IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ブレリョン インコーポレイテッドの特許一覧

特許7474317同心ライトフィールドおよび単眼から両眼への混成を提供するディスプレイシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-16
(45)【発行日】2024-04-24
(54)【発明の名称】同心ライトフィールドおよび単眼から両眼への混成を提供するディスプレイシステム
(51)【国際特許分類】
   G02B 30/10 20200101AFI20240417BHJP
   H04N 13/302 20180101ALI20240417BHJP
   H04N 13/346 20180101ALI20240417BHJP
   H04N 13/363 20180101ALI20240417BHJP
【FI】
G02B30/10
H04N13/302
H04N13/346
H04N13/363
【請求項の数】 30
(21)【出願番号】P 2022504029
(86)(22)【出願日】2020-03-02
(65)【公表番号】
(43)【公表日】2022-05-17
(86)【国際出願番号】 US2020020620
(87)【国際公開番号】W WO2020190487
(87)【国際公開日】2020-09-24
【審査請求日】2023-01-23
(31)【優先権主張番号】62/820,096
(32)【優先日】2019-03-18
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/793,495
(32)【優先日】2020-02-18
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521434861
【氏名又は名称】ブレリョン インコーポレイテッド
(74)【代理人】
【識別番号】110000062
【氏名又は名称】弁理士法人第一国際特許事務所
(72)【発明者】
【氏名】デコーディ, バーマク ヘシュマット
【審査官】近藤 幸浩
(56)【参考文献】
【文献】特開2009-128565(JP,A)
【文献】特開2018-152748(JP,A)
【文献】特開2005-292254(JP,A)
【文献】特開2002-330452(JP,A)
【文献】特開平11-331730(JP,A)
【文献】特開平11-326818(JP,A)
【文献】特開平08-223509(JP,A)
【文献】特開平08-018896(JP,A)
【文献】特表2018-529993(JP,A)
【文献】米国特許出願公開第2017/0255013(US,A1)
【文献】米国特許出願公開第2013/0083039(US,A1)
【文献】国際公開第2017/057386(WO,A1)
【文献】国際公開第2018/014044(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 30/10
G02B 27/01
G02B 27/02
H04N 13/302
H04N 13/346
H04N 13/363
(57)【特許請求の範囲】
【請求項1】
光線を集合的に射出または伝送して第1の画像を形成するように、講じられているディスプレイ、および
前記ディスプレイに光学的に結合されていて、そして前記ディスプレイからの前記光線を、前記第1の画像に基づいて仮想画像を形成し、そして人間の観察者が前記仮想画像を視覚しているときに人間の観察者の両眼を同時に包含する、単一の隣接するライトフィールドに、構成するように、講じられている光学サブシステム、
を備えるディスプレイシステムであって、
前記ディスプレイおよび前記光学サブシステムが、前記人間の観察者の前記眼から少なくとも10cmの位置に配置されている間、前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍である、
ディスプレイシステム。
【請求項2】
前記ディスプレイシステムが、前記ディスプレイから少なくとも10cmの位置にあり、そして前記ディスプレイから60cm以下の位置にある前記人間の観察者に対し、意図されている視点を有する、請求項1に記載のディスプレイシステム。
【請求項3】
対角線で少なくとも45度の視域を提供するように、講じられている、請求項1に記載のディスプレイシステム。
【請求項4】
前記人間の観察者からの前記仮想画像の単眼奥行きが、前記人間の観察者からの前記ディスプレイの実際の奥行きよりも大きくなるように、講じられている、請求項1に記載のディスプレイシステム。
【請求項5】
前記人間の観察者からの前記仮想画像の前記単眼奥行きが、前記人間の観察者からの前記ディスプレイの実際の奥行きの少なくとも5倍になるように、講じられている、請求項4に記載のディスプレイシステム。
