(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】在庫管理装置
(51)【国際特許分類】
G06Q 10/087 20230101AFI20240417BHJP
G06Q 10/04 20230101ALI20240417BHJP
【FI】
G06Q10/087
G06Q10/04
(21)【出願番号】P 2021542918
(86)(22)【出願日】2020-08-25
(86)【国際出願番号】 JP2020031977
(87)【国際公開番号】W WO2021039767
(87)【国際公開日】2021-03-04
【審査請求日】2023-06-27
(31)【優先権主張番号】P 2019158318
(32)【優先日】2019-08-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100121980
【氏名又は名称】沖山 隆
(74)【代理人】
【識別番号】100128107
【氏名又は名称】深石 賢治
(74)【代理人】
【識別番号】100183438
【氏名又は名称】内藤 泰史
(72)【発明者】
【氏名】出水 宰
(72)【発明者】
【氏名】深澤 佑介
【審査官】▲高▼瀬 健太郎
(56)【参考文献】
【文献】国際公開第2018/056222(WO,A1)
【文献】国際公開第2018/042950(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 -99/00
(57)【特許請求の範囲】
【請求項1】
第1の商品の在庫管理に係る第1の学習済みモデルと、該第1の商品及び第2の商品の関連度に係る関連度情報とを取得する取得部と、
前記関連度情報に基づき、前記第1の学習済みモデルを前記第2の商品の在庫管理に適用させるか否かを判定する判定部と、
前記判定部によって適用させると判定された場合に、前記第1の学習済みモデルを前記第2の商品の在庫管理に適用し、前記第2の商品の在庫管理の方策を決定する決定部と、を備える在庫管理装置。
【請求項2】
前記決定部は、前記第1の学習済みモデルと、前記第2の商品の在庫管理に係る第2の学習済みモデルとを組み合わせて、前記第2の商品の在庫管理の方策を決定する、請求項1記載の在庫管理装置。
【請求項3】
前記決定部は、期間が経過するほど、前記第2の学習済みモデルの重みが重くなるように、前記第1の学習済みモデル及び前記第2の学習済みモデルを組み合わせて前記第2の商品の在庫管理の方策を決定する、請求項2記載の在庫管理装置。
【請求項4】
前記取得部は、前記関連度情報として、前記第1の商品及び前記第2の商品の発売日前のSNSデータを取得し、
前記判定部は、前記SNSデータにおける前記第1の商品に関する発信数と前記第2の商品に関する発信数とが類似する場合に、前記第1の学習済みモデルを前記第2の商品の在庫管理に適用させると判定する、請求項1~3のいずれか一項記載の在庫管理装置。
【請求項5】
前記取得部は、前記関連度情報として、前記第1の商品及び前記第2の商品の製品特徴を取得し、
前記判定部は、前記第1の商品の製品特徴と前記第2の商品の製品特徴とが類似する場合に、前記第1の学習済みモデルを前記第2の商品の在庫管理に適用させると判定する、請求項1~4のいずれか一項記載の在庫管理装置。
【請求項6】
前記第2の商品との関連度が高い第3の商品の販売データに基づき、前記第2の商品の需要予測モデルを構築する需要予測部を更に備え、
前記決定部は、前記需要予測モデルを考慮して、前記第2の商品の在庫管理の方策を決定する、請求項1~5のいずれか一項記載の在庫管理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、在庫管理装置に関する。
【背景技術】
【0002】
従来より、生産から販売までのモノの流れ(サプライチェーン)において在庫管理を適正化するシステムが知られている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
在庫管理においては、確率計画問題(Stochastic Programming Problem)や動的計画法(Dynamic Programming)を定式化して、発注量(供給量)を決定する手法が知られている。しかしながら、このような厳密解法を用いる手法は、例えば大規模なサプライチェーンを扱う場合、計算量の観点で現実的でない。一方で、移動平均値による算出を行う等、ヒューリスティックな手法は、例えばSKU(Stock Keeping Unit)等の最小単位での予測精度を担保することが難しい。このことで、在庫管理を精度良く行うことができず、機会損失又は過剰在庫によりコストが高くなることが考えられる。特に、例えば需要動向や在庫管理の方策が定まっていない新発売の商品の在庫管理を行う場合等においては、在庫管理を精度良く行うことが困難であった。
【0005】
