(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】炭化ケイ素を用いた温度測定及び除電構造
(51)【国際特許分類】
G01K 13/02 20210101AFI20240417BHJP
G01K 1/14 20210101ALI20240417BHJP
G01K 7/16 20060101ALI20240417BHJP
H01L 21/304 20060101ALI20240417BHJP
【FI】
G01K13/02
G01K1/14 L
G01K7/16 S
H01L21/304 646
(21)【出願番号】P 2023575581
(86)(22)【出願日】2023-12-06
(86)【国際出願番号】 JP2023043589
【審査請求日】2023-12-07
【早期審査対象出願】
(73)【特許権者】
【識別番号】591264429
【氏名又は名称】コフロック株式会社
(73)【特許権者】
【識別番号】592153953
【氏名又は名称】鍋屋バイテック株式会社
(74)【代理人】
【識別番号】100077012
【氏名又は名称】岩谷 龍
(72)【発明者】
【氏名】新村 英展
(72)【発明者】
【氏名】清水 智弘
(72)【発明者】
【氏名】菊地 直毅
【審査官】菅藤 政明
(56)【参考文献】
【文献】特開2012-225739(JP,A)
【文献】特表2017-538108(JP,A)
【文献】特開昭63-186874(JP,A)
【文献】実開平5-92462(JP,U)
【文献】特開2010-54491(JP,A)
【文献】特開2011-106988(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01K 13/02
G01K 1/14
G01K 7/16
H01L 21/304
H01L 21/66
(57)【特許請求の範囲】
【請求項1】
半導体製造装置の薬液を移送するための耐食性配管内を流通する当該薬液に炭素を含浸させた
炭化ケイ素製の丸棒を直接接触させるとともに、上記炭化ケイ素製の丸棒の両端部を上記耐食性配管から露出させて、上記
炭化ケイ素製の丸棒の抵抗値が変化することにより薬液温度を測定するとともに、当該薬液及び耐食性配管が帯電しないように上記
炭化ケイ素製の丸棒により除電することを特徴とする炭化ケイ素を用いた温度測定
装置。
【請求項2】
耐食性配管がPTFE製であることを特徴とする請求項1記載の炭化ケイ素を用いた温度測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は炭化ケイ素を用いた温度測定及び除電構造に関し、特に、腐食性液体の温度測定及び除電構造に関する。
【背景技術】
【0002】
例えば、半導体製造プロセスの半導体洗浄に用いられる超純水のような腐食性液体が流通する配管内の液体温度測定装置としては、
図9に示す流体温度測定装置が特許文献1に開示されている。
図9において、腐食性液体に対して耐食性を有するフッ素樹脂で形成したT字管51を用いるとともに、温度計52として、同じく腐食性液体に対して耐食性のあるフッ素樹脂で形成した保護棒53の中に温度検知素子54を埋め込んだ構造のものを用いている。T字管51のうち、メイン管55の中央から突出する中央管部56に保護棒53を挿入して、温度検知素子54が封入されている先端部位をメイン管55を流通する腐食性液体に浸漬させ、中央管部56をナット57で締め付け、保護棒53の外周面と中央管部56の内周面とを密着させてシールするようにしている。
【0003】
しかし、
図9に示す流体温度測定装置ば、温度検知素子54が保護棒53で保護費されているため、温度測定の応答時間が長く、応答性が悪い。
【0004】
また、特許文献2には、
図10に示すように、硫化ガス、酸性ガス、窒素酸化物ガスのような腐食性ガスが流通する環境下で使用される温度センサとして、温度変化により抵抗値が変化するサーミスタ61と、サーミスタ61の両側に電気的に接続された封止電極62と、サーミスタ61と封止電極62を被覆するガラス管63と、封止電極62に接続されたリード線64とを有し、封止電極62とリード線64の接続部に、当該接続部を覆う粘弾性の特性を有するシリコーンエラストマーのコート65を形成した温度センサが開示されている。しかし、