【請求項6】
前記ライトフィールドが、前記人間の観察者の視覚基準枠内で水平方向に少なくとも20cm延在する、隣接する空間領域に前記画像を形成し、そして前記人間の観察者の各眼が、前記隣接する空間領域内の任意の場所で前記ディスプレイの単眼奥行きを検出することが出来るように、講じられている、請求項1に記載のディスプレイシステム。
【請求項7】
前記光学サブシステムが、同心ライトフィールドとして前記ライトフィールドを生成するために湾曲ミラーを備える、請求項1に記載のディスプレイシステム。
【請求項8】
前記光学サブシステムが、共役、回折、またはナノ構造のミラーを備える、請求項1に記載のディスプレイシステム。
【請求項9】
前記光学サブシステムが、
仮想画像のサイズまたは奥行きを調整するように、講じられている準備光学系、および
前記準備光学系から前記光線を受け取り、そして前記光線を前記ディスプレイシステムの射出瞳にリレーするように、講じられているリレー光学系
を備える、請求項1に記載のディスプレイシステム。
【請求項10】
前記準備光学系が、100度未満の通過角で指向性光伝送を実行するための層を備える、請求項9に記載のディスプレイシステム。
【請求項11】
前記準備光学系が、前記光線束の軌道を変調して、前記仮想画像の焦点面を変更するためのフィールド展開(FE)キャビティを含む、請求項9に記載のディスプレイシステム。
【請求項12】
前記FEキャビティが、前記ディスプレイの異なるセクションを異なる奥行きに設定するように、講じられている、請求項11に記載のディスプレイシステム。
【請求項13】
前記準備光学系が、レンズレットアレイを備える、請求項9に記載のディスプレイシステム。
【請求項14】
前記ディスプレイおよび前記光学サブシステムが、さらに、ディスプレイ部内に収容されている調整可能なアームを備え、そして前記ディスプレイ部が、前記調整可能なアームの端部から懸架されている、請求項1に記載のディスプレイシステム。
【請求項15】
前記調整可能なアームが、前記調整可能なアームの調整を可能にする複数の部材を備える、請求項14に記載のディスプレイシステム。
【請求項16】
前記ディスプレイシステムの配置または方位情報を取得するためのセンサモジュール、および
前記ディスプレイシステムの前記配置または方位情報に基づいて前記画像を変更するプロセッサ
を、さらに備える。請求項1に記載のディスプレイシステム。
【請求項17】
前記ディスプレイおよび前記光学サブシステムを含むディスプレイ部を、さらに、備える、請求項1に記載のディスプレイシステムであって、
前記ディスプレイが、平坦であり、そして光線を視域に射出または伝送するために、前記ディスプレイシステムの視域に隣接しそしてその外側にあるように、講じられていて、そして
前記光学サブシステムが、
前記ディスプレイ部の内部背面を形成する、またはその上にあるように、講じられている湾曲ミラー、および
前記ディスプレイの出力面に対して鋭角で前記視域内にあるように、講じられているビームスプリッタであって、前記ビームスプリッタが、前記ディスプレイからの前記光線を前記湾曲ミラーに向かって反射させ、前記湾曲ミラーが前記光線を反射させて前記ビームスプリッタに戻し、前記ビームスプリッタが、次で、前記湾曲ミラーで反射された前記光線を前記ディスプレイシステムの出射瞳に向けて伝送するように、講じられている、ビームスプリッタ
を含む、
ディスプレイシステム。
【請求項18】
前記ディスプレイが、湾曲していて、そして前記人間の観察者がディスプレイを視覚しているときに、前記人間の観察者の視線内に配置されている、請求項1に記載のディスプレイシステムであって、
前記光学サブシステムが、
前記ディスプレイよりも前記人間の観察者の意図された視覚位置の近くにあるように、講じられている一対の湾曲4分の1波長板であって、少なくとも1つの前記湾曲4分の1波長板が、前記ディスプレイに隣接している、一対の湾曲4分の1波長板、および
前記人間の観察者の前記意図した視線内で前記4分の1波長板の間にあるように、講じられている湾曲半反射ミラー、
を含む、
請求項1に記載のディスプレイシステム。
【請求項19】
前記光学サブシステムが、さらに、
前記人間の観察者の前記意図された視覚位置に最も近い前記4分の1波長板の1つの表面上にある湾曲液晶板、および
前記液晶板の表面にある湾曲偏光素子
を含む、請求項18に記載のディスプレイシステム。
【請求項20】
調整可能なアームの前記配置の調整を可能にするための複数の部材を含む調整可能なアーム、および
ディスプレイ部の配置および方位が調整可能であるように、前記調整可能なアームに結合されそして前記調整可能なアームから懸架されている、ディスプレイおよび光学サブシステムを含むディスプレイ部
を、さらに備える、請求項1に記載のディスプレイシステム。
【請求項21】
