形図1000Aのインパルス応答1009は、分散フィルタ104、分散解除フィルタ204、または分散フィルタ300のインパルス応答に対応するので、同様の詳細な説明は省略する。いくつかの実施形態では、インパルス応答1009は、分散フィルタ104、分散解除フィルタ204、または分散フィルタ300中のFIRフィルタ600AなどのFIRフィルタのインパルス応答に対応するので、同様の詳細な説明は省略する。
【0184】
インパルス応答1009は、実数部1002a(例えばI)および虚数部1004a(例えばQ)を含む。いくつかの実施形態では、FIRフィルタ(例えばFIRフィルタ600A)のインパルス応答1009は、図9の所望の振幅応答902および群遅延応答904を有する。いくつかの実施形態では、FIRフィルタ(例えばFIRフィルタ600A)は、ゼロ周波数を中心とする複素時間領域ベースバンド信号に対して動作する複素フィルタである。いくつかの実施形態では、フィルタ係数は、複素数である。いくつかの実施形態では、分散フィルタ104、分散解除フィルタ204、または分散フィルタ300中のFIRフィルタ600AなどのFIRフィルタのインパルス応答1009の他の変形形態も、本開示の範囲内である。いくつかの実施形態では、群遅延または分散フィルタの位相応答が改変されるにつれて、時間領域インパルス応答(例えば1009)は、それに応じて変化することになる。いくつかの実施形態では、FIRフィルタは、図6Aに示すものと同様に実装される。
【0185】
分散フィルタ104、分散解除フィルタ204、または分散フィルタ300中のFIRフィルタ600AなどのFIRフィルタの他のインパルス応答1009、あるいは波形1000Aの他の波形も、本開示の範囲内である。
【0186】
図10Bは、いくつかの実施形態による図3の分散フィルタの出力におけるベースバンド信号1019を示す波形図1000Bである。
【0187】
いくつかの実施形態では、図10Bの波形図1000Bは、フィルタ310によって生成されるフィルタリング済みベースバンド信号1019を含み、図3のフィルタリング済みダウンサンプリング信号FSに対応するので、同様の詳細な説明は省略する。
【0188】
波形図1000Bは、フィルタリング済みベースバンド信号1019を含む。フィルタリング済みベースバンド信号1019は、実数部1012a(例えばI)および虚数部1014a(例えばQ)を含む。
【0189】
波形1000Bの他の波形も、本開示の範囲内である。
【0190】
図10Cは、いくつかの実施形態による分散Loran信号の包絡線1022および理想的なLoran信号の包絡線1020aを示す波形図1000Cである。
【0191】
いくつかの実施形態では、図10Cの波形図1000Cは、分散Loran信号の包絡線1022aおよび理想的なLoran信号の包絡線1020aを含む。
【0192】
いくつかの実施形態では、分散Loran信号の包絡線1022aは、フィルタ310によって生成され、図3のフィルタリング済みダウンサンプリング信号FSに対応するので、同様の詳細な説明は省略する。
【0193】
いくつかの実施形態では、理想的なLoran信号の包絡線1020aは、Loranパルス生成器102によって生成されるLoranパルス群であり、図1のLoran信号LPOのセットまたは図3の信号IN1に対応するので、同様の詳細な説明は省略する。いくつかの実施形態では、理想的なLoran信号の包絡線1020aは、波形700Aの正の値に対応するので、同様の詳細な説明は省略する。
【0194】
いくつかの実施形態では、分散Loran信号1022aの包絡線は、信号が図3の分散フィルタ300に通された後で示される。いくつかの実施形態では、分散Loran信号1022aのピーク振幅は、理想的なLoran信号1020aのピーク振幅よりもはるかに小さい。いくつかの実施形態では、分散Loran信号1022aのピークパワーは、理想的なLoran信号1020aと比較して7.37デシベル低減されている。いくつかの実施形態では、分散Loran信号1022aのピークパワーは、理想的なLoran信号1020aの約15~20パーセントの範囲である。いくつかの実施形態では、分散Loran信号1022aと理想的なLoran信号1020aの平均パワーは、おおよそ同じである。いくつかの実施形態では、分散Loran信号1022aのエネルギーは、理想的なLoran信号1020aと比較して時間的に分散しており、これにより分散Loran信号1022aおよび理想的なLoran信号1020aのそれぞれの平均パワーを同じに保つが、理想的なLoran信号1020aと比較して分散Loran信号1022aのピークを低減する。
【0195】
波形1000Cの他の波形も、本開示の範囲内である。
【0196】
図10Dは、いくつかの実施形態による分散Loranパルス群1030を示す波形図1000Dである。
【0197】
いくつかの実施形態では、波形図1000Dは、分散Loranパルス群1030を含み、補間器312によって生成され、図3のフィルタリング済みアップサンプリング信号ISに対応するので、同様の詳細な説明は省略する。
【0198】
いくつかの実施形態では、分散Loranパルス群1030は、RF波形であり、図1のアンテナ112によって放射される信号RXに対応するので、同様の詳細な説明は省略する。
【0199】
いくつかの実施形態では、分散Loranパルス群1030は、100kHzRFの中心周波数を有する。いくつかの実施形態では、他の中心周波数の値も、本開示の範囲内である。
【0200】
波形1000Dの他の波形も、本開示の範囲内である。
【0201】
図11Aは、いくつかの実施形態によるパルス群信号1102aおよびこのパルス群信号の包絡線1104aを示す波形図1100Aである。
【0202】
いくつかの実施形態では、図11Aの波形図1100Aは、Loranパルス群1102a、およびこのパルス群信号の対応する包絡線1104aであり、図2の受信機200内の分散解除フィルタ204または図3の信号IN1によって生成され、図2の信号LPINに対応するので、同様の詳細な説明は省略する。
【0203】
波形図1100Aは、Loranパルス群1102aおよびこのパルス群1102aの対応する包絡線1104aを含む。いくつかの実施形態では、波形図1100Aは、図7Aの波形図700Aと同様であるので、同様の詳細な説明は省略する。
【0204】
いくつかの実施形態では、分散解除フィルタ204が、図11Aの波形1100Aを生成する。いくつかの実施形態では、図11Aは、図10Dのパルス分散を除去した結果を示している。いくつかの実施形態では、パルス分散が相補フィルタ(例えば分散解除フィルタ204)によって除去されたとき、パルスは元の外見(例えば図7A)に正確に復元され、Loranパルス信号は、Loran受信機206によって処理される。
【0205】
受信機200の他の構成、または波形1100Aの他の波形も、本開示の範囲内である。