図10に示す温度センサは、サーミスタ61がガラス管63とシリコーンエラストマーのコート65で保護されているため、特許文献1と同様に応答性が悪い。
【0005】
さらに、特許文献3には、非接触式で温度測定を行う装置として、放射計を用いた温度測定装置が開示されている。しかし、この温度測定装置では、測定対象の放射率が変動したり、あるいは未知である場合には、正確な測定結果が得られないという問題点がある。
【0006】
半導体製造装置の薬液が耐食性配管内を流れると、薬液と配管内面との摩擦により静電荷が発生し、その静電荷で配管が帯電することがある。特に、耐食性配管がフッ素樹脂製である場合、フッ素樹脂の体積抵抗率は1018Ω・cm以上と非常に高いため、容易に帯電してしまう。その結果、静電荷の蓄積によって静電放電が生じ、配管が損傷してしまうことがある。そのため、半導体製造装置の薬液が流通する耐食性配管が帯電しないようにすることは極めて重要である。
【0007】
そこで、カーボンブラックや鉄粉などの導電性物質を混入したフッ素樹脂をチューブに成形し、フッ素樹脂チューブに導電性を付与することが考えられるが、前記導電性物質は黒色であるためチューブも不透明となり、チューブ内で流体が詰まったときなど、その場所が判明しないという不具合が生じる。
【0008】
このような不具合に対して、例えば、特許文献4では、それぞれチューブの長手方向に延びる、導電性物質を含有させたポリテトラフルオロエチレン組成物からなる導電部部分と、ポリテトラフルオロエチレンのみからなる透明部分とを備えるチューブを提案しており、特許文献5では、導電性物質を混入したフッ素樹脂組成物からなりチューブの長手方向に延びるストライプ状の導電部分を、透明なフッ素樹脂チューブの肉厚部分に内在させたフッ素樹脂チューブを提案している。また、カーボンを含有させたナイロンまたはポリエチレンチューブをスパイラル状にカットしたものやステンレスコイルなどの導電部材を、透明なフッ素樹脂チューブに巻き付けたものも使用されている。これらの帯電防止フッ素樹脂チューブは何れも、導電部分と、透明なフッ素樹脂部分とを備えており、導電性の付与と同時に管内が見えるように構成されている。
【0009】
しかし、特許文献4に記載の帯電防止フッ素樹脂チューブでは、導電性物質が内壁に露出しているため管内を通過する通過物を汚染する問題がある。特許文献5に記載の帯電防止樹脂チューブでは、この通過物を汚染する心配はないものの、導電部分がチューブの肉厚部分に埋め込まれているため、帯電防止性能が不充分であった。
【0010】
また、これらの帯電防止フッ素樹脂チューブは、導電性物質を含有する導電部分用成形材料と、フッ素樹脂のみからなる透明部分用成形材料とを同時に押し出し管状に成形して得られる。しかし、導電部分用成形材の方が導電性物質を含有することから熱伝導率が大きく、冷却速度が速いため、この成形に際して、導電部分と接する透明部分の肉厚が細くなる所謂「ヒケ」と呼ばれる現象が発生したり、導電部分と透明部分との冷却時の収縮率の差により、チューブ外径の変形や肉厚に差が発生し、寸法精度の良好なチューブを成形することが困難であるという問題がある。上記した特許文献4に記載の帯電防止フッ素樹脂チューブでは、導電部分と透明部分とが同一の厚みであり、また、特許文献5に記載の帯電防止樹脂チューブでも、透明部分のかなりの部分を占めるように導電部分が埋め込まれており、ともに導電部分が厚く形成されることから、ヒケや変形が顕著になりやすい。
【0011】
チューブの変形は継ぎ手とのシール性に悪影響を及ぼし、通過物が漏洩し易くなる。特に、通過物が可燃性流体の場合には、漏洩した可燃性ガスが室内に充満することとなり、このとき、帯電防止フッ素樹脂チューブの外周面が帯電していると、作業者がチューブに触れると火花が散り、爆発が起こる可能性がある。
【0012】
一方、導電部材を巻き付けた構成の帯電防止フッ素樹脂チューブは、作製に際して複雑な巻き付け、固定作業が必要であり、かなりのコスト増を招くという問題を抱えている。
【先行技術文献】
【特許文献】
【0013】
【文献】特開2012-47662号公報