本発明の一態様は上記実情に鑑みてなされたものであり、例えば強化学習のアプローチで、在庫管理を精度良く行うことを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様に係る在庫管理装置は、第1の商品の在庫管理に係る第1の学習済みモデルと、該第1の商品及び第2の商品の関連度に係る関連度情報とを取得する取得部と、関連度情報に基づき、第1の学習済みモデルを第2の商品の在庫管理に適用させるか否かを判定する判定部と、判定部によって適用させると判定された場合に、第1の学習済みモデルを第2の商品の在庫管理に適用し、第2の商品の在庫管理の方策を決定する決定部と、を備える。
【0007】
本発明の一態様に係る在庫管理装置では、第1の商品及び第2の商品の関連度に係る関連度情報に基づき、第1の商品の在庫管理に係る第1の学習済みモデルを第2の商品の在庫管理に適用させるか否かが判定され、適用させると判定された場合に、当該第1の学習済みモデルが第2の商品の在庫管理に適用される。例えば、新発売の商品等、在庫管理の方策が定まっていない商品については、発売当初において在庫管理を精度良く行うことが難しい。新発売の商品の発売日を待って新規に在庫管理の方策を学習していては、適用までに時間を要してしまう。このような商品については、発売当初から在庫管理を適切に行うべく、他の商品の在庫管理に係る方策(学習済みモデル)を転移学習して他の商品の在庫管理に係る方策を適用させることが考えられる。しかしながら、商品毎に需要動向等は異なることから、転移学習を行うことによって在庫管理の精度が悪化してしまうことも考えられる。この点、本発明の一態様に係る在庫管理装置では、在庫管理に係る学習済みモデルを有する商品(第1の商品)と第2の商品との関連度が考慮されて、当該学習済みモデルを第2の商品の在庫管理に適用させるか否かが判定されているため、例えば、関連度が低い商品間で転移学習が行われることを抑制し、関連度が高い商品間でのみ転移学習を行うこと等が可能となる。このように、需要動向等がマッチすると想定される商品間でのみ転移学習を行うことにより、学習済みモデルを用いて、例えば新発売の商品等についても、発売当初から高精度に在庫管理を行うことができる。以上より、本発明の一態様に係る在庫管理装置によれば、従来と比較して、在庫管理を精度良く行うことができる。
【発明の効果】
【0008】
本発明の一態様によれば、在庫管理を精度良く行うことができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施形態に係る在庫管理装置の概要を説明する図である。
【
図4】在庫管理装置が実行する処理を示すフローチャートである。
【
図5】在庫管理装置のハードウェア構成を示す図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。
【0011】
本実施形態に係る在庫管理装置は、例えば販売店舗単位で、商品の在庫管理の方策を決定する装置である。ここでの商品は、例えば新商品等、在庫管理の方策が定まっていない商品である。在庫管理の方策とは、例えば在庫数に応じた発注のタイミング等の方策である。
【0012】
図1は、本実施形態に係る在庫管理装置の概要を説明する図である。本実施形態に係る在庫管理装置は、例えば、ある指標Hに基づいて、旧商品(既に販売されている商品)の学習済みの方策π(a/s)を、新商品の在庫管理に適用させるか否かを判定し、適用させる場合に、旧商品の学習済みの方策π(a/s)に基づいて新商品の在庫管理の方策π´(a/s)を決定するものである。ここでの方策π(又はπ´)は、状態s(例えば在庫数が××である)の場合に行動a(△△だけ発注する)をとる確率を示している。在庫管理装置では、方策を適用させるか否かの判定が、旧商品及び新商品の関連度に基づき行われる。これにより、旧商品及び新商品の関連度が高い場合にのみ、旧商品の学習済みの方策π(a/s)を新商品の在庫管理に適用させる(転移学習を行う)ことが可能となり、転移学習によって新商品の在庫管理の精度がかえって悪化する等の事態を防止することができる。以下、在庫管理装置の機能構成について詳細に説明する。
【0013】
図2は、在庫管理装置1の機能構成を示す図である。なお、在庫管理装置1は、在庫数の管理及び発注等の具体的な在庫管理処理を自ら実行する装置であっても、当該在庫管理処理については実行しない装置であってもよいが、本実施形態では、在庫管理装置1の「在庫管理方策の決定」に係る機能のみを説明する。在庫管理装置1は、その機能構成として、取得部11と、記憶部12と、需要予測部13と、判定部14と、決定部15と、を備えている。
【0014】
取得部11は、旧商品(第1の商品)の在庫管理に係る第1の学習済みモデルと、旧商品及び新商品(第2の商品)の関連度に係る関連度情報とを取得する。第1の学習済みモデルとは、上述した旧商品の方策π(a/s)の導出に係るモデル又は当該方策π(a/s)そのものである。取得部11は、第1の学習済みモデルを、例えば外部装置(不図示)から取得してもよいし、在庫管理を行う事業者からの入力に応じて取得してもよい。
【0015】
