IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 積水化学工業株式会社の特許一覧

特許7474029導電材料、接続構造体及び接続構造体の製造方法
<>
  • 特許-導電材料、接続構造体及び接続構造体の製造方法 図1
  • 特許-導電材料、接続構造体及び接続構造体の製造方法 図2
  • 特許-導電材料、接続構造体及び接続構造体の製造方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】導電材料、接続構造体及び接続構造体の製造方法
(51)【国際特許分類】
   H01B 1/22 20060101AFI20240417BHJP
   B23K 35/26 20060101ALI20240417BHJP
   C22C 12/00 20060101ALI20240417BHJP
   C22C 13/00 20060101ALI20240417BHJP
   C22C 13/02 20060101ALI20240417BHJP
   C22C 28/00 20060101ALI20240417BHJP
   H01B 5/16 20060101ALI20240417BHJP
   H01R 11/01 20060101ALI20240417BHJP
   H01R 43/00 20060101ALI20240417BHJP
【FI】
H01B1/22 A
B23K35/26 310A
B23K35/26 310C
B23K35/26 310D
C22C12/00
C22C13/00
C22C13/02
C22C28/00 B
H01B5/16
H01R11/01 501C
H01R43/00 Z
【請求項の数】 14
(21)【出願番号】P 2019038350
(22)【出願日】2019-03-04
(65)【公開番号】P2019160788
(43)【公開日】2019-09-19
【審査請求日】2021-12-22
【審判番号】
【審判請求日】2023-06-14
(31)【優先権主張番号】P 2018040938
(32)【優先日】2018-03-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002174
【氏名又は名称】積水化学工業株式会社
(74)【代理人】
【識別番号】110001232
【氏名又は名称】弁理士法人大阪フロント特許事務所
(72)【発明者】
【氏名】宮崎 弾一
(72)【発明者】
【氏名】保井 秀文
(72)【発明者】
【氏名】定永 周治郎
【合議体】
【審判長】篠塚 隆
【審判官】山澤 宏
【審判官】山内 裕史
(56)【参考文献】
【文献】国際公開第2017/033930(WO,A1)
【文献】特表2015-530705(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 1/22
(57)【特許請求の範囲】
【請求項1】
熱硬化性成分と、はんだ粒子とを含み、
導電材料に含まれる導電性粒子粉体は、液相線温度が300℃以下であるはんだ粒子のみであり、
前記はんだ粒子の固相線温度と前記はんだ粒子の液相線温度との差の絶対値が、5℃以上であり、
導電材料100重量%中、前記はんだ粒子の含有量が、15重量%以上である、導電材料(但し、遷移的液相焼結組成物を除く)
【請求項2】
前記はんだ粒子の固相線温度における導電材料の粘度が、0.1Pa・s以上50Pa・s以下である、請求項1に記載の導電材料。
【請求項3】
導電材料に含まれる粒子は、液相線温度が230℃以下であるはんだ粒子のみである、請求項1又は2に記載の導電材料。
【請求項4】
導電材料に含まれる導電性粒子粉体は、錫とビスマスとを含むはんだ粒子のみであるか、錫とインジウムとを含むはんだ粒子のみであるか、錫とインジウムと銀とを含むはんだ粒子のみであるか、又は、錫とビスマスとを含むはんだ粒子と錫と銀と銅とを含むはんだ粒子との2種のみである、請求項1~3のいずれか1項に記載の導電材料。
【請求項5】
前記はんだ粒子が、ビスマス、インジウム、銀、銅、又は錫を含む、請求項1~3のいずれか1項に記載の導電材料。
【請求項6】
前記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量が、1重量%以上58重量%以下である、請求項5に記載の導電材料。
【請求項7】
前記はんだ粒子に含まれる金属100重量%中、インジウムの含有量が、1重量%以上52重量%以下である、請求項5又は6に記載の導電材料。
【請求項8】
前記はんだ粒子の固相線温度が、115℃以上220℃以下である、請求項1~7のいずれか1項に記載の導電材料。
【請求項9】
前記はんだ粒子の粒子径が、0.01μm以上30μm以下である、請求項1~8のいずれか1項に記載の導電材料。
【請求項10】
導電ペーストである、請求項1~9のいずれか1項に記載の導電材料。
【請求項11】
第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1~10のいずれか1項に記載の導電材料であり、
前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
【請求項12】
前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項11に記載の接続構造体。
【請求項13】
請求項1~10のいずれか1項に記載の導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
前記はんだ粒子の液相線温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
【請求項14】
前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る、請求項13に記載の接続構造体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱硬化性成分とはんだ粒子とを含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体及び接続構造体の製造方法に関する。
【背景技術】
【0002】
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
【0003】
上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
【0004】
上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
【0005】
下記の特許文献1には、熱硬化性樹脂中に多数の導電性粒子を含む異方性導電材料が開示されている。上記導電性粒子の固相線温度は125℃以上であり、ピーク温度は200℃以下である。上記導電性粒子の固相線温度と上記導電性粒子のピーク温度との温度差は15℃以上である。
【0006】
下記の特許文献2には、はんだ粒子と、熱硬化性樹脂バインダーと、フラックス成分とを含む熱硬化性樹脂組成物が開示されている。上記はんだ粒子は、Snと、Ag、Cu、Bi、Zn、又はInとから選ばれる金属との合金から構成される。上記はんだ粒子の融点は240℃以下である。上記熱硬化性樹脂バインダーは、液状のエポキシ樹脂と液状のフェノール樹脂硬化剤とを含む。上記熱硬化性樹脂組成物では、上記はんだ粒子の含有量は、70質量%~95質量%の範囲である。上記はんだ粒子が、上記熱硬化性樹脂組成物中に分散している。上記熱硬化性樹脂組成物は、配線板の表面に塗布可能である。
【先行技術文献】
【特許文献】
【0007】
【文献】WO2008/111615A1
【文献】特開2014-98168号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
はんだ粒子を含む導電材料を用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。はんだは、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。隣接する横方向の電極間は、電気的に接続されないことが望ましい。