【文献】特開2005-221430号公報
【文献】特開昭62-153720号公報
【文献】実開平1-96593号公報
【文献】特開2000-266247号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明は上記課題に鑑みてなされたものであり、上記のような従来技術の欠点がなく、腐食性液体の温度を瞬時に測定することができるとともに、流路及び流体に帯電した静電気を除電する機能を備えている、炭化ケイ素を用いた温度測定及び除電構造を提供することを目的とする。
【課題を解決するための手段】
【0015】
炭化ケイ素は、炭素とケイ素の1:1の化合物で、極めて硬度が高く(新モース硬度13)、化学的に安定しており、熱したフッ化水素酸や硝酸や硫酸や水酸化ナトリウムにも侵されず、耐酸化性に優れており(酸素と反応してできる二酸化ケイ素(SiO2)の緻密な膜がSiCの表面を覆う保護膜が形成される)、熱膨張率が低く(4.5×10-6/℃)、耐熱性に優れており(分解温度2450℃)、熱伝導率が高く(100~350W/m・K)、半導電性であるという、様々な特徴を備えている。
【0016】
近年、炭化ケイ素は、その半導体特性を利用して、パワー半導体デバイスの材料として注目されている。基本的な作動原理は、メモリ、マイコン、ICといった半導体デバイスとおなじであるが、パワー半導体デバイスはメモリなどと比較して高耐圧で大電流を制御する必要がある。このため、バンドギャップが大きく、絶縁破壊強度が大きいなどの要件が求められる。
【0017】
以下の表1に示すように、4H-SiC(炭化ケイ素の一種)はパワー半導体デバイスの材料に求められる要件を備えている。Siより絶縁破壊強度が大きい4H-SiCは、小型化できるために電力の損失が減少し、バンドギャップが大きいので高温動作が可能であり、過酷な条件下で利用できるからである。
【0018】
【0019】
表1において、4H-SiCは炭化ケイ素の結晶の一例であり、炭化ケイ素には多くの結晶系が存在するが(現在215種が発見されている)、その結晶構造は
図1のとおりである。
図1(a)に示すように、正三角形に筋目をつけて折り上げ、接する稜線を貼りつければ、正三角形4枚を表面とする正四面体ができる。この4つの頂点にSi原子あるいはC原子、そして重心の位置にC原子あるいはSi原子を置いた正四面体から、炭化ケイ素の結晶を組みあげることができる。なお、ダイアモンドでは頂点と重心位置とがすべてC原子、シリコンでは、すべてSi原子である。炭化ケイ素のダイアモンドとシリコンの中間的な性質はこの構造による。
【0020】
上記四面体を密に平面上に並べると、
図1(b)に示すように網目模様となり、正三角形の中央で120°間隔の三本足をつけた黒丸が正四面体の頂点の原子、それ以外の黒丸が正四面体の底面の原子である。このようにして正四面体の詰まった層が1つできる。その第1層の上に乗る第2層の正四面体は、第1層の頂点、すなわち三本足つき黒丸を足場に並べることになる。この場合、
図1(b)の右端部に斜線をつけた(<)と(>)の二通りの並べ方があり、この(<)と(>)が炭化ケイ素に多くの結晶多形を作ることになる。
【0021】
斜線つき正三角形の(<)か(>)のいずれかで第2層を並べていく。第2層の頂点は斜線つき正三角形の中央、すなわち、
図1(b)で(<)の記号、あるいは(>)の記号を囲む白い丸のところになり、そこが第3層を積む足場になる。
【0022】
図1(b)の(>)の記号を囲む白い丸の真下には第1層の底面の原子がある。すなわち、(<)の向きの第1層に(>)の向きの第2層を重ね、その上にまた(<)の向きの第3層というように、(<)(>)(<)(>)(<)(>)・・・と積むと、原子はジグザグを描いて上がり、2層が1周期になる。この結晶は六方晶系(hexagonal)の対称性を持つから、2Hと記載し、また、(<)が1つ、(>)が1つだから、ジグザグ11と記載する。また、(<)(<)(<)(<)・・・と積むと、3層が1周期になるものは、立方晶系(cubic)の対称性を持つから、3Cと記載する。
以下の表2に、繰り返し周期の小さい方の炭化ケイ素結晶系をいくつか記載する。
【0023】
【0024】