取得部11は、関連度情報として、旧商品及び新商品それぞれの、発売日前のSNS(Social Networking Service)データを取得してもよい。SNSデータには、例えばSNSを利用した、商品に関する発信数が含まれている。取得部11は、SNSデータを、例えばSNSデータを管理する外部装置(不図示)から取得する。
【0016】
図3は関連度情報の一例を示す図である。
図3(a)は、SNSデータの一例を示している。
図3(a)には、旧商品i及び新商品jについての発売日n日前からの関連ツイート数xi,xjが示されている。
図3(a)には、例えば、旧商品iについての発売日n日前の関連ツイート数xi=10、新商品jについての発売日n日前の関連ツイート数xj=5であること等が示されている。
【0017】
取得部11は、関連度情報として、旧商品及び新商品それぞれの、製品特徴を取得してもよい。例えば商品がスマートフォンである場合、製品特徴には、例えばバッテリー容量、メモリ、及び防水レベル等のスペックが含まれている。取得部11は、製品特徴に関する情報を、例えば製品特徴を管理する外部装置(不図示)から取得してもよいし、在庫管理を行う事業者からの入力に応じて取得してもよい。
【0018】
図3(b)は、商品がスマートフォンである場合の製品特徴の一例を示している。
図3(b)には、旧商品i及び新商品jについての製品特徴に関するベクトルzi,zjが示されている。製品特徴に関するベクトルzi,zjは、各スペックについての評価を点数付けた値(例えば10点満点)とされる。
図3(b)には、例えば旧商品iについてのバッテリー容量のベクトルzi=10、新商品jについてのバッテリー容量のベクトルzj=9であること等が示されている。
【0019】
取得部11は、関連度情報として、新商品の発売時(発売前)における旧商品の在庫数を取得してもよい。
【0020】
取得部11は、さらに、新商品との関連度が高い旧商品(第3の商品)の販売データを取得する。ここでの旧商品(第3の商品)は、第1の学習済みモデルによって方策πが導出される上述した旧商品(第1の商品)と同一の商品であってもよいし異なる商品であってもよい。新商品との関連度が高い旧商品とは、例えば新商品と製品特徴が類似する商品、新商品と同一モデルであって1シーズン前の商品等である。販売データとは、販売時期(発売開始からの経過時期)毎の販売数の情報である。取得部11は、例えば商品がスマートフォンである場合において、在庫管理の方策を決定する対象の販売店舗における、旧商品の日々の販売データを取得する。なお、取得部11は、対象の販売店舗の同一商品の販売データだけでは情報がスパースになる場合には、例えば、商品の粒度を上位に上げて、色違いの同一商品(SKU(Stock Keeping Unit)が異なる商品)の販売データについても取得することとしてもよいし、店舗の粒度を上位に上げて同一メッシュ(区域)内の多店舗の販売データについても取得することとしてもよい。取得部11は、販売データを、例えば販売データを管理する外部装置(不図示)から取得してもよいし、在庫管理を行う事業者からの入力に応じて取得してもよい。取得部11は、上述した各種の取得情報を、記憶部12に格納する。記憶部12は、取得部11によって取得された各情報を記憶するデータベースである。
【0021】
需要予測部13は、新商品との関連度が高い旧商品の販売データに基づき、新商品の需要予測モデルを構築する。需要予測部13は、記憶部12から旧商品の販売データを取得し、需要予測モデルを構築する。需要予測モデルの構築は、従来から周知の機械学習等により行われてもよい。需要予測部13は、構築した需要予測モデルを記憶部12に格納する。
【0022】
判定部14は、取得部11によって取得された関連度情報に基づき、第1の学習済みモデルを新商品の在庫管理に適用させるか否かを判定する。判定部14は、判定結果を決定部15に出力する。
【0023】
判定部14は、例えばSNSデータにおける旧商品に関する発信数と新商品に関する発信数とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。具体的には、判定部14は、旧商品に関する関連ツイート数と新商品に関する関連ツイート数との相関係数Cor(xi,xj)を、SNSデータに基づく、旧商品及び新商品の類似度D(i,j)とする。そして、判定部14は、類似度D(i,j)が例えば閾値D´(例えば0.7)以上である場合に、旧商品に関する発信数及び新商品に関する発信数が類似しており、旧商品及び新商品の販売傾向が類似していると判定して、第1の学習済みモデルを新商品の在庫管理に適用させる(第1の学習済みモデルを利用する)と判定する。
【0024】
判定部14は、旧商品の製品特徴と新商品の製品特徴とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。具体的には、判定部14は、旧商品の製品特徴と新商品の製品特徴との相関係数Cor(zi,zj)を製品特徴に基づく類似度D(i,j)とする。そして、判定部14は、類似度D(i,j)が例えば閾値D´(例えば0.7)以上である場合に、旧商品の製品特徴と新商品の製品特徴とが類似しており、旧商品及び新商品の販売傾向が類似していると判定して、第1の学習済みモデルを新商品の在庫管理に適用させる(第1の学習済みモデルを利用する)と判定する。