【0206】
図11Bは、いくつかの実施形態による、理想的な分散解除Loran信号1110aおよび回復Loran信号1112aのパワー密度スペクトルを示す波形図1100Bである。
【0207】
波形図1100Bは、理想的な分散解除Loran信号1110aのパワー密度スペクトルおよび回復Loran信号1112aのパワー密度スペクトルを含む。
【0208】
いくつかの実施形態では、理想的なLoran信号1110aのパワー密度スペクトルは、波形700Cに対応するので、同様の詳細な説明は省略する。
【0209】
いくつかの実施形態では、回復Loran信号1112aのパワー密度スペクトルは、波形1100Aを周波数領域にしたものに対応するので、同様の詳細な説明は省略する。
【0210】
いくつかの実施形態では、波形図1100Bは、図7cの波形700C(例えば図11Bでは曲線1110aとして示されている)と曲線1112aの比較に対応するので、同様の詳細な説明は省略する。
【0211】
いくつかの実施形態では、理想的な信号1110aと回復された分散解除Loran信号1112aのパワー密度スペクトルは、非常に類似している。
【0212】
波形1100Bの他の波形も、本開示の範囲内である。
【0213】
図12は、いくつかの実施形態によるオールパスフィルタ1200を示すブロック図である。
【0214】
いくつかの実施形態では、IIRオールパスフィルタ1200は、ランダム生成型IIRフィルタである。
【0215】
IIRオールパスフィルタ1200は、信号IN5を受信して、信号OUT5を生成するように構成される。図12の信号IN5は、図3のダウンサンプリング信号DSに対応し、信号OUT5は、図3のフィルタリング済みダウンサンプリング信号FSに対応するので、同様の詳細な説明は省略する。
【0216】
オールパスフィルタ1200は、搬送波生成器1204に結合された乗算器1202を含む。
【0217】
乗算器1202は、少なくとも搬送波信号CS2および信号IN5に応じて周波数シフト信号FSINを生成するように構成される。いくつかの実施形態では、周波数シフト信号FSINは、周波数F1にシフトされた信号IN5に対応する。いくつかの実施形態では、周波数F1は、正の周波数である。いくつかの実施形態では、周波数F1は、負の周波数である。いくつかの実施形態では、F1は、1つまたは複数のオールパス関数をLoran信号の帯域幅にわたって分散させるために、100kHzの中心周波数から-10kHz+10kHzの周波数オフセットに対応する。
【0218】
搬送波生成器1204は、乗算器1202および回路1210に結合される。搬送波生成器1204は、搬送波信号CS2を生成するように構成される。いくつかの実施形態では、搬送波信号CS2の周波数は、F1である。いくつかの実施形態では、搬送波信号CS2は、F1の搬送周波数を有する複素シヌソイド(例えば正弦波および余弦波)である。搬送波信号CS2の他の搬送周波数も、本開示の範囲内である。いくつかの実施形態では、搬送波信号CS2の実数成分および複素数成分は、同様の基本周波数を有する連続波信号である。
【0219】
オールパスフィルタ1200は、乗算器1202の出力に結合された2次のオールパスフィルタ1206をさらに含む。2次のオールパスフィルタ1206は、信号FSINに応じてフィルタリング済み信号FSOUTを生成するように構成される。いくつかの実施形態では、2次のオールパスフィルタ1206は、ランダム生成型の実数係数の2次のIIRオールパスフィルタに対応する。2次のオールパスフィルタ1206の他のフィルタタイプまたはフィルタ次数タイプも、本開示の範囲内である。
【0220】
オールパスフィルタ1200は、2次のオールパスフィルタ1206の出力に結合された乗算器1208をさらに含む。乗算器1208は、少なくとも搬送波信号CS2*および信号FSOUTに応じて信号OUT5を生成するように構成される。いくつかの実施形態では、信号OUT5は、周波数F1だけシフトされてベースバンドに戻された周波数シフト信号FSOUTである。いくつかの実施形態では、信号OUT5は、フィルタリングされた信号IN5に対応する。いくつかの実施形態では、周波数シフト信号FSOUTに複素シヌソイドの共役(例えばCS2*)を乗算することにより、中心周波数をシフトしてベースバンドに戻す。
【0221】
オールパスフィルタ1200は、回路1210をさらに含む。回路1210は、搬送波生成器1204および乗算器1208に結合される。回路1210は、搬送波信号CS2*を生成するように構成される。いくつかの実施形態では、回路1210は、搬送波信号CS2の虚数部分の符号をシフトすることによって搬送波信号CS2の共役を生成する。いくつかの実施形態では、回路1210は、搬送波信号CS2の共役化を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路1210は、搬送波信号CS2の共役化を実行するように構成された図16のプロセッサ1602などのDSPである。
【0222】
オールパスフィルタ1200の非限定的な動作は、以下を含む。すなわち、いくつかの実施形態では、実数係数の複素データのIIRオールパスフィルタが2次のオールパスフィルタ1206に使用され、着信する複素データ(例えば信号IN5)は、乗算器1202によって周波数シフトされる。その後、これらの実施形態では、周波数シフトされた複素データ(信号FSIN)は、実数係数のオールパスフィルタ(例えば2次のオールパスフィルタ1206)に入力される。その後、これらの実施形態では、複素信号データ(例えば信号FSOUT)の周波数を乗算器1208によってシフト解除して、信号(例えば信号OUT5)を元の周波数に復元する。いくつかの実施形態では、オールパスフィルタ1200の動作は、オールパスフィルタの周波数を上下にランダムにシフトさせることと同様である。いくつかの実施形態では、この周波数シフトはランダムであり、-10kHzから+100kHzまで変化する。他の周波数範囲も、本開示の範囲内である。
【0223】
いくつかの実施形態では、オールパスフィルタ1200と同様のいくつかのランダム生成型IIRオールパスフィルタを使用して、ロバストな暗号化システムに使用することができるいくつかのフィルタ対を生成することができる。
【0224】
オールパスフィルタ1200の他の構成、または他の構成要素の数も、本開示の範囲内である。
【0225】
図13は、いくつかの実施形態による分散フィルタの群遅延応答1302を示す波形図1300である。
【0226】
波形図1300は、群遅延応答1302を含む。いくつかの実施形態では、群遅延応答1302は、図12のオールパスフィルタ1200などのランダム生成型IIRオールパスフィルタ1300の群遅延応答に対応する。例えば、いくつかの実施形態では、図13の波形図1300は、図13の群遅延応答1302を有するランダム生成型IIRオールパスフィルタによって生成される。
【0227】