表2において、15Rのジグザグの「(32)3」は、(<)(<)(<)(>)(>)を3回繰り返して1周期を形成するという意味である。Rは、6枚の菱形に囲まれた菱面体結晶(rhomboheral)の対称性を持っているという意味である。炭化ケイ素の結晶系は多いが、同じ結晶層を重ねるときの(<)か(>)の向きの違いだけであり、隣り合うSi-Cの原子間距離は結晶系によらず同じであり、密度もすべての結晶系で同じである。炭化ケイ素は、工業的には、左右端部の黒鉛電極のあいだに黒鉛粉末の層を存在させ、その黒鉛粉末層の上下に珪石粉末とコークスなどからなる層を存在させ、左右端部の電極に電圧をかけると、黒鉛粉が発熱して周囲の原料を加熱する。その結果、1500℃を超えると微細な3Cが生成しはじめ、昇温とともに3Cは消滅し、4H、6Hなどが生成する。この反応は、SiO2+3C→SiC+2COで表せる。本願発明の炭化ケイ素としては、表2に記載した炭化ケイ素を使用することができるが、これに限定されるものではない。
【0025】
本願発明は、上記のように、パワー半導体デバイスの材料として注目されている炭化ケイ素を用いることを特徴としており、本願発明の要旨は、「半導体製造装置の薬液を移送するための耐食性配管内を流通する当該薬液に炭素を含侵させた炭化ケイ素製素材が直接接触するようにして、上記炭化ケイ素製素材の抵抗値が変化することにより薬液温度を測定するとともに、当該薬液及び耐食性配管が帯電しないように上記炭化ケイ素製素材により除電する構造を有すること」にある。
【発明の効果】
【0026】
本願発明は、炭化ケイ素製素材の抵抗値が変化することにより薬液温度を測定できるだけでなく、炭化ケイ素製素材が接触する薬液及び耐食性配管より除電することもできるという極めて重要な特徴を備えている。
【図面の簡単な説明】
【0027】
【
図1】
図1(a)(b)は、炭化ケイ素の結晶構造を説明するための概略図である。
【
図2】
図2は、本願発明を適用することができる半導体製造装置の一実施形態の要部構成を示す図である。
【
図3】
図3は、本願発明を適用することができる半導体製造装置の別の実施形態の要部構成を示す図である。
【
図4】
図4は、炭化ケイ素製の丸棒を半導体製造装置の温度センサ及び除電部材として使用することができる一実施形態を示す図である。
【
図5】
図5は、炭化ケイ素製の丸棒を半導体製造装置の温度センサ及び除電部材として使用することができる別の実施形態を示す図である。
【
図6】
図6は、炭化ケイ素製の丸棒を、半導体製造装置で使用される薬液等の流体が流通する流路に配置した一実施形態を示す断面図である。
【
図7】
図7は、
図4に示す半導体製造装置の薬液等の流体が流通する流路に炭化ケイ素製の丸棒を配置して流体の温度測定を行った結果を示す図である。
【
図8】
図8は、
図4に示す半導体製造装置の薬液等の流体が流通する流路に炭化ケイ素製の丸棒を配置して流体の温度測定を行った別の結果を示す図である。
【
図9】
図9は、特許文献1に記載された流体温度測定装置を示す縦断面図である。
【
図10】
図10は、特許文献2に記載されたサーミスタの断面図である。
【発明を実施するための形態】
【0028】
以下、本願発明の実施形態について図面を参照しながら詳述する。この実施の形態では、半導体ウェーハの洗浄処理およびリンス処理を行う場合について説明する。
【0029】
図2は、本願発明を適用することができる半導体製造装置の一実施形態の要部構成を示す図である。
【0030】
半導体洗浄装置1は、半導体ウェハ2を洗浄処理およびリンス処理するための処理槽3と、第1の排液配管4のバイパス配管に設けられ、リンス処理を行った処理液中のパーティクル数を測定するパーティクル数測定手段であるパーティクルモニタ6と、第2の排液配管5に設けられ、リンス処理を行った処理液の比抵抗を測定する比抵抗測定手段である比抵抗測定器7と、パーティクルモニタ6の測定結果と比抵抗測定器7の測定した比抵抗とに基づいてリンス処理が完了する終点を判断し、処理槽3のリンス処理を終了させる制御手段である制御部8と、を備えている。ここで洗浄処理とは、レジストを剥離するような処理や、アルカリ、酸処理等でパーティクルや金属不純物を除去する処理や、ウェハ上に形成された膜をエッチング除去する処理等を含むものである。第1の排液配管4と第2の排液配管5は、ポリテトラフルオロエチレン(PTFE)であるが、例えば、パーフルオロアルコキシアルカン(PFA)を使用することも可能であり、要するに、耐薬液性を有するフッ素樹脂を使用することができる。
