(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】プログラム、及び放射妨害波測定装置
(51)【国際特許分類】
G01R 29/08 20060101AFI20240417BHJP
【FI】
G01R29/08 D
(21)【出願番号】P 2020036951
(22)【出願日】2020-03-04
【審査請求日】2023-01-24
【前置審査】
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100141139
【氏名又は名称】及川 周
(74)【代理人】
【識別番号】100163496
【氏名又は名称】荒 則彦
(74)【代理人】
【識別番号】100114937
【氏名又は名称】松本 裕幸
(72)【発明者】
【氏名】本谷 智宏
(72)【発明者】
【氏名】緑 雅貴
(72)【発明者】
【氏名】栗原 弘
【審査官】越川 康弘
(56)【参考文献】
【文献】特開2019-164102(JP,A)
【文献】特開2016-142609(JP,A)
【文献】特開2015-034785(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 29/08
(57)【特許請求の範囲】
【請求項1】
第1パラメータと第2パラメータと第3パラメータとを含む複数のパラメータを示す情報と、サンプリング定理とに基づいて、放射妨害波を放射する供試体を囲む仮想的な面上における位置を示す複数の対象点のうち、所定の第1方向において互いに隣接する2つの対象点の間隔を、前記放射妨害波を測定する位置を示す2つ以上の測定点の配置として特定するための第1値を算出する第1算出機能と、
前記第1算出機能により算出された前記第1値に基づいて、前記2つ以上の測定点の配置が、前記供試体と前記2つ以上の測定点のそれぞれとの相対的な配置関係に関する所定の判定条件を満たしているか否かを判定する判定機能と、
前記判定機能が前記判定条件を満たしていないと判定した場合、前記複数のパラメータのうちの少なくとも1つを変化させて前記第1算出機能により前記第1値を算出する算出制御機能と、
をコンピュータに実現させ、
前記第2パラメータは、前記2つの対象点の間隔を調整するパラメータであり、
前記第1算出機能は、
前記複数の対象点のうちの第1点の前記第1方向における位置と、前記複数のパラメータとに基づいて、前記第1方向における前記第1点と前記供試体との位置関係に応じた補正係数を算出し、算出した前記補正係数と、前記第2パラメータと、サンプリング定理とに基づいて、前記第1方向において前記複数の対象点のうちの前記第1点に隣接する対象点である第2点と前記第1点との間の間隔を表す第1間隔を算出する第1処理と、
前記第1処理により算出した前記第1間隔と、前記第1方向における前記第1点の位置とに基づいて、前記第1方向における前記第2点の位置を算出する第2処理と、
を繰り返し実行することにより前記複数の対象点それぞれの位置を前記第1値として算出し、
前記算出制御機能は、
前記判定機能が前記判定条件を満たしていないと判定した場合、前記第1間隔が小さくなるように、前記第1パラメータと前記第2パラメータと前記第3パラメータとの少なくとも1つを変化させることによって、前記第1算出機能により前記複数の対象点それぞれの位置を前記第1値として算出し、
前記第1パラメータは、前記第1方向における前記供試体の上面の位置を示すパラメータであり、
前記第3パラメータは、前記第1方向における前記供試体の下面の位置を示すパラメータであり、
前記第2パラメータは、0より大きく、前記放射妨害波の波長の半分以下の実数値である、
プログラム。
【請求項2】
前記第1算出機能により算出された前記第1値に基づいて、前記2つ以上の測定点の配置を特定する特定機能を更に備え、
前記判定機能は、前記特定機能により特定された前記2つ以上の測定点の配置が、前記判定条件を満たしているか否かを判定する、
請求項1に記載のプログラム。
【請求項3】
前記第1算出機能は、nを1以上の整数とし、前記複数の対象点のうち前記面上において前記第1方向に並べられるn番目の対象点を前記第1点とし、前記複数の対象点のうち前記面上において前記第1方向に並べられる(n+1)番目の対象点を前記第2点として、初期値からnを1ずつ増やし、前記初期値から1ずつ増えるnの値毎に、前記第1点の位置に応じて、前記第1処理により、前記第1点から前記第2点までの前記第1間隔を算出し、算出した前記第1間隔に応じて、前記第2処理により前記第2点の位置を算出することで、前記面上において前記第1方向に並べられた前記複数の対象点それぞれの位置を前記第1値として、所定の終了条件が満たされるまで1つずつ順に算出し、
前記特定機能は、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置に基づいて、前記2つ以上の測定点の配置として前記2つ以上の測定点それぞれの位置を特定し、
前記判定機能は、前記特定機能により特定された前記2つ以上の測定点それぞれの位置が前記判定条件を満たしているか否かを判定し、
前記算出制御機能は、前記判定機能が前記判定条件を満たしていないと判定した場合、前記第1間隔が小さくなるように、前記第1パラメータと前記第2パラメータと前記第3パラメータとの少なくとも1つを変化させ、変化させた後の前記第1パラメータと前記第2パラメータと前記第3パラメータとの少なくとも1つに基づいて、前記第1算出機能により、前記複数の対象点それぞれの位置を前記第1値として算出する、
請求項2に記載のプログラム。
【請求項4】
前記特定機能は、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置のうちの全部を、前記2つ以上の測定点それぞれの位置として特定する、
請求項3に記載のプログラム。
【請求項5】
前記特定機能は、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置のうちの一部を、前記2つ以上の測定点それぞれの位置として特定するとともに、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置のうち前記測定点として特定されていない前記対象点それぞれの位置を補間点の位置として特定する、
請求項3に記載のプログラム。
【請求項6】
前記2つ以上の測定点の総数と、前記2つ以上の測定点のうち互いに隣接する測定点間を分割する分割数とは、予め決められており、
前記第2パラメータは、前記分割数の逆数である、
請求項5に記載のプログラム。
【請求項7】
前記第1算出機能は、前記2つ以上の測定点の総数と、前記第2パラメータとに基づいて、前記複数の対象点の総数を算出し、算出した前記複数の対象点の総数と、前記複数のパラメータとに基づいて、前記第1値として前記複数の対象点それぞれの位置を、前記終了条件が満たされるまで1つずつ順に算出し、
前記特定機能は、前記2つ以上の測定点の総数と、前記分割数とに基づいて、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置のうちの一部を、前記2つ以上の測定点それぞれの位置として特定するとともに、前記第1算出機能により前記第1値として算出された前記複数の対象点それぞれの位置のうち前記測定点として特定されていない前記対象点それぞれの位置を補間点の位置として特定する、
請求項6に記載のプログラム。
【請求項8】
前記2つ以上の測定点の総数は、前記2つ以上の測定点の総数を予め決めず、且つ、前記2つ以上の測定点のうち互いに隣接する測定点間を分割しない場合において、前記第1算出機能により算出された前記複数の対象点それぞれの位置に基づいて前記特定機能により特定された前記2つ以上の測定点の数である、
請求項6に記載のプログラム。
【請求項9】
前記判定条件は、前記特定機能により特定された前記2つ以上の測定点それぞれの位置に基づいて算出される、隣接する前記2つ以上の測定点の間隔が、第1閾値未満であること、を含み、
前記第1閾値は、隣接する前記2つ以上の測定点の間隔が、前記放射妨害波の波長に応じたサンプリング定理を満たす最大サンプリング間隔である、
請求項3から8のうちいずれか一項に記載のプログラム。
【請求項10】
前記判定条件は、前記特定機能により特定された前記2つ以上の測定点それぞれの位置のうちの少なくとも1つが、前記第1方向において、前記供試体の前記第1方向における両端に挟まれた範囲内に含まれていること、を更に含む、
請求項9に記載のプログラム。
【請求項11】
前記判定条件は、前記2つ以上の測定点のうち互いに隣接する2つの測定点の組み合わせのそれぞれについて、前記2つの測定点の組み合わせのそれぞれに応じた前記補正係数同士の比が、所定の第2閾値未満であること、を更に含み、
前記第2閾値は、0より大きい実数である、
請求項9又は10に記載のプログラム。
【請求項12】
前記終了条件は、前記複数の対象点のうち前記第1方向における測定範囲外に位置する対象点の位置が前記第1算出機能により算出されたこと、である、
請求項3から11のうちいずれか一項に記載のプログラム。
【請求項13】
前記第1算出機能は、前記第1処理において、以下の式(1)を用いて前記補正係数を算出し、
式(1)におけるKhmaxは、前記補正係数を示し、
式(1)におけるhrxは、前記第1方向における前記第1点の位置を示し、
式(1)におけるhminは、前記第3パラメータであり、
式(1)におけるhmaxは、前記第1パラメータであり、
式(1)におけるdminは、前記第1方向と垂直な第2方向における前記第1点と前記供試体との距離の最小値を示し、
式(1)におけるdmaxは、前記第2方向における前記第1点と前記供試体との距離の最大値を示す、
【数1】
請求項1に記載のプログラム。
【請求項14】
前記第1算出機能は、前記第1処理において、以下の式(2)を用いて前記第1間隔を算出し、
式(2)におけるΔhrxは、前記第1間隔を示し、
式(2)におけるKhは、前記補正係数を示し、
式(2)におけるLresは、前記第2パラメータを示し、
前記第2パラメータは、0より大きく、且つ、前記放射妨害波の波長の半分以下である、
【数2】
請求項1に記載のプログラム。
【請求項15】
前記第1算出機能は、前記第2処理において、以下の式(3)を用いて前記第2点の位置を算出し、
式(3)におけるhrx_minは、前記第1方向において最も下方の前記対象点の位置を示し、
式(3)におけるΔhrxは、前記第1間隔を示す、
【数3】
請求項1に記載のプログラム。
【請求項16】
請求項1から15のうちいずれか一項に記載のプログラムを実行するコンピュータを備える、
放射妨害波測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プログラム、及び放射妨害波測定装置に関する。
【背景技術】
【0002】
放射妨害波試験を行うために用いる技術についての研究、開発が行われている。ここで、放射妨害波試験は、供試体から放射妨害波として放射される電磁波の電界強度が、国際的に定められた規格の許容値以下であるか否かを確認する試験のことである。供試体は、放射妨害波試験を行う対象となる物体のことである。また、供試体は、放射妨害波を放射する電磁波源を含む物体のことである。例えば、供試体は、電子機器である。供試体が電子機器である場合、放射妨害波試験は、電子機器が市場へ出荷される前に行われることが多い。これは、電子機器から放射される放射妨害波が周囲の他の電子機器に影響を及ぼし、例えば、当該他の電子機器の誤動作を誘引することがあるためである。
【0003】
放射妨害波試験では、供試体を囲む仮想的な面上における放射妨害波の電界強度の分布が推定される。当該分布が推定された後、放射妨害波試験では、推定された当該分布に基づいて、当該電界強度が最大となる位置が特定される。当該位置が特定された後、放射妨害波試験では、特定された当該位置において、当該電界強度が所定時間測定される。そして、当該位置において当該電界強度が所定時間測定された後、放射妨害波試験では、当該位置において所定時間測定された当該電界強度の尖頭値、積分値、平均値等が、国際的に定められた規格の許容値以下であるか否かが確認される。
【0004】
ここで、放射妨害波試験では、供試体を囲む仮想的な面上における放射妨害波の分布を推定する際、当該仮想的な面上に設定される複数の測定点それぞれの位置において、当該電界強度が測定される。そして、放射妨害波試験では、当該分布は、当該複数の測定点それぞれの位置において測定された当該電界強度に基づいて推定される。放射妨害波試験によって推定される当該分布の推定精度は、推定された当該分布における当該電界強度が最大となる位置と、実際の当該分布における当該電界強度が最大となる位置との一致度合いによって表される。このため、当該分布の推定精度の高さは、すなわち、当該電界強度が最大となる位置の特定精度の高さを示す。
【0005】
このように、放射妨害波試験では、放射妨害波の電界強度は、複数の測定点それぞれの位置において測定される。このため、放射妨害波試験では、供試体を囲む仮想的な面上における当該電界強度の分布の推定精度は、当該仮想的な面上に設定される複数の測定点の数が多いほど、高くなる。しかしながら、当該分布の推定に要する時間は、当該仮想的な面上に設定される複数の測定点の数が多いほど、長くなる。
【0006】
例えば、情報通信機器の周波数帯域(すなわち、30MHz~40GHz)の放射妨害波についての放射妨害波試験では、供試体を囲む仮想的な面の形状は、円筒形状である。そして、当該放射妨害波試験では、複数の測定点は、基準となる平面からの高さが1m~4mの範囲において、円筒形状の当該仮想的な面上の上下方向に1cm間隔で並ぶように設定される。また、当該放射妨害波試験では、複数の測定点は、円筒形状の当該仮想的な面の中心軸周りの方位角が0度~360度の範囲において、円筒形状の当該仮想的な面上の周方向に1°間隔で並ぶように設定される。このため、当該放射妨害波試験では、当該仮想的な面上に設定される複数の測定点の数は、約14万点にも及ぶ。その結果、当該放射妨害波試験には、例えば、1点の測定点毎に1分間の測定を行った場合であっても、14万分(約97日間)以上もの時間を要してしまう。
