IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

特許7471104熱交換コア、熱交換器及び熱交換コアの製造方法
<>
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図1
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図2
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図3A
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図3B
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図4
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図5
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図6
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図7
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図8
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図9
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図10
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図11
  • 特許-熱交換コア、熱交換器及び熱交換コアの製造方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-11
(45)【発行日】2024-04-19
(54)【発明の名称】熱交換コア、熱交換器及び熱交換コアの製造方法
(51)【国際特許分類】
   F28D 7/16 20060101AFI20240412BHJP
   F28D 7/10 20060101ALI20240412BHJP
   F28F 1/00 20060101ALI20240412BHJP
   B21D 53/06 20060101ALI20240412BHJP
【FI】
F28D7/16 A
F28D7/10 A
F28F1/00 A
F28F1/00 B
B21D53/06 B
【請求項の数】 17
(21)【出願番号】P 2020031381
(22)【出願日】2020-02-27
(65)【公開番号】P2021134983
(43)【公開日】2021-09-13
【審査請求日】2022-09-16
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】中拂 博之
(72)【発明者】
【氏名】原 伸英
(72)【発明者】
【氏名】上藤 陽一
(72)【発明者】
【氏名】谷本 浩一
(72)【発明者】
【氏名】畑中 雅哉
(72)【発明者】
【氏名】江口 駿作
(72)【発明者】
【氏名】小田 拓央
【審査官】大谷 光司
(56)【参考文献】
【文献】特表2018-519490(JP,A)
【文献】特開2019-039659(JP,A)
【文献】特開2002-350092(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28D 7/16
F28D 7/10
F28F 1/00
B21D 53/06
(57)【特許請求の範囲】
【請求項1】
軸方向に沿って延在する複数の軸方向流路を含むコア本体部と、
前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部と、を備え、
前記ヘッダ流路は、
径方向に沿って延在する少なくとも一本の径方向流路と、
各々の前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含み、
各々の前記径方向流路は、第1位置における流路面積よりも、前記第1位置よりも前記径方向の内側の第2位置における流路面積の方が小さい
熱交換コア。
【請求項2】
前記各々の前記径方向流路は、前記第1位置における周方向寸法よりも、前記第2位置における前記周方向寸法の方が小さい
請求項1に記載の熱交換コア。
【請求項3】
前記各々の前記径方向流路は、前記第1位置における軸方向寸法よりも、前記第2位置における前記軸方向寸法の方が小さい
請求項1又は2に記載の熱交換コア。
【請求項4】
前記流路面積は、前記径方向内側に向かうにつれて漸減する
請求項1乃至3の何れか1項に記載の熱交換コア。
【請求項5】
前記ヘッダ部における前記熱交換コアの外周面には、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成され、
各々の前記開口部の開口面積の合計面積は、前記軸方向から見たときの前記複数本の周方向流路の面積の合計面積以下である
請求項1乃至4の何れか1項に記載の熱交換コア。
【請求項6】
前記ヘッダ部における前記熱交換コアの外周面には、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成され、
各々の前記開口部における前記軸方向に沿った開口寸法は、前記各々の前記開口部における周方向に沿った前記開口寸法の1倍以上である
請求項1乃至5の何れか1項に記載の熱交換コア。
【請求項7】
前記少なくとも一本の径方向流路は、前記軸方向に沿った2つの端部のうち少なくとも一方の端部において前記軸方向に沿って前記径方向流路の外側に向かうにつれて周方向の寸法が小さくなるように形成されている
請求項1乃至6の何れか1項に記載の熱交換コア。
【請求項8】
前記ヘッダ部は、前記コア本体部の前記軸方向における前記一方の端部に隣接する第1ヘッダ部、及び、前記コア本体部の前記軸方向における他方の端部に隣接する第2ヘッダ部を含み、
前記少なくとも一本の径方向流路において前記径方向の内側から外側に向かうにつれて増加する前記流路面積についての面積増加率は、前記第1ヘッダ部における前記少なくとも一本の径方向流路と前記第2ヘッダ部における前記少なくとも一本の径方向流路とで異なる
請求項1乃至7の何れか1項に記載の熱交換コア。
【請求項9】
軸方向に沿って延在する複数の軸方向流路を含むコア本体部と、
前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部と、を備え、
前記ヘッダ流路は、
径方向に沿って延在する少なくとも一本の径方向流路と、
各々の前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含み、
前記ヘッダ部における熱交換コアの外周面には、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成され、
各々の前記開口部における前記軸方向に沿った開口寸法は、前記各々の前記開口部における周方向に沿った前記開口寸法の1倍以上である
熱交換コア。
【請求項10】
前記各々の前記開口部の開口面積の合計面積は、前記軸方向から見たときの前記複数本の周方向流路の面積の合計面積以下である
請求項9に記載の熱交換コア。
【請求項11】
前記少なくとも一本の径方向流路は、前記軸方向に沿った2つの端部のうち少なくとも一方の端部において前記軸方向に沿って前記径方向流路の外側に向かうにつれて周方向の寸法が小さくなるように形成されている
請求項9又は10に記載の熱交換コア。
【請求項12】
前記複数の軸方向流路は、前記軸方向から見たときに円環状に配置されている
請求項1乃至11の何れか1項に記載の熱交換コア。
【請求項13】
前記複数の軸方向流路は、それぞれ周方向において複数の区画に区分されている
請求項1乃至12の何れか1項に記載の熱交換コア。
【請求項14】
前記複数の軸方向流路は、前記複数の区画の流路径が均一化されている、
請求項13に記載の熱交換コア。
【請求項15】
請求項1乃至14の何れか1項に記載の熱交換コアと、
前記熱交換コアを収容するケーシングと、
を備える
熱交換器。
【請求項16】
熱交換コアの製造方法であって、
積層造型によって、軸方向に沿って延在する複数の軸方向流路を含むコア本体部を形成する工程と、
積層造型によって、前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部を形成する工程と、を備え、
前記ヘッダ部を形成する工程は、
径方向に沿って延在する少なくとも一本の径方向流路と、
何れかの前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含むように前記ヘッダ流路を形成し、
前記ヘッダ部を形成する工程は、第1位置における流路面積よりも、前記第1位置よりも前記径方向の内側の第2位置における流路面積の方が小さくなるように各々の前記径方向流路を形成する
熱交換コアの製造方法。
【請求項17】
熱交換コアの製造方法であって、