【0009】
一般に、はんだ粒子を含む導電材料は、基板上に配置された後、リフロー等により加熱されて用いられる。導電材料がはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。
【0010】
従来のはんだ粒子を含む導電材料では、導電材料を加熱したときに、はんだ粒子が溶融し、はんだの流動性が高くなりすぎることがある。はんだの流動性が高くなりすぎると、はんだの凝集速度が速くなりすぎることがある。従来のはんだ粒子を含む導電材料では、はんだの凝集速度が速すぎるために、はんだが隣接する横方向の電極間に残り、すべてのはんだが電極上に凝集することができず、接続されるべき上下の電極間にはんだを効率的に配置できないことがある。結果として、接続されるべき上下の電極間に配置されるはんだの量が減少し、接続されるべき上下の電極間の導通信頼性が低くなったり、隣接する横方向の電極間の絶縁信頼性が低くなったりすることがある。従来の導電材料では、はんだの凝集力を調整することは困難である。
【0011】
また、特許文献1に記載の異方性導電材料では、上記導電性粒子の含有量が少なく、電極間を電気的に接続することは困難である。
【0012】
本発明の目的は、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。
【課題を解決するための手段】
【0013】
本発明の広い局面によれば、熱硬化性成分と、はんだ粒子とを含み、前記はんだ粒子の固相線温度と前記はんだ粒子の液相線温度との差の絶対値が、5℃以上であり、導電材料100重量%中、前記はんだ粒子の含有量が、15重量%以上である、導電材料が提供される。
【0014】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子の固相線温度における導電材料の粘度が、0.1Pa・s以上50Pa・s以下である。
【0015】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子が、ビスマス、インジウム、銀、銅、又は錫を含む。
【0016】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量が、1重量%以上58重量%以下である。
【0017】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子に含まれる金属100重量%中、インジウムの含有量が、1重量%以上52重量%以下である。
【0018】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子の固相線温度が、115℃以上220℃以下である。
【0019】
本発明に係る導電材料のある特定の局面では、前記はんだ粒子の粒子径が、0.01μm以上30μm以下である。
【0020】
本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
【0021】
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
【0022】
本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。
【0023】
本発明の広い局面によれば、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の液相線温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
【0024】
本発明に係る接続構造体の製造方法のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る。
【発明の効果】
【0025】
本発明に係る導電材料は、熱硬化性成分と、はんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、5℃以上である。本発明に係る導電材料では、導電材料100重量%中、上記はんだ粒子の含有量が、15重量%以上である。本発明に係る導電材料では、上記の構成が備えられているので、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
【図面の簡単な説明】
【0026】
図1図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
図2図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。
図3図3は、接続構造体の変形例を示す断面図である。
【発明を実施するための形態】
【0027】
以下、本発明の詳細を説明する。
【0028】
(導電材料)
本発明に係る導電材料は、熱硬化性成分と、はんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、5℃以上である。本発明に係る導電材料では、導電材料100重量%中、上記はんだ粒子の含有量が、15重量%以上である。
【0029】
本発明に係る導電材料では、上記の構成が備えられているので、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
【0030】
本発明に係る導電材料では、導電材料100重量%中の上記はんだ粒子の含有量が15重量%以上であるので、電極上にはんだを凝集させることができ、接続されるべき上下の電極間にはんだを効率的に配置することができる。本発明においては、上記はんだ粒子の含有量が上記の範囲を満足することは、本発明の効果を得るための重要な構成である。
【0031】
はんだ粒子を含む導電材料は、基板上に配置された後、リフロー等により加熱されて用いられる。導電材料がはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。
【0032】
従来のはんだ粒子を含む導電材料では、導電材料を加熱したときに、はんだ粒子が溶融し、はんだの流動性が高くなりすぎることがある。はんだの流動性が高くなりすぎると、はんだの凝集速度が速くなりすぎることがある。従来のはんだ粒子を含む導電材料では、はんだの凝集速度が速すぎるために、はんだが隣接する横方向の電極間に残り、すべてのはんだが電極上に凝集することができず、接続されるべき上下の電極間にはんだを効率的に配置できないことがある。
【0033】
本発明者らは、はんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値に着目し、特定のはんだ粒子を用いることで、はんだの流動性を調整し、はんだの凝集速度を調整できることを見出した。本発明では、はんだの流動性及びはんだの凝集力を適度に調整することによって、接続されるべき電極間にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
【0034】
また、はんだの流動性及びはんだの凝集力を適度に調整することによって、隣接する横方向の電極間に残るはんだを減らすことができる。結果として、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。
【0035】
また、本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、はんだが上下の対向した電極間に集まりやすく、はんだを電極(ライン)上に配置することができる。また、はんだの一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだの量をかなり少なくすることができる。結果として、本発明では、接続されてはならない横方向の電極間において、はんだの残存量を少なくすることができる。
【0036】
本発明では、上記のような効果を得るために、上記導電材料が特定のはんだ粒子を含むことは大きく寄与する。
【0037】
さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。