【0007】
また、放射妨害波試験では、供試体を囲む仮想的な面上における放射妨害波の電界強度の分布の推定精度を高くするため、放射妨害波として測定する電磁波の周波数帯域を広くすることが求められる。このため、放射妨害波試験では、例えば、スーパーヘテロダイン方式のスペクトルアナライザ、FFT(Fast Fourier Transform)方式のスペクトルアナライザ等のスペクトルアナライザを用いることにより、当該電磁波のスペクトルの測定を行う。しかしながら、放射妨害波試験に要する時間は、放射妨害波として測定する電磁波の周波数帯域が広いほど、長くなることも知られている。
【0008】
このように、放射妨害波試験では、供試体を囲む仮想的な面上における放射妨害波の電界強度の分布の推定精度を高くしようとする場合、放射妨害波試験に要する時間は、長くなってしまう場合がある。
【0009】
ここで、このような放射妨害波試験に要する時間の増大の抑制を目的として、供試体を囲む仮想的な面上に設定される複数の測定点それぞれの位置をサンプリング定理に基づいて算出する電磁波測定点算出装置を有し、電磁波測定点算出装置により算出された複数の測定点に基づいて、放射妨害波試験を行う放射妨害波測定装置が知られている(特許文献1参照)。
【先行技術文献】
【特許文献】
【0010】
【発明の概要】
【発明が解決しようとする課題】
【0011】
特許文献1に記載されている放射妨害波測定装置は、ある測定点X1の位置が与えられている場合において、測定点X1の位置から次の測定点X2の位置までの間隔を、サンプリング定理に基づいて算出する。そして、当該放射妨害波測定装置は、算出した当該間隔と、測定点X1の位置とに基づいて、測定点X2の位置を算出する。当該放射妨害波測定装置は、このような測定点の位置の算出を測定点のそれぞれについて1つずつ順に行い、算出した複数の測定点の位置に基づいて、供試体を囲む仮想的な面上に設定する複数の測定点の配置を特定する。これにより、当該放射妨害波測定装置は、設定する測定点の数を不必要に増大させることなく、当該仮想的な面上における放射妨害波の電界強度の分布を精度よく推定することができる。
【0012】
しかしながら、特許文献1に記載されている放射妨害波測定装置は、所定の方向における供試体の厚さ(すなわち、当該方向における供試体の長さ)が薄いほど、供試体を囲む仮想的な面上における放射妨害波の電界強度が最大とならない位置を、当該電界強度が最大となる位置として特定してしまう場合があった。これは、当該厚さが薄いほど、当該所定の方向において互いに隣接して並ぶ測定点間の間隔が大きくなるように当該放射妨害波測定装置が測定点の位置を算出してしまうために起こる問題である。何故なら、当該所定の方向において互いに隣接して並ぶ測定点間の間隔が大きくなるように当該放射妨害波測定装置が測定点の位置を算出してしまう場合、当該所定の方向における複数の測定点の配置は、サンプリング定理を満たさない配置となってしまう場合があるためである。この場合、当該電界強度の当該所定の方向における分布の推定精度が低下してしまう。
【0013】
換言すると、特許文献1に記載されている放射妨害波測定装置は、所定の方向における供試体の厚さが薄い場合等の特定の状況下において、放射妨害波の電界強度の分布を精度よく推定することができない場合があった。そして、これは、当該状況下では、当該放射妨害波測定装置が、供試体から放射される放射妨害波を測定する位置を示す複数の測定点の配置として、サンプリング定理を満たす配置であること等の所定の条件を満たす配置を特定できない場合があるためである。
【0014】
本発明は、このような事情を考慮してなされたもので、2以上の測定点の配置のうち放射妨害波の電界強度の分布の推定精度を低下させてしまう配置が特定されてしまうことを抑制することができるプログラム、及び放射妨害波測定装置を提供することを課題とする。
【課題を解決するための手段】
【0015】
本発明の一態様は、放射妨害波を放射する供試体から放射される前記放射妨害波を測定する位置を示す2以上の測定点の配置を特定するための第1値を、所定のパラメータに基づいて算出する第1算出機能と、前記第1算出機能により算出された前記第1値に基づいて、前記2以上の測定点の配置が、前記供試体と前記2以上の測定点のそれぞれとの相対的な配置関係に関する所定の判定条件を満たしているか否かを判定する判定機能と、前記判定機能が前記判定条件を満たしていないと判定した場合、前記パラメータを変化させて前記第1算出機能により前記第1値を算出する算出制御機能と、をコンピュータに実現させるためのプログラムである。
【発明の効果】
【0016】
本発明によれば、2以上の測定点の配置のうち放射妨害波の電界強度の分布の推定精度を低下させてしまう配置が特定されてしまうことを抑制することができる。
【図面の簡単な説明】
【0017】
【
図1】実施形態に係る放射妨害波測定装置100の構成の一例を示す図である。
【
図2】仮想的な面上に複数の測定点が設定されている様子の一例を示すイメージ図である。
【
図3】放射妨害波測定装置100が設置された電波暗室内における供試体1とアンテナ2との位置関係の一例を示す図である。
【
図4】コンピュータ7の機能構成の一例を示す図である。
【
図5】コンピュータ7のハードウェア構成の一例を示す図である。
【
図6】放射妨害波測定装置100が行う対象測定点位置特定処理の流れの一例を示す図である。
【
図7】対象直線上に並ぶ複数の対象点のそれぞれの一例を示す。
【
図8】放射妨害波測定装置100が行う対象測定点位置特定処理の流れの他の例を示す図である。
【
図9】
図6に示したステップS190において所定の判定条件が満たされているか否かを判定する処理の流れの一例を示す図である。
【
図10】
図8に示したステップS193の処理を省略し、ステップS192及びステップS195の処理によってステップS190の処理を行った場合において放射妨害波測定装置100が推定した放射妨害波の水平偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図11】ステップS190の処理を省略した場合において放射妨害波測定装置100が推定した放射妨害波の水平偏波の電界強度の分布の一例を示す図である。
【
図12】ステップS190の処理を省略した場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図13】第2閾値が50である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図14】第2閾値が20である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図15】第2閾値が8である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図16】第2閾値が4である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【
図17】
図12~
図15のそれぞれに示した実線の分布と点線の分布との偏差を、第2閾値を示す横軸と偏差を示す縦軸とを有するグラフにプロットした図である。
【発明を実施するための形態】
【0018】
<実施形態>
以下、本発明の実施形態について、図面を参照して説明する。
【0019】
<放射妨害波測定装置の構成>
以下、
図1を参照し、実施形態に係る放射妨害波測定装置100の構成について説明する。
図1は、実施形態に係る放射妨害波測定装置100の構成の一例を示す図である。
【0020】
放射妨害波測定装置100は、放射妨害波試験を行う装置である。放射妨害波試験は、EMC(ElectroMagnetic Compatibility)規格に従って、供試体から放射される放射妨害波を測定する試験のことである。このため、放射妨害波試験の試験条件及び試験方法は、国際的に定められている。また、放射妨害波試験は、放射妨害波の電界強度と放射妨害波の磁界強度との少なくとも一方の測定を、放射妨害波の測定として行う試験である。以下では、一例として、放射妨害波試験が、放射妨害波の電界強度の測定を行う試験である場合について説明する。
【0021】
ここで、供試体は、放射妨害波を放射する電磁波源を含む物体のことである。また、供試体は、放射妨害波試験の対象となる物体(すなわち、放射妨害波試験の被験体)のことである。また、放射妨害波は、供試体から放射される電磁波のうち所定の周波数帯の電磁波のことである。以下では、一例として、このような供試体が、
図1に示した供試体1である場合について説明する。この場合、放射妨害波測定装置100は、供試体1から放射される放射妨害波を測定する放射妨害波試験を行う。そこで、以下では、説明の便宜上、供試体1から放射される放射妨害波を、単に放射妨害波と称して説明する。また、当該例では、供試体1は、ノートPC(Personal Computer)である。なお、供試体1は、ノートPCに代えて、電磁波を放射する他の電子機器、通信機器等であってもよい。
【0022】
放射妨害波測定装置100は、グランドプレーンを形成している金属床面を備える電波暗室内に配置される。グランドプレーン上には、電波吸収体が設置されていなくてもよく、電波吸収体が設置されていてもよい。電波吸収体は、放射妨害波を吸収する材料であり、例えば、磁性材料、カーボン等を用いて作製される。なお、電波暗室の内壁のうち金属床面を除いた壁面にも、電波吸収体が貼り付けられていなくてもよく、電波吸収体が貼り付けられていてもよい。以下では、一例として、グランドプレーン上には、電波吸収体が設置されていない場合について説明する。また、以下では、一例として、当該壁面には、電波吸収体が貼り付けられていない場合について説明する。
【0023】
また、放射妨害波測定装置100は、アンテナ2と、アンテナマスト3と、ターンテーブル4と、受信器5と、コントローラ6と、コンピュータ7を備える。なお、放射妨害波測定装置100は、アンテナ2と、アンテナマスト3と、ターンテーブル4と、受信器5と、コントローラ6と、コンピュータ7とに加えて、他の装置、他の機器、他の部材等を備える構成であってもよい。また、放射妨害波測定装置100において、コンピュータ7は、受信器5とコントローラ6とのうちのいずれか一方又は両方と一体に構成されてもよい。
【0024】
アンテナ2は、電磁波の電界強度を検出可能なアンテナであれば、如何なるアンテナであってもよい。
図1に示した例では、アンテナ2は、アンテナマスト3により支持されたハイブリッドアンテナである。アンテナ2は、検出した電界強度に応じた電圧を示す電気信号を、後述する受信器5に出力する。ここで、本実施形態では、一例として、アンテナ2の位置を、アンテナ2の先端の位置によって表す場合について説明する。なお、アンテナ2の位置は、当該先端の位置に代えて、アンテナ校正の基準点等のアンテナ2に応じた他の位置によって表される構成であってもよい。
【0025】
アンテナマスト3は、後述するコントローラ6による制御に応じて、アンテナ2を所望の方向に沿って並進させることが可能なアンテナマストであれば、如何なるアンテナマストであってもよい。
図1に示した例では、アンテナマスト3は、アンテナ2を上下方向(すなわち、電波暗室における金属床面と直交する2つの方向)に沿って並進させることが可能なアンテナマストである。これにより、放射妨害波測定装置100は、アンテナ2の供試体1に対する相対的な位置を、上下方向に沿って並進させることができる。
【0026】
このようなアンテナマスト3により支持されているため、本実施形態では、アンテナ2の位置は、アンテナマスト3により上下方向に沿って変化し、上下方向と異なる方向に沿って変化しない。このため、本実施形態では、アンテナ2の位置は、アンテナ2の先端の上下方向(より厳密には、電波暗室における金属床面と直交する2つの方向のうち金属床面から天井へ向かう方向)における位置、すなわち、電波暗室における金属床面からのアンテナ2の先端の高さによって表される。
【0027】
ターンテーブル4は、放射妨害波試験において供試体1が載置される台を含むテーブルである。ターンテーブル4は、後述するコントローラ6による制御に応じて、当該台に載置された供試体1を所定の回転軸周りに回転させることができる物体であれば、如何なる物体であってもよい。これにより、放射妨害波測定装置100は、ターンテーブル4の回転軸周りに、アンテナ2の位置を供試体1に対して相対的に回転させることができる。本実施形態では、一例として、
図1に示すように、ターンテーブル4の回転軸が、上下方向と平行な軸である場合について説明する。なお、ターンテーブル4の回転軸は、上下方向と非平行な軸であってもよい。
【0028】
受信器5は、有線又は無線によってコンピュータ7と通信可能に接続されている。受信器5は、アンテナ2から出力された電気信号を、アンテナ2から取得する。受信器5は、取得した電気信号をコンピュータ7に出力する。
【0029】
コントローラ6は、アンテナマスト3によるアンテナ2の並進と、ターンテーブル4による供試体1の回転とのそれぞれを制御する制御装置である。コントローラ6は、例えば、有線によってアンテナマスト3、ターンテーブル4のそれぞれと通信可能に接続される。なお、コントローラ6は、コンピュータ7からの要求に応じてアンテナマスト3とターンテーブル4との少なくとも一方を制御してもよく、ユーザから受け付けた操作に基づいてアンテナマスト3とターンテーブル4との少なくとも一方を制御してもよい。以下では、コントローラ6が、コンピュータ7からの要求に応じてアンテナマスト3とターンテーブル4との両方を制御する場合について説明する。
【0030】
コンピュータ7は、例えば、ノートPCである。なお、コンピュータ7は、ノートPCに代えて、デスクトップPC、タブレットPC等の他の情報処理装置であってもよい。
【0031】