【0031】
この半導体洗浄装置1は、半導体ウェハ2を処理槽3に貯留された処理液に浸漬してSC1等の洗浄薬液(Chemicals)で洗浄処理した後、超純水(UPW)でリンス処理を行うとともに、処理液を処理槽3から逐次オーバフローさせて、第1の排液配管4および第2の排液配管5を介してこの処理液を排出するようになっている。洗浄処理を行う場合は、バルブが開かれて洗浄薬液、超純水、オゾン化した超純水(Ozonated UPW)、および加熱された超純水(Hot UPW)が処理槽3に供給されるようになっている。また、リンス処理を行う場合は、バルブが開閉されて超純水のみが処理槽3に供給されるようになっている。
【0032】
また、上述のようにリンス処理を制御する制御部8は、パーティクルモニタ6により測定されたパーティクル数が所定値以下になるとともに、比抵抗測定器7が測定した比抵抗が所定値以上になった場合に、所望のリンス処理が完了したと判断するようになっている。
【0033】
次に、上記半導体洗浄装置1を用いた半導体洗浄方法について説明する。
【0034】
始めに、洗浄処理を行うため半導体ウェハ2を処理槽3内の処理液に浸漬する。
次に、半導体洗浄装置1のバルブを開き、洗浄薬液、超純水、オゾン化した超純水、および加熱された超純水を処理槽3に供給する。
【0035】
所定の洗浄処理を行った後、洗浄薬液を除去するためのリンス処理を開始し、上記バルブを開閉し超純水のみを処理槽3に供給するとともに、処理液を処理槽3から逐次オーバフローさせる。
【0036】
次に、パーティクルモニタ6によりリンス処理を行った処理液のパーティクル数を測定するとともに、比抵抗測定器7によりリンス処理を行った処理液の比抵抗を測定する。
【0037】
次に、制御部8が、測定されたパーティクル数および比抵抗をそれぞれ所定値と比較し、リンス処理が完了する終点を判断する。すなわち、このステップでは、制御部8は、パーティクル数が所定値以下になるとともに、比抵抗が所定値以上になった場合に、所望のリンス処理が完了したと判断する。一方、パーティクル数が所定値より多いか、または比抵抗が所定値より低い場合は、制御部8は所望のリンス処理が完了していないと判断し、段落0036に記載のステップに戻ってパーティクル数、比抵抗の測定が継続される。
【0038】
次に、制御部8は、ステップ5でリンス処理が完了したと判断した場合には、ウェハ搬送要求が可能となり、ウェーハを処理槽から乾燥機へ搬送し、乾燥させる。そして、次工程に進める。以上により、半導体洗浄装置1による半導体洗浄が完了する。
【0039】
図3は、本願発明を適用することができる半導体洗浄装置の別の実施形態の要部構成を示す図である。本実施形態においては、パーティクルモニタ6は、半導体ウェハ2を洗浄処理する前の清浄度が高い処理液中のパーティクル数をさらに測定するようになっている。そして、半導体洗浄装置1は、このパーティクルモニタ6が測定した半導体ウェハ2を洗浄処理する前の処理液中のパーティクル数と、リンス処理を行った処理液中のパーティクル数との差分を演算する演算手段である演算処理部9をさらに備えている。
【0040】
ここで、制御部8は、演算処理部8の演算結果と比抵抗測定器7の測定した比抵抗とに基づいて、リンス処理の完了する終点を判断し、リンス処理を終了させるようになっている。すなわち、制御部8は、演算処理部9が演算したパーティクル数の差分が所定値以下になるとともに、比抵抗が所定値以上になった場合に、リンス処理が完了したと判断するようになっている。
【0041】
次に、上記半導体洗浄装置1を用いた半導体洗浄方法について説明する。
【0042】
本実施形態の半導体洗浄方法は、半導体ウェハ2の洗浄処理を行う前の処理液のパーティクル数を測定するステップをさらに備えている。
【0043】