いくつかの実施形態では、図13の群遅延応答1302は、カスケード接続された図12のオールパスフィルタ1200などのいくつかのランダム生成型IIRオールパスフィルタによって生成される。いくつかの実施形態では、ランダム生成型IIRオールパスフィルタの数は、48である。他の数も、本開示の範囲内である。
【0228】
いくつかの実施形態では、図12のオールパスフィルタ1200などのランダム生成型IIRオールパスフィルタの周波数応答は、複素応答である。換言すれば、正の周波数と負の周波数とで異なる応答が生じる。
【0229】
いくつかの実施形態では、図13の群遅延応答1302は、ランダムに選ばれた極/ゼロ位置と、48個の異なるランダム周波数シフトとを有する、カスケード接続された48種類の図12のオールパスフィルタ1200によって生成される。他の極/ゼロ位置および周波数シフトも、本開示の範囲内である。
【0230】
いくつかの実施形態では、図12と同様のランダム生成型IIRオールパスフィルタをいくつか使用して、多数のフィルタ対を生成し、ロバストな暗号化システムを生成することができる。いくつかの実施形態では、48個のカスケード接続されたフィルタによって、各フィルタ対毎に144個の異なる値(例えば2つのオールパスフィルタ値および1つの周波数シフト値)を生じ、非常に大きな「暗号化キー」を生じる。例えば、いくつかの実施形態では、オールパスフィルタ1200などのランダム生成型IIRオールパスフィルタを、送信機100A~100Bおよび受信機200の両方で使用することができる。これらの実施形態では、ランダム生成型IIRオールパスフィルタは、送信機100A~100Bおよび受信機200の両方において、様々なパラメータに基づいて同期して変化させることができる。例えば、いくつかの実施形態では、ランダム生成型IIRオールパスフィルタは、送信機100A~100Bおよび各受信機200に記憶される「ライブラリ」に記憶することができる。いくつかの実施形態では、ライブラリは、事前設定される。いくつかの実施形態では、ライブラリは、更新され、ユーザによって再設定することができる。いくつかの実施形態では、システム(送信機100A~100Bおよび受信機200)を暗号化に使用する場合には、「ライブラリ」の内容は、無許可のユーザまたはエンティティには秘密にされる。いくつかの実施形態では、Loranデータチャネル(LDC)が、どのオールパスフィルタを使用するかを受信機200に指示する、またはオールパスフィルタは時刻に基づいて選択され得る。
【0231】
送信機100A~100Bまたは受信機200の他の構成、あるいは波形1300の他の波形も、本開示の範囲内である。
【0232】
図14は、いくつかの実施形態によるランダムなオールパス分散を有するLoranパルス群1402を示す波形図1400である。
【0233】
波形図1400は、Loranパルス群1402を含む。いくつかの実施形態では、このパルス群1402は、図12のオールパスフィルタ1200などのIIRオールパスフィルタのセットを通された後のLoranパルスに対応する。Loranパルス群1402は、図14に示すように分散される。いくつかの実施形態では、上述のFIR分散フィルタの場合と同様に、この信号を、受信機のオールパスフィルタによって逆時間で共役化してフィルタリングすると、元のLoranパルスを正確に復元する。
【0234】
波形1400の他の波形も、本開示の範囲内である。
【0235】
図15は、いくつかの実施形態による時間反転フィルタ1500を示す図である。
【0236】
いくつかの実施形態では、時間反転フィルタ1500は、分散フィルタ300のフィルタ310として使用可能である。
【0237】
図15の信号IN6は、図3のダウンサンプリング信号DSに対応する。図15の信号OUT6は、図3のフィルタリング済みダウンサンプリング信号FSに対応する。
【0238】
時間反転フィルタ1500は、信号IN6に応じた時間反転信号TINを生成するように構成される。いくつかの実施形態では、信号IN6は、ダウンサンプリング信号DSに対応する。いくつかの実施形態では、時間反転回路1502は、信号IN6の時間反転を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、時間反転回路1502は、信号IN6の時間反転を実行するように構成された図16のプロセッサ1602などのDSPである。
【0239】
時間反転フィルタ1500は、時間反転回路1502の出力に結合された回路1504をさらに含む。回路1504は、時間反転信号TINに応じた時間反転信号TIN*の共役を生成するように構成される。いくつかの実施形態では、回路1504は、時間反転信号TINの共役化を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路1504は、時間反転信号TINの共役化を実行するように構成された図16のプロセッサ1602などのDSPである。
【0240】
時間反転フィルタ1500は、回路1504の出力に結合されたフィルタ1506をさらに含む。フィルタ1506は、時間反転信号TIN*の共役をフィルタリングすることによってフィルタリング済みの第1の信号TINF*を生成するように構成される。
【0241】
時間反転フィルタ1500は、フィルタ1506の出力に結合された回路1508をさらに含む。回路1508は、フィルタリング済みの第1の信号TINF*に応じたフィルタリング済みの第1の信号TINFの共役を生成するように構成される。いくつかの実施形態では、回路1508は、フィルタリング済みの第1の信号TINF*の共役化を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、回路1504は、フィルタリング済みの第1の信号TINF*の共役化を実行するように構成された図16のプロセッサ1602などのDSPである。
【0242】
時間反転フィルタ1500は、回路1508の出力に結合された時間反転回路1510をさらに含む。時間反転回路1510は、フィルタリング済みの第1の信号TINFの共役に応じた時間反転信号TOUTを生成するように構成される。いくつかの実施形態では、時間反転信号TOUTは、フィルタリング済みダウンサンプリング信号FSまたは信号OUT6に対応する。いくつかの実施形態では、時間反転回路1510は、フィルタリング済みの第1の信号TINFの共役の時間反転を実行するように構成されたシステム1600などの回路である。いくつかの実施形態では、時間反転回路1510は、フィルタリング済みの第1の信号TINFの共役の時間反転を実行するように構成された図16のプロセッサ1602などのDSPである。
【0243】
いくつかの実施形態では、時間反転フィルタ1500は、図2の分散解除フィルタ204で使用可能である。いくつかの実施形態では、時間反転フィルタ1500は、図1の分散フィルタ104で使用可能である。
【0244】