コンピュータ7は、コントローラ6及び受信器5を制御し、放射妨害波試験を行う。より具体的には、コンピュータ7は、コントローラ6を制御し、供試体1を囲む仮想的な面上に設定される複数の測定点それぞれの位置と、アンテナ2の位置とを順に一致させる。ここで、複数の測定点のそれぞれは、放射妨害波試験において放射妨害波測定装置100が放射妨害波の電界強度を測定する位置を示す仮想的な点のことである。コンピュータ7は、複数の測定点それぞれの位置にアンテナ2の位置を一致させる毎に、受信器5を制御し、受信器5から出力される電気信号を取得する。この電気信号は、アンテナ2が位置する測定点の位置においてアンテナ2により検出された電界強度に応じた電気信号である。また、コンピュータ7は、受信器5から電気信号を取得すると、取得した電気信号に応じた電界強度を算出する。例えば、コンピュータ7は、電気信号の大きさと電界強度の大きさとを対応付ける情報に基づいて、取得した電気信号に応じた電界強度を算出する。コンピュータ7は、放射妨害波試験において、このような処理により、複数の測定点それぞれの位置における放射妨害波の電界強度を算出する。本実施形態において、放射妨害波の電界強度を測定することは、このように受信器5から取得した電気信号に基づいてコンピュータ7が電界強度を算出することを意味する。すなわち、コンピュータ7は、放射妨害波試験において、このような処理により、複数の測定点それぞれの位置における放射妨害波の電界強度を測定する。
【0032】
また、コンピュータ7は、放射妨害波試験において、複数の測定点それぞれの位置における放射妨害波の電界強度を測定した後、複数の測定点のそれぞれの位置において測定した電界強度に基づいて、供試体1を囲む仮想的な面上における放射妨害波の電界強度の分布を推定する。当該分布の推定方法については、ローパスフィルタを適用する方法等の既知の方法であってもよく、これから開発される方法であってもよい。コンピュータ7によって推定される当該分布は、当該電界強度が最大となる位置を示す分布である。このため、コンピュータ7によって推定される当該分布の推定精度は、推定された当該分布における当該電界強度が最大となる位置と、実際の当該分布における当該電界強度が最大となる位置との一致度合いによって表される。このため、当該分布の推定精度の高さは、すなわち、当該電界強度が最大となる位置の特定精度の高さを示す。
【0033】
また、コンピュータ7は、放射妨害波試験において、供試体1を囲む仮想的な面上における放射妨害波の電界強度の分布を推定した後、推定した分布に基づいて、放射妨害波の電界強度が最大となる位置を特定する。
【0034】
また、コンピュータ7は、放射妨害波試験において、放射妨害波の電界強度が最大となる位置を特定した後、特定した当該位置とアンテナ2の位置とを一致させ、所定の時間、放射妨害波の電界強度を測定する。コンピュータ7は、所定の時間測定した電界強度の尖頭値、積分値、平均値等が、国際的に定められた規格の許容値以下であるか否かを判定する。このようにして、放射妨害波測定装置100は、放射妨害波試験を行う。なお、コンピュータ7は、判定した結果を示す情報を図示しない表示部(例えば、ディスプレイ)に表示させる構成であってもよく、当該結果を示す情報を他の装置に出力する構成であってもよい。
【0035】
ここで、コンピュータ7は、放射妨害波試験を行う前において、ユーザから受け付けた操作に応じて、供試体1を囲む仮想的な面を設定する。本実施形態では、一例として、供試体1を囲む仮想的な面が、上下方向と平行な中心軸を有する円筒形状の仮想的な面である場合について説明する。なお、供試体1を囲む仮想的な面は、他の形状の仮想的な面であってもよい。供試体1を囲む仮想的な面は、供試体に対して設定される面の一例である。
【0036】
また、コンピュータ7は、供試体1を囲む仮想的な面を設定した後、当該仮想的な面上に設定する複数の測定点の配置を特定するための第1値を、所定のパラメータに基づいて算出する。ここで、所定のパラメータは、第1値を算出するための関数に含まれる1以上のパラメータのうちの少なくとも1つである。すなわち、所定のパラメータは、第1値が表す対象に応じて決まるパラメータである。所定のパラメータの詳細については、後述する。ここで、コンピュータ7は、例えば、当該仮想的な面上に複数の仮想的な点を設定し、設定した当該複数の仮想的な点に基づいて当該複数の測定点の配置を特定する。この場合、当該複数の測定点の配置は、当該仮想的な面上に設定される複数の仮想的な点それぞれの位置、当該複数の仮想的な点のうち互いに隣接する仮想的な点間の間隔等によって特定される。そこで、以下では、一例として、コンピュータ7が、当該仮想的な面を設定した後、当該仮想的な面上に設定する当該複数の仮想的な点それぞれの位置を、当該複数の測定点の配置を特定するための第1値として算出する場合について説明する。この場合、コンピュータ7は、当該複数の仮想的な点のうち互いに隣接する仮想的な点間それぞれの間隔に関連する所定のパラメータに基づいて、当該複数の測定点の配置を特定するための第1値として、当該複数の仮想的な点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出する。
【0037】
なお、コンピュータ7は、所定のパラメータに基づいて、供試体1を囲む仮想的な面上における複数の仮想的な点のうち互いに隣接する仮想的な点間の間隔等の、当該仮想的な面上に設定する複数の測定点の配置を特定するために用いることが可能な他の値を、第1値として算出する構成であってもよい。また、以下では、説明の便宜上、供試体1を囲む仮想的な面上における複数の仮想的な点のそれぞれを、単に仮想的な点と称して説明する。また、以下では、説明の便宜上、供試体1を囲む仮想的な面を、単に仮想的な面と称して説明する。
【0038】
ここで、コンピュータ7による複数の仮想的な点それぞれの位置を算出する方法は、複数存在する。本実施形態では、一例として、コンピュータ7による複数の仮想的な点それぞれの位置を算出する方法が、仮想的な面上に沿って所定の方向に伸びる互いに平行な複数の仮想的な直線を設定し、設定した複数の仮想的な直線毎に、仮想的な直線上に並べられる複数の仮想的な点それぞれの位置をコンピュータ7が算出する場合について説明する。また、本実施形態では、一例として、所定の方向が、上下方向と平行な場合について説明する。また、本実施形態では、一例として、複数の仮想的な直線は、仮想的な面上において等間隔に並ぶ場合について説明する。すなわち、本実施形態では、一例として、複数の仮想的な直線が、円筒形状である仮想的な面の中心軸と平行であり、且つ、円筒形状である仮想的な面上において円筒の周方向に等間隔で並んでいる場合について説明する。なお、コンピュータ7による複数の仮想的な点それぞれの位置を算出する方法は、他の方法であってもよい。また、所定の方向は、上下方向に代えて、水平方向、仮想的な面の周方向等の他の方向と平行であってもよい。また、複数の仮想的な直線の一部又は全部は、仮想的な面上において等間隔に並ばなくてもよい。
【0039】
なお、以下では、説明を簡略化するため、コンピュータ7が複数の仮想的な点それぞれの位置を算出する処理について、複数の仮想的な直線のうちのある1つの仮想的な直線上に並べられる複数の仮想的な点それぞれの位置を算出する処理を例に挙げて説明する。そこで、以下では、当該ある1つの仮想的な直線を、対象直線と称して説明する。また、以下では、説明の便宜上、対象直線上に並べられる複数の仮想的な点のそれぞれを、対象点と称して説明する。また、複数の対象点の位置は、供試体1が回転しない限り、上下方向の高さによって表すことができる。そこで、以下では、説明の便宜上、複数の対象点それぞれの上下方向における高さを、複数の対象点それぞれの位置と称して説明する。複数の対象点は、供試体に対して設定される面上において所定の方向に並べられる複数の点の一例である。
【0040】
コンピュータ7は、このような方法により複数の対象点それぞれの位置を算出する場合、複数の対象点のうち互いに隣接する対象点間それぞれの間隔に関連する所定のパラメータに基づいて、第1値として複数の対象点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出する。ここで、所定の終了条件は、例えば、所定の方向における放射妨害波の測定範囲外に位置する対象点の位置がコンピュータ7により算出されたこと、である。なお、終了条件は、これに代えて、他の条件であってもよい。コンピュータ7は、所定の終了条件が満たされた場合、所定の終了条件が満たされるまでに算出された複数の対象点それぞれの位置に基づいて(すなわち、算出した第1値に基づいて)、対象直線上に設定する2以上の測定点の配置を特定する。なお、以下では、一例として、コンピュータ7が、当該2以上の測定点それぞれの位置を、当該2以上の測定点の配置として特定する場合について説明する。すなわち、この一例では、コンピュータ7は、当該場合、所定の終了条件が満たされるまでに算出された複数の対象点それぞれの位置に基づいて、対象直線上に設定する2以上の測定点それぞれの位置を特定する。以下では、説明の便宜上、対象直線上に設定する2以上の測定点のそれぞれを、対象測定点と称して説明する。
【0041】
ここで、複数の対象点のうち互いに隣接する対象点間それぞれの間隔は、コンピュータ7が1つずつ対象点の位置を算出する過程において用いられる複数のパラメータのうちの少なくとも1つと関連づけられている。すなわち、複数の対象点のうち互いに隣接する対象点間それぞれの間隔は、そのような複数のパラメータのうちの少なくとも1つの変化に応じて変化する。換言すると、複数の対象点のうち互いに隣接する対象点間それぞれの間隔を表す関数には、そのような複数のパラメータのうちの少なくとも1つが含まれている。前述の所定のパラメータは、このような複数のパラメータのうちの少なくとも1つである。例えば、所定のパラメータは、供試体1の所定の方向における厚さである。このように、所定のパラメータは、時間とともに変化する変数のパラメータではなく、コンピュータ7が値を仮想的に変化させることが可能な定数のパラメータである。
【0042】
また、コンピュータ7は、2以上の対象測定点それぞれの位置を特定した後、特定した2以上の対象測定点それぞれの位置が所定の判定条件を満たしているか否かを判定する。所定の判定条件は、供試体1と2以上の対象測定点のそれぞれとの相対的な配置関係に関する条件である。例えば、所定の判定条件には、コンピュータ7により特定された2以上の対象測定点それぞれの位置に基づいて算出される間隔であり、且つ、当該2以上の対象測定点のうち互いに隣接する対象測定点間の間隔が、サンプリング定理を満たすことが可能な最大の間隔(以下、最大サンプリング間隔と称して説明する)以下であること、等の条件が含まれている。このため、コンピュータ7が特定した当該2以上の対象測定点それぞれの位置が所定の判定条件を満たしていないことは、当該2以上の対象測定点それぞれの位置のうちの少なくとも一部がサンプリング定理を満していない、又は電界強度分布を補間した場合の誤差が大きくなる位置となっていることを意味する。所定の判定条件の詳細については、後述する。
【0043】
コンピュータ7は、特定した2以上の対象測定点それぞれの位置が所定の判定条件を満たしていないと判定した場合、所定のパラメータを変化させ、変化させた後の所定のパラメータに基づいて複数の対象点それぞれの位置を算出し直す。このような複数の対象点それぞれの位置を算出し直す処理は、算出し直した複数の対象点に基づいてコンピュータ7により特定される2以上の対象測定点それぞれの位置が所定の判定条件を満たすまで繰り返し行われる。これにより、コンピュータ7は、所定の判定条件を満たす2以上の対象測定点の配置を特定することができる。すなわち、コンピュータ7は、コンピュータ7により特定された2以上の対象測定点それぞれの位置に基づいて算出される間隔であり、且つ、当該2以上の対象測定点のうち互いに隣接する対象測定点間の間隔のうちの少なくとも一部の間隔が、最大サンプリング間隔より大きくなってしまうことを抑制することができる。また、後述する<放射妨害波の電界強度の所定の方向における分布の推定結果>のシミュレーション結果に示すように、複数の対象点のうち互いに隣接する対象点間それぞれの間隔を決める補正係数間の比が小さくなることで、補間により電界強度分布を求める場合の誤差の増大を抑制することができる。その結果、コンピュータ7は、仮想的な面上における放射妨害波の電界強度の所定の方向における分布を精度よく推定することができる。
【0044】
一方、コンピュータ7は、特定した2以上の対象測定点それぞれの位置が所定の判定条件を満たしていると判定した場合、特定した位置のそれぞれに対象測定点を設定する。ここで、仮想的な面は、ターンテーブル4により回転する供試体1とともに回転するように供試体1に対して対応付けられる。このため、仮想的な面上に設定された各測定点の供試体1に対する相対的な位置は、供試体1が回転した場合であっても変化しない。
【0045】
コンピュータ7は、このような処理により、仮想的な面上に複数の測定点を設定する。以下では、コンピュータ7の機能構成、ハードウェア構成とともに、コンピュータ7が2以上の対象測定点それぞれの位置を特定する処理について詳しく説明する。
【0046】
なお、
図2は、仮想的な面上に複数の測定点が設定されている様子の一例を示すイメージ図である。
図2に示した面17は、仮想的な面の一例を示す。また、
図2に示した複数の「○」のそれぞれは、仮想的な面上に設定された複数の測定点のいずれかの一例を互いに重複せずに示している。また、
図2に示した範囲18に含まれている複数の測定点は、複数の対象測定点の一例を示す。
【0047】
<放射妨害波測定装置が設置された電波暗室内における供試体とアンテナの位置関係>
以下、
図3を参照し、放射妨害波測定装置100が設置された電波暗室内における供試体1とアンテナ2との位置関係について説明する。
図3は、放射妨害波測定装置100が設置された電波暗室内における供試体1とアンテナ2との位置関係の一例を示す図である。なお、この位置関係は、複数の対象点のそれぞれと供試体1との位置関係でもある。以降の説明では、説明を簡略化するため、供試体1の形状は、