また、リンス処理が完了する終点を判断するステップは、制御部8が、洗浄処理前の処理液のパーティクル数とリンス処理を行った処理液のパーティクル数との差分および比抵抗の測定結果とに基づいて、リンス処理が完了する終点を判断する。すなわち、リンス処理が完了する終点を判断するステップは、洗浄処理前の処理液のパーティクル数とリンス処理を行った処理液のパーティクル数との差分が所定値以下になるとともに、処理液の比抵抗が所定値以上になった場合に、リンス処理が完了したと判断するものである。一方、パーティクル数の差分が所定値より多いか、または比抵抗が所定値より低い場合は、制御部8は所望のリンス処理が完了していないと判断し、段落0036に記載のステップに戻ってパーティクル数、比抵抗の測定を継続する。
【0044】
リンス処理が完了する終点を判断するステップでリンス処理が完了したと判断された場合は、上記実施形態と同様にリンス処理を終了し、半導体ウェハ2を乾燥して、次の処理に進む。
【0045】
次に、
図4に示すように、流路13に、薬液および超純水に代えて25℃の水を注入して、処理槽を経て第1の排液配管4と第2の排液配管5から上記25℃の水を排出するようにして、流路13を流通する水に一部が接触するように炭素を5.3%含浸させた炭化ケイ素製の丸棒10を流路13を貫通するように配置し(後記する
図6に示すように)、炭化ケイ素製の丸棒10の上端と下端に接続した配線11aと11bの他端を電源12に接続して、炭化ケイ素製の丸棒10に0.001mAの電流を流した。そして、炭化ケイ素製の丸棒10の抵抗値が4.2MΩで、丸棒10の端子間電圧が4.2Vであることを確認した。そこで、25℃の水に代えて40℃の温水を流路13に注入すると、
図7に示すように、約1Vの電圧変化がみられたことをオシロスコープにより確認し、25℃の水に代えて90℃の温水を流路13に注入すると、
図8に示すように、約3.5Vの電圧変化がみられたことをオシロスコープにより確認した。その電圧変化の確認に要した時間(応答時間)は、いずれの温水温度でも、約0.2秒であり、炭化ケイ素製の丸棒10は温度センサとして使用できることが示された。なお、炭化ケイ素製の丸棒10への炭素の含浸量は、4.9~5.7%程度が好ましい。
【0046】
図5は、炭化ケイ素製の丸棒を半導体製造装置の温度センサ及び除電部材として使用することができる別の実施形態を示す図である。この半導体製造装置は、半導体ウエハ等の基板(この実施形態ではほぼ円形の基板)Wを1枚ずつ処理するための枚葉型の装置である。この半導体製造装置は、基板Wをほぼ水平に保持して回転するスピンチャック21と、このスピンチャック21に回転力を与える回転駆動機構22と、スピンチャック21に保持されて回転されている基板Wに対して薬液を供給する薬液ノズル23と、スピンチャック21に保持されて回転されている基板Wに対して純水を供給する純水ノズル24と、スピンチャック21に保持されて回転されている基板Wに対して有機溶剤(イソプロピルアルコール)を供給する有機溶剤ノズル25とを備えている。
【0047】
スピンチャック21は、ほぼ鉛直方向に沿って配置された回転軸26と、この回転軸26の上端に結合された基板吸着部27とを備えており、真空吸着によって基板Wの下面の中央領域を吸着して保持するものである。回転軸26には、回転駆動機構22からの回転力が伝達されるようになっている。回転駆動機構22は、モータ等を含み、制御装置28によって駆動制御されるようになっている。これにより、スピンチャック21の回転速度を変動させたり、その回転を停止させたりすることができる。
【0048】
薬液ノズル23には、薬液供給源からの薬液が薬液バルブ29を介して供給されるようになっている。薬液供給源からは、たとえば、フッ酸等のエッチング液や、基板Wの表面のレジスト残渣を除去するポリマー除去液などのような薬液が薬液ノズル23へと供給される。
【0049】
純水ノズル24には、純水供給源からの純水が純水バルブ30を介して供給されるようになっている。ただし、純水を供給する代わりに、いわゆる機能水をノズル24から基板Wの表面へと供給するようにしてもよい。機能水とは、炭酸水、水素水(還元水)、オゾン水および電解イオン水のように、純水に対していずれかの機能を付与した水である。
【0050】