いくつかの実施形態では、送信および受信用に別個の相補フィルタを生成するのではなく、同じフィルタを両方の機能に使用する。いくつかの実施形態では、送信機100A~100Bまたは受信機200において、信号は、時間的に反転され、共役化され、フィルタ1506に通された後で、再度共役化され時間反転されて、元の次数に復元される。例えば、時間反転は、複素時間領域信号のスペクトルを反転させるので、共役化は、このスペクトルの反転を元に戻すために実行される。いくつかの実施形態では、時間順序を反転させることにより、フィルタ1506に、信号分散を除去するために使用されるその群遅延特性を反転させる。
【0245】
いくつかの実施形態では、時間反転フィルタリングは、信号分散を適用または除去するために使用される。いくつかの実施形態では、信号分散は、相補または整合フィルタを用いて実現される。いくつかの実施形態では、時間反転方法では、IIRオールパスフィルタ1200などのIIRオールパスフィルタを信号分散に使用する。
【0246】
いくつかの実施形態では、この時間反転、共役化、フィルタリング、共役化、および時間復元は、送信機100A~100Bで実行される。いくつかの実施形態では、送信機(例えば100A~100B)よりも多くの受信機があるので、受信機200は、前進時間でパルス分散解除を実行する。いくつかの実施形態では、この時間反転、共役化、フィルタリング、共役化、および時間復元は、受信機200で実行される。
【0247】
いくつかの実施形態では、本開示の分散パルスLoranシステムは、所与のピーク包絡線パワーについてパワー能力の大きな増大をもたらす。いくつかの実施形態では、他の手法のLoranの100kW(PEP)の能力を有する送信機は、本開示では、パルス分散Loranの実効500kw超の能力を有する。いくつかの実施形態では、有効パワーの増大が用いられない場合には、これらの利益は、アンテナ電圧ストレスの低減に適用され、100kW PEPのLoran信号を、20kWの実際のPEPで分散形態で放射することができる。
【0248】
Loran用のアンテナは、電気的に短い。100kHzでの波長は、3000メートルである。したがって、フルサイズの四分の一波長共振アンテナであれば、高さは750メートルとなる。Loranアンテナは、容量性頂上装荷を有する短いモノポールである。短いモノポールは、インピーダンス整合されると、フルサイズの四分の一波長モノポールより狭い帯域幅を有する。Loran信号の占有帯域幅(パワーの99%が存在する)は20kHzであるが、30kHz帯域幅を放射することによって、より良好なシステム性能が得られるが、Loran信号の帯域幅パーセントは30%(30kHz/100kHz)である。このことが、アンテナと、タワーとヘリックスハウスの間のブシュ(絶縁体)とに電圧ストレスをかける。十分なシステム性能を得るために、この電圧は250kV未満に保たれる。いくつかの実施形態では、Loran信号のピーク包絡線振幅を低減することにより、電圧ストレスが低減される。いくつかの実施形態では、同じアンテナ電圧では、タワーの高さおよび土地の要件が緩和される。いくつかの実施形態では、有効パワーの増大により、有効範囲およびSNRが増大する。いくつかの実施形態では、有効パワーの増大により、送信機のパワーが低くなり、アンテナタワーが短くなり、アンテナ電圧が低下し、土地の要件が緩和される。
【0249】
いくつかの実施形態では、有効パワーの増大により、Loranデータチャネル(LDC)のペイロードを増加させることができる。信号の位置、ナビゲーション、およびタイミング(PNT)の部分でSNRが良好であると、本開示では、より多くの「通信時間」をLDCに割り当てることができる。例えば、いくつかの実施形態では、LDCは、BPSK変調デジタル信号である。いくつかの実施形態では、時間のある割合では、分散Loranパルスが送信され、残りの時間では、全く異なる高容量Loranデータチャネルが送信される。いくつかの実施形態では、電気的に短いアンテナで最高の伝送パワーを得るために、LDCのスペクトルは、例えば「ヘイスタック」形状などのLoran信号のスペクトルと類似している。いくつかの実施形態では、パワーは、周波数がチャネル中心から遠ざかるにつれて低下し、それにより少なくともBPSK、QAM、MSK、またはGMSK信号などをLDCに使用することを示唆する。
【0250】
いくつかの実施形態では、分散フィルタを秘密のフィルタ係数を用いて秘密のシーケンスで高速で変化させることによって選択的可用性を用い、それにより、許可されたユーザに対してサービスを提供し続けながら、信号の公共使用は拒絶する。
【0251】
いくつかの実施形態では、有効パワーの増大により、インパルス雑音干渉を軽減できる可能性が生じる。いくつかの実施形態では、分散Loran信号を本開示の相補的な受信機の分散フィルタに通したとき、その相補的な受信機の分散フィルタは、インパルス雑音を分散させる効果を有することになる。いくつかの実施形態では、雑音のパワーは変化しないが、雑音のインパルス特性が変化する。いくつかの実施形態では、インパルス雑音が時間領域で分散されるので、インパルス雑音のピーク振幅が低減される。
【0252】
いくつかの実施形態では、パルス分散は、Loran信号の帯域幅またはパワースペクトル密度に影響を及ぼさない。いくつかの実施形態では、Loran信号への100kHzの割当は影響を受けない。いくつかの実施形態では、分散Loranパルスは、Loranパルスと同じ帯域幅およびスペクトル形状を有する。いくつかの実施形態では、LDC用の異なる変調フォーマットが使用される場合には、LDCは、Loran信号と同様のヘイスタックスペクトル形状を有するものとする。いくつかの実施形態では、MSK、GMSK、QAM、およびBPSKを、LDCで使用することができる。
【0253】
いくつかの実施形態では、他の手法の既存の技術を使用して、Loran信号を受信することができる。いくつかの実施形態では、上空波反射と区別する技術は、引き続き機能する。いくつかの実施形態では、受信信号が線形分散解除フィルタを通過すると直ちに、Loranパルスが再構築され、信号は、他の手法のLoran信号であるかのように処理されて受信される。
【0254】
いくつかの実施形態では、パルス分散をLoranまたはeLoranに適用することで、現在の技術を最大限に利用するようにシステムを有意に更新する。いくつかの実施形態では、ソリッドステート送信機では、それは、他の手法のLoranと比較して5倍超のパワーを放射し、それにより専用LDC信号のタイムスロットの割当を可能にすることと等価である。いくつかの実施形態では、最新のパルス分散信号は、現在の安価なデジタル信号処理技術を活用し、Loran C信号の上空波成分と地上波成分を分離する他の手法の技術と共に使用することができ、依然として有効であり、最新の受信機でも十分に活用することができる。
【0255】