図3に示すように、円柱形状である場合について説明する。また、本実施形態では、高さは、電波暗室の金属床面を基準とした当該金属床面と直交する方向における長さのことを意味する。
【0048】
図3に示した例では、ある対象点MPの位置とアンテナ2の位置とが一致している。また、当該例では、放射妨害波試験においてコンピュータ7がアンテナ2の位置を上下方向に並進させる範囲は、1m~4mの高さの範囲である。以下では、説明の便宜上、放射妨害波試験においてコンピュータ7がアンテナ2の位置を上下方向に並進させる範囲のうちの下限の高さを、測定下限位置と称して説明する。また、以下では、説明の便宜上、この範囲のうちの上限の高さを、測定上限位置と称して説明する。当該例では、測定下限位置は、1mである。また、当該例では、測定上限位置は、4mである。前述の測定範囲は、このような測定下限位置から測定上限位置までの範囲のことである。すなわち、測定範囲は、放射妨害波試験においてアンテナマスト3がアンテナ2の位置を対象直線に沿って並進させる範囲のことである。また、当該例では、測定範囲は、第1範囲R1~第3範囲R3の3つの範囲に分けられている。すなわち、第1範囲R1は、測定下限位置から、供試体1の下面の高さまでの範囲である。また、第2範囲R2は、供試体1の下面の高さから、供試体1の上面の高さまでの範囲である。また、第3範囲R3は、供試体1の上面の高さから、測定上限位置までの範囲である。
【0049】
ここで、前述した通り、2以上の対象測定点の配置は、複数の対象点それぞれの位置に基づいて特定される。より具体的には、複数の対象点のうちの一部又は全部が、2以上の対象測定点として特定される。すなわち、複数の対象点の全部が2以上の対象測定点として特定される場合、複数の対象点の配置は、2以上の対象測定点の配置と一致する。このような事情から、
図3に示した対象点MPは、対象測定点の候補の1つである。
【0050】
また、
図3に示すように、以下では、説明の便宜上、水平方向(電波暗室の金属床面に平行な方向)における距離のうち、アンテナ2の先端から供試体1までの最短距離を、d
minによって示す。また、以下では、説明の便宜上、水平方向における距離のうち、アンテナ2の先端から供試体1までの最長距離を、d
maxによって示す。また、以下では、説明の便宜上、供試体1の下面の高さを、h
minによって示す。また、以下では、説明の便宜上、供試体1の上面の高さを、h
maxによって示す。そして、以下では、説明の便宜上、アンテナ2の位置の高さを、h
rxによって示す。なお、h
min、h
maxのそれぞれは、前述の所定の方向が上下方向である場合において、供試体の所定の方向における厚さを示すパラメータの一例である。また、所定の方向が水平方向である場合、供試体1の所定の方向における長さに関するパラメータの一例は、d
min、d
maxのそれぞれである。なお、d
min、d
max、h
min、h
maxのそれぞれは、アンテナ2の位置と供試体1との位置関係を示す値である。すなわち、d
min、d
max、h
min、h
maxのそれぞれは、第1点と供試体との第1位置関係を示す値の一例である。
【0051】
<コンピュータ7の機能構成>
以下、
図4を参照し、コンピュータ7の機能構成について説明する。
図4は、コンピュータ7の機能構成の一例を示す図である。なお、
図4には、コンピュータ7の構成とともに、アンテナ2、アンテナマスト3、ターンテーブル4、受信器5、コントローラ6のそれぞれについても示している。
【0052】
コンピュータ7は、制御部8と、演算処理部9を備える。なお、コンピュータ7は、他の機能構成を備える構成であってもよい。
【0053】
制御部8は、コンピュータ7の全体を制御する。また、例えば、制御部8は、コンピュータ7と通信可能に接続されているコントローラ6を制御する。また、例えば、コンピュータ7と通信可能に接続されている受信器5を制御する。
【0054】
演算処理部9は、放射妨害波測定装置100が行う放射妨害波試験における各種の算出を行う。例えば、演算処理部9は、受信器5から取得した電気信号に基づいて、放射妨害波の電界強度を算出する。また、例えば、演算処理部9は、複数の対象点それぞれの位置を算出する。
【0055】
<コンピュータ7のハードウェア構成>
以下、
図5を参照し、コンピュータ7のハードウェア構成について説明する。
図5は、コンピュータ7のハードウェア構成の一例を示す図である。
【0056】
コンピュータ7は、主制御部10と、入力装置11と、出力装置12と、記憶装置13と、これらを互いに接続するバス14を備える。なお、コンピュータ7は、これらに加えて、他のハードウェアを備える構成であってもよい。
【0057】
主制御部10は、CPU(Central Processing Unit)及びRAM(Random Access Memory)を有する。主制御部10は、記憶装置13に記憶された各種のプログラムを実行し、前述の制御部8、演算処理部9等のコンピュータ7が備える各種の機能構成を実現する。
【0058】
入力装置11は、ユーザからの操作を受け付ける装置であり、例えば、キーボード、マウス、タッチパッド等である。なお、入力装置11は、出力装置12と一体にタッチパネルを構成してもよい。
【0059】
出力装置12は、コンピュータ7が出力する各種の情報の表示等を行う装置である。例えば、出力装置12は、コンピュータ7の図示しない表示部(例えば、ディスプレイ)を含む。
【0060】
記憶装置13は、各種の情報、各種の画像、主制御部10が実行する各種のプログラム等を記憶する装置である。記憶装置13は、例えば、ハードディスク装置、光ディスク装置等であってもよく、フラッシュメモリ装置等であってもよい。記憶装置13は、各種の情報が書き込まれる記録媒体15を備える。記憶装置13は、主制御部10からの要求に応じて、各種の情報を記録媒体15に書き込む(記録する)。また、記憶装置13は、主制御部10からの要求に応じて、各種の情報を記録媒体15から読み出し、読み出した情報を主制御部10に出力する。例えば、記録媒体15は、制御部8、演算処理部9のそれぞれを実現するプログラムが記録されている。
【0061】
<複数の対象点それぞれの位置の算出原理>
以下、複数の対象点それぞれの位置の算出原理について説明する。なお、複数の対象点それぞれの位置の算出原理は、サンプリング定理に基づいた原理である。しかしながら、複数の対象点それぞれの位置の算出原理は、サンプリング定理に基づかない他の原理であってもよい。
【0062】
まず、供試体1から放射される放射妨害波は、供試体1を構成する物質のある1点のみから放射されるわけではない。そこで、以下では、供試体1が、放射妨害波として電磁波を放射するP個の点状の電磁波源の集まりであると仮定する。また、以下では、P個の電磁波源からは、互いに同じ周波数、同じ波長の電磁波が放射妨害波として放射されると仮定する。Pは、2以上の整数であれば、如何なる整数であってもよい。そして、P個の電磁波源のうちのp番目の電磁波源から、ある仮想的な点(例えば、対象点、対象測定点等)の位置までの距離を、rpによって示す。pは、1~Pのうちのいずれかの整数である。また、以下では、説明の便宜上、当該仮想的な点を、観測点と称して説明する。
【0063】
p番目の電磁波源から放射される放射妨害波が電磁波源から距離rp離れた位置において生じさせる電界強度は、以下の式(1)のように平面波によって表すことができる。
【0064】
【0065】
ここで、式(1)に示したap、bpのそれぞれは、p番目の電磁波源から放射される放射妨害波が当該電磁波源から距離rp離れた位置において生じさせる電界強度を表す平面波の振幅を示す係数であり、実数である。また、式(1)に示したiは、虚数単位である。また、式(1)に示したkは、P個の電磁波源のそれぞれから放射される放射妨害波の波数を示す。当該放射妨害波の波数は、当該放射妨害波の1波長分を1つの波として数えた場合において、この1つの波が単位長さの中に含まれる数のことである。また、当該放射妨害波の波数は、当該放射妨害波の波長によって2πを除算して得られる値のことである。当該電界強度を式(1)のように表せるため、P個の電磁波源のそれぞれから放射された放射妨害波が観測点において生じさせる電界強度は、以下の式(2)のように、上記の式(1)に示した平面波の重ね合わせによって表される。
【0066】
【0067】
従って、P個の電磁波源のそれぞれから放射された放射妨害波が観測点において生じさせる電界強度の二乗は、以下の式(3)のように算出される。
【0068】
【0069】
ここで、式(3)に示したrqは、P個の電磁波源のうちのq番目の電磁波源から、観測点の位置までの距離を示す。qは、1~Pのうちのいずれかの整数であり、pと同じ整数であってもよく、pと異なる整数であってもよい。式(3)の最下段の右辺を見ると分かる通り、P個の電磁波源のそれぞれから放射された放射妨害波が観測点において生じさせる電界強度の二乗は、(rp-rq)に対して振動する正弦波の和になっている。このことから、P個の電磁波源から放射される放射妨害波の電界強度の分布は、サンプリング定理に基づいて、以下の式(4)が示す条件を満たすことにより、完全に再現することができることが分かる。
【0070】
【0071】
ここで、式(4)に示したλは、各電磁波源から放射される電磁波の波長である。また、式(4)に示したΔ(rp-rq)は、(rp-rq)の微小変化量を示す。このように式(4)として得られた条件は、以下において説明する方法により、複数の対象点のうち隣接する2つの対象点間の間隔について満たされるべき条件に表し直すことができる。
【0072】
p番目の電磁波源の高さをhpによって示し、水平方向における当該電磁波源から観測点までの距離をdpによって示すと、距離rpは、観測点の位置hrxを用いて、三平方の定理により以下の式(5)のように表すことができる。
【0073】
【0074】
また、q番目の電磁波源の高さをhqによって示し、水平方向における当該電磁波源から観測点までの距離をdqによって示すと、距離rqは、観測点の位置hrxを用いて、三平方の定理により以下の式(6)のように表すことができる。
【0075】
【0076】
なお、P個の電磁波源のそれぞれから放射される放射妨害波の周波数の範囲が30MHz~1000MHzである場合、放射妨害波試験では、電波暗室の金属床面上において放射妨害波の測定を行うように規定されている。このため、当該場合、高さhp及び高さhqは、鏡像原理を考慮すると、正の値又は負の値を取る。また、以下では、一例として、高さhpが、高さhqよりも低い高さであると仮定する。
【0077】
ここで、上記の式(4)に示したΔ(rp-rq)は、式(5)及び式(6)に基づいて、以下の式(7)及び式(8)のように算出することができる。
【0078】
【0079】
ここで、式(7)では、式(7)に示した偏微分係数を算出することによって得られる表式がKhとして定義されている。以下では、説明の便宜上、Khを補正係数と称して説明する。補正係数Khの具体的な表式は、以下の式(8)に示した。
【0080】
【0081】
この式(8)と、上記の式(4)とに基づいて、式(4)として得られた条件は、複数の対象点のうち隣接する2つの対象点間の間隔Δhrxについて満たされるべき条件として、以下の式(9)のように表し直すことができる。
【0082】
【0083】
ここで、上記の式(8)に示した補正係数Khは、幾何学的な要請から、以下の式(10)~式(13)のそれぞれによって示す条件を満たさなければならない。
【0084】
【0085】
【0086】
【0087】
【0088】
上記の式(10)~式(13)の条件と、供試体1の寸法(この一例では、
図3に示した円柱形状の供試体1の寸法)とに基づいて、グランドプレーン上に電波吸収体を設置している場合には、補正係数K
hの絶対値が最大のK
hmaxとなる条件として、以下の式(14)が得られる。また、上記の式(10)~式(13)の条件と、供試体1の寸法(この一例では、
図3に示した円柱形状の供試体1の寸法)とに基づいて、グランドプレーン上に電波吸収体を設置していない場合には、式(14)のh
minを-h
maxに置き換えた式となる。
【0089】
【0090】
このようにして、ある対象点を第1対象点とし、第1対象点に隣接する他の対象点を第2対象点とし、第1対象点から第2対象点までの距離、すなわち、第1対象点と第2対象点との間隔は、上記の式(9)に示したKhへ式(14)に示したKhmaxを代入することによって得られる値の最大値として算出することができる。その結果、コンピュータ7は、第1対象点の位置に、算出された当該間隔を加算することにより、第2対象点の位置を算出することができる。
【0091】
ここで、コンピュータ7は、上記の式(9)を更に拡張した式として、以下の式(15)を用いて、第1対象点と第2対象点との間隔を算出する。
【0092】
【0093】
式(15)に示すLresは、0より大きい実数であり、且つ、(λ/2)以下の実数であれば、如何なる実数であってもよい。すなわち、Lresは、上記の式(9)の条件を満たす範囲内において、第1対象点と第2対象点との間隔を調整することができるように手で加えた任意のパラメータである。
【0094】
ここで、観測点の位置(すなわち、アンテナ2の位置)hrxは、複数の対象点それぞれの位置として捉えることができる。そこで、複数の対象点のうちのn番目の対象点の位置を、hrx,nによって示す。これにより、hrx,nと、上記の式(14)、式(15)を用いて、複数の対象点それぞれの位置は、以下の式(16)に示す逐次式によって算出することができる。なお、nは、1以上の整数である。
【0095】
【0096】
式(16)に示したhrx_minは、複数の対象点のうち上下方向において最も下に位置する対象点の位置を示す。hrx_minは、手で与えられてもよく、測定下限位置と一致していてもよく、他の方法で決められてもよい。
【0097】