前記ディスプレイ部が結合されているまたは結合することが出来るベースを、さらに備え、前記ベースが、家具のアイテムに取り外し可能となるように設計されている、
請求項1に記載のディスプレイシステム。
【請求項22】
前記ディスプレイ部が結合されているまたは結合することが出来るベースを、さらに備え、前記ベースが、前記人間の観察者の胴体に取り外し可能に取り付け可能となるように設計されている、
請求項1に記載のディスプレイシステム。
【請求項23】
コンテンツエンジンからの画像コンテンツに基づいて、集合的に第1の画像を形成する光線を射出または伝送するように、講じられているディスプレイ、および
湾曲ミラーおよび前記湾曲ミラーに光学的に結合された受動的指向性光学素子を含む、前記ディスプレイに光学的に結合されている光学サブシステムであって、前記ディスプレイからの前記光線を、前記第1の画像に基づいて仮想画像を形成しそして人間の観察者の各眼による単眼奥行きの同時検出を可能にする、単一の隣接する同心ライトフィールドに、構成するように、講じられている、光学サブシステム、
を備えるディスプレイシステムであって
前記ディスプレイシステムが、少なくとも10cmの距離にありそして前記ディスプレイから60cm以下の距離にありそして対角線上に少なくとも45度の視域を提供する、前記人間の観察者に対して設計された視点を有するように、前記ライトフィールドが、講じられていて、
さらに、前記人間の観察者が、前記設計された視点に位置するとき、前記仮想画像の単眼奥行きが、前記ディスプレイの実際の奥行きよりも大きく、そして前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍であるように、前記ライトフィールドが、講じられている
ィスプレイシステム。
【請求項24】
前記光学サブシステムが、前記同心ライトフィールドを生成するための湾曲ミラーを備える、請求項23に記載のディスプレイシステム。
【請求項25】
前記光学サブシステムが、
前記仮想画像のサイズまたは奥行きを調整するように、講じられている準備光学系、および
前記準備光学系から前記光線を受け取り、そして前記光線を前記ディスプレイシステムの射出瞳にリレーするように、講じられているリレー光学系、
を備える、請求項24に記載のディスプレイシステム。
【請求項26】
前記準備光学系が、前記仮想画像の焦点面を修正するために光線束の軌道を変調または変更するためのフィールド展開(FE)キャビティを含む、請求項25に記載のディスプレイシステム。
【請求項27】
ディスプレイシステムによってコンテンツを表示する方法であって、
ディスプレイシステムにおいて、第1の画像を示す電子信号を取得するステップ、
前記ディスプレイシステム内のディスプレイによって、集合的に前記第1の画像を形成する光線を生成するステップ、そして
前記光線を、人間の観察者の両眼を同時に包含しそして前記第1の画像に基づいて仮想画像を形成する単一の隣接するライトフィールドに構成するステップであって、前記ライトフィールドが、前記人間の観察者の各眼による、単眼奥行きの同時検出を可能にし、前記ディスプレイが前記人間の観察者の眼から少なくとも10cmの位置に配置されている間、前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍であるように、前記ライトフィールドが、講じられている、ステップ、
を備える方法。
【請求項28】
前記人間の観察者にとっての前記画像の最適な視点が、前記ディスプレイから少なくとも10cmの距離で、そして前記ディスプレイから60cm以下の距離にある、請求項27に記載の方法。
【請求項29】
前記仮想画像の焦点面を変更するために光線束の軌道を変調するために、フィールド展開(FE)キャビティを使用することをさらに備える、請求項27に記載の方法。
【請求項30】
前記光線を処理することが、共役、回折、またはナノ構造の湾曲ミラーを使用することを備える、請求項2に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願で紹介する技術は、一般に、ライトフィールドディスプレイに関する。より具体的には、本願で紹介する技術は、単眼から両眼への混成を有する同心ライトフィールドディスプレイを形成するためのシステムに関する。
【背景技術】
【0002】
現代社会では、電子機器およびマイクロファブリケーションの進歩により、より没入型のライトフィールドおよび/または裸眼立体視3次元(3D)ディスプレイに牽引する力が増大している。現在の一般的な裸眼立体視3Dディスプレイのほとんどは、仮想現実(VR)ヘッドギアまたは同様のデバイスを必要とする。しかしながら、VRヘッドギアは、眼精疲労および他の同様に関連する疲労の問題を発生させる可能性がある。これらの問題は、現在のおよび一般的なVRヘッドギアの2つの主要な問題が原因で発生する。第一の原因は、最も一般的でかつ現在のVRヘッドギアが、画像を2つの視覚ゾーンに分割し、これらの視覚ゾーンから視差を抽出し、そして全体が単一に見える画像が得られるようにそれらを重ね合わせることにある。第二の原因は、現在の一般的なVRヘッドギアのほとんどにおいて、視覚ゾーンがユーザの眼に近すぎることである。最新の一般的なVRヘッドギアの別の問題は、画像が、2つの別々の視覚ゾーンに送られるので、ユーザの各眼に対し別々の光学系により処理され、投影される画像において両眼のギャップが生じることである。