積層造型によって、軸方向に沿って延在する複数の軸方向流路を含むとともに最外周に配置される側壁を含むコア本体部を形成する工程と、
積層造型によって、前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部を形成する工程と、を備え、
前記ヘッダ部を形成する工程は、
径方向に沿って延在する少なくとも一本の径方向流路と、
何れかの前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含むように前記ヘッダ流路を形成し、
前記ヘッダ部を形成する工程は、
前記ヘッダ部における前記熱交換コアの前記側壁に、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成されるように前記ヘッダ部を形成するとともに、
各々の前記開口部における前記軸方向に沿った開口寸法が、前記各々の前記開口部における周方向に沿った前記開口寸法の1倍以上となるように前記ヘッダ部を形成する
熱交換コアの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、熱交換コア、熱交換器及び熱交換コアの製造方法に関する。
【背景技術】
【0002】
例えば、円筒状のケーシングの内側に流路群が形成されている円筒型熱交換器が知られている。一般的に円筒型熱交換器では、第1流体と第2流体との間で熱交換を行うために、第1流体又は第2流体の何れか一方の流体を円筒状のケーシングの軸方向端部から流入及び流出させ、他方の流体を該ケーシングの側部から径方向に沿って流入及び流出させるように構成されている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特表2018-519490号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような円筒型熱交換器では、径方向に沿ってケーシング内に流入した流体の流れを軸方向に転向させ、ケーシング内を軸方向に沿って流れた流体の流れを径方向に転向させている。そのため、ケーシング内を流れる流体の流量が周方向や径方向の位置によって差が生じるおそれがあり、このような流量の差に起因して熱交換効率が低下するおそれがある。このような流量の差を抑制するためには、流体の流れの向きを転向させるための空間をある程度確保することが望ましい。そのため、比較的高い熱交換効率を確保しつつ円筒型熱交換器を小型化し難かった。
【0005】
本開示の少なくとも一実施形態は、上述の事情に鑑みて、比較的高い熱交換効率を確保しつつ小型化できる熱交換コアを提供することを目的とする。
【課題を解決するための手段】
【0006】
(1)本開示の少なくとも一実施形態に係る熱交換コアは、
軸方向に沿って延在する複数の軸方向流路を含むコア本体部と、
前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部と、を備え、
前記ヘッダ流路は、
径方向に沿って延在する少なくとも一本の径方向流路と、
各々の前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含み、
各々の前記径方向流路は、第1位置における流路面積よりも、前記第1位置よりも前記径方向の内側の第2位置における流路面積の方が小さい。
【0007】
(2)本開示の少なくとも一実施形態に係る熱交換コアは、
軸方向に沿って延在する複数の軸方向流路を含むコア本体部と、
前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部と、を備え、
前記ヘッダ流路は、
径方向に沿って延在する少なくとも一本の径方向流路と、
各々の前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含み、
前記ヘッダ部における前記熱交換コアの外周面には、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成され、
各々の前記開口部における前記軸方向に沿った開口寸法は、前記各々の前記開口部における周方向に沿った前記開口寸法の1倍以上である。
【0008】
(3)本開示の少なくとも一実施形態に係る熱交換器は、
上記(1)又は(2)の構成の熱交換コアと、
前記熱交換コアを収容するケーシングと、
を備える。
【0009】
(4)本開示の少なくとも一実施形態に係る熱交換コアの製造方法は、
熱交換コアの製造方法であって、
積層造型によって、軸方向に沿って延在する複数の軸方向流路を含むコア本体部を形成する工程と、
積層造型によって、前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部を形成する工程と、を備え、
前記ヘッダ部を形成する工程は、
径方向に沿って延在する少なくとも一本の径方向流路と、
何れかの前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含むように前記ヘッダ流路を形成し、
前記ヘッダ部を形成する工程は、第1位置における流路面積よりも、前記第1位置よりも前記径方向の内側の第2位置における流路面積の方が小さくなるように各々の前記径方向流路を形成する。
【0010】
(5)本開示の少なくとも一実施形態に係る熱交換コアの製造方法は、
熱交換コアの製造方法であって、
積層造型によって、軸方向に沿って延在する複数の軸方向流路を含むコア本体部を形成する工程と、
積層造型によって、前記コア本体部の前記軸方向における少なくとも一方の端部に隣接し、前記複数の軸方向流路と連通するヘッダ流路を有するヘッダ部を形成する工程と、を備え、
前記ヘッダ部を形成する工程は、
径方向に沿って延在する少なくとも一本の径方向流路と、
何れかの前記径方向流路から分岐して1以上の前記軸方向流路にそれぞれ連通する複数本の周方向流路と、
を含むように前記ヘッダ流路を形成し、
前記ヘッダ部を形成する工程は、
前記ヘッダ部における熱交換コアの外周面に、前記少なくとも一本の径方向流路による少なくとも1つの開口部が形成されるように前記ヘッダ部を形成するとともに、
各々の前記開口部における前記軸方向に沿った開口寸法が、前記各々の前記開口部における周方向に沿った前記開口寸法の1倍以上となるように前記ヘッダ部を形成する。
【発明の効果】
【0011】
本開示の少なくとも一実施形態によれば、比較的高い熱交換効率を確保しつつ熱交換コアを小型化できる。
【図面の簡単な説明】
【0012】
図1】幾つかの実施形態に係る熱交換器に備わる熱交換コアおよびケーシングを示す分解斜視図である。
図2図1に示す熱交換器のケーシングと、ケーシングに収容された熱交換コアとを示す一部断面図である。
図3A図2のIIIa-IIIa線断面図であり(熱交換コアの第1横断面)、第1流路群および第2流路群を示している。
図3B図3Aの部分拡大図である。本図以外において、区分壁(W2)の図示が省略されている。
図4図2のIV-IV線断面図である。(熱交換コアの第2横断面)
図5図2および図6のV-V線断面図である。(熱交換コアの第3横断面)
図6】第1流体および第2流体のそれぞれの流れを示す模式図である。
図7】本開示の変形例に係る熱交換コアの一部を示す断面図である。
図8】幾つかの実施形態に係る熱交換コアの側面のうち、ヘッダ部の近傍の一部を模式的に示す図であり、開口部の形状の一例を示している。
図9】幾つかの実施形態に係る熱交換コアの側面のうち、ヘッダ部の近傍の一部を模式的に示す図であり、開口部の形状の他の一例を示している。
図10】径方向位置の変化に対する径方向流路の流路面積の変化について説明するための模式的な図である。
図11】径方向位置の変化に対する径方向流路の流路面積の変化について説明するための模式的な図である。
図12】幾つかの実施形態に係る熱交換コアの製造方法における処理手順を示したフローチャートである。
【発明を実施するための形態】
【0013】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0014】
(熱交換器の概略構成)
図1及び図2に示すように、幾つかの実施形態に係る熱交換器1は、熱交換コア10と、熱交換コア10を収容するケーシング20とを備えている。
幾つかの実施形態に係る熱交換器1は、例えば、ガスタービン、CO回収装置等の化学プラント、あるいは空気調和機や冷凍庫等の図示しない装置に組み込むことができ、例えば第1流体と第2流体とを熱交換させる。例えば第1流体の温度は相対的に高く、第2流体の温度は相対的に低い。これとは逆に、第1流体の温度が相対的に低く、第2流体の温度が相対的に高くてもよい。
【0015】
(熱交換コアの構成)
幾つかの実施形態に係る熱交換コア10は、コア本体部13と、コア本体部13の軸方向における一方及び他方の端部に隣接するヘッダ部11A、11Bとを備える。説明の便宜上、コア本体部13の軸方向における一方の端部に隣接するヘッダ部11Aを第1ヘッダ部11Aとも称し、該軸方向における他方の端部に隣接するヘッダ部11Bを第2ヘッダ部11Bとも称する。
【0016】