【0025】
判定部14は、新商品の発売時における、販売店舗での旧商品の在庫数が所定の閾値以下である場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。新商品の発売時における旧商品の在庫数によって、新商品の販売初動に影響があると考えられる。例えば、旧商品の在庫数が多い場合には旧商品の販売力が残っており、新商品の販売初動は落ちる。反対に旧商品の在庫数が少ない場合には新商品の販売が支配的になると考えられる。
【0026】
決定部15は、判定部14によって第1の学習済みモデルを新商品の在庫管理に適用させると判定された場合に、第1の学習済みモデルを新商品の在庫管理に適用し、新商品の在庫管理の方策を決定する。決定部15は、例えば第1の学習済みモデルによって導出される旧商品の方策π(a/s)をそのまま新商品の在庫管理の方策としてもよい。
【0027】
決定部15は、例えば、ある程度新商品の販売開始から期間が経過し、新商品の在庫管理に係る第2の学習済みモデルが既に構築されている場合には、第1の学習済みモデルと第2の学習済みモデルとを組み合わせて、新商品の在庫管理の方策を決定してもよい。すなわち、決定部15は、第1の学習済みモデルによって導出される方策π(a/s)と、第2の学習済みモデルによって導出される方策π´´(a/s)とを組み合わせて、新商品の在庫管理の方策π´(a/s)を決定してもよい。決定部15は、新商品の販売開始から期間が経過するほど、第2の学習済みモデルの重みが重くなるように、第1の学習済みモデル及び第2の学習済みモデルを組み合わせて新商品の在庫管理の方策π´(a/s)を決定してもよい。この場合、新商品の在庫管理の方策π´(a/s)の導出式は、時間の経過と共に徐々に小さくなる(減衰する)αを用いて以下の(1)式で示される。
π´(a/s)=α・π(a/s)+(1-α)・π´´(a/s)・・(1)
【0028】
決定部15は、需要予測部13によって構築された新商品の需要予測モデルをさらに考慮して、新商品の在庫管理の方策を決定してもよい。なお、決定部15は、判定部14によって第1の学習済みモデルを新商品の在庫管理に適用させないと判定された場合には、第1の学習済みモデルを考慮せずに需要予測モデルのみに基づき新商品の在庫管理の方策を決定してもよい。
【0029】
次に、
図4を参照して、在庫管理装置1が実行する処理を説明する。
図4は、在庫管理装置1が実行する処理を示すフローチャートである。
【0030】
図4に示されるように、在庫管理装置1は、最初に、旧商品の在庫管理に係る第1の学習済みモデルと、旧商品及び新商品の関連度に係る関連度情報と、新商品との関連度が高い旧商品の販売データとを取得する(ステップS1)。
【0031】
つづいて、在庫管理装置1は、上述した販売データに基づいて、新商品の需要予測モデルを構築する(ステップS2)。
【0032】
つづいて、在庫管理装置1は、第1の学習済みモデルを新商品の在庫管理に適用させるか否かを判定する(ステップS3)。在庫管理装置1は、取得部11によって取得された関連度情報に基づき、第1の学習済みモデルを新商品の在庫管理に適用させるか否かを判定する。在庫管理装置1は、例えばSNSデータにおける旧商品に関する発信数と新商品に関する発信数とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。また、在庫管理装置1は、例えば旧商品の製品特徴と新商品の製品特徴とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。また、在庫管理装置1は、例えば新商品の発売時における、販売店舗での旧商品の在庫数が所定の閾値以下である場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。
【0033】
ステップS3において第1の学習済みモデルを新商品の在庫管理に適用させると判定された場合には、在庫管理装置1は、第1の学習済みモデル(及び需要予測モデル)に基づき、新商品の在庫管理の方針を決定する(ステップS4)。在庫管理装置1は、第1の学習済みモデルによって導出される旧商品の方策をそのまま新商品の方策としてもよいし、第1の学習済みモデル及び新商品の在庫管理に係る第2の学習済みモデルを組み合わせて新商品の在庫管理の方策を決定してもよいし、第1の学習済みモデル及び需要予測モデルから新商品の在庫管理の方策を決定してもよい。
【0034】
一方で、ステップS3において第1の学習済みモデルを新商品の在庫管理に適用させないと判定された場合には、在庫管理装置1は、需要予測モデルに基づき新商品の在庫管理の方策を決定してもよい(ステップS5)。また、在庫管理装置1は、新商品の在庫管理に係る第2の学習済みモデルが構築された後においては、第2の学習済みモデルに基づいて、又は、第2の学習済みモデル及び需要予測モデルに基づいて、新商品の在庫管理の方策を決定してもよい。
【0035】
次に、本実施形態に係る在庫管理装置1の作用効果について説明する。