しかしながら、式(14)~式(16)を用いた場合、放射妨害波測定装置100と異なる放射妨害波測定装置(例えば、従来の放射妨害波測定装置)は、所定の方向における供試体1の厚さ(すなわち、当該方向における供試体1の長さ)が薄いほど、複数の対象点のうち互いに隣接する対象点間の間隔が大きくなるように、複数の対象点それぞれの位置を算出してしまうことがある。その結果、複数の対象点それぞれの位置に基づいて特定される対象測定点それぞれの位置のうちの少なくとも一部がサンプリング定理を満たしていない位置になってしまう、又は電界強度分布を補間した場合の誤差が大きくなってしまうことがある。この場合、当該放射妨害波測定装置は、仮想的な面上における放射妨害波の電界強度の所定の方向における分布の推定精度が低下してしまい、当該電界強度が最大とならない位置を、当該電界強度が最大となる位置として特定してしまうことがある。これは、対象直線が上下方向に対して斜交している場合であっても同様である。
【0098】
放射妨害波測定装置100は、このような問題を解決し、上記の式(14)~式(16)を用いた場合であっても、放射妨害波試験に要する時間の増大を抑制しつつ、仮想的な面上における放射妨害波の電界強度の分布の推定精度が低下してしまうことを抑制することができる。以下では、放射妨害波測定装置100が行う対象測定点位置特定処理について説明する。対象測定点位置特定処理は、放射妨害波測定装置100が上記の式(14)~式(16)を用いて複数の対象点それぞれの位置を算出し、算出した位置に基づいて2以上の対象測定点それぞれの位置を特定する処理のことである。
【0099】
<放射妨害波測定装置が行う対象測定点位置特定処理>
以下、
図6を参照し、放射妨害波測定装置が行う対象測定点位置特定処理について説明する。
図6は、放射妨害波測定装置100が行う対象測定点位置特定処理の流れの一例を示す図である。なお、以下では、一例として、
図6に示したステップS110の処理が行われるよりも前のタイミングにおいて、対象測定点位置特定処理をコンピュータ7に開始させる操作をコンピュータ7が受け付けている場合について説明する。すなわち、以下では、一例として、当該タイミングにおいて、仮想的な面をコンピュータ7が設定している場合について説明する。また、以下では、一例として、当該タイミングにおいて、記憶装置13の記録媒体15に測定条件情報が記憶されている場合について説明する。測定条件情報には、少なくとも、上記のd
min、d
max、h
min、h
max、L
res、λ、測定上限位置、測定下限位置、h
rx_minのそれぞれを示す情報が含まれている情報である。ここで、h
rx_minは、複数の対象点のうち最も下に位置する対象点の位置としてユーザが所望する位置のことである。また、以下では、一例として、当該タイミングにおいて、測定条件情報に含まれている情報が示すL
resの値が、(λ/2)である場合について説明する。
【0100】
対象測定点位置特定処理をコンピュータ7に開始させる操作をコンピュータ7が受け付けた後、演算処理部9は、記憶装置13の記録媒体15に予め記憶された測定条件情報を、記憶装置13から読み出す(ステップS110)。
【0101】
次に、演算処理部9は、複数の対象点それぞれの順番を示す変数として、nを生成する。そして、演算処理部9は、生成したnの値を初期値に初期化する。以下では、一例として、初期値が1である場合について説明する。なお、初期値は、1に代えて、2以上の整数であってもよく、0以下の整数であってもよい。演算処理部9は、nの値を初期化した後、1以上の整数(すなわち、初期値以上の整数)を1から順に(すなわち、初期値から順に)nの値として選択し、選択したnの値毎に、ステップS130~ステップS160の処理を繰り返し行う(ステップS120)。
【0102】
ステップS120においてnの値が選択された後、演算処理部9は、現在選択されているnの値に応じた対象点を、複数の対象点のうちの1つとして生成する。ここで、以下では、説明の便宜上、nの値に応じた対象点を、第1対象点と称して説明する。また、以下では、説明の便宜上、(n+1)の値に応じた対象点を、第2対象点と称して説明する。ただし、この段階において、演算処理部9は、第2対象点をまだ生成しない。演算処理部9は、第1対象点を生成した後、ステップS110において読み出した測定条件情報に含まれる情報が示すdmin、dmax、hmin、hmaxのそれぞれと、第1対象点の位置と、上記の式(14)と、サンプリング定理とに基づいて、Khmaxを第1対象点に応じた補正係数として算出する(ステップS130)。ここで、以下では、説明の便宜上、n=1の場合における第1対象点の位置をhrx,0によって示す。また、以下では、説明の便宜上、n≧2の場合における第1対象点の位置を、hrx,n-1によって示す。なお、1回目のステップS130の処理を行う場合、演算処理部9は、ステップS110において読み出した測定条件情報に基づいて、hrx,0を、複数の対象点のうち上下方向において最も下に位置する対象点の位置hrx_minに初期化する。また、m回目のステップS130の処理を行う場合、演算処理部9は、(m-1)回目のステップS150の処理において算出された第2対象点の位置を、m回目のステップS130の処理における第1対象点の位置として特定する。mは、2以上の整数である。
【0103】
例えば、演算処理部9は、n=1の場合、ステップS130の処理において、第1対象点に応じた補正係数として、Khmax(hrx_min)を算出する。この場合、演算処理部9は、ステップS130の処理において、測定条件情報に含まれる情報が示すhmin、hmax、dmin、dmaxのそれぞれと、hrx_minをhrxに代入した後の式(14)とに基づいて、Khmax(hrx_min)を第1対象点に応じた補正係数として算出する。また、例えば、演算処理部9は、n≧2の場合、ステップS130の処理において、第1対象点に応じた補正係数として、Khmax(hrx,n-1)を算出する。この場合、演算処理部9は、ステップS130の処理において、測定条件情報に含まれる情報が示すhmin、hmax、dmin、dmaxのそれぞれと、hrx,n-1をhrxに代入した後の式(14)とに基づいて、Khmax(hrx,n)を第1対象点に応じた補正係数として算出する。
【0104】
ステップS130の処理が行われた後、演算処理部9は、ステップS110において読み出した測定条件情報と、ステップS130において補正係数として算出したKhmaxと、上記の式(15)とに基づいて、第1対象点から第2対象点までの間隔を、第1対象点に応じた第1間隔として算出する(ステップS140)。例えば、演算処理部9は、n=1の場合、ステップS140の処理において、第1対象点に応じた第1間隔としてΔhrx(hrx_min)を算出する。この場合、演算処理部9は、ステップS140の処理において、測定条件情報に含まれる情報が示すLresと、第1対象点に応じた補正係数として算出されたKhmax(hrx_min)とに基づいて、第1対象点に応じた第1間隔としてΔhrx(hrx_min)を算出する。また、例えば、演算処理部9は、n≧2の場合、ステップS140の処理において、第1対象点に応じた第1間隔としてΔhrx(hrx,n-1)を算出する。この場合、演算処理部9は、ステップS140の処理において、測定条件情報に含まれる情報が示すLresと、第1対象点に応じた補正係数として算出されたKhmax(hrx,n-1)とに基づいて、第1対象点に応じた第1間隔としてΔhrx(hrx,n-1)を算出する。
【0105】
次に、演算処理部9は、ステップS140において算出された第1間隔に基づいて、第2対象点の位置を算出する(ステップS150)。例えば、演算処理部9は、n=1の場合、ステップS150において、上記の式(16)に基づいて、第1対象点に応じた第1間隔として算出されたΔhrx(hrx_min)をhrx_minに加算して得られるhrx,1を、第2対象点の位置として算出する。また、例えば、演算処理部9は、N≧2の場合、ステップS150において、上記の式(16)に基づいて、第1対象点に応じた第1間隔として算出されたΔhrx(hrx,n-1)をhrx,n-1に加算して得られるhrx,nを、第2対象点の位置として算出する。
【0106】
次に、演算処理部9は、所定の終了条件が満たされているか否かを判定する(ステップS160)。所定の終了条件は、この一例において、ステップS150において算出された第2対象点の位置が測定範囲外であること、である。この場合、演算処理部9は、ステップS160において、ステップS110において読み出した測定条件情報に基づいて、ステップS150において算出された第2対象点の位置が測定範囲外であるか否かを判定する。なお、所定の終了条件は、他の条件であってもよい。
【0107】
演算処理部9は、所定の終了条件が満たされていないと判定した場合(ステップS160-NO)、ステップS120に遷移し、次のnの値を選択する。
【0108】
一方、演算処理部9は、所定の終了条件が満たされていると判定した場合(ステップS160-YES)、すなわち、ステップS150において算出された第2対象点の位置が測定範囲外であると判定した場合、当該位置を消去する(ステップS170)。そして、演算処理部9は、ステップS120~ステップS160の繰り返し処理を終了し、ステップS180に遷移する。
【0109】
このようなステップS120~ステップS160の繰り返し処理により、演算処理部9は、ステップS120~ステップS160の処理が繰り返された数と同じ数の対象点それぞれの位置を算出する。これにより、コンピュータ7は、対象点の数を不必要に増大させてしまうことを抑制することができ、その結果、対象測定点の数の増大を抑制することができる。すなわち、コンピュータ7は、放射妨害波試験に要する時間の増大を抑制することができる。
【0110】
なお、演算処理部9は、ステップS170において、Lresの値を調整してからステップS120~ステップS160の繰り返し処理を再び行うことにより複数の対象点それぞれの位置を算出し直し、消去されるはずの第2対象点の位置を消去せずに、当該位置を測定上限位置に一致させる構成であってもよい。この場合、Lresの値を調整する方法については、如何なる方法で行われてもよい。
【0111】
ステップS170の処理が行われた後、演算処理部9は、現在までに算出された複数の対象点それぞれの位置に基づいて、2以上の対象測定点それぞれの位置を特定する(ステップS180)。ここで、ステップS180の処理について説明する。
【0112】
例えば、演算処理部9は、現在までに算出された複数の対象点それぞれの位置の全部を、2以上の対象測定点それぞれの位置として特定する。なお、演算処理部9は、現在までに算出された複数の対象点それぞれの位置の一部を、2以上の対象測定点それぞれの位置として特定するとともに、現在までに算出された複数の対象点それぞれの位置の対象測定点として特定されていない対象点それぞれの位置を補間点の位置として特定する構成であってもよい。ここで、補間点は、放射妨害波の電界強度の分布を推定する際、ローパスフィルタの適用等によって電界強度が推定される位置を示す仮想的な点である。また、補間点は、複数の対象測定点のうち互いに隣接する2つの対象測定点間に位置する仮想的な点のことである。
【0113】
また、演算処理部9は、現在までに算出された複数の対象点それぞれの位置の一部を、2以上の対象測定点それぞれの位置として演算処理部9が特定する場合、2以上の対象測定点の総数と、2以上の測定点のうち互いに隣接する測定点間を分割する分割数とに基づいて、複数の対象点の総数を算出し、算出した複数の対象点の総数と、前述の所定のパラメータとに基づいて、ステップS120~ステップS160の処理を繰り返し行い、複数の対象点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出する構成であってもよい。なお、この際、演算処理部9は、上記の式(15)に示したLresの値を、予め決められた当該分割数の逆数以下の値に設定する。そして、演算処理部9は、ステップS180において、当該2以上の対象測定点の総数と、当該分割数とに基づいて、ステップS120~ステップS160の繰り返し処理により算出された複数の対象点それぞれの位置のうちの一部を対象測定点の位置として特定するとともに、対象測定点のうち隣接する対象測定点間に位置する1以上の補間点それぞれの位置を特定する。ここで、当該2以上の対象測定点の総数と、当該分割数とは、予め決められている。当該2以上の対象測定点の総数は、ステップS120において選択されるnの値の最大値である。
【0114】
ここで、
図7を参照し、コンピュータ7が対象測定点の位置とともに補間点の位置を特定する処理について説明する。
図7は、対象直線上に並ぶ複数の対象点のそれぞれの一例を示す。
図7に示した仮想的な直線AXは、対象直線の一例である。また、
図7に示したs個の仮想的な点VP(すなわち、点VP1~点VPsのそれぞれ)はそれぞれ、対象点の一例である。sは、1以上の整数である。また、
図7は、分割数が2である場合におけるs個の対象点の一例を示している。演算処理部9は、複数の対象点のうち上下方向において最も下に位置する対象点の位置を、上下方向において最も下に位置する対象測定点の位置として特定する。つまり、
図7に示した例では、点VP1の位置が当該対象測定点の位置として特定される。次に、演算処理部9は、予め決められた対象測定点の総数と、予め決められた分割数とに基づいて、当該対象測定点の次の対象測定点の位置を特定する。例えば、分割数が2である場合、ある対象測定点と当該対象測定点に隣接する対象測定点との間には1個の補間点が位置している。すなわち、当該場合、演算処理部9は、
図7に示すように、点VP1の次の対象点である点VP2を補間点として特定し、点VP2の次の対象点であるVP3を対象測定点として特定する。演算処理部9は、このような特定を繰り返すことにより、s個の対象点それぞれの位置と、分割数とに基づいて、対象測定点の位置とともに補間点の位置を特定する。なお、