図3は、図2のIIIa-IIIa線断面図である。幾つかの実施形態に係るコア本体部13は、後述するように、軸方向に沿って延在する複数の軸方向流路3である複数の第1流路101の一部、及び、複数の第2流路102を含む。
幾つかの実施形態に係るヘッダ部11A、11Bのそれぞれは、後で詳述するように、複数の軸方向流路3と連通するヘッダ流路6を有する(図6参照)。
【0017】
幾つかの実施形態に係る熱交換コア10は、図1、及び図3Aに示すように、全体として同心円状に配置された第1流路群G1及び第2流路群G2を備えている。
幾つかの実施形態に係る熱交換器1は、図3Aに示す第1横断面C1、図4に示す第2横断面C2、及び図5に示す第3横断面C3を含んでいる。これらの横断面C1~C3はいずれも、円形状を呈している。熱交換コア10の全体の外形は、円柱状に形成されている。熱交換コア10は、同心円状に配置されて第1流路群G1と第2流路群G2とを隔てる隔壁(第1隔壁)W1と、熱交換コア10の最外周に配置される側壁W0とを含んでいる。
【0018】
熱交換コア10は、外形のみならず、全体的に、横断面C1~C3の中心、すなわち、円柱形状を有する熱交換コア10の中心軸(軸線AX)に対して対称の形状が与えられていることにより、応力の均一化に加えて、熱交換効率の均一化にも寄与することができる。
【0019】
幾つかの実施形態に係る熱交換器1では、第1流路群G1は、第1流体に対応し、第2流路群G2は、第2流体に対応している。各図において、第1流路群G1には網掛けパターンを付している。
幾つかの実施形態に係る第2流路群G2は、熱交換コア10の軸方向D1の一端部10A(図1)から他端部10B(図1)までに亘り延びている。軸方向D1は、横断面C1~C3に対して直交している。すなわち、幾つかの実施形態では、複数の第2流路102は、軸方向流路3に含まれる。
各図には、第1流体の流れを実線の矢印で示し、第2流体の流れを破線の矢印で示している。
【0020】
幾つかの実施形態では、第1流路群G1を構成する第1流路101は、図3Aに示す第1横断面C1において円環状に配置されている。第2流路群Gを構成する第2流路102も同様である。幾つかの実施形態では、第1流路群G1を流れる第1流体と、第2流路群G2を流れる第2流体とは、図3Aに太線で示す第1隔壁W1を介して間接的に接触することで熱を授受する。
【0021】
図3Aに示すように、複数の第1流路101と複数の第2流路102とが、熱交換コア10の径方向において、例えば数十層に亘り、交互に積層されていることが好ましい。
第1流路101及び第2流路102は、熱交換コア10の径方向の全体に亘り、つまり、熱交換コア10の軸心近傍、すなわち軸線AXの近傍まで配置されていることが好ましい。図3A図3B図4、及び図5では、一部の第1流路101及び一部の第2流路102のみが示されている。「・・・」で示した領域における残りの第1流路101及び第2流路102の図示は省略されている。
本実施形態のように、熱交換コア10の径方向の全体に亘り第1流路101及び第2流路102が配置されることにより、熱交換コア10の全体を熱交換に寄与させることができる。
【0022】
幾つかの実施形態では、熱交換コア10は、図2に示すIV-IV線とIVx-IVx線との間の範囲に亘り、第1横断面C1(図3A)に相当する一定の断面形状であってよい。当該範囲、つまり、熱交換コア10の一端部10Aの近傍から他端部10Bの近傍までの範囲に亘り、本実施形態では、第1流体と第2流体がそれぞれ、軸方向D1に沿って、逆向きに流れる。つまり、両端部を除いて熱交換コア10の軸方向D1の略全体に亘り、第1流体及び第2流体が対向流(完全向流)をなしている。
第1流体及び第2流体が、同じ向きに軸方向D1に沿って流れていてもよい。その場合、第1流体及び第2流体は並行流をなしている。
【0023】
幾つかの実施形態に係る熱交換コア10には、必要な熱交換能力や応力等を考慮して軸方向D1及び径方向の適切な寸法、流路断面積、流路101,102の積層数等が与えられている。
【0024】
図3Bに示すように、各第1流路101及び各第2流路102は、熱交換コア10の円周方向D2において区分壁W2により複数の区画Sに区分されていることが好ましい。区分壁W2の設置によれば、流体の圧力に対する特に径方向の剛性及び強度を向上させることができる。
また、第1流路101及び第2流路102がそれぞれ、区分壁W2により区画Sに細分化されることにより、流体と接触する流路の表面積が増大するため、伝熱効率を向上させることができる。
【0025】
区画Sは、等しい流路径にて、熱交換コア10の全周に亘り配列されていることが好ましい。さらに、熱交換コア10の最外周から軸心までに亘る全区画Sに、等しい流路径が与えられることが好ましい。そうすると、摩擦損失等の流動状態が全区画Sにおいて均一化される結果、全区画Sについて熱伝達率を均一化することができ、かつ、熱交換コア10に作用する応力が熱交換コア10の横断面の面内方向の全体に均一に分散されることで、応力の均一化を図ることができる。
【0026】
本明細書における「流路径」は、次式(1)により与えられる等価直径Dに相当する。
D=4A/L ・・・(1)
A:区画Sの断面積
L:円周方向D2における区画Sの長さ(周長)
熱伝達率は流路径の逆数に相当するから、これに基づいて適切な流路径を区画Sに与えることが好ましい。
【0027】
幾つかの実施形態に係る熱交換コア10は、流体に適した特性を備えた、例えば、ステンレス鋼やアルミニウム合金等の金属材料を用いて、積層造形等により、区分壁W2を含めて一体に成形することができる。積層造形によれば、例えば、装置における成形領域への金属粉体の供給、三次元形状の断面を示す二次元データに基づくレーザービームや電子ビームの照射、金属粉体の溶融、及び金属粉体の凝固が繰り返されることで、二次元形状が積層された成形物を得ることができる。
幾つかの実施形態では、金属材料を用いた積層造形により得られた熱交換コア10における壁W1等の厚みは、例えば、0.3~3mmである。
幾つかの実施形態に係る熱交換コア10は、金属材料を用いる積層造形により、第1流路群G1及び第2流路群G2を成形するステップを行うことを経て、製造される。積層造形による成形ステップにより得られた成形物に対して、必要に応じて、研磨等を施すことができる。幾つかの実施形態に係る熱交換コア10の製造方法については、後で詳述する。
なお、幾つかの実施形態に係る熱交換コア10は、積層造形に限らず、切削等により一体に成形することもできる。
【0028】
幾つかの実施形態に係る熱交換コア10は、金属板材の曲げ加工により形成された複数の第1隔壁W1を組み合わせて構成することもできるが、一体に成形されることが好ましい。熱交換コア10が一体に形成されていると、部材間からの流体の漏れを防ぐガスケットが、熱交換コア10には必要ない。
ガスケットを用いる場合は、部材間を確実に封止するため、適切な弾性変形量をガスケットに与える必要がある。そうすると、流体の漏れを防ぐため、熱交換コアの部材を分解してガスケットを部材間に締め直すといった整備を行う必要がある。ガスケットの公差や組み付け公差、流体の圧力変化やガスケットの経時変化等による変形量の変化、あるいは熱応力等によるガスケットの損傷等が起こり得るため、特にガスケットに関して整備の必要性が高い。
それに対して、幾つかの実施形態に係る一体成形の熱交換コア10によれば、ガスケットを備えていないことで、整備の手間を大幅に低減することができる。
【0029】
(ケーシング及びヘッダ)
幾つかの実施形態に係るケーシング20は、図1及び図2に示すように、全体として略円筒状に形成されている。ケーシング20は、流体に適した特性を備えた、例えば、ステンレス鋼、アルミニウム合金等を用いて形成されている。
幾つかの実施形態に係るケーシング20は、熱交換コア10の外径に対応した内径を有し、円形状の横断面を呈するケーシング本体21と、ケーシング本体21に対して径が拡大されている大径部22とを備えている。大径部22は、軸方向D1におけるケーシング本体21の両端に設けられている。これらの大径部22は、第1入口ヘッダ221及び第1出口ヘッダ222として機能する。
これらのヘッダ221,222はそれぞれ、熱交換コア10の側壁W0の周りに、連通空間としての円環状の内部空間221A,222A(図2)を有している。
【0030】
幾つかの実施形態では、第1入口ヘッダ221には、外部から第1流体が流入する入口ポート22Aが設けられている。幾つかの実施形態では、第1出口ヘッダ222には、外部へと第1流体が流出する出口ポート22Bが設けられている。
幾つかの実施形態では、入口ポート22Aは、1箇所に限らず、円周方向D2における複数箇所に設けられていてもよい。例えば、2つの入口ポート22Aが、第2横断面C2の中心に対して点対称に配置されていてもよい。出口ポート22Bに関しても同様である。
【0031】
幾つかの実施形態では、ヘッダ221,222のそれぞれの内部空間221A,222Aには、円周方向D2に対して交差する方向の流路断面積が十分に確保されているため、内部空間221A,222Aにおける第1流体の抵抗が、後述する複数の径方向流路61における第1流体の抵抗に対して小さい。そのため、第1入口ヘッダ221から第1流体が径方向流路61に均等に流入し易くなり、第1流体が径方向流路61を通じて第1出口ヘッダ222へと流出する際に該径方向流路61毎の流量のばらつきが抑制される。