【0036】
本実施形態に係る在庫管理装置1は、旧商品の在庫管理に係る第1の学習済みモデルと、該旧商品及び新商品の関連度に係る関連度情報とを取得する取得部11と、関連度情報に基づき、第1の学習済みモデルを新商品の在庫管理に適用させるか否かを判定する判定部14と、判定部14によって適用させると判定された場合に、第1の学習済みモデルを新商品の在庫管理に適用し、新商品の在庫管理の方策を決定する決定部15と、を備える。
【0037】
本実施形態に係る在庫管理装置1では、旧商品及び新商品の関連度に係る関連度情報に基づき、旧商品の在庫管理に係る第1の学習済みモデルを新商品の在庫管理に適用させるか否かが判定され、適用させると判定された場合に、当該第1の学習済みモデルが新商品の在庫管理に適用される。新発売の商品等、在庫管理の方策が定まっていない商品については、発売当初において在庫管理を精度良く行うことが難しい。このような商品については、発売当初から在庫管理を適切に行うべく、他の商品の在庫管理に係る方策(学習済みモデル)を転移学習して他の商品の在庫管理に係る方策を適用させることが考えられる。しかしながら、商品毎に需要動向等は異なることから、転移学習を行うことによって在庫管理の精度がかえって悪化してしまうことも考えられる。この点、本実施形態に係る在庫管理装置1では、在庫管理に係る学習済みモデルを有する商品(旧商品)と新商品との関連度が考慮されて、当該学習済みモデルを新商品の在庫管理に適用させるか否かが判定されているため、例えば、関連度が低い商品間で転移学習が行われることを抑制し、関連度が高い商品間でのみ転移学習を行うこと等が可能となる。このように、需要動向等がマッチすると想定される商品間でのみ転移学習を行うことにより、学習済みモデルを用いて、新発売の商品等についても、発売当初から高精度に在庫管理を行うことができる。また、需要動向等がマッチすると想定される商品間でのみ転移学習を行うことにより、転移学習に係るCPU等の処理部における処理負荷を軽減するという技術的効果も併せて奏する。以上より、本発明の一態様に係る在庫管理装置によれば、従来と比較して、在庫管理を精度良く行うことができる。
【0038】
決定部15は、第1の学習済みモデルと、新商品の在庫管理に係る第2の学習済みモデルとを組み合わせて、新商品の在庫管理の方策を決定してもよい。このように、単に第1の学習済みモデルを新商品の在庫管理に適用するだけでなく、新商品の在庫管理に係る第2の学習済みモデルをも考慮して新商品の在庫管理の方策が決定されることにより、実績のある第1の学習済みモデルを用いながら、新商品自体の学習済みモデルを考慮して、在庫管理をより精度良く行うことができる。
【0039】
決定部15は、期間が経過するほど、第2の学習済みモデルの重みが重くなるように、第1の学習済みモデル及び第2の学習済みモデルを組み合わせて新商品の在庫管理の方策を決定してもよい。これにより、例えば新商品の発売当初であって第2の学習済みモデルが充実していない場合には第1の学習済みモデルの重みを重くすると共に、新商品の発売から期間が経過し第2の学習済みモデルが充実してきた後においては新商品の学習済みモデルの重みを重くして在庫管理の方策を決定すること等が可能となる。すなわち、時期に応じて重視する学習済みモデルを変えることにより、どの時期においても在庫管理を精度良く行うことができる。
【0040】
取得部11は、関連度情報として、旧商品及び新商品の発売日前のSNSデータを取得し、判定部14は、SNSデータにおける旧商品に関する発信数と新商品に関する発信数とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。例えば需要動向の関連度が互いに高い商品については、発売日前におけるSNSの発信数が類似していると想定される。このため、旧商品及び新商品の発売日前のSNSの発信数が類似する場合に第1の学習済みモデルを新商品の在庫管理に適用させることにより、需要動向の関連度が高いと想定される場合に、第1の学習済みモデルを新商品の在庫管理に適用させることができ、在庫管理を精度良く行うことができる。
【0041】
取得部11は、関連度情報として、旧商品及び新商品の製品特徴を取得し、判定部14は、旧商品の製品特徴と新商品の製品特徴とが類似する場合に、第1の学習済みモデルを新商品の在庫管理に適用させると判定してもよい。製品特徴が互いに類似している商品については、需要動向の関連度が互いに高いと考えられる。このため、旧商品及び新商品の製品特徴が類似する場合に第1の学習済みモデルを新商品の在庫管理に適用させることにより、在庫管理を精度良く行うことができる。
【0042】
在庫管理装置1は、新商品との関連度が高い旧商品の販売データに基づき、新商品の需要予測モデルを構築する需要予測部13を更に備え、決定部15は、需要予測モデルを考慮して、新商品の在庫管理の方策を決定してもよい。類似する商品から需要予測モデルが構築され、該需要予測モデルが考慮されて在庫管理の方策が決定されることにより、需要動向を考慮しながら、より高精度に在庫管理を行うことができる。
【0043】
最後に、在庫管理装置1のハードウェア構成について、