図7に示した例において、点VPsは、sが偶数であれば、補間点の位置を示す対象点であり、sが奇数であれば、対象測定点の位置を示す対象点である。また、例えば、分割数がDである場合、ある対象測定点と当該対象測定点に隣接する対象測定点との間には(D-1)の補間点が位置している。このことから、演算処理部9は、上下方向において最も下に位置する対象測定点の位置を基準として、複数の対象点の中から、他の対象測定点の位置を特定することができる。
【0115】
また、予め決められた対象測定点の総数には、例えば、上記の式(15)に示したLresの値を(λ/2)と設定した場合、且つ、前述の分割数が0の場合においてステップS120~ステップS180の処理を事前に行った場合において特定される複数の対象測定点の数が用いられる。換言すると、2以上の対象測定点の総数は、例えば、2以上の対象測定点の総数を決めず、且つ、2以上の対象測定点のうち互いに隣接する対象測定点間を分割しない場合において、当該処理により特定された2以上の対象測定点の数である。なお、予め決められた対象測定点の総数には、他の方法により決められた数が用いられる構成であってもよい。
【0116】
ステップS180の処理が行われた後、演算処理部9は、ステップS180において特定した2以上の対象測定点それぞれの位置が所定の判定条件を満たしているか否かを判定する(ステップS190)。前述した通り、所定の判定条件には、例えば、コンピュータ7により特定された複数の対象測定点それぞれの位置に基づいて算出される間隔であり、且つ、2以上の対象測定点のうち互いに隣接する対象測定点間の間隔が最大サンプリング間隔以下であること、等の条件が含まれている。このため、ステップS190において所定の判定条件が満たされていない場合、現在までに特定された複数の対象測定点それぞれの位置がサンプリング定理を満たさない、又は電界強度分布を補間した場合の誤差が大きくなる可能性が高い。すなわち、当該場合、当該2以上の対象測定点それぞれの位置において測定された放射妨害波の電界強度に基づいて推定される分布は、放射妨害波の電界強度が最大とならない位置を、放射妨害波の電界強度が最大となる位置として示す可能性が高い。ここで、このような分布が推定される原因としては、複数の対象測定点のうちの互いに隣接する2つの対象測定点間の間隔がサンプリング定理を満たす場合の間隔と比べて広くなり過ぎること等が挙げられる。
【0117】
そこで、このような分布が推定される可能性を低くするため、演算処理部9は、所定の判定条件が満たされていないと判定した場合(ステップS190-NO)、所定のパラメータを変化させる(ステップS200)。ここで、所定のパラメータは、前述した通り、コンピュータ7が1つずつ対象点の位置を算出する過程において用いられる複数のパラメータのうちの少なくとも1つである。より具体的には、所定のパラメータは、上記の式(15)の右辺の値を小さくすることが可能な1つ以上のパラメータであれば、如何なるパラメータであってもよい。すなわち、演算処理部9は、ステップS200において、所定のパラメータを、当該右辺の値が小さくなるように変化させる。当該右辺の値を小さくすることが可能なパラメータは、h
maxとh
minとの組み合わせ(すなわち、供試体1の厚さ)、h
max、h
min、L
res等である。例えば、所定のパラメータが当該組み合わせである場合、演算処理部9は、ステップS200において、h
maxを大きくするとともに、h
minを小さくする。ここで、当該場合であっても、実際の供試体1の大きさを変えるわけにはいかないため、ステップS200では、演算処理部9は、
図6に示したフローチャートの処理において用いるh
maxの値を仮想的に大きくし、h
minの値を仮想的に小さくする。これにより、当該右辺の値は、式(14)に示したK
hmaxの値が大きくなることに応じて、小さくなる。また、例えば、所定のパラメータがL
resである場合、演算処理部9は、ステップS200において、L
resを小さくする。これにより、当該右辺の値は、小さくなる。なお、所定のパラメータとして、式(15)の右辺に乗じる1以下の新たなパラメータが新たに導入されてもよい。この場合、それらの1以上のパラメータの初期値は、1である。そして、当該場合、演算処理部9は、ステップS200において、当該1以上のパラメータを1未満の値へと小さくする。
【0118】
ステップS200においてこのように所定のパラメータを変化させた後、演算処理部9は、ステップS120に遷移し、ステップS120~ステップS160の繰り返し処理を再び行い、複数の対象点それぞれの位置を算出し直す。ここで、ステップS200において所定のパラメータが変化しているため、演算処理部9により算出され直される間隔であり、且つ、複数の対象点のうち互いに隣接する2つの対象点間それぞれの間隔は、算出され直される前の間隔よりも小さくなる。これにより、コンピュータ7は、コンピュータ7により特定される2以上の対象測定点それぞれの位置に基づいて算出される間隔であり、且つ、当該2以上の対象測定点のうち互いに隣接する対象測定点間の間隔を、最大サンプリング間隔以下にすることができる。その結果、コンピュータ7は、推定される放射妨害波の電界強度の分布が、放射妨害波の電界強度が最大とならない位置を、放射妨害波の電界強度が最大となる位置として示す可能性を低くすることができる。すなわち、コンピュータ7は、
図6に示したフローチャートの処理にステップS190の判定処理を含めることにより、放射妨害波試験に要する時間の増大を抑制しつつ、仮想的な面上における放射妨害波の電界強度の所定の方向における分布の推定精度が低下してしまうことを抑制することができる。
【0119】
一方、演算処理部9は、所定の判定条件が満たされていると判定した場合(ステップS190-YES)、現在までに位置が特定された対象測定点それぞれの位置に、対象測定点を設定し、処理を終了する。
【0120】
このように、コンピュータ7は、複数の対象点それぞれの位置を、所定のパラメータに基づいて算出し、算出した複数の対象点それぞれ位置に基づいて2以上の対象測定点それぞれの位置を特定し、特定した2以上の対象測定点それぞれの位置が、所定の判定条件を満たしているか否かを判定し、所定の判定条件を満たしていないと判定した場合、所定のパラメータを変化させて複数の対象点それぞれの位置を算出し直す。これにより、コンピュータ7は、複数の対象点それぞれの位置に基づいて2以上の対象測定点の配置を特定する際、当該配置として、放射妨害波の電界強度の分布の推定精度を低下させてしまう配置を特定してしまうことを抑制することができる。その結果、コンピュータ7は、放射妨害波試験に要する時間の増大を抑制しつつ、仮想的な面上における放射妨害波の電界強度の所定の方向における分布の推定精度が低下してしまうことを抑制することができる。
【0121】
なお、コンピュータ7は、
図6に示したフローチャートの処理に代えて、
図8に示すフローチャートの処理を行う構成であってもよい。すなわち、コンピュータ7は、複数の対象点それぞれの位置を算出し、算出した複数の対象点それぞれ位置が所定の判定条件を満たしているか否かを判定する構成であってもよい。この場合、所定の判定条件は、2以上の対象測定点それぞれの位置についての条件に代えて、複数の対象点それぞれの位置についての条件となる。また、当該場合、コンピュータ7は、算出した複数の対象点それぞれの位置が所定の判定条件を満たしている場合、算出した複数の対象点それぞれの位置のうちの一部又は全部を、2以上の対象測定点それぞれの位置として特定する。
【0122】
図8は、放射妨害波測定装置100が行う対象測定点位置特定処理の流れの他の例を示す図である。なお、以下では、一例として、
図8に示したステップS110の処理が行われるよりも前のタイミングにおいて、対象測定点位置特定処理をコンピュータ7に開始させる操作をコンピュータ7が受け付けている場合について説明する。すなわち、以下では、一例として、当該タイミングにおいて、仮想的な面をコンピュータ7が設定している場合について説明する。また、以下では、一例として、当該タイミングにおいて、記憶装置13の記録媒体15に測定条件情報が記憶されている場合について説明する。測定条件情報には、少なくとも、上記のd
min、d
max、h
min、h
max、L
res、λ、測定上限位置、測定下限位置、h
rx_minのそれぞれを示す情報が含まれている情報である。ここで、h
rx_minは、複数の対象点のうち最も下に位置する対象点の位置としてユーザが所望する位置のことである。また、以下では、一例として、当該タイミングにおいて、測定条件情報に含まれている情報が示すL
resの値が、(λ/2)である場合について説明する。また、
図8に示したステップS110~ステップS170の処理が、
図6に示したステップS110~ステップS170の処理と同様の処理である。このため、以下では、
図8に示したステップS110~ステップS170の処理についての説明を省略する。また、
図8に示したステップS200の処理が、
図6に示したステップS200の処理と同様の処理である。このため、以下では、
図8に示したステップS200の処理についての説明を省略する。
【0123】
ステップS120~ステップS160の繰り返し処理が終了した後、演算処理部9は、当該繰り返し処理により算出された複数の対象点それぞれの位置が、所定の判定条件を満たしているか否かを判定する(ステップS210)。
【0124】
演算処理部9は、所定の判定条件が満たされていないと判定した場合(ステップS210-NO)、ステップS200に遷移する。
【0125】
一方、演算処理部9は、所定の判定条件が満たされていると判定した場合(ステップS210-YES)、現在までに算出されている複数の対象点それぞれの位置のうちの一部又は全部を、2以上の対象測定点それぞれの位置として特定し(ステップS220)、処理を終了する。なお、
図8に示したステップS220において、現在までに算出されている複数の対象点それぞれの位置のうちの一部又は全部を、2以上の対象測定点それぞれの位置として特定する方法は、
図6に示したステップS180において、現在までに算出されている複数の対象点それぞれの位置のうちの一部又は全部を、2以上の対象測定点それぞれの位置として特定する方法と同様であるため、説明を省略する。
【0126】
<所定の判定条件が満たされているか否かを判定する処理>
ここで、
図9を参照し、
図6に示したステップS190において所定の判定条件が満たされているか否かを判定する処理について説明する。
図9は、
図6に示したステップS190において所定の判定条件が満たされているか否かを判定する処理の流れの一例を示す図である。なお、
図8に示したステップS210において所定の判定条件が満たされているか否かを判定する処理についての説明は、
図6に示したステップS190において所定の判定条件が満たされているか否かを判定する処理についての説明において「特定された対象測定点」を「算出された対象点」と読み替えた説明と同様であるため、省略する。
【0127】
演算処理部9は、現在までに位置を特定された対象測定点のそれぞれに応じたnの値(すなわち、当該対象測定点として特定されている対象点それぞれに応じたnの値)に基づいて、現在までに位置を算出された対象測定点の中から順に1つずつ対象測定点を第1対象測定点として選択し、選択した第1対象測定点毎に、ステップS192~ステップS195の処理を繰り返し行う(ステップS191)。ステップS191では更に、演算処理部9は、第1対象測定点を選択する毎に、第1対象測定点として選択した対象測定点に応じたnの値より1大きいnの値の対象測定点を第2対象測定点として選択する。
【0128】
ステップS191において第1対象測定点が選択された後、演算処理部9は、現在選択されている第1対象測定点に応じた第1間隔が、当該第1間隔に応じた第1閾値未満であるか否かを判定する(ステップS192)。例えば、当該第1対象測定点に応じたnが1である場合、当該第1間隔は、Δhrx(hrx_min)のことである。また、例えば、当該第1対象測定点に応じたnが2以上である場合、当該第1間隔は、Δhrx(hrx,n-1)のことである。また、当該第1閾値は、当該第1間隔がサンプリング定理を満たす場合において取り得る値のうちの最大値(すなわち、最大サンプリング間隔)である。すなわち、当該第1閾値は、Lresが(λ/2)である場合において、当該第1対象測定点に応じた補正係数Khmaxと、上記の式(15)とに基づいて算出される間隔Δhrxのことである。例えば、当該第1対象測定点に応じたnが1である場合、当該第1閾値は、(λ/2)であるLresと、補正係数Khmax(hrx_min)とに基づいて算出されるΔhrx(hrx_min)のことである。また、例えば、当該第1対象測定点に応じたnが2以上である場合、当該第1閾値は、(λ/2)であるLresと、補正係数Khmax(hrx,n-1)とに基づいて算出されるΔhrx(hrx,n-1)のことである。演算処理部9は、ステップS192において、ステップS190が実行される前に実行されたステップS120~ステップS160の繰り返し処理の履歴に基づいて、当該第1間隔を特定する。また、演算処理部9は、ステップS192において、当該履歴と、(λ/2)であるLresとに基づいて、当該第1閾値を算出する。そして、演算処理部9は、ステップS192において、特定した当該第1間隔が、算出した当該第1閾値未満であるか否かを判定する。
【0129】
以上のように、ステップS192の処理における判定は、現在選択されている第1対象測定点に応じた第1間隔がサンプリング定理を満たす間隔であるか否かの判定である。換言すると、ステップS192の処理における判定は、現在までに位置が算出されている対象測定点のうち互いに隣接する対象測定点間それぞれの間隔であり、且つ、現在までに特定されている2以上の対象測定点それぞれの位置に基づいて算出される間隔が、それぞれの間隔に応じた第1閾値未満であること、という条件を満たすか否かの判定である。この判定により、コンピュータ7は、コンピュータ7により特定された2以上の対象測定点それぞれの位置が、サンプリング定理を満たす位置となっているか否かの判定を行うことができる。
【0130】
演算処理部9は、現在選択されている第1対象測定点に応じた第1間隔が、当該第1間隔に応じた第1閾値以上であると判定した場合(ステップS192-NO)、所定の判定条件を満たしていないと判定し、