図16は、いくつかの実施形態による、図1A図1Bの送信機100A~100Bまたは図2の受信機200のうちの1つまたは複数で使用可能な制御装置1600を示す概略図である。
【0256】
いくつかの実施形態では、制御装置1600は、少なくとも図1の送信機100A~100B、図2の受信機200、図3の分散フィルタ300、図4のデシメータ400、補間器500、図6AのFIRフィルタ600A、図6BのIIRフィルタ600B、図6CのFFTフィルタ600C、図12のオールパスフィルタ1200,図15の時間反転フィルタ1500、あるいは図1A図1B図2図5図6A図6C図7A図7C図8A図8B図9図10A図10D図11A図11B、および図12図16の1つまたは複数の回路または構成要素として使用可能である。
【0257】
制御装置1600は、ハードウェアプロセッサ1602と、コンピュータプログラムコード1606すなわち実行可能命令のセットで符号化された、すなわちコンピュータプログラムコード1606すなわち実行可能命令のセットを記憶する、非一時的なコンピュータ可読記憶媒体1604とを含む。コンピュータ可読記憶媒体1604は、図1A図1Bの送信機100A~100Bまたは図2の受信機200のうちの少なくとも1つまたは複数とのインタフェースを取るための命令1607でも符号化される。プロセッサ1602は、バス1608によってI/Oインタフェース1610にも電気的に結合される。ネットワークインタフェース1612も、バス1608によってプロセッサ1602に電気的に接続される。ネットワークインタフェース1612はネットワーク1614に接続されるので、プロセッサ1602およびコンピュータ可読記憶媒体1604は、ネットワーク1614を介して外部要素に接続することができる。プロセッサ1602は、本開示の図面の動作のうちの一部分または全てを実行するために制御装置1600を使用可能にするために、コンピュータ可読記憶媒体1604に符号化されたコンピュータプログラムコード1606を実行するように構成される。
【0258】
いくつかの実施形態では、プロセッサ1602は、中央処理装置(CPU)、マルチプロセッサ、分散型処理システム、特定用途向け集積回路(ASIC)、および/または適切な処理ユニットである。
【0259】
いくつかの実施形態では、コンピュータ可読記憶媒体1604は、電子的、磁気的、光学的、電磁気的、赤外線、および/または半導体システム(あるいは装置またはデバイス)である。例えば、コンピュータ可読記憶媒体1604は、半導体またはソリッドステートメモリ、磁気テープ、取外し可能なコンピュータディスケット、ランダムアクセスメモリ(RAM)、フラッシュRAMを含むフラッシュメモリ、読取り専用メモリ(ROM)、固い磁気ディスク、および/あるいは光学ディスクを含む。光学ディスクを用いるいくつかの実施形態では、コンピュータ可読記憶媒体1604は、コンパクトディスク読取り専用メモリ(CD-ROM)、コンパクトディスク読取り/書込み(CD-R/W)、および/またはデジタル汎用ディスク(DVD)を含む。いくつかの実施形態では、少なくともプロセッサ1602またはコンピュータ可読記憶媒体1604は、システムオンチップの一部であり、フィールドプログラマブルゲートアレイ(FPGA)の一部である。
【0260】
いくつかの実施形態では、記憶媒体1604は、本開示の図面の1つまたは複数の動作を制御装置1600に実行させるように構成されたコンピュータプログラムコード1606を記憶する。
【0261】
いくつかの実施形態では、記憶媒体1604は、図1A図1Bの送信機100A~100Bまたは図2の受信機200のうちの1つまたは複数とのインタフェースを取るための命令(例えばコンピュータプログラムコード1606)を記憶する。これらの命令(例えばコンピュータプログラムコード1606)は、図1A図1Bの送信機100A~100Bまたは図2の受信機200のうちの1つまたは複数によって読取り可能な命令をプロセッサ1602が生成することを可能にする。
【0262】
制御装置1600は、I/Oインタフェース1610を含む。I/Oインタフェース1610は、外部回路に結合される。いくつかの実施形態では、I/Oインタフェース1610は、情報およびコマンドをプロセッサ1602に通信するためのキーボード、キーパッド、マウス、トラックボール、トラックパッド、および/またはカーソル方向キーを含む。
【0263】
制御装置1600は、プロセッサ1602に結合されたネットワークインタフェース1612も含む。ネットワークインタフェース1612は、制御装置1600が、1つまたは複数の他のコンピュータシステムが接続されているネットワーク1614と通信することを可能にする。ネットワークインタフェース1612は、BLUETOOTH、WIFI、WIMAX、GPRS、またはWCDMAなどのワイヤレスネットワークインタフェース、あるいはETHERNET、USB、またはIEEE-13104などの有線ネットワークインタフェースを含む。いくつかの実施形態では、本開示の図面のうちの1つまたは複数は、2つ以上のシステム1600に実装され、フィルタ、補間器、またはデシメータなどの情報が、ネットワーク1614を介して異なるシステム1600間で交換される。
【0264】
制御装置1600は、I/Oインタフェース1610またはネットワークインタフェース1612を通してフィルタに関係する情報を受信するように構成される。この情報は、バス1608によってプロセッサ1602に転送されて、分散フィルタを生成する。分散フィルタは、その後、分散フィルタ1616としてコンピュータ可読媒体1604に記憶される。いくつかの実施形態では、分散フィルタ1616は、少なくとも分散フィルタ104、分散解除フィルタ204、または分散フィルタ300を含む。
【0265】
制御装置1600は、I/Oインタフェース1610またはネットワークインタフェース1612を通して補間器に関係する情報を受信するように構成される。この情報は、補間器1618としてコンピュータ可読媒体1604に記憶される。いくつかの実施形態では、補間器1618は、補間器400を含む。
【0266】
制御装置1600は、I/Oインタフェース1610またはネットワークインタフェース1612を通してデシメータに関係する情報を受信するように構成される。この情報は、デシメータ1620としてコンピュータ可読媒体1604に記憶される。いくつかの実施形態では、デシメータ1620は、デシメータ500を含む。
【0267】
制御装置1600は、I/Oインタフェース1610またはネットワークインタフェース1612を通してフィルタに関係する情報を受信するように構成される。この情報は、フィルタ1622としてコンピュータ可読媒体1604に記憶される。いくつかの実施形態では、フィルタ1622は、少なくともフィルタ310、FIRフィルタ600A、IIRフィルタ600B、FFTフィルタ600C、オールパスフィルタ1200,時間反転フィルタ1500を含む。
【0268】