【0038】
電極上にはんだをより一層効率的に配置する観点からは、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。上記導電材料は、25℃で導電ペーストであることが好ましい。
【0039】
電極上にはんだをより一層効率的に配置する観点からは、上記導電材料の25℃での粘度(η25)は、好ましくは0.1Pa・s以上、より好ましくは30Pa・s以上、さらに好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
【0040】
上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
【0041】
上記はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上であり、好ましくは50Pa・s以下、より好ましくは10Pa・s以下である。上記粘度(ηsp)が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0042】
上記はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃~200℃(但し、はんだ粒子の固相線温度が200℃を超える場合には温度上限をはんだ粒子の固相線温度とする)の条件で測定可能である。測定結果から、はんだ粒子の固相線温度(℃)での粘度が評価される。
【0043】
はんだ粒子の液相線温度(融点)での導電材料の粘度(ηmp)は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度(ηmp)が、上記上限以下であれば、電極上にはんだを効率的に凝集させることができる。上記粘度が、上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。
【0044】
上記粘度(ηmp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃~200℃(但し、はんだ粒子の液相線温度(融点)が200℃を超える場合には温度上限をはんだ粒子の液相線温度(融点)とする)の条件で測定可能である。測定結果から、はんだ粒子の液相線温度(融点)(℃)での粘度が評価される。
【0045】
上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。電極上にはんだをより一層効率的に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
【0046】
以下、上記導電材料に含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。
【0047】
(はんだ粒子)
上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。
【0048】
上記はんだは、液相線温度(融点)が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、液相線温度(融点)が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、液相線温度(融点)が450℃以下の金属を示す。低融点金属の液相線温度(融点)は好ましくは300℃以下、より好ましくは220℃以下、さらに好ましくは190℃以下である。
【0049】
上記はんだ粒子の液相線温度は、好ましくは140℃以上、より好ましくは145℃以上であり、好ましくは230℃以下、より好ましくは225℃以下である。上記はんだ粒子の液相線温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0050】
上記はんだ粒子の固相線温度は、好ましくは115℃以上、より好ましくは120℃以上であり、好ましくは220℃以下、より好ましくは150℃以下、さらに好ましくは145℃以下である。上記はんだ粒子の固相線温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0051】
上記導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値は、5℃以上である。上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値は、好ましくは5℃以上、より好ましくは8℃以上であり、好ましくは100℃以下、より好ましくは90℃以下である。上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0052】
上記はんだ粒子の液相線温度及び上記はんだ粒子の固相線温度は、示差走査熱量測定(DSC)により求めることができる。上記示差走査熱量測定(DSC)は、昇温範囲:30℃から500℃まで、昇温速度:5℃/分、窒素パージ量:5ml/分の条件で測定することが好ましい。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。得られた示差走査熱量測定(DSC)曲線について、低温側のベースラインを高温側に延長した直線を引き、溶融ピークの低温側における曲線の勾配が最大になる点で接線(接線1)を引く。高温側に延長した直線と接線(接線1)との交点における温度を固相線温度とする。また、得られた示差走査熱量測定(DSC)曲線について、高温側のベースラインを低温側に延長した直線を引き、溶融ピークの高温側における曲線の勾配が最大になる点で接線(接線2)を引く。低温側に延長した直線と接線(接線2)との交点における温度を液相線温度とする。
【0053】
上記はんだ粒子の固相線温度、上記はんだ粒子の液相線温度、及び上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値を上記の好ましい範囲に調整する方法としては、はんだ粒子に含まれる金属の種類及び含有量等を調整する方法等が挙げられる。
【0054】
上記はんだ粒子は、ビスマス、インジウム、銀、銅、又は錫を含むことが好ましく、ビスマス、インジウム、又は錫を含むことがより好ましく、ビスマス、又はインジウムを含むことがさらに好ましい。上記はんだ粒子が、上記の好ましい態様を満足すると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0055】
上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは70重量%以下である。上記はんだ粒子における錫の含有量が、上記下限以上及び上記上限以下であると、はんだ部と電極との導通信頼性及び接続信頼性がより一層高くなる。
【0056】
上記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは58重量%以下、より好ましくは55重量%以下である。上記はんだ粒子におけるビスマスの含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0057】
上記はんだ粒子に含まれる金属100重量%中、インジウムの含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは52重量%以下、より好ましくは45重量%以下である。上記はんだ粒子におけるインジウムの含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。
【0058】
なお、上記錫、ビスマス、又はインジウムの含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。
【0059】
上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。
【0060】
上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、及び錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、又は錫-インジウム合金であることが好ましい。上記低融点金属は、錫-ビスマス合金、又は錫-インジウム合金であることがより好ましい。