有機溶剤ノズル25には、有機溶剤供給源からの有機溶剤が有機溶剤バルブ31を介して供給されるようになっている。
【0051】
薬液バルブ29の開閉、純水バルブ30の開閉および有機溶剤バルブ31の開閉は、制御装置28によって制御されるようになっている。
【0052】
薬液ノズル23、純水ノズル24、有機溶剤ノズル25の上流側には、それぞれ、薬液、純水、有機溶剤が流通している流路を貫通するように(
図6に示すように)、それぞれの流路を流通する薬液、純水、有機溶剤に一部が接触するように炭素を5.3%含浸させた炭化ケイ素製の丸棒32a、32b、32cが配置されている。
【0053】
図6において、41は、薬液、純水または有機溶剤が矢示で示す方向に流通しているPTFE製の中空配管であり、その中空配管41を貫通するように、炭化ケイ素製の丸棒42は配置されている。43a、43bは丸棒42をシールするためのOリングである。
【0054】
図5に示すような構成の半導体製造装置において、薬液ノズル23、純水ノズル24、有機溶剤ノズル25の上流側に、炭素を5.3%含浸させた炭化ケイ素製の丸棒32a、32b、32cが配置されていない状態において、基板吸着部27によって基板Wを吸着して、回転駆動機構22によって基板Wを所定の回転速度で回転させるように制御装置28で制御しつつ、薬液ノズル23、純水ノズル24、有機溶剤ノズル25から基板Wに向けて、薬液、純水または有機溶剤を吐出すると、薬液、純水または有機溶剤とPTFE製の中空配管との摩擦により、PTFE製の中空配管と薬液、純水または有機溶剤に高圧静電気が帯電し、薬液ノズル23、純水ノズル24、有機溶剤ノズル25から吐出される薬液や純水や有機溶剤が基板Wに接触した瞬間に基板W上の半導体電気回路が静電破壊された。なお、このとき、薬液ノズル23の近傍において、シシド静電気株式会社製の商品名が「Statiron Dz4」である静電気計測器で静電気を計測すると、1.6万ボルトであった。
【0055】
そこで、
図5に示すように、薬液ノズル23、純水ノズル24、有機溶剤ノズル25の上流側に、炭素を5.3%含浸させた炭化ケイ素製の丸棒32a、32b、32cが配置された状態において、基板吸着部27によって基板Wを吸着して、回転駆動機構22によって基板Wを所定の回転速度で回転させるように制御装置28で制御しつつ、薬液ノズル23、純水ノズル24、有機溶剤ノズル25から基板Wに向けて、薬液、純水または有機溶剤を吐出しても、基板W上の半導体電気回路は静電破壊されなかった。このとき、薬液ノズル23の近傍において、シシド静電気株式会社製の商品名が「Statiron Dz4」である静電気計測器で静電気を計測すると、80ボルトであった。すなわち、薬液、純水または有機溶剤とPTFE製の中空配管との摩擦により発生した高圧静電気は炭化ケイ素製の丸棒32a、32b、32cへ流れたものと思われる。
【産業上の利用可能性】
【0056】
本願発明の温度測定及び帯電防止構造は、特に、半導体製造装置において使用される薬液が流通する耐食性配管の当該薬液の温度測定及び除電構造として有益である。
【符号の説明】
【0057】
1 半導体製造装置
2 半導体ウェハ
3 処理槽
4 第1の排液配管
5 第2の排液配管
6 パーティクルモニタ
7 比抵抗測定器
8 制御部
9 演算処理部
10 炭化ケイ素製の丸棒
11a、11b 固定部材
12a、12b 配線
13 電源
21 スピンチャック
22 回転駆動機構
23 薬液ノズル
24 純水ノズル
25 有機溶剤ノズル
26 回転軸
27 基板吸着部
28 制御装置
29 薬液バルブ
30 純水バルブ
31 有機溶剤バルブ
32a、32b、32c 炭化ケイ素製の丸棒
41 PTFE製の中空配管
42 炭化ケイ素製の丸棒
43a、43b Oリング
【要約】
腐食性液体の温度を瞬時に測定することができるとともに、帯電防止構造を備えている、炭化ケイ素を用いた温度測定及び帯電防止構造を提供する。半導体製造装置の薬液を移送するための耐食性配管内を流通する当該薬液に炭素を含侵させた炭化ケイ素製素材が直接接触するようにして、上記炭化ケイ素製素材の抵抗値が変化することにより薬液温度を測定するとともに、当該薬液及び耐食性配管が帯電しないように上記炭化ケイ素製素材により除電する構造を有する。