【0032】
幾つかの実施形態では、軸方向D1におけるケーシング20の一端部10Aには、第2入口ヘッダ31が設けられている。軸方向D1におけるケーシング20の他端部10Bには、第2出口ヘッダ32が設けられている。
幾つかの実施形態では、第2入口ヘッダ31のフランジ31Aと、ケーシング20のフランジ231との間は、図示しない円環状のシール部材により封止されている。第2出口ヘッダ32のフランジ32Aと、ケーシング20のフランジ232との間も同様である。
【0033】
幾つかの実施形態では、第1流路群G1は、第1入口ヘッダ221の内部及び第1出口ヘッダ222の内部に接続されている。
幾つかの実施形態では、第2流路群G2は、第2入口ヘッダ31の内部及び第2出口ヘッダ32の内部に接続されている。第2流路102のそれぞれの始端は、第2入口ヘッダ31の内部で開口している。第2流路102のそれぞれの終端は、第2出口ヘッダ32の内部で開口している。
【0034】
第1流体及び第2流体がそれぞれ熱交換コア10に流入、流出する方向は、流入及び流出の経路の取り回しや、第1流体及び第2流体のそれぞれのヘッダの干渉等を考慮の上、適宜に定めることができる。
例えば、上述の説明内容とは逆に、第1流体を第2流路群G2に流通させ、第2流体を第1流路群Gに流通させてもよい。
【0035】
(略円形状、略円環状、略同心円状の定義)
幾つかの実施形態において、ケーシング20の横断面は、必ずしも厳密に円形状である必要はなく、概ね円形状とみなせる「略円形状」であってもよい。なお、「円形状」は、真円に対して公差が許容される。
「略円形状」には、例えば、頂点の多い多角形状(例えば10~20角形)や、n回転対称の形状であって、例えばnが10~20であるもの等が含まれる。その他、円周方向D2のおおよそ全体に亘り円弧が連続しており、円周上の一部において凹凸が存在する形状も、「略円形状」に含まれるものとする。
【0036】
上記と同様に、幾つかの実施形態に係る熱交換コア10の横断面C1~C3も、厳密に円形状である必要はなく、「略円形状」であってもよい。その場合、第1横断面C1において、第1流路101及び第2流路102は、概ね円環状とみなせる「略円環状」に形成されていれば足り、同様に、第1流路群G1及び第2流路群G2は、概ね同心円状とみなせる略同心円状に配置されていれば足りる。「略円環状」は、上述した略円形状の意味に準じるものとする。
【0037】
ところで、伝熱面積を増大させるため、図7に示すように、第1隔壁W1に、第1隔壁W1から第1流路101及び第2流路102の少なくとも一方に向けて立ち上がる複数の突起103が設けられていてもよい。なお、突起103は、後述する径方向流路61から第1流路101へと圧力損失を抑えて第1流体をスムーズに流入させ、また、第1流路101から径方向流路61へとスムーズに流出させる観点から、第1流路101の軸方向D1の両端部を避けて第1隔壁W1に設けることが好ましい。
突起103を備えた熱交換コア10は、積層造形のプロセスにより、一体に形成することができる。
【0038】
径の相違する複数の円形の形状が同心に配置された「同心円状」については、各円形の中心の一致(同心)に対して公差が許容される。つまり、「略同心円状」には、円形の形状が略同心に配置された形態が含まれる。同心円を構成する各円形の要素については、上述した略円形状の意味に準じるものとする。複数の多角形状の中心を一致させて、あるいは、多角形状と回転対称形状との中心を一致させて、「略同心円状」に配置することができる。
【0039】
ケーシング20や熱交換コア10の横断面が円形状であり、かつ、第1流路101及び第2流路102の横断面が円環状であり、かつ、第1流路群G1及び第2流路群G2が同心円状に配置される場合は、応力及び伝熱面積、流動状態の均一化の観点から、最も好ましい。
但し、ケーシング20や熱交換コア10の横断面が略円形状であったり、第1横断面C1において第1流路101及び第2流路102が略円環状であったり、第1流路群G1及び第2流路群G2が全体として略同心円状に配置されていたりする場合も、本実施形態による後述の効果と同等の効果を得ることができる。
【0040】
(第2横断面に関する説明)
以下、幾つかの実施形態に係る第2横断面C2及び第2横断面C2に表れる径方向流路61及び周方向流路66の概略について説明する。なお、幾つかの実施形態に係る径方向流路61の詳細については、別途説明する。
図2のIV-IV線断面に対応する図4に示すように、熱交換コア10には、第1流路群G1及び第2流路群G2を横断し、第1流路群G1のみと連通した径方向流路61が形成されている。径方向流路61は、図4に示す第2横断面C2において、熱交換コア10の径方向に延び、図2に示すように第1入口ヘッダ221の内部空間221Aと連通している。径方向流路61は、図1及び図2に示すように、側壁W0を厚さ方向に貫通している。
【0041】
幾つかの実施形態では、複数の第1流路101は、熱交換コア10内で軸方向に延在して、軸方向の一方側及び他方側の径方向流路61と連通している。幾つかの実施形態では、軸方向流路3には、複数の第1流路101のうち、コア本体部13に配置された第1流路101が含まれるものとする。また、幾つかの実施形態では、後述するように、複数の第1流路101のうち、ヘッダ部11A、11Bに配置された第1流路101を周方向流路66とも称する。幾つかの実施形態では、周方向流路66は、径方向に沿って第2流路102と交互に層状に配置されている。
【0042】
図2のIVx-IVx線断面図は省略されているが、図4と同様である。図2のIVx-IVx線に対応する横断面も、第2横断面C2に相当する。IVx-IVx線に対応する横断面のことを第2横断面C2xと称するものとする。第2横断面C2xに位置している径方向流路61は、第1出口ヘッダ222の内部空間222Aと連通している。
【0043】
幾つかの実施形態では、第2横断面C2及び第2横断面C2xのそれぞれにおいて、径方向流路61は、少なくとも一本設けられている。なお、第2横断面C2及び第2横断面C2xのそれぞれにおいて、複数(例えば図4に示した実施形態では8つ)の径方向流路61が円周方向D2に分布しているとよい。複数の径方向流路61が円周方向D2に分布していることにより、円周方向D2において熱交換コア10の剛性及び強度の均一化を図ることができるとともに、円周方向D2における第1流体の流れの状態の均一化にも寄与できる。
径方向流路61の数が多いほど、各径方向流路61を流れる第1流体の流量が均一化され易い。そうすると、円周方向D2の全体に亘り均等に流れる第1流体と、第2流体との間で十分に熱の授受が行われる。これを考慮すると、第2横断面C2,C2xのそれぞれにおいて、4以上の径方向流路61が分布していることが好ましい。但し、第2横断面C2,C2xのそれぞれにおいて、径方向流路61の数が3以下(1個を含む)であっても許容される。
【0044】
幾つかの実施形態では、各径方向流路61を流れる第1流体の流量の均一化に寄与するため、複数の径方向流路61は、円周方向D2に等間隔で分布していることが好ましい。つまり、熱交換コア10は、第2横断面C2,C2xにおいても、横断面の中心に対して対称に形成されることが好ましい。
【0045】
各径方向流路61の側壁W0における開口の形状は、図1及び図2に示す例では矩形状である。側壁W0には、径方向流路61の開口が、円周方向D2に分布している。
【0046】
加えて、上記と同じく、各径方向流路61を流れる第1流体の流量の均一化に寄与するため、入口ポート22Aと、径方向流路61とのそれぞれの位相が互いにシフトしている、つまり、入口ポート22Aと、径方向流路61とが円周方向D2において互いに異なる位置に配置されていることが好ましい。入口ポート22Aの位相と径方向流路61の位相がシフトしていると、シフトしていない場合(円周方向D2において同じ位置にある)と比べて、径方向流路61をそれぞれ流れる第1流体の流量に偏りが発生することをより確実に防ぐことができる。
【0047】
幾つかの実施形態では、各径方向流路61は、第2流路102の領域に位置する管状の横断壁W3の集合を含んでいる。径方向流路61は、横断壁W3により、第2流路群G2に対して隔てられている。横断壁W3は、熱交換コア10の径方向に隣接する第1隔壁W1,W1間に、第1隔壁W1と一体に設けられている。各第1流路101と、横断壁W3の内側とが連通している。
熱交換コア10の外周側に位置する第1流路101から、熱交換コア10の軸心近傍に位置する図示しない第1流路までの全ての第1流路101は、熱交換コア10の軸心近傍から放射状に延びている複数の径方向流路61を通じて第1入口ヘッダ221及び第1出口ヘッダ222のそれぞれの内部空間221A,222Aと連通し、さらに、熱交換コア10の外部とも連通している。
【0048】
(第3横断面の説明)
図2及び図6のV-V線断面に対応する図5は、軸方向D1において第2横断面C2よりも外側に位置する第3横断面C3を示している。