【0061】
上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、及びインジウム等を含む金属組成が挙げられる。上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。上記はんだ粒子は、共晶はんだを含んでいてもよい。上記はんだ粒子が共晶はんだを含む場合には、複数のはんだ粒子を配合して、固相線温度と液相線温度との差の絶対値を5℃以上にすることが好ましい。
【0062】
はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、及びパラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
【0063】
上記はんだ粒子の粒子径は、好ましくは0.01μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、特に好ましくは3μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。上記はんだ粒子の粒子径が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。上記はんだ粒子の粒子径は、3μm以上10μm以下であることが特に好ましい。
【0064】
上記はんだ粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。はんだ粒子の粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各はんだ粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのはんだ粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個のはんだ粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのはんだ粒子の粒子径は、球相当径での粒子径として求められる。上記はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
【0065】
上記はんだ粒子の粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記はんだ粒子の粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径のCV値は、5%未満であってもよい。
【0066】
上記変動係数(CV値)は、以下のようにして測定できる。
【0067】
CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
【0068】
上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。
【0069】
上記導電材料では、導電材料100重量%中、上記はんだ粒子の含有量は、15重量%以上である。導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
【0070】
(熱硬化性成分)
上記導電材料は、熱硬化性成分を含む。上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。導電材料の硬化度を高めるために、上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。導電材料の硬化度を高めるために、上記導電材料は、熱硬化性成分として硬化促進剤を含むことが好ましい。
【0071】
(熱硬化性成分:熱硬化性化合物)
上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にする観点、導通信頼性をより一層効果的に高める観点、及び絶縁信頼性をより一層効果的に高める観点からは、上記熱硬化性化合物としては、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0072】
上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
【0073】
上記エポキシ化合物は、常温(23℃)で液状又は固体であり、上記エポキシ化合物が常温で固体である場合には、上記エポキシ化合物の溶融温度は、上記はんだ粒子の液相線温度以下であることが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により、加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだの凝集を効率よく進行させることができる。
【0074】
絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。
【0075】
電極上にはんだをより一層効果的に配置する観点からは、上記熱硬化性化合物は、ポリエーテル骨格を有する熱硬化性化合物を含むことが好ましい。
【0076】
上記ポリエーテル骨格を有する熱硬化性化合物としては、炭素数3~12のアルキル鎖の両末端にグリシジルエーテル基を有する化合物、並びに炭素数2~4のポリエーテル骨格を有し、該ポリエーテル骨格2~10個が連続して結合した構造単位を有するポリエーテル型エポキシ化合物等が挙げられる。
【0077】
硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物は、イソシアヌル骨格を有する熱硬化性化合物を含むことが好ましい。
【0078】
上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-UC)等が挙げられる。
【0079】
導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下、さらに好ましくは65重量%以下、特に好ましくは55重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。
【0080】
導電材料100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下、さらに好ましくは65重量%以下、特に好ましくは55重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。
【0081】
(熱硬化性成分:熱硬化剤)
上記熱硬化剤は特に限定されない。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0082】
導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
【0083】
上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
【0084】
上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
【0085】
上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
【0086】
上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
【0087】
上記熱カチオン開始剤は特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
【0088】
上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
【0089】
上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置される。上記熱硬化剤の反応開始温度は、80℃以上140℃以下であることが特に好ましい。
【0090】