図5を参照して説明する。上述の在庫管理装置1は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0044】
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。在庫管理装置1のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0045】
在庫管理装置1における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
【0046】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、在庫管理装置1の判定部14等の制御機能はプロセッサ1001で実現されてもよい。
【0047】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、在庫管理装置1の判定部14等の制御機能は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
【0048】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0049】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
【0050】
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
【0051】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0052】
また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
【0053】
また、在庫管理装置1は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
【0054】
以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
【0055】
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broad-band)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-Wide Band)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
【0056】
本明細書で説明した各態様/実施形態の処理手順、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0057】
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
【0058】
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
【0059】
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
【0060】
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
【0061】
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
【0062】
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
【0063】
なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
【0064】
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。
【0065】
ユーザ端末は、当業者によって、移動通信端末、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
【0066】
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
【0067】
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0068】
本明細書で「第1の」、「第2の」などの呼称を使用した場合においては、その要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
【0069】
「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
【0070】
本明細書において、文脈または技術的に明らかに1つのみしか存在しない装置である場合以外は、複数の装置をも含むものとする。
【0071】
本開示の全体において、文脈から明らかに単数を示したものではなければ、複数のものを含むものとする。
【符号の説明】
【0072】
1…在庫管理装置、11…取得部、13…需要予測部、14…判定部、15…決定部。