いくつかの実施形態では、本開示の少なくとも一部分は、プロセッサによって実行される独立ソフトウェアアプリケーションとして実装される。いくつかの実施形態では、本開示の少なくとも一部分は、追加のソフトウェアアプリケーションの一部であるソフトウェアアプリケーションとして実装される。いくつかの実施形態では、本開示の少なくとも一部分は、ソフトウェアアプリケーションへのプラグインとして実装される。
【0269】
図17は、いくつかの実施形態によるシステムを動作させる方法1700を示す流れ図である。
【0270】
いくつかの実施形態では、図17は、少なくとも図1A図1Bの送信機100A~100B、図2の受信機200,図3の分散フィルタ300、図4のデシメータ400、補間器500、図6AのFIRフィルタ600A、図6BのIIRフィルタ600B、図6CのFFTフィルタ600C、図12のオールパスフィルタ1200、図15の時間反転フィルタ1500、または図1600の制御装置1600を動作させる方法1700を示す流れ図である。図17に示す方法1700の前、間、および/または後に追加の動作が実行され得ること、ならびに一部の他の動作については本明細書では簡単にしか述べていないことが理解されよう。いくつかの実施形態では、方法1700の動作の他の順序も、本開示の範囲内である。いくつかの実施形態では、方法1700の1つまたは複数の動作は実行されない。
【0271】
方法1700は、例示的な動作を含んでいるが、これらの動作は、必ずしも示されている順序で実行されるとは限らない。動作は、開示する実施形態の趣旨および範囲に従って、適宜追加、置換、順序変更、および/または省略され得る。方法1700では、図1A図1B図2図5図6A図6C図7A図7C図8A図8B図9図10A図10D図11A図11B、および図12図16の1つまたは複数の特徴を利用することは理解されよう。
【0272】
方法1700の動作1702で、Loranパルス信号がLoranパルス生成器102によって生成される。いくつかの実施形態では、方法1700のLoranパルス信号は、Loranパルスまたは信号LPOのセットを含む。
【0273】
方法1700の動作1704で、分散Loran信号が、Loranパルス信号に基づいて生成される。いくつかの実施形態では、方法1700の分散Loran信号は、分散フィルタによって生成される。いくつかの実施形態では、方法1700の分散Loran信号は、分散信号DFOを含む。いくつかの実施形態では、方法1700の分散フィルタは、少なくとも分散フィルタ104、分散解除フィルタ204、または分散フィルタ300を含む。
【0274】
方法1700の動作1706で、等化信号が、Loranパルス信号または分散Loran信号に応じて生成される。いくつかの実施形態では、方法1700の等化信号は、イコライザ106によって生成される。いくつかの実施形態では、方法1700の等化信号は、等化分散信号DFOEを含む。
【0275】
いくつかの実施形態では、動作1706は、Loranパルス信号に応じた等化信号を生成することを含む。いくつかの実施形態では、動作1706は、分散Loran信号に応じた等化信号を生成することを含む。
【0276】
方法1700の動作1708で、増幅信号が、分散Loran信号に基づいて生成される。いくつかの実施形態では、方法1700の増幅信号は、電力増幅器108によって生成される。いくつかの実施形態では、方法1700の増幅信号は、増幅信号DFAを含む。
【0277】
いくつかの実施形態では、イコライザ106は、(例えば図1Aに示すように)分散フィルタ104と電力増幅器108の間に結合されており、したがって、動作1706は、分散Loran信号に応じた等化信号を生成することを含み、動作1704は、Loranパルス信号に応じた分散Loran信号を生成することを含み、動作1708は、等化信号に応じた増幅信号を生成することを含む。
【0278】
いくつかの実施形態では、イコライザ106は、(例えば図1Bに示すように)Loranパルス生成器102と分散フィルタ104の間に結合されており、したがって、動作1706は動作1704より前に行われ、その後、動作1704の後に動作1708が続く。イコライザ106が(例えば図1Bに示すように)Loranパルス生成器102と分散フィルタ104の間に結合されるこれらの実施形態では、動作1706は、Loranパルス信号に応じた等化信号を生成することを含み、動作1704は、等化信号に応じた分散Loran信号を生成することを含み、動作1708は、分散Loran信号に応じた増幅信号を生成することを含む。
【0279】
方法1700の動作1710で、同調信号が、増幅信号に応じて生成される。いくつかの実施形態では、方法1700の同調信号は、電力増幅器に結合されたアンテナチューナ110によって生成される。いくつかの実施形態では、方法1700の同調信号は、同調信号Poutを含む。
【0280】
方法1700aの動作1712で、送信信号が、同調信号に応じて放射される。いくつかの実施形態では、方法1700の送信信号は、アンテナチューナに結合されたアンテナ112によって放射される。いくつかの実施形態では、方法1700の送信信号は、送信信号TXを含む。
【0281】
方法1700の動作1714で、信号が、受信機200によって受信される。いくつかの実施形態では、方法1700のこの受信される信号は、受信信号RXを含む。
【0282】
方法1700の動作1716で、分散解除パルス信号が、受信信号に応じて生成される。いくつかの実施形態では、分散解除パルス信号は、分散解除フィルタによって生成される。いくつかの実施形態では、方法1700の分散解除フィルタは、分散解除フィルタ204または分散フィルタ300を含む。いくつかの実施形態では、方法1700の分散解除パルス信号は、分散解除パルス信号LPINを含む。いくつかの実施形態では、方法1700の受信信号は、送信信号に対応する。
【0283】
方法1700の動作1718で、Loran信号が、分散解除パルス信号に応じて生成される。いくつかの実施形態では、Loran信号は、分散解除フィルタ204に結合されたLoran受信機によって生成される。いくつかの実施形態では、方法1700のLoran受信機206によって生成されるLoran信号は、出力信号LSを含む。
【0284】
方法1700を運用することによって、このシステムは、図1A図1B図2図5図6A図6C図7A図7C図8A図8B図9図10A図10D図11A図11B、および図12図16に関連して上述した利点を実現するように動作する。
【0285】
いくつかの実施形態について説明した。しかしながら、本開示の趣旨および範囲を逸脱することなく様々な修正が加えられ得ることは理解されよう。上記の説明で使用される様々な信号の低または高の論理値も、例示のためのものである。様々な実施形態は、信号が活動化および/または非活動化されるときに特定の論理値に限定されない。異なる論理値を選択することも、様々な実施形態の範囲内である。様々な信号は対応する回路によって生成されるが、分かりやすくするために回路は図示していない。