電極上にはんだをより一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだ粒子の液相線温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことがさらに好ましい。
【0091】
上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。
【0092】
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
【0093】
(熱硬化性成分:硬化促進剤)
上記導電材料は硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0094】
上記硬化促進剤としては、ホスホニウム塩、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、及びホスホニウムイリド等が挙げられる。具体的には、上記硬化促進剤としては、イミダゾール化合物、イミダゾール化合物のイソシアヌル酸塩、ジシアンジアミド、ジシアンジアミドの誘導体、メラミン化合物、メラミン化合物の誘導体、ジアミノマレオニトリル、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノールアミン、ジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン化合物、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、三フッ化ホウ素、並びに、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン及びメチルジフェニルホスフィン等の有機リン化合物等が挙げられる。
【0095】
上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO,O-ジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
【0096】
上記熱硬化性化合物が良好に硬化するように、上記硬化促進剤の含有量は適宜選択される。上記熱硬化性化合物100重量部に対する上記硬化促進剤の含有量は、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、上記熱硬化性化合物を良好に硬化させることができる。
【0097】
(フラックス)
上記導電材料は、フラックスを含んでいてもよい。フラックスを用いることで、電極上にはんだをより一層効率的に配置することができる。上記フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを用いることができる。
【0098】
上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0099】
上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。
【0100】
上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等が挙げられる。
【0101】
上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。
【0102】
上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
【0103】
上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上140℃以下であることが特に好ましい。
【0104】
フラックスの活性温度(融点)が80℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、及びスベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、並びにリンゴ酸(融点130℃)等が挙げられる。
【0105】
また、上記フラックスの沸点は200℃以下であることが好ましい。
【0106】
電極上にはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子の液相線温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
【0107】
電極上にはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
【0108】
上記フラックスは、導電材料中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。
【0109】
フラックスの融点が、はんだ粒子の液相線温度より高いことにより、電極部分にはんだを効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。はんだ粒子の液相線温度を超えた段階では、はんだ粒子の内部は溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に移動したはんだ粒子の表面の酸化被膜が除去され、はんだが電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだを凝集させることができる。
【0110】
上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、電極上にはんだをより一層効率的に配置することができる。
【0111】
上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。
【0112】
電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記フラックスは、酸化合物と塩基化合物との塩であることが好ましい。
【0113】
上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記酸化合物は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。
【0114】
上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。
【0115】
導電材料100重量%中、上記フラックスの含有量は、好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。上記フラックスの含有量が、上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、更に、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
【0116】
(フィラー)
本発明に係る導電材料は、フィラーを含んでいてもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。上記導電材料がフィラーを含むことにより、基板の全電極上に対して、はんだを均一に凝集させることができる。
【0117】
上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。上記熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
【0118】
導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、はんだが電極上により一層均一に配置される。
【0119】
(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
【0120】
(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
【0121】