図6に示したステップS200へ遷移する(ステップS194)。
【0131】
一方、演算処理部9は、現在選択されている第1対象測定点に応じた第1間隔が、当該第1間隔に応じた第1閾値未満であると判定した場合(ステップS192-YES)、当該第1対象測定点に応じた補正係数と、現在選択されている第2対象測定点に応じた補正係数との比が、所定の第2閾値未満であるか否かを判定する(ステップS193)。以下では、説明の便宜上、当該比のことを、当該第1対象測定点に応じた補正係数比と称して説明する。ここで、当該補正係数比は、当該第1対象測定点に応じた補正係数に対する、当該第2対象測定点に応じた補正係数の比である。すなわち、当該補正係数比は、(当該第2対象測定点に応じた補正係数)/(当該第1対象測定点に応じた補正係数)、である。例えば、当該第1対象測定点に応じたnが1である場合、当該第1対象測定点に応じた補正係数は、Khmax(hrx_min)のことである。また、例えば、当該第1対象測定点に応じたnが2以上である場合、当該第1対象測定点に応じた補正係数は、Khmax(hrx,n-1)のことである。また、例えば、当該第1対象測定点に応じたnが1である場合、当該第2対象測定点に応じた補正係数は、Khmax(hrx,1)のことである。また、例えば、当該第1対象測定点に応じたnが2以上である場合、当該第2対象測定点に応じた補正係数は、Khmax(hrx,n)のことである。所定の第2閾値は、0より大きな実数であれば、如何なる実数であってもよい。このため、第2閾値は、事前の実験等によって、仮想的な面上における放射妨害波の電界強度の分布の放射妨害波測定装置100による推定精度が高くなるように手で決められる。例えば、第2閾値は、20程度である。第2閾値のより詳細な決め方については、後述する。演算処理部9は、ステップS193において、ステップS190が実行される前に実行されたステップS120~ステップS160の繰り返し処理の履歴に基づいて、当該第1対象測定点に応じた補正係数と、当該第2対象測定点に応じた補正係数とを特定する。演算処理部9は、ステップS193において、特定したこれら2つの補正係数に基づいて、当該補正係数比を算出する。そして、演算処理部9は、算出した当該補正係数比が、第2閾値未満であるか否かを判定する。
【0132】
以上のようなステップS193の処理における判定は、仮想的な面上における放射妨害波の電界強度の分布の放射妨害波測定装置100による推定精度が低下してしまうことを抑制する条件の1つが満たされているか否かの判定である。換言すると、ステップS193の処理における判定は、現在までに位置が特定されている2以上の対象測定点のうち互いに隣接する2つの対象点それぞれに応じた補正係数同士の比が、所定の第2閾値未満であること、という条件を満たすか否かの判定である。この判定により、コンピュータ7は、コンピュータ7により特定された2以上の対象測定点それぞれの位置が、電界強度分布を推定する場合において、より適切な位置となっているか否かを判定することができる。なお、
図9に示したフローチャートの処理において、ステップS193の処理は、省略されてもよい。
【0133】
演算処理部9は、現在選択されている第1対象測定点に応じた補正係数比が所定の第2閾値以上であると判定した場合(ステップS193-NO)、所定の判定条件を満たしていないと判定し、ステップS194に遷移する。すなわち、演算処理部9は、当該場合、
図6に示したステップS200へ遷移する。
【0134】
一方、演算処理部9は、現在選択されている第1対象測定点に応じた補正係数比が所定の第2閾値未満であると判定した場合(ステップS193-YES)、ステップS191に遷移し、次の第1対象測定点、次の第2対象測定点のそれぞれを選択する。なお、前述した通り、演算処理部9は、ステップS191に遷移した後、第2対象測定点として未選択の対象測定点が存在しない場合、ステップS191~ステップS193の繰り返し処理を終了し、ステップS195に遷移する。
【0135】
ステップS191~ステップS193の繰り返し処理が終了した後、演算処理部9は、現在までに位置が特定された2以上の対象測定点の中に、対象範囲内に位置する対象測定点が存在するか否かを判定する(ステップS195)。対象範囲は、所定の方向において、供試体1の所定の方向における両端に挟まれた範囲のことである。すなわち、
図3に示した例では、対象範囲は、前述の第2範囲R2である。演算処理部9は、ステップS195において、事前に受け付けた測定条件情報に基づいて、対象範囲を特定する。そして、演算処理部9は、ステップS195において、当該2以上の対象測定点それぞれの位置に基づいて、当該2以上の対象測定点の中に、対象範囲(例えば、第2範囲R2等)内に位置する対象測定点が存在するか否かを判定する。
【0136】
以上のようなステップS195の処理における判定は、仮想的な面上における放射妨害波の電界強度の分布の放射妨害波測定装置100による推定精度が低下してしまうことを抑制する条件の1つである。
図6に示したステップS190において、ステップS192の処理に加えてステップS195の処理を行うことにより、コンピュータ7は、仮想的な面上における放射妨害波の電界強度の分布の放射妨害波測定装置100による推定精度が低下してしまうことを、より確実に抑制することができる。また、
図6に示したステップS190において、ステップS192~ステップS193の処理に加えてステップS195の処理を行うことにより、コンピュータ7は、仮想的な面上における放射妨害波の電界強度の分布の放射妨害波測定装置100による推定精度が低下してしまうことを、更により確実に抑制することができる。なお、
図8に示したフローチャートの処理において、ステップS195の処理は、省略されてもよい。
【0137】
演算処理部9は、現在までに位置が特定された2以上の対象測定点の中に、対象範囲内に位置する対象測定点が存在しないと判定した場合(ステップS195-NO)、ステップS194に遷移する。すなわち、演算処理部9は、当該場合、
図6に示したステップS200へ遷移する。
【0138】
一方、演算処理部9は、現在までに位置が特定された2以上の対象測定点の中に、対象範囲内に位置する対象測定点が存在すると判定した場合(ステップS195-YES)、ステップS190の処理を終了する。そして、演算処理部9は、当該場合、
図6に示したフローチャートの処理を終了する。
【0139】
<放射妨害波の電界強度の所定の方向における分布の推定結果>
以下、
図10~
図16を参照し、放射妨害波測定装置100による放射妨害波の電界強度の所定の方向における分布の推定結果について説明する。ただし、
図10及び
図11のそれぞれに示した当該分布の推定結果はいずれも、以下に示す測定条件CDに基づいて放射妨害波測定装置100により特定された対象測定点それぞれの位置に基づく推定結果である。
【0140】
(測定条件CD)
・供試体1の形状:円柱形状
・供試体1の寸法:直径0.52m、厚さ0.01m
・供試体の設置位置:アンテナ2の先端と供試体1の中心との間の距離:1m
・測定下限位置:1m
・測定上限位置:4m
・放射妨害波として測定する電磁波の周波数:1000MHz
・dmin:0.74m
・dmax:1.26m
・hmin:1.995m
・hmax:2.005m
【0141】
なお、上記のhmaxの値である2.005mは、実際の供試体1の上面の、電波暗室における金属床面からの高さである。
【0142】
ここで、
図10は、
図9に示したステップS193の処理を省略し、ステップS192及びステップS195の処理によってステップS190の処理を行った場合において放射妨害波測定装置100が推定した放射妨害波の水平偏波の電界強度の所定の方向における分布の一例を示す図である。なお、
図10に示した例においてステップS193の処理を省略した理由は、ステップS192及びステップS195の処理によってステップS190の処理を行った場合と、ステップS192及びステップS193の処理によってステップS190の処理を行った場合とを比較するためである。ステップS192、ステップS193、ステップS195それぞれの処理を省略しない場合については、
図10~
図16のいずれに示す分布の推定精度よりも高い推定精度で放射妨害波の電界強度の所定方向における分布を推定できるため、説明を省略する。
【0143】
図10に示したグラフの横軸は、電界強度を示す。また、当該グラフの縦軸は、電波暗室における金属床面からの高さを示す。また、当該グラフに示した「○」は、各対象測定点の位置において理論計算により算出された放射妨害波の水平偏波の電界強度を示す。そして、当該グラフに示した実線は、当該グラフにおける「○」が示す対象測定点の位置において理論計算により算出された放射妨害波の水平偏波の電界強度に基づいて推定された当該電界強度の所定の方向における分布を示す。コンピュータ7は、例えば、当該対象測定点の位置において測定された放射妨害波の電界強度にローパスフィルタを適用することにより、当該実線の分布を得ることができる。また、当該グラフに示した点線は、対象直線上のうちの測定範囲における放射妨害波の水平偏波の電界強度の分布として、理論計算により算出された分布を示す。
【0144】
図10に示すように、
図10に示したグラフにおける点線の分布が示す位置のうち、放射妨害波の水平偏波の電界強度が最大となる位置は、電波暗室における金属床面からの高さが2.0mの位置である。一方、当該グラフにおける実線の分布が示す位置のうち、放射妨害波の水平偏波の電界強度が最大となる位置は、電波暗室における金属床面からの高さが2.0mの付近の位置(具体的には、1.96mの位置)である。すなわち、当該グラフから、放射妨害波測定装置100は、ステップS192及びステップS195の処理によってステップS190の処理を行った場合、放射妨害波の水平偏波の電界強度の所定の方向における分布を精度よく推定できていることが分かる。
【0145】
ここで、
図10のグラフに示した11個の対象測定点それぞれの位置を特定した際に用いられた所定のパラメータは、供試体1の厚さ(すなわち、供試体1の上面の高さh
max及び供試体1の下面の高さh
min)である。この所定のパラメータがステップS190において繰り返し変化させられた後の最終的な値は、0.1442mであった。なお、この値は、ステップS190において、放射妨害波測定装置100が所定のパラメータとして供試体1の厚さを10%ずつ増加させた結果(すなわち、当該厚さが10%増加するように、h
maxを増加させるとともに、h
minを減少させた結果)として得られた値である。この場合のh
maxは、2.072mである。また、この場合のh
minは、1.928mである。
【0146】
これに対し、
図10に示した点P1が示す対象測定点の位置は、2.065mである。すなわち、当該対象測定点の位置は、前述の対象範囲(すなわち、1.928m~2.072mの範囲)内に位置している。このことから、放射妨害波測定装置100は、サンプリング定理を満たす位置として、11個の対象測定点それぞれの位置を特定できていることが分かる。これは、前述した通り、ステップS192及びステップS195の処理によってステップS190の処理をコンピュータ7が行うことにより得られた結果である。
【0147】
これに対し、
図11は、ステップS190の処理を省略した場合において放射妨害波測定装置100が推定した放射妨害波の水平偏波の電界強度の分布の一例を示す図である。
【0148】
図11に示したグラフの横軸は、電界強度を示す。また、当該グラフの縦軸は、電波暗室における金属床面からの高さを示す。また、当該グラフに示した「○」は、各対象測定点の位置において理論計算により算出された放射妨害波の電界強度を示す。そして、当該グラフに示した実線は、当該グラフにおける「○」が示す対象測定点の位置において理論計算により算出された放射妨害の水平偏波の電界強度に基づいて推定された当該電界強度の所定の方向における分布を示す。また、当該グラフに示した点線は、対象直線上のうちの測定範囲における放射妨害波の水平偏波の電界強度の分布として、理論計算により算出された分布を示す。
【0149】
図11に示すように、
図11に示したグラフにおける点線の分布が示す位置のうち、放射妨害波の水平偏波の電界強度が最大となる位置は、電波暗室における金属床面からの高さが2.0mの位置である。一方、当該グラフにおける実線の分布が示す位置のうち、放射妨害波の水平偏波の電界強度が最大となる位置は、電波暗室における金属床面からの高さが3.0mよりも上の位置(具体的には、3.19mの位置)である。すなわち、当該グラフから、放射妨害波測定装置100は、ステップS190の処理を省略した場合、且つ、所定の方向における供試体1の厚さが薄い場合、放射妨害波の水平偏波の電界強度の所定の方向における分布を精度よく推定できない場合があることが分かる。
【0150】
また、
図11に示すように、ステップS190の処理が省略された場合のh
maxは、2.005mのまま変化しない。また、当該場合のh
minは、1.995mのまま変化しない。このため、
図11に示したグラフには、対象範囲(すなわち、1.995m~2.005mの範囲)内に位置している対象測定点の位置を示す「○」が見当たらない。このことから、放射妨害波測定装置100は、ステップS190の処理を省略した場合、サンプリング定理を満たす位置として、10個の対象測定点それぞれの位置を特定できない場合があることが分かる。
【0151】
次に、
図12は、ステップS190の処理を省略した場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。なお、
図12~
図16のそれぞれに示した当該分布の推定結果はいずれも、以下に示す測定条件CDの一部を以下のよう変更した場合の放射妨害波測定装置100により特定された対象測定点それぞれの位置に基づく推定結果である。
・供試体1の寸法:直径0.1m、厚さ0.0001m
・d
min:0.95m
・d
max:1.05m