【0286】
様々な図面は、FIR、IIR、またはFFTフィルタを例示のために示している。等価な回路またはフィルタが、FIR、IIR、またはFFTフィルタに使用され得る。例えば、FIR、IIR、またはFFTフィルタの代わりに、他のフィルタタイプを使用することもできる。上記の説明は例示的なステップを含むが、これらのステップは、必ずしも示されている順序で実行されるとは限らない。ステップは、開示する実施形態の趣旨および範囲に従って、適宜追加、置換、順序変更、および/または省略され得る。
【0287】
本開示の1つの態様は、送信機に関する。いくつかの実施形態では、この送信機は、Loranパルス信号を生成するように構成されたLoranパルス生成器と、Loranパルス生成器に結合された、Loranパルス信号に応じた分散信号を生成するように構成された分散フィルタと、分散フィルタに結合された、分散信号に応じた等化分散信号を生成するように構成されたイコライザと、イコライザに結合された、等化分散信号に応じた増幅信号を生成するように構成された電力増幅器と、電力増幅器に結合された、増幅信号に応じた同調信号を生成するように構成されたアンテナチューナと、アンテナチューナに結合された、同調信号に応じた送信信号を放射するように構成されたアンテナとを含む。
【0288】
いくつかの実施形態では、分散フィルタは、Loranパルス信号を受信し、第1の信号、および第1の信号から位相が90度ずれた第2の信号を生成するように構成されたヒルベルト変換デバイスを含む。いくつかの実施形態では、分散フィルタは、ヒルベルト変換デバイスに結合された、少なくとも第1の搬送波信号、第1の信号、および第2の信号に応じて周波数シフト信号を生成するように構成された第1の乗算器をさらに含む。いくつかの実施形態では、分散フィルタは、第1の乗算器に結合された、周波数シフト信号に応じてダウンサンプリング信号を生成するように構成されたデシメータをさらに含む。いくつかの実施形態では、分散フィルタは、デシメータに結合された、ダウンサンプリング信号に応じてフィルタリング済みダウンサンプリング信号を生成するように構成された第1のフィルタをさらに含む。いくつかの実施形態では、分散フィルタは、第1のフィルタに結合された、フィルタリング済みダウンサンプリング信号に応じてアップサンプリング信号を生成するように構成された補間器をさらに含む。いくつかの実施形態では、分散フィルタは、補間器に結合された、少なくともアップサンプリング信号および第2の搬送波信号に応じて分散信号を生成するように構成された第2の乗算器であり、第2の搬送波信号は第1の搬送波信号の共役である、第2の乗算器をさらに含む。
【0289】
いくつかの実施形態では、デシメータは、第1の乗算器に結合された、周波数シフト信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタであり、第1のフィルタリング済み信号は第1のサンプル周波数を有する、ローパスフィルタを含む。いくつかの実施形態では、デシメータは、ローパスフィルタに結合された、第1のフィルタリング済み信号のN個のサンプルのうちのN-1個のサンプルを削除することによってダウンサンプリング信号を生成するように構成された第1の回路であり、Nは整数であり、ダウンサンプリング信号は第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路をさらに含む。
【0290】
いくつかの実施形態では、補間器は、第1のフィルタに結合された、フィルタリング済みダウンサンプリング信号にN-1個のゼロを追加することによって第1の信号を生成するように構成された第1の回路であり、Nは整数であり、第1の信号は第1のサンプル周波数を有し、フィルタリング済みダウンサンプリング信号は第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路を含む。いくつかの実施形態では、補間器は、第1の回路に結合された、第1の信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタをさらに含む。いくつかの実施形態では、第1のフィルタは、FIRフィルタ、IIRフィルタ、またはFFTフィルタを含む。いくつかの実施形態では、IIRフィルタは、ランダムに生成された係数を有するオールパスフィルタに対応する。
【0291】
いくつかの実施形態では、IIRフィルタは、第1の受信信号に応じた第1の時間反転信号を生成するように構成された第1の時間反転回路であり、第1の受信信号はダウンサンプリング信号に対応する、第1の時間反転回路を含む。いくつかの実施形態では、IIRフィルタは、第1の時間反転回路に結合された、第1の時間反転信号に応じた第1の時間反転信号の共役を生成するように構成された第1の回路をさらに含む。いくつかの実施形態では、IIRフィルタは、第1の回路に結合された、第1の時間反転信号の共役をフィルタリングすることによってフィルタリング済みの第1の信号を生成するように構成された第1のフィルタをさらに含む。いくつかの実施形態では、IIRフィルタは、第1のフィルタに結合された、フィルタリング済みの第1の信号に応じたフィルタリング済みの第1の信号の共役を生成するように構成された第2の回路をさらに含む。いくつかの実施形態では、IIRフィルタは、第2の回路に結合された、フィルタリング済みの第1の信号の共役に応じた第2の時間反転信号を生成するように構成された第2の時間反転回路であり、第2の時間反転信号はフィルタリング済みダウンサンプリング信号に対応する、第2の時間反転回路をさらに含む。
【0292】
いくつかの実施形態では、FIRフィルタ、IIRフィルタ、またはFFTフィルタは、Loranパルスの各セット毎に固定されたフィルタ係数を含み、Loranパルス信号はこのLoranパルスのセットの一部である。いくつかの実施形態では、FIRフィルタ、IIRフィルタ、またはFFTフィルタは、Loranパルスのセットにわたって時間変化している動的なフィルタ係数を含み、Loranパルス信号はこのLoranパルスのセットの一部である。
【0293】
本開示の別の態様は、Loranシステムに関する。いくつかの実施形態では、このLoranシステムは、送信機および受信機を含む。いくつかの実施形態では、送信機は、Loranパルス信号を生成するように構成されたLoranパルス生成器と、Loranパルス生成器に結合された、Loranパルス信号に応じた等化パルス信号を生成するように構成されたイコライザと、イコライザに結合された、等化パルス信号に応じた分散Loran信号を生成するように構成された分散フィルタと、分散フィルタに結合された、分散Loran信号に応じた増幅信号を生成するように構成された電力増幅器と、電力増幅器に結合された、増幅信号に応じた同調信号を生成するように構成されたアンテナチューナと、アンテナチューナに結合された、同調信号に応じた送信信号を放射するように構成された第1のアンテナとを含む。いくつかの実施形態では、受信機は、受信信号を受信するように構成された第2のアンテナと、第2のアンテナに結合された、受信信号に応じた分散解除パルス信号を生成するように構成された分散解除フィルタであり、受信信号は送信信号に対応する、分散解除フィルタと、分散解除フィルタに結合された、分散解除パルス信号に応じたLoran信号を生成するように構成されたLoran受信機とを含む。