本発明に係る接続構造体の製造方法は、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程を備える。本発明に係る接続構造体の製造方法は、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の液相線温度以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程を備える。
【0122】
本発明に係る接続構造体及び接続構造体の製造方法では、特定の導電材料を用いているので、はんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
【0123】
また、電極上にはんだを効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
【0124】
電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。
【0125】
本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましい。本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、はんだが電極間に多く集まりやすくなり、はんだを電極(ライン)上により一層効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。
【0126】
また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだの凝集が阻害されやすい傾向がある。
【0127】
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
【0128】
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
【0129】
図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、上記導電材料は、熱硬化性成分と、はんだ粒子とを含む。上記熱硬化性成分は、熱硬化性化合物と熱硬化剤とを含む。本実施形態では、導電材料として、導電ペーストが用いられている。
【0130】
接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性化合物が熱硬化された硬化物部4Bとを有する。
【0131】
第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。
【0132】
図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このことによっても、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料にフラックスが含まれる場合に、フラックスは、一般に、加熱により次第に失活する。
【0133】
なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。
【0134】
はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
【0135】
接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。接続部4,4X中のはんだ部4A,4XAが、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0136】
上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上に、上記接続部中のはんだ部が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の60%以上に、上記接続部中のはんだ部が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の70%以上に、上記接続部中のはんだ部が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の80%以上に、上記接続部中のはんだ部が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の90%以上に、上記接続部中のはんだ部が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0137】
上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の90%以上が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の95%以上が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の99%以上が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
【0138】
次に、図2では、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。
【0139】
先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、はんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。用いた導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とを含む。
【0140】
第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
【0141】
導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
【0142】
また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
【0143】
次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
【0144】
本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。
【0145】
また、本実施形態では、加圧を行っていないため、第1の電極2aと第2の電極3aとのアライメントがずれた状態で、第1の接続対象部材2と第2の接続対象部材3とが重ね合わされた場合でも、そのずれを補正して、第1の電極2aと第2の電極3aとを接続させることができる(セルフアライメント効果)。これは、第1の電極2aと第2の電極3aとの間に自己凝集している溶融したはんだが、第1の電極2aと第2の電極3aとの間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。
【0146】
このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
【0147】
上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。
【0148】
上記第3の工程における加熱方法としては、はんだ粒子の液相線温度(融点)以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
【0149】
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
【0150】
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
【0151】
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
【0152】
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
【0153】
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
【0154】