幾つかの実施形態では、上述の径方向流路61に連通する第1流路群G1には、図6に示すように、軸方向D1における第2横断面C2よりも外側に位置する閉塞壁W4が設けられている。第1流路群G1を流れる第1流体は、軸方向D1に対して交差した閉塞壁W4を軸方向D1に超えては流れない。閉塞壁W4は、隣接する第1隔壁W1,W1間を塞いでいる。
【0049】
幾つかの実施形態では、閉塞壁W4により、第3横断面C3(図5)において第1流路群G1は閉塞されている。そのため、第3横断面C3には第2流路群G2のみが存在している。図5に格子状のパターンで示す領域には、閉塞壁W4が存在するため、第1流路群G1が存在していない。
第2流路群G2は、熱交換コア10の端部において、第2入口ヘッダ31及び第2出口ヘッダ32にそれぞれ開放されている。
【0050】
図2のVx-Vx線断面図は省略されているが、図5と同様である。幾つかの実施形態では、図2のVx-Vx線に対応する横断面は、軸方向D1において第2横断面C2xよりも外側に位置する第3横断面C3xに相当する。Vx-Vx線に対応する横断面のことを第3横断面C3xと称するものとする。
幾つかの実施形態では、図6に示すように、閉塞壁W4により、第3横断面C3xにおいて第1流路群G1は閉塞されている。そのため、第3横断面C3xには第2流路群G2のみが存在している。
【0051】
(第1流体及び第2流体の流れ)
図2図4、及び図6を参照し、熱交換コア10における第1流体及び第2流体のそれぞれの流れを説明する。図6は、熱交換コア10の縦断面の一部を示している。
幾つかの実施形態では、図6に破線の矢印で示すように、図示しない入口ポートを通じて第2入口ヘッダ31の内部に流入した第2流体は、第2流路群G2の第2流路102のそれぞれの始端に流入する。このとき、第2流路群G2が第3横断面C3の中心、すなわち軸線AXに対して対称に形成されているため、第2流路102のそれぞれに、円周方向D2の全体に亘り第2流体が均一に流入し、第2流路102を軸方向D1に流れる。第2流体は第2流路102の終端から第2出口ヘッダ32の内部へと流出し、さらに図示しない出口ポートを通じて熱交換器1の外部へと流出する。
【0052】
幾つかの実施形態では、図6に実線の矢印で示すように、入口ポート22Aから第1入口ヘッダ221の内部に流入した第1流体は、側壁W0に開口した径方向流路61を通じて第1入口ヘッダ221から第1流路群G1へと、円周方向D2に亘り均等に流入する。
このとき、入口ポート22Aに近い一部の径方向流路61に偏ることなく、第1入口ヘッダ221から複数の径方向流路61のそれぞれに第1流体が分配され、各径方向流路61において、第1流体は、熱交換コア10の径方向の内側に向けて、図6に二点鎖線で示す横断壁W3の内側を通り、各第1流路101へと分配される。
【0053】
その後、径方向流路61が位置する第2横断面C2における熱交換コア10の対称性に基づいて、第1流路101を軸方向D1に流れる第1流体の流量が円周方向D2の全体に亘り均等に維持される。そのため、第2流路102を流れる第2流体と、第1流路101を流れる第1流体との間で、流路101,102を流れる間に亘り温度差を大きく確保し易い対向流の下、第2横断面C2が連続している範囲の全体に亘り、十分に熱を授受させることができる。
第1流路101のそれぞれを軸方向D1に流れる第1流体は、第1流路101の終端部に至ると、流れの向きを軸方向D1から径方向に転向し、熱交換コア10の軸心から放射状に配置されている径方向流路61のそれぞれにおいて、横断壁W3の内側を通り、合流しつつ、熱交換コア10の径方向の外側に向けて径方向流路61を流れる。そして、径方向流路61から第1出口ヘッダ222の内部へと流出した第1流体が、出口ポート22Bから熱交換器1の外部へと流出する。
【0054】
(実施形態の熱交換器による主な効果)
以上で説明した幾つかの実施形態に係る熱交換器1によれば、ケーシング20が軸心に対して対称な形状であるばかりでなく、第1流路群G1及び第2流路群G2が対称で同心円状に積層されてなる熱交換コア10の構成に基づいて、流体の圧力等により作用する応力を熱交換コア10の全体に均一に分散させつつ、第1流体と第2流体との伝熱面積を大きく確保しながら、第1流体及び第2流体が均等に流れる熱交換コア10の全体に亘り効率よく熱交換を行うことができる。
以上より、熱交換コア10の破損を未然に防いで信頼性を向上させることができるとともに、同一の熱交換能力をより小型の熱交換コア10により得ることができる。
【0055】
(径方向流路の詳細について)
以下、幾つかの実施形態に係る径方向流路の詳細について説明する。
なお、幾つかの実施形態に係る熱交換コア10では、第1ヘッダ部11Aと第2ヘッダ部11Bとで同様の構造を有しているので、以下の説明では、第1ヘッダ部11Aと第2ヘッダ部1Bとを特に区別する必要がない場合には、符号にアルファベットのA、Bを付さずに、単にヘッダ部11と称して説明を行う。
【0056】
(径方向流路の流路面積について)
幾つかの実施形態に係る熱交換コア10では、ヘッダ流路6は、径方向に沿って延在する少なくとも一本の径方向流路61を含む。ヘッダ流路6は、各々の径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66を含む。
各々の径方向流路61は、第1位置P1における流路面積Ca1よりも、第1位置よりも径方向の内側の第2位置P2における流路面積Ca2の方が小さい。
【0057】
ここで、径方向流路61の流路面積Caとは、径方向流路61をその延在方向(すなわち径方向)と直交する面に沿って切断したときに表れる径方向流路61の断面積のことである。
また、第1位置P1及び第2位置P2とは、径方向流路61における径方向の相対的な位置関係を表すために仮定した位置であり、特定の径方向位置を指すものではない。例えば、径方向流路61において、ある径方向位置Paを第1位置P1とした場合には、該径方向位置Paよりも径方向内側となる任意の位置が第2位置となり得る。
【0058】
幾つかの実施形態に係る熱交換コア10では、第1位置P1における径方向流路61の周方向寸法Lc1(図4参照)よりも、第2位置P2における径方向流路61の周方向寸法Lc2を小さくすることで第1位置P1における流路面積Ca1よりも第2位置P2における流路面積Ca2が小さくなるようにしてもよい。また、第1位置P1における径方向流路61の軸方向寸法La1(図6参照)よりも、第2位置P2における径方向流路61の軸方向寸法La2を小さくすることで第1位置P1における流路面積Ca1よりも第2位置P2における流路面積Ca2が小さくなるようにしてもよい。
すなわち、第1位置P1における径方向流路61の周方向寸法Lc1又は軸方向寸法La1の少なくとも何れか一方を第2位置P2における径方向流路61の周方向寸法Lc2又は軸方向寸法La2と異ならせることで第1位置P1における流路面積Ca1よりも第2位置P2における流路面積Ca2が小さくなるようにしてもよい。
【0059】
径方向流路61では、径方向外側の領域ほど流体の流量が増えて圧損が大きくなる傾向にある、そのため、該領域における圧損を低減することが熱交換コア10全体の圧損の低減に寄与する。
上記構成によれば、第1位置P1における流路面積Ca1よりも、第2位置P2における流路面積Ca2の方が小さい。すなわち、上記構成によれば、第2位置P2における流路面積Ca2よりも、第1位置P1における流路面積Ca1の方が大きい。これにより、径方向流路61における径方向外側の領域での圧損を抑制できるので、熱交換コア10全体の圧損を抑制できる。したがって、周方向流路66を介して径方向流路61と接続されている軸方向流路3において、径方向の位置による流量の差を抑制でき、熱交換コア10における熱交換効率を向上できる。
【0060】
なお、上述したように、各々の径方向流路61は、第1位置P1における周方向寸法Lc1よりも、第2位置P2における周方向寸法Lc2の方を小さくしてもよい。
これにより、第2位置P2における流路面積Ca2よりも、第1位置P1における流路面積Ca1を大きくすることができる。
第2位置P2における流路面積Ca2よりも第1位置P1における流路面積Ca1を大きくするためには、上述したように、第2位置P2における周方向寸法Lc2よりも第1位置P1における周方向寸法Lc1を大きくする方法と、第2位置P2における軸方向寸法La2よりも第1位置P1における軸方向寸法La1を大きくする方法とがある。
この場合、第1位置P1と第2位置P2とで主に周方向の寸法Lcを変えることで流路面積Caを変更するようにすれば、各々の径方向流路61における軸方向の寸法Laを径方向に沿った全体にわたって抑制することができる。これにより、ヘッダ部11の軸方向寸法を抑制できる。
【0061】
なお、上述したように、各々の径方向流路61は、第1位置P1における軸方向寸法La1よりも、第2位置P2における軸方向寸法La2の方を小さくしてもよい。
これにより、第2位置P2における流路面積Ca2よりも、第1位置P1における流路面積Ca1を大きくすることができる。