【0294】
いくつかの実施形態では、分散解除フィルタは、受信信号を受信し、第1の信号、および第1の信号から位相が90度ずれた第2の信号を生成するように構成されたヒルベルト変換デバイスを含む。いくつかの実施形態では、分散解除フィルタは、ヒルベルト変換デバイスに結合された、少なくとも第1の搬送波信号、第1の信号、および第2の信号に応じて周波数シフト信号を生成するように構成された第1の乗算器をさらに含む。いくつかの実施形態では、分散解除フィルタは、第1の乗算器に結合された、周波数シフト信号に応じてダウンサンプリング信号を生成するように構成されたデシメータをさらに含む。いくつかの実施形態では、分散解除フィルタは、デシメータに結合された、ダウンサンプリング信号に応じてフィルタリング済みダウンサンプリング信号を生成するように構成された第1のフィルタをさらに含む。いくつかの実施形態では、分散解除フィルタは、第1のフィルタに結合された、フィルタリング済みダウンサンプリング信号に応じてアップサンプリング信号を生成するように構成された補間器をさらに含む。いくつかの実施形態では、分散解除フィルタは、補間器に結合された、少なくともアップサンプリング信号および第2の搬送波信号に応じて分散解除パルス信号を生成するように構成された第2の乗算器であり、第2の搬送波信号は第1の搬送波信号の共役である、第2の乗算器をさらに含む。
【0295】
いくつかの実施形態では、デシメータは、第1の乗算器に結合された、周波数シフト信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタであり、第1のフィルタリング済み信号は第1のサンプル周波数を有する、ローパスフィルタを含む。いくつかの実施形態では、デシメータは、ローパスフィルタに結合された、第1のフィルタリング済み信号のN個のサンプルのうちのN-1個のサンプルを削除することによってダウンサンプリング信号を生成するように構成された第1の回路であり、Nは整数であり、ダウンサンプリング信号は第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路をさらに含む。
【0296】
いくつかの実施形態では、補間器は、第1のフィルタに結合された、フィルタリング済みダウンサンプリング信号にN-1個のゼロを追加することによって第1の信号を生成するように構成された第1の回路であり、Nは整数であり、第1の信号は第1のサンプル周波数を有し、フィルタリング済みダウンサンプリング信号は第1のサンプル周波数をN個のサンプルで割った値に等しい第2のサンプル周波数を有する、第1の回路を含む。いくつかの実施形態では、補間器は、第1の回路に結合された、第1の信号に応じて第1のフィルタリング済み信号を生成するように構成されたローパスフィルタをさらに含む。いくつかの実施形態では、第1のフィルタは、FIRフィルタ、IIRフィルタ、またはFFTフィルタを含む。
【0297】
いくつかの実施形態では、FIRフィルタ、IIRフィルタ、またはFFTフィルタは、Loranパルスのセットにわたって時間変化している動的なフィルタ係数を含み、Loranパルス信号はこのLoranパルスのセットの一部である。いくつかの実施形態では、FIRフィルタ、IIRフィルタ、またはFFTフィルタは、Loranパルスの各セット毎に固定されたフィルタ係数を含み、Loranパルス信号はこのLoranパルスのセットの一部である。いくつかの実施形態では、FFTフィルタは、第1の信号に対してFFTを実行することによってFFT信号を生成するように構成された第1の回路であり、第1の信号はダウンサンプリング信号に対応する、第1の回路と、
第1の回路に結合された、FFT信号のサンプルに重み付きフィルタ係数を追加することによって重み付きFFT信号を生成するように構成された第2の回路と、
第2の回路に結合された、重み付きFFT信号に対して逆FFTを実行することによって第2の信号を生成するように構成された第3の回路であり、第2の信号はフィルタリング済みダウンサンプリング信号に対応する、第3の回路とを含む。
【0298】
本開示のさらに別の態様は、方法に関する。この方法は、Loranパルス生成器によって、Loranパルス信号を生成するステップと、分散フィルタによって、Loranパルス信号に基づいて分散Loran信号を生成するステップと、電力増幅器によって、分散Loran信号に基づいて増幅信号を生成するステップと、電力増幅器に結合されたアンテナチューナによって、増幅信号に応じた同調信号を生成するステップと、アンテナチューナに結合されたアンテナによって、同調信号に応じた送信信号を放射するステップとを含む。
【0299】
いくつかの実施形態では、この方法は、イコライザによって、Loranパルス信号に応じた等化信号を生成するステップをさらに含む。いくつかの実施形態では、分散Loran信号を生成するステップは、等化信号に応じた分散Loran信号を生成するステップであり、イコライザはLoranパルス生成器と分散フィルタの間に結合される、ステップを含み、増幅信号を生成するステップは、分散Loran信号に応じた増幅信号を生成するステップを含む。
【0300】
いくつかの実施形態では、この方法は、イコライザによって、分散Loran信号に応じた等化信号を生成するステップをさらに含む。いくつかの実施形態では、分散Loran信号を生成するステップは、Loranパルス信号に応じた分散Loran信号を生成するステップを含み、増幅信号を生成するステップは、等化信号に応じた増幅信号を生成するステップであり、イコライザは分散フィルタと電力増幅器の間に結合される、ステップを含む。
【0301】
以上、当業者が本開示の態様をよりよく理解し得るようにいくつかの実施形態の特徴を概説した。当業者なら、本明細書に紹介されている実施形態と同じ目的を達成し、かつ/または同じ利点を実現するために他のプロセスおよび構造を設計または修正するための基礎として本開示を容易に利用し得ることを理解されたい。また、当業者なら、このような等価な構成は本開示の趣旨および範囲を逸脱していないこと、ならびに本開示の趣旨および範囲を逸脱することなく本明細書において様々な変更、置換、および改変を行い得ることも認識されたい。
図1A
図1B
図2
図3
図4
図5
図6A
図6B
図6C
図7A
図7B
図7C
図8A
図8B
図9
図10A
図10B
図10C
図10D
図11A
図11B
図12
図13
図14
図15
図16
図17