本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、本発明の効果がより一層効果的に発揮される。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだが凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだが凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、本発明の効果がより一層効果的に発揮される。
【0155】
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
【0156】
熱硬化性成分(熱硬化性化合物):
熱硬化性化合物1:ビスフェノールF型エポキシ化合物、新日鉄住金化学社製「YDF-8170C」
熱硬化性化合物2:ビスフェノールA型エポキシ化合物、新日鉄住金化学社製「YD-8125」
熱硬化性化合物3:フェノールノボラック型エポキシ化合物、DOW社製「DEN431」
熱硬化性化合物4:脂肪族エポキシ化合物、共栄社化学社製「エポライト1600」
熱硬化性化合物5:イソシアヌル骨格含有エポキシ化合物、日産化学社製「TEPIC-SP」
【0157】
熱硬化性成分(熱硬化剤):
熱硬化剤1:酸無水物硬化剤、新日本理化社製「リカシッドTH」
熱硬化剤2:酸無水物硬化剤、新日本理化社製「リカシッドMH」
【0158】
熱硬化性成分(硬化促進剤):
硬化促進剤1:有機ホスホニウム塩、日本化学工業社製「PX-4MP」
【0159】
フラックス:
フラックス1:「グルタル酸ベンジルアミン塩」、融点108℃
フラックス1の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5℃~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、フラックス1を得た。
【0160】
はんだ粒子:
はんだ粒子1:Sn42Bi58はんだ粒子、平均粒子径10μm
はんだ粒子2:Sn66Bi34はんだ粒子、平均粒子径10μm
はんだ粒子3:Sn53Bi47はんだ粒子、平均粒子径10μm
はんだ粒子4:Sn90In10はんだ粒子、平均粒子径10μm
はんだ粒子5:SnIn8Ag3.5はんだ粒子、平均粒子径10μm
はんだ粒子6:SnAg3Cu0.5はんだ粒子、平均粒子径10μm
【0161】
(実施例1~24及び比較例1~12)
(1)導電材料(異方性導電ペースト)の作製
下記の表1~3に示す成分を下記の表1~3に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
【0162】
(2)接続構造体の作製
第1の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するガラスエポキシ基板(材質:FR-4、厚み:0.6mm)を用意した。
【0163】
第2の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するフレキシブルプリント基板(材質:ポリイミド、厚み:0.1mm)を用意した。
【0164】
上記ガラスエポキシ基板の上面に、作製直後の導電材料(異方性導電ペースト)を厚さ100μmとなるように塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面にフレキシブルプリント基板を電極同士が対向するように積層した。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後にはんだ粒子の固相線温度となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が200℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
【0165】
(評価)
(1)はんだ粒子の固相線温度、はんだ粒子の液相線温度、及びはんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値
はんだ粒子の固相線温度及びはんだ粒子の液相線温度を、示差走査熱量測定(DSC)を用いて、以下のようにして測定した。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」を用いた。
【0166】
(はんだ粒子の固相線温度及びはんだ粒子の液相線温度の測定方法)
上記はんだ粒子を約10mg量り、アルミニウム製容器(試料容器)のほぼ中央部に試料を配置し、該容器のアルミニウム製ふたを載せてクランプした。得られた試料容器を示差走査熱量測定(DSC)装置の一方の容器ホルダーに装着した。他方の容器ホルダーには、アルミニウム製容器(試料容器)に試料を入れずにアルミニウム製ふたをクランプした空容器を装着した。また、窒素ガス流量を10ml/分から50ml/分の範囲の適切な値に設定し、測定終了まで流入させた。昇温速度を10℃/分とし、溶融ピーク終了時より約30℃高い温度まで加熱しながら測定した。得られた示差走査熱量測定(DSC)曲線について、低温側のベースラインを高温側に延長した直線を引き、溶融ピークの低温側における曲線の勾配が最大になる点で接線(接線1)を引いた。高温側に延長した直線と接線(接線1)との交点における温度を固相線温度とした。また、得られた示差走査熱量測定(DSC)曲線について、高温側のベースラインを低温側に延長した直線を引き、溶融ピークの高温側における曲線の勾配が最大になる点で接線(接線2)を引いた。低温側に延長した直線と接線(接線2)との交点における温度を液相線温度とした。
【0167】
得られた測定結果から、はんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値を算出した。
【0168】
(2)はんだ粒子に含まれる金属100重量%中の錫、ビスマス、及びインジウムの含有量
はんだ粒子に含まれる金属100重量%中の錫、ビスマス、及びインジウムの含有量を、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)を用いて測定した。
【0169】
(3)はんだ粒子の固相線温度における導電材料の粘度(ηsp)
得られた導電材料を用いて、はんだ粒子の固相線温度における導電材料の粘度(ηsp)を測定した。はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、STRESSTECH(REOLOGICA社製)を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃~200℃(但し、はんだ粒子の固相線温度が200℃を超える場合には温度上限をはんだ粒子の固相線温度とする)の条件で測定した。
【0170】
(4)電極上のはんだの配置精度
得られた接続構造体おいて、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度を以下の基準で判定した。
【0171】
[電極上のはんだの配置精度の判定基準]
〇〇〇:割合Xが90%以上
〇〇:割合Xが80%以上90%未満
〇:割合Xが70%以上80%未満
×:割合Xが70%未満
【0172】
(5)上下の電極間の導通信頼性
得られた接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を以下の基準で判定した。
【0173】
[導通信頼性の判定基準]
〇〇〇:接続抵抗の平均値が50mΩ以下
〇〇:接続抵抗の平均値が50mΩを超え70mΩ以下
〇:接続抵抗の平均値が70mΩを超え100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
【0174】
結果を下記の表1~3に示す。
【0175】
【表1】
【0176】
【表2】
【0177】
【表3】
【0178】
樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
【符号の説明】
【0179】
1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子
11B…熱硬化性成分
図1
図2
図3