また、第1位置P1と第2位置P2とで主に軸方向の寸法Laを変えることで流路面積Caを変更するようにすれば、各々の径方向流路61における周方向の寸法Lcを径方向に沿った全体にわたって抑制することができる。これにより、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合を抑止して周方向流路66が占める領域の割合を増やすことができる。
【0062】
幾つかの実施形態に係るヘッダ部11において、上記流路面積Caは、径方向内側に向かうにつれて漸減するように構成されているとよい。
これにより、上記流路面積Caが径方向外側に向かうにつれて漸増するように径方向流路61が形成されるので、流路断面積Caの急変部が形成されることを回避でき、径方向流路61における圧損を抑制できる。
【0063】
(径方向流路による開口部について)
図1に示すように、幾つかの実施形態に係る熱交換コア10では、ヘッダ部11における熱交換コア10の外周面には、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成される。幾つかの実施形態に係る熱交換コア10では、各々の開口部63の開口面積Oaの合計面積ΣOaは、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣSc以下であるとよい。
【0064】
幾つかの実施形態に係る熱交換コア10では、各々の開口部63の開口面積Oaの合計面積ΣOaが軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣScを超えるように径方向流路61を形成した場合、径方向流路61及び周方向流路66を流通する流体の圧損は、周方向流路66における圧損の影響の方が大きくなる。そのため、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣScを超えるように各々の開口部63の開口面積Oaの合計面積ΣOaを増やしたとしても、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣScと各々の開口部63の開口面積Oaの合計面積ΣOaとを同じにした場合と比べて、径方向流路61における径方向外側の領域での圧損を抑制する効果は、さほど増加しない。
逆に、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣScを超えるように各々の開口部63の開口面積Oaの合計面積ΣOaを増やすことで、径方向流路61の周方向寸法Lcや軸方向寸法Laが大きくなってしまい。次のような影響が生じるおそれがある。
すなわち、径方向流路61の周方向寸法Lcが大きくなることで、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合が増えて、周方向流路66が占める領域の割合が減ってしまうおそれがある。
また、径方向流路61の軸方向寸法Laが大きくなることで、ヘッダ部11の軸方向寸法が大きくなってしまうおそれがある。
幾つかの実施形態に係る熱交換コア10によれば、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)における周方向流路66が占める領域に与える影響や、ヘッダ部11の軸方向寸法に与える影響を抑止しつつ、径方向流路61における径方向外側の領域での圧損を効果的に抑制できる。
【0065】
(開口部の形状について)
図8は、幾つかの実施形態に係る熱交換コア10の側面のうち、ヘッダ部11の近傍の一部を模式的に示す図であり、開口部63の形状の一例を示している。
図9は、幾つかの実施形態に係る熱交換コア10の側面のうち、ヘッダ部11の近傍の一部を模式的に示す図であり、開口部63の形状の他の一例を示している。
【0066】
幾つかの実施形態に係る熱交換コア10では、径方向流路61の開口部63付近では流体の流量が比較的大きく、圧力損失が比較的大きくなる傾向にあるため、極力開口部63側の開口面積を大きくすることが望まれる。しかし、周方向D2に径方向流路61を広げると、軸方向流路3における流体の流通に影響を与えるおそれがあるため、周方向D2への流路幅の拡大は抑制することが望ましい。そのため、径方向流路61では、軸方向D1に流路幅を広げることが好ましい。
そこで、幾つかの実施形態に係る熱交換コア10では、開口部63の形状を以下のように設定した。
すなわち、幾つかの実施形態に係る熱交換コア10では、図8及び図9に示すように、各々の開口部63における軸方向D1に沿った開口寸法AL1は、各々の開口部63における周方向D2に沿った開口寸法AL2の1倍以上(1.0×AL2≦AL1)である。
これにより、各々の開口部63における周方向D2に沿った開口寸法AL2を抑制できる。したがって、径方向流路61における周方向D2に沿った寸法を抑制できるので、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合を抑止して周方向流路66が占める領域の割合を増やすことができる。
【0067】
例えば図8に示す熱交換コア10では、開口部63は径方向外側から見たときに矩形形状を有する。また、例えば図9に示す熱交換コア10では、開口部63の軸方向に沿った端部64は、径方向外側から見たときに、軸方向D1に沿って径方向流路61の外側に向かうにつれて周方向D2の寸法が小さくなるように形成されている。すなわち、幾つかの実施形態に係る熱交換コア10では、径方向流路61は、軸方向D1に沿った2つの端部64のうち少なくとも一方の端部64において軸方向D1に沿って径方向流路61の外側に向かうにつれて周方向D2の寸法AL2が小さくなるように形成されていてもよい。
これにより、例えば後述するように、熱交換コア10を積層造形によって造形する場合、軸方向D1を積層方向としたときに、径方向流路61における軸方向D1に沿った端部64がオーバーハング領域となり難くなる。これにより、オーバーハング領域を造形するためのサポートの造形する工程や、造形したサポートを除去する工程を簡略化、又は不要とすることができる。
【0068】
(径方向位置の変化に対する径方向流路の流路面積の変化について)
図10は、径方向位置の変化に対する径方向流路61の流路面積Caの変化について説明するための模式的な図であり、熱交換コア10を軸方向D1に沿って見た図である。
説明の便宜上、図10では、第1ヘッダ部11Aにおける径方向流路61である第1径方向流路61Aの模式的な形状と、第2ヘッダ部11Bにおける径方向流路61である第2径方向流路61Bの模式的な形状とを軸方向D1に沿って重ねて表している。なお、図示の便宜上、図10では、第1径方向流路61Aの模式的な形状を破線で示し、第2径方向流路61Bの模式的な形状を2点鎖線で示す。
図11は、径方向位置の変化に対する径方向流路61の流路面積Caの変化について説明するための模式的な図であり、熱交換コア10を径方向に沿って見た図である。なお、図11では、第1径方向流路61Aの模式的な形状、及び、第2径方向流路61Bの模式的な形状を2点鎖線で示す。
【0069】
幾つかの実施形態に係る熱交換コア10では、上述したように、径方向流路61の開口部63付近では流体の流量が比較的大きくなるため、動圧が比較的大きくなる。一方で径方向流路61の円筒中心付近では開口部63付近と比べて流量が小さくなるため、動圧が開口部63付近と比べて非常に小さくなる。
径方向の位置の違いによる動圧の差がある程度以上大きくなると、開口部63付近(すなわち径方向外側)の軸方向流路3と、中心付近の軸方向流路3の偏差が大きくなり、熱交換コア10の性能低下を招くおそれがある。
なお、動圧が大きくなるほど上記の偏差は大きくなる傾向があるため、密度が大きい流体では上記偏差が大きくなりやすい。
よって、密度が大きい流体ほど、後述する面積増加率Rcaを大きくすることで、開口部63付近の流速をより下げることが好ましい。
【0070】
また、一般的に流体の密度は、温度によって異なる。また、一般的には、液体よりも気体の方が温度による密度の変化が大きくなる。
そのため、熱交換コア10を流通することで流体の温度が変化する場合、流体の流れの上流側に位置するヘッダ部11における径方向流路61と、流体の流れの下流側に位置するヘッダ部11における径方向流路61とで、後述する面積増加率Rcaを異ならせるとよい場合がある。
【0071】
そこで、幾つかの実施形態に係る熱交換コア10では、径方向流路61の形状を以下のように設定した。
すなわち、幾つかの実施形態に係る熱交換コア10では、少なくとも一本の径方向流路61において径方向の内側から外側に向かうにつれて増加する流路面積Caについての面積増加率Rcaは、第1ヘッダ部11Aにおける少なくとも一本の径方向流路61(第1径方向流路61A)と第2ヘッダ部11Bにおける少なくとも一本の径方向流路61(第2径方向流路61B)とで異なる。
ここで、面積増加率Rcaは、第1位置P1における流路面積Ca1と第2位置P2における流路面積Ca2との差(Ca1-Ca2)を第1位置P1と第2位置P2との径方向の位置の差で除した値である。
【0072】