・h
min:0.99995m
・h
max:1.00005m
【0152】
図12に示したグラフの横軸は、電界強度を示す。また、当該グラフの縦軸は、電波暗室における金属床面からの高さを示す。また、当該グラフに示した「○」は、各対象測定点の位置において理論計算により算出された放射妨害波の垂直偏波の電界強度を示す。そして、当該グラフに示した実線は、当該グラフにおける「○」が示す対象測定点の位置において理論計算により算出された放射妨害波の垂直偏波の電界強度に基づいて推定された当該電界強度の所定の方向における分布を示す。また、当該グラフに示した点線は、対象直線上のうちの測定範囲における放射妨害波の垂直偏波の電界強度の分布として、理論計算により算出された分布を示す。
図12に示すように、ステップS190の処理が省略された場合、これら2つの分布は、全く一致していない。また、
図12に示した6個の対象測定点それぞれの位置を見ると、6個の対象測定点のうちの5個の対象測定点が、測定範囲内の上側に集まっている。これらのことから、放射妨害波測定装置100は、適切に電界強度分布を推定できる測定点の位置として、
図12に示した5個の対象測定点それぞれの位置を特定できていないことが分かる。
【0153】
これに対し、
図13~
図16のそれぞれは、
図9に示したステップS195の処理を省略し、ステップS192及びステップS193の処理によってステップS190の処理を行った場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。ただし、
図13は、第2閾値が50である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
図14は、第2閾値が20である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
図15は、第2閾値が8である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
図16は、第2閾値が4である場合において放射妨害波測定装置100が推定した放射妨害波の垂直偏波の電界強度の所定の方向における分布の一例を示す図である。
【0154】
図13~
図16のそれぞれに示したグラフの横軸は、電界強度を示す。また、当該グラフの縦軸は、電波暗室における金属床面からの高さを示す。また、当該グラフに示した「○」は、各対象測定点の位置において理論計算により算出された放射妨害波の垂直偏波の電界強度を示す。そして、当該グラフに示した実線は、当該グラフにおける「○」が示す対象測定点の位置において理論計算により算出された放射妨害波の垂直偏波の電界強度に基づいて推定された当該電界強度の所定の方向における分布を示す。また、当該グラフに示した点線は、対象直線上のうちの測定範囲における放射妨害波の垂直偏波の電界強度の分布として、理論計算により算出された分布を示す。
【0155】
図13~
図16を見比べることにより、第2閾値を小さくするほど、実線の分布と、点線の分布との偏差が小さくなることが分かる。これはすなわち、第2閾値を小さくするほど、放射妨害波測定装置100は、ステップS192及びステップS193の処理によってステップS190の処理を行った場合、放射妨害波の垂直偏波の電界強度の所定の方向における分布を精度よく推定できることが分かる。なお、
図17は、
図13~
図16のそれぞれに示した実線の分布と点線の分布との偏差を、第2閾値を示す横軸と偏差を示す縦軸とを有するグラフにプロットした図である。
図17を見ると、実線の分布と点線の分布との偏差が1以下となるのは、第2閾値を36程度以下とした場合であることが分かる。第2閾値は、前述した通り、事前の実験等によってこのようなグラフを作成し、当該偏差が1以下となるように手で決めることができる。なお、当該偏差が1を超える場合、放射妨害波測定装置100は、放射妨害波の垂直偏波の電界強度の分布を精度よく推定できない可能性が高いため、望ましくない。しかしながら、当該分布をどの程度の精度で推定すればよいかは、放射妨害波試験の内容にも依る。このため、第2閾値は、当該偏差が1を超えるように決められてもよい。
【0156】
以上のように、実施形態に係るプログラムは、放射妨害波を放射する供試体(上記において説明した例では、供試体1)から放射される放射妨害波を測定する位置を示す2以上の測定点(上記において説明した例では、対象測定点)の配置を特定するための第1値(上記において説明した例では、対象点の位置)を、所定のパラメータ(上記において説明した例では、供試体1の所定の方向における厚さを示すパラメータ、hmin、hmax)に基づいて算出する第1算出機能と、第1算出機能により算出された第1値に基づいて、2以上の測定点の配置が、供試体と2以上の測定点のそれぞれとの相対的な配置関係に関する所定の判定条件を満たしているか否かを判定する判定機能と、判定機能が所定の判定条件を満たしていないと判定した場合、所定のパラメータを変化させて第1算出機能により第1値を算出する算出制御機能と、をコンピュータに実現させるためのプログラムである。これにより、プログラムは、所定の判定条件を満たす2以上の測定点の配置を特定することができる。
【0157】
また、プログラムは、第1算出機能により算出された第1値に基づいて、2以上の測定点の配置を特定する特定機能を更に備え、判定機能は、特定機能により特定された2以上の測定点の配置が、所定の判定条件を満たしているか否かを判定する、構成が用いられてもよい。
【0158】
また、プログラムでは、2以上の測定点は、供試体に対して設定される面(上記において説明した例では、仮想的な面)上に設定され、第1算出機能は、面上において所定の方向(上記において説明した例では、上下方向)に並べられる複数の点(上記において説明した例では、対象点)のうち互いに隣接する点間それぞれの間隔に関連する所定のパラメータに基づいて、第1値として複数の点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出し、特定機能は、第1算出機能により第1値として算出された複数の点それぞれの位置に基づいて、2以上の測定点の配置として2以上の測定点それぞれの位置を特定し、判定機能は、特定機能により特定された2以上の測定点それぞれの位置が所定の判定条件を満たしているか否かを判定し、算出制御機能は、判定機能が所定の判定条件を満たしていないと判定した場合、所定のパラメータを変化させ、変化させた後の所定のパラメータに基づいて第1算出機能により第1値として複数の点それぞれの位置を算出する、構成が用いられてもよい。
【0159】
また、プログラムでは、第1算出機能は、nを1以上の整数とし、複数の点のうち面上において方向に並べられるn番目の点を第1点(上記において説明した例では、第1対象点)とし、複数の点のうち面上において所定の方向に並べられる(n+1)番目の点を第2点(上記において説明した例では、第2対象点)として、初期値(上記において説明した例では、1)からnを1ずつ増やし、初期値から1ずつ増えるnの値毎に、第1点の位置と、第1点から第2点までの第1間隔に関連する所定のパラメータとに基づいて、第2点の位置を算出する、構成が用いられてもよい。
【0160】
また、プログラムでは、第1算出機能は、初期値からnを1ずつ増やし、初期値から1ずつ増えるnの値毎に、第1処理と第2処理とを行い、第1処理は、第1点の位置と、第1点と供試体との第1位置関係を示す値(上記において説明した例では、dmin、dmax、hmin、hmax)と、所定のパラメータと、サンプリング定理とに基づいて、第1間隔を算出する処理であり、第2処理は、第1処理により算出した第1間隔と、第1点の位置とに基づいて、第2点の位置を算出する処理である、構成が用いられてもよい。
【0161】
また、プログラムでは、特定機能は、第1算出機能により第1値として算出された複数の点それぞれの位置のうちの全部を、2以上の測定点それぞれの位置として特定する、構成が用いられてもよい。
【0162】
また、プログラムでは、特定機能は、第1算出機能により第1値として算出された複数の点それぞれの位置のうちの一部を、2以上の測定点それぞれの位置として特定するとともに、第1算出機能により第1値として算出された複数の点それぞれの位置のうち測定点として特定されていない点それぞれの位置を補間点の位置として特定する、構成が用いられてもよい。
【0163】
また、プログラムでは、2以上の測定点の総数と、2以上の測定点のうち互いに隣接する測定点間を分割する分割数とは、予め決められており、第1算出機能は、2以上の測定点の総数と、分割数とに基づいて、複数の点の総数を算出し、算出した複数の点の総数と、面上において所定の方向に並べられる複数の点のうち互いに隣接する点間それぞれの間隔に関連する所定のパラメータとに基づいて、第1値として複数の点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出し、特定機能は、2以上の測定点の総数と、分割数とに基づいて、第1算出機能により第1値として算出された複数の点それぞれの位置のうちの一部を、2以上の測定点それぞれの位置として特定するとともに、第1算出機能により第1値として算出された複数の点それぞれの位置のうち測定点として特定されていない点それぞれの位置を補間点の位置として特定する、構成が用いられてもよい。
【0164】
また、プログラムでは、2以上の測定点の総数は、2以上の測定点の総数を決めず、且つ、2以上の測定点のうち互いに隣接する測定点間を分割しない場合において、第1算出機能により算出された複数の点それぞれの位置に基づいて特定機能により特定された2以上の測定点の数である、構成が用いられてもよい。
【0165】
また、プログラムでは、所定の判定条件は、2以上の測定点のうち互いに隣接する測定点間それぞれの間隔であり、且つ、特定機能により特定された2以上の測定点それぞれの位置に基づいて算出される間隔が、それぞれの間隔に応じた第1閾値未満であること、を含む、構成が用いられてもよい。
【0166】
また、プログラムでは、所定の判定条件は、特定機能により特定された2以上の測定点それぞれの位置のうちの少なくとも1つが、所定の方向において、供試体の所定の方向における両端に挟まれた範囲内に含まれていること、を更に含む、構成が用いられてもよい。
【0167】
また、プログラムでは、第1処理は、第1点の位置と、第1位置関係を示す値と、所定のパラメータと、サンプリング定理とに基づいて、第1点に応じた補正係数を算出し、算出した補正係数に基づいて、第1間隔を算出する処理である、構成が用いられてもよい。
【0168】
また、プログラムでは、第1処理は、第1点の位置と、第1位置関係を示す値と、所定のパラメータとに基づく第1式に基づいて補正係数を算出し、算出した補正係数とサンプリング定理とに基づく第2式に基づいて第1間隔を算出する処理であり、第2処理は、第1点の位置と、第1処理により算出された第1間隔とに基づく第3式に基づいて、第2点の位置を算出する処理である、構成が用いられてもよい。
【0169】
また、プログラムでは、所定の判定条件は、2以上の測定点のうち互いに隣接する2つの測定点の組み合わせのそれぞれについて、2つの測定点それぞれに応じた補正係数同士の比が、所定の第2閾値未満であること、を更に含む、構成が用いられてもよい。
【0170】
また、プログラムでは、所定の終了条件は、複数の点のうち所定の方向における測定範囲外に位置する点の位置が第1算出機能により算出されたこと、である、構成が用いられてもよい。
【0171】
また、プログラムでは、判定機能が所定の判定条件を満たしていると判定した場合、第1算出機能により算出された第1値に基づいて、2以上の測定点の配置を特定する特定機能を更に備える、構成が用いられてもよい。
【0172】
また、プログラムでは、2以上の測定点は、供試体に対して設定される面上に設定され、第1算出機能は、面上において所定の方向に並べられる複数の点のうち互いに隣接する点間それぞれの間隔に関連する所定のパラメータに基づいて、第1値として複数の点それぞれの位置を、所定の終了条件が満たされるまで1つずつ順に算出し、判定機能は、第1算出機能により算出された複数の点それぞれの位置が所定の判定条件を満たしているか否かを判定し、算出制御機能は、判定機能が所定の判定条件を満たしていないと判定した場合、所定のパラメータを変化させ、変化させた後の所定のパラメータに基づいて第1算出機能により第1値として複数の点それぞれの位置を算出し、特定機能は、判定機能が所定の判定条件を満たしていると判定した場合、第1算出機能により第1値として算出された複数の点それぞれの位置に基づいて、2以上の測定点の配置を特定する、構成が用いられてもよい。
【0173】
また、プログラムでは、パラメータは、供試体の所定の方向における厚さを示すパラメータである、構成が用いられてもよい。
【0174】
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない限り、変更、置換、削除等されてもよい。
【0175】
また、以上に説明した装置(例えば、放射妨害波測定装置100、コントローラ6、コンピュータ7等)における任意の構成部の機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD(Compact Disk)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピュータシステム内部の揮発性メモリー(RAM(Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
【0176】
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【符号の説明】
【0177】
1…供試体、2…アンテナ、3…アンテナマスト、4…ターンテーブル、5…受信器、6…コントローラ、7…コンピュータ、8…制御部、9…演算処理部、10…主制御部、11…入力装置、12…出力装置、13…記憶装置、14…バス、15…記録媒体、100…放射妨害波測定装置