なお、第1径方向流路61Aと第2径方向流路61Bとで面積増加率Rcaを異ならせるために、例えば、図10に示すように、径方向の内側から外側に向かうにつれて大きくなる周方向寸法Lcについての寸法増加率Rlcを第1径方向流路61Aと第2径方向流路61Bとで異ならせてもよい。また、第1径方向流路61Aと第2径方向流路61Bとで面積増加率Rcaを異ならせるために、例えば、図11に示すように、径方向の内側から外側に向かうにつれて大きくなる軸方向寸法Laについての寸法増加率Rlaを第1径方向流路61Aと第2径方向流路61Bとで異ならせてもよい。
すなわち、周方向寸法Lcについての寸法増加率Rlc又は軸方向寸法Laについての寸法増加率Rlaの少なくとも何れか一方を第1径方向流路61Aと第2径方向流路61Bとで異ならせることで第1径方向流路61Aと第2径方向流路61Bとで面積増加率Rcaを異ならせてもよい。
【0073】
幾つかの実施形態に係る熱交換コア10においては、径方向流路61の任意の径方向位置における第1ヘッダ部11Aと第2ヘッダ部11Bとでの静圧の差を、径方向の位置によらず一定とすることが望ましい。
熱交換コア10に流通させる流体が、例えば気体である場合、上述したように、液体である場合と比べて温度の変化による密度の変化の割合が大きくなる傾向にある。そのため、上記面積増加率Rcaが第1径方向流路61Aと第2径方向流路61Bとで同じであると、上述した静圧の差が径方向の位置によって大きく異なってしまうおそれがある。
上記構成によれば、上記面積増加Rca率が第1径方向流路61Aと第2径方向流路61Bとで異なるので、上述した静圧の差が径方向の位置によって異ることを抑制できる。
【0074】
(熱交換コアの製造方法について)
以下、上述した幾つかの実施形態に係る熱交換コア10の製造方法の一例について説明する。
図12は、上述した幾つかの実施形態に係る熱交換コア10の製造方法における処理手順を示したフローチャートである。
上述した幾つかの実施形態に係る熱交換コア10の製造方法は、積層造型によって、軸方向D1に沿って延在する複数の軸方向流路3を含むコア本体部13を形成するコア本体部形成工程S1と、積層造型によって、コア本体部13の軸方向D1における少なくとも一方の端部に隣接し、複数の軸方向流路3と連通するヘッダ流路6を有するヘッダ部11を形成するヘッダ部形成工程S3と、を備える。
【0075】
ヘッダ部形成工程S3は、径方向に沿って延在する少なくとも一本の径方向流路61と、何れかの径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66と、を含むようにヘッダ流路6を形成する。
また、ヘッダ部形成工程S3は、第1位置P1における流路面積Ca1よりも、第1位置P1よりも径方向の内側の第2位置P2における流路面積Ca2の方が小さくなるように各々の径方向流路61を形成してもよい。
また、ヘッダ部形成工程S3は、ヘッダ部11における熱交換コア10の外周面に、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成されるようにヘッダ部11を形成するとともに、各々の開口部63における軸方向D1に沿った開口寸法AL1が、各々の開口部63における周方向に沿った開口寸法AL2の1倍以上となるようにヘッダ部11を形成してもよい。
これにより、積層造形により、熱交換コア10を一体に形成することが可能となるので、部材の組付けや、部材間をガスケットにより封止することが必要ない。そのため、整備の手間を大幅に低減することができる。
【0076】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0077】
上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る熱交換コア10は、コア本体部13と、ヘッダ部11とを備える。コア本体部13は、軸方向D1に沿って延在する複数の軸方向流路3を含む。ヘッダ部11は、コア本体部13の軸方向D1における少なくとも一方の端部に隣接し、複数の軸方向流路3と連通するヘッダ流路6を有する。
ヘッダ流路6は、径方向に沿って延在する少なくとも一本の径方向流路61を含む。ヘッダ流路6は、各々の径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66を含む。
各々の前記径方向流路61は、第1位置P1における流路面積Ca1よりも、第1位置P1よりも径方向の内側の第2位置P2における流路面積Ca2の方が小さい。
【0078】
上記径方向流路61では、径方向外側の領域ほど流体の流量が増えて圧損が大きくなる傾向にある、そのため、該領域における圧損を低減することが熱交換コア10全体の圧損の低減に寄与する。
上記(1)の構成によれば、第1位置P1における流路面積Ca1よりも、第1位置P1よりも径方向の内側の第2位置P2における流路面積Ca2の方が小さい。すなわち、上記(1)の構成によれば、第2位置P2における流路面積Ca2よりも、第2位置P2よりも径方向の外側の第1位置P1における流路面積Ca1の方が大きい。これにより、径方向流路61における径方向外側の領域での圧損を抑制できるので、熱交換コア10全体の圧損を抑制できる。したがって、周方向流路66を介して径方向流路61と接続されている軸方向流路3において、径方向の位置による流量の差を抑制でき、熱交換コア10における熱交換効率を向上できる。
【0079】
(2)幾つかの実施形態では、上記(1)の構成において、各々の径方向流路61は、第1位置P1における周方向寸法Lc1よりも、第2位置P2における周方向寸法Lc2の方が小さい。
【0080】
上記(2)の構成によれば、各々の径方向流路61において第1位置P1における周方向寸法Lc1よりも第2位置P2における周方向寸法Lc2を小さくすることで、すなわち、第2位置P2における周方向寸法LC2よりも第1位置P1における周方向寸法LC1を大きくすることで、第2位置P2における流路面積Ca2よりも、第1位置P1における流路面積Ca1を大きくすることができる。
第1位置P1と第2位置P2とで主に周方向の寸法Lcを変えることで流路面積Caを変更するようにすれば、各々の径方向流路61における軸方向D1の寸法Laを径方向に沿った全体にわたって抑制することができる。これにより、ヘッダ部11の軸方向寸法を抑制できる。
【0081】
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、各々の径方向流路61は、第1位置P1における軸方向寸法La1よりも、第2位置P2における軸方向寸法La2の方が小さい。
【0082】
上記(3)の構成によれば、各々の径方向流路61において第1位置P1における軸方向寸法La1よりも第2位置P2における軸方向寸法La2を小さくすることで、すなわち、第2位置P2における軸方向寸法La2よりも第1位置P1における軸方向寸法La1を大きくすることで、第2位置P2における流路面積Ca2よりも、第1位置P1における流路面積Ca1を大きくすることができる。
第1位置P1と第2位置P2とで主に軸方向の寸法Laを変えることで流路面積Caを変更するようにすれば、各々の径方向流路61における周方向の寸法Lcを径方向に沿った全体にわたって抑制することができる。これにより、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合を抑止して周方向流路66が占める領域の割合を増やすことができる。
【0083】
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、上記流路面積Caは、径方向内側に向かうにつれて漸減する。
【0084】
上記(4)の構成によれば、上記流路面積Caが径方向外側に向かうにつれて漸増するように径方向流路61が形成されるので、流路断面積Caの急変部が形成されることを回避でき、径方向流路61における圧損を抑制できる。
【0085】
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、ヘッダ部11における熱交換コア10の外周面には、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成される。各々の開口部63の開口面積Oaの合計面積ΣOaは、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣSc以下である。
【0086】
上記(5)の構成によれば、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)における周方向流路66が占める領域に与える影響や、ヘッダ部11の軸方向寸法に与える影響を抑止しつつ、径方向流路61における径方向外側の領域での圧損を効果的に抑制できる。
【0087】
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、ヘッダ部11における熱交換コア10の外周面には、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成される。各々の開口部63における軸方向D1に沿った開口寸法AL1は、各々の開口部63における周方向D2に沿った開口寸法AL2の1倍以上である。
【0088】
上記(6)の構成によれば、各々の開口部63における周方向D2に沿った開口寸法AL2を抑制できる。これにより、径方向流路61における周方向D2に沿った寸法を抑制できるので、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合を抑止して周方向流路66が占める領域の割合を増やすことができる。
【0089】
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、少なくとも一本の径方向流路61は、軸方向D1に沿った2つの端部64のうち少なくとも一方の端部64において軸方向D1に沿って径方向流路61の外側に向かうにつれて周方向D2の寸法が小さくなるように形成されている。
【0090】
上記(7)の構成によれば、例えば、熱交換コア10を積層造形によって造形する場合、軸方向D1を積層方向としたときに、径方向流路61における軸方向D1に沿った端部64がオーバーハング領域となり難くなる。これにより、オーバーハング領域を造形するためのサポートの造形する工程や、造形したサポートを除去する工程を簡略化、又は不要とすることができる。
【0091】
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、ヘッダ部11は、コア本体部13の軸方向D1における一方の端部に隣接する第1ヘッダ部11A、及び、コア本体部13の軸方向D1における他方の端部に隣接する第2ヘッダ部11Bを含む。少なくとも一本の径方向流路61において径方向の内側から外側に向かうにつれて増加する流路面積Caについての面積増加率Rcaは、第1ヘッダ部11Aにおける少なくとも一本の径方向流路61と第2ヘッダ部11Bにおける少なくとも一本の径方向流路61とで異なる。
【0092】
上記(8)の構成によれば、上記面積増加率Rcaが第1ヘッダ部11Aにおける径方向流路61と第2ヘッダ部11Bにおける径方向流路61とで異なるので、上述した静圧の差が径方向の位置によって異ることを抑制できる。
【0093】
(9)本開示の少なくとも一実施形態に係る熱交換コア10は、コア本体部13と、ヘッダ部11とを備える。コア本体部13は、軸方向D1に沿って延在する複数の軸方向流路3を含む。ヘッダ部11は、コア本体部13の軸方向D1における少なくとも一方の端部に隣接し、複数の軸方向流路3と連通するヘッダ流路6を有する。
ヘッダ流路6は、径方向に沿って延在する少なくとも一本の径方向流路61を含む。ヘッダ流路6は、各々の径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66を含む。
ヘッダ部11における熱交換コア10の外周面には、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成される。
各々の開口部63における軸方向D1に沿った開口寸法AL1は、各々の開口部63における周方向D2に沿った開口寸法AL2の1倍以上である。
【0094】
上記(9)の構成によれば、各々の開口部63における周方向D2に沿った開口寸法AL2を抑制できる。これにより、径方向流路61における周方向D2に沿った寸法を抑制できるので、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)において径方向流路61が占める領域の割合を抑止して周方向流路66が占める領域の割合を増やすことができる。
【0095】
(10)幾つかの実施形態では、上記(9)の構成において、各々の開口部63の開口面積Oaの合計面積ΣOaは、軸方向D1から見たときの複数本の周方向流路66の面積Scの合計面積ΣSc以下である。
【0096】
上記(10)の構成によれば、軸方向D1から見たときのヘッダ部11の断面(第2横断面C2)における周方向流路66が占める領域に与える影響や、ヘッダ部11の軸方向寸法に与える影響を抑止しつつ、径方向流路61における径方向外側の領域での圧損を効果的に抑制できる。
【0097】
(11)幾つかの実施形態では、上記(9)又は(10)の構成において、少なくとも一本の径方向流路61は、軸方向D1に沿った2つの端部64のうち少なくとも一方の端部64において軸方向D1に沿って径方向流路61の外側に向かうにつれて周方向D2の寸法が小さくなるように形成されている。
【0098】
上記(11)の構成によれば、例えば、熱交換コア10を積層造形によって造形する場合、軸方向D1を積層方向としたときに、径方向流路61における軸方向D1に沿った端部64がオーバーハング領域となり難くなる。これにより、オーバーハング領域を造形するためのサポートの造形する工程や、造形したサポートを除去する工程を簡略化、又は不要とすることができる。
【0099】
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの構成において、複数の軸方向流路3は、軸方向D1から見たときに円環状に配置されている。
【0100】
上記(12)の構成によれば、流体の圧力等により作用する応力を熱交換コア10の全体に均一に分散させることができる。
【0101】
(13)幾つかの実施形態では、上記(1)乃至(12)の何れかの構成において、複数の軸方向流路3は、それぞれ周方向D2において複数の区画Sに区分されている。
【0102】
上記(13)の構成によれば、軸方向流路3を区分する壁が存在することで伝熱効率を向上させることができる。該壁により、熱交換コア10の特に径方向における剛性及び強度を向上できる。
【0103】
(14)幾つかの実施形態では、上記(13)の構成において、複数の軸方向流路3は、前記複数の区画Sの流路径が均一化されている。
【0104】
上記(14)の構成によれば、摩擦損失等の流動状態が全区画において均一化されることで全区画について熱伝達率を均一化することができるとともに、応力が熱交換コア10の横断面の面内方向の全体に均一に分散されることで、応力の均一化を図ることができる。
【0105】
(15)本開示の少なくとも一実施形態に係る熱交換器1は、上記(1)乃至(14)の何れかの構成による熱交換コア10と、熱交換コア10を収容するケーシング20と、を備える。
【0106】
上記(15)の構成によれば、熱交換器1を比較的小型化できるとともに、熱交換効率を向上できる。
【0107】
(16)本開示の少なくとも一実施形態に係る熱交換コア10の製造方法は、熱交換コア10の製造方法であって、積層造型によって、軸方向D1に沿って延在する複数の軸方向流路3を含むコア本体部13を形成するコア本体部形成工程S1と、積層造型によって、コア本体部13の軸方向D1における少なくとも一方の端部に隣接し、複数の軸方向流路3と連通するヘッダ流路6を有するヘッダ部11を形成するヘッダ部形成工程S3と、を備える。
ヘッダ部形成工程S3は、径方向に沿って延在する少なくとも一本の径方向流路61と、何れかの径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66と、を含むようにヘッダ流路6を形成する。ヘッダ部形成工程S3は、第1位置P1における流路面積Ca1よりも、第1位置P1よりも径方向の内側の第2位置P2における流路面積Ca2の方が小さくなるように各々の径方向流路61を形成する。
【0108】
上記(16)の方法によれば、積層造形により、熱交換コア10を一体に形成することが可能となるので、部材の組付けや、部材間をガスケットにより封止することが必要ない。そのため、整備の手間を大幅に低減することができる。
【0109】
(17)本開示の少なくとも一実施形態に係る熱交換コア10の製造方法は、熱交換コア10の製造方法であって、積層造型によって、軸方向D1に沿って延在する複数の軸方向流路3を含むコア本体部13を形成するコア本体部形成工程S1と、積層造型によって、コア本体部13の軸方向D1における少なくとも一方の端部に隣接し、複数の軸方向流路3と連通するヘッダ流路6を有するヘッダ部11を形成するヘッダ部形成工程S3と、を備える。
ヘッダ部形成工程S3は、径方向に沿って延在する少なくとも一本の径方向流路61と、何れかの径方向流路61から分岐して1以上の軸方向流路3にそれぞれ連通する複数本の周方向流路66と、を含むようにヘッダ流路6を形成する。ヘッダ部形成工程S3は、ヘッダ部11における熱交換コア10の外周面に、少なくとも一本の径方向流路61による少なくとも1つの開口部63が形成されるようにヘッダ部11を形成するとともに、各々の開口部63における軸方向D1に沿った開口寸法AL1が、各々の開口部63における周方向D2に沿った開口寸法AL2の1倍以上となるようにヘッダ部11を形成する。
【0110】
上記(17)の方法によれば、積層造形により、熱交換コア10を一体に形成することが可能となるので、部材の組付けや、部材間をガスケットにより封止することが必要ない。そのため、整備の手間を大幅に低減することができる。
【符号の説明】
【0111】
1 熱交換器
3 軸方向流路
6 ヘッダ流路
10 熱交換コア
11 ヘッダ部
11A 第1ヘッダ部
11B 第2ヘッダ部
13 コア本体部
61 径方向流路
63 開口部
66 周方向流路
図1
図2
図3A
図3B
図4
図5
図6
図7
図8
図9
図10
図11
図12