【0003】
本開示の1つまたは複数の実施形態は、例示として例示されており、添付の図面の図に限定されるものではなく、同様の参照は同様の要素を示している。
【図面の簡単な説明】
【0004】
図1】スタンドに取り付けられたディスプレイ部を含むディスプレイシステムの斜視図である。
図2図1のディスプレイ部の斜視図である。
図3図1のスタンドの斜視図である。
図4】本願で紹介する技術による、ディスプレイシステムのディスプレイ部のコンポーネントのブロック図である。
図5A】ディスプレイシステムの準備光学系の異なる実施形態の概略図である。
図5B】ディスプレイシステムの準備光学系の異なる実施形態の概略図である。
図5C】ディスプレイシステムの準備光学系の異なる実施形態の概略図である。
図5D】ディスプレイシステムの準備光学系の異なる実施形態の概略図である。
図6】ディスプレイシステムのリレー光学系の代替の実施形態を示す図である。
図7A】ディスプレイシステムの実施形態の第1のセットの概略図である。
図7B】ディスプレイシステムの実施形態の第1のセットの概略図である。
図7C】ディスプレイシステムの実施形態の第1のセットの概略図である。
図7D】ディスプレイシステムの実施形態の第1のセットの概略図である。
図8A】ディスプレイシステムの実施形態の第2のセットの概略図である。
図8B】ディスプレイシステムの実施形態の第2のセットの概略図である。
図8C】ディスプレイシステムの実施形態の第2のセットの概略図である。
図9A】ディスプレイシステムの実施形態の第3のセットの概略図である。
図9B】ディスプレイシステムの実施形態の第3のセットの概略図である。
図9C】ディスプレイシステムの実施形態の第3のセットの概略図である。
図10A】ディスプレイシステムの実施形態の第4のセットの概略図である。
図10B】ディスプレイシステムの実施形態の第4のセットの概略図である。
図10C】ディスプレイシステムの実施形態の第4のセットの概略図である。
図10D】ディスプレイシステムの実施形態の第4のセットの概略図である。
図10E】ディスプレイシステムの実施形態の第4のセットの概略図である。
図11A】ディスプレイシステムの実施形態の第5のセットの概略図である。
図11B】ディスプレイシステムの実施形態の第5のセットの概略図である。
図11C】ディスプレイシステムの実施形態の第5のセットの概略図である。
図12】ディスプレイシステムの概略図であり、ディスプレイ部は、ウェアラブル眼鏡を含む。
図13A】平面ライトフィールドを示している。
図13B】同心ライトフィールドを示している。
図14】共役ミラーの使用と人間の観察者のミラーの焦点に対する位置決めとを概略的に示している。
図15A】VRベースの両眼分離の例を示している。
図15B】ARベースの両眼分離の例を示している。
図15C】両眼混成の例を示している。
図16】共役ミラーおよびビームスプリッタを使用して、同心ライトフィールドに両眼混成を提供するディスプレイシステムの実施形態を示している。
図17】ディスプレイ上に配置された4分の1波長板を備えた半反射湾曲ミラーを使用して、同心ライトフィールドに両眼混成を提供するディスプレイシステムの実施形態を示す。
【発明を実施するための形態】
【0005】
この説明において、「実施形態」、「一実施形態」または類似の単語または句への言及は、説明されている特定の特徴、機能、構造または特徴が、本願で紹介する技術の少なくとも1つの実施形態に含まれることを意味する。本願におけるこのような句の出現は、全ての実施形態が、必ずしも同じ実施形態を指すことを意味しない。他方、本願で言及される実施形態は、必ずしも相互に排他的とはならない。
【0006】
図面の全ての図は、本願で紹介する技法の選択されたバージョンを説明するものであり、本願で紹介する技法の範囲を制限することを意図するものではない。1人または複数のユーザを参照することは、全て、本願で紹介する技術を利用するであろう一人または複数の個人の何れかに関係する。
【0007】
本願で紹介する技術は、2D、立体3D、および/または多焦点画像である、高品質の仮想画像を生成するディスプレイシステムを含む。このディスプレイシステムは、(従来のヘッドマウント可能ディスプレイ(HMD: head-mountable display)とは対照的に)ディスプレイから少なくとも10cm離れ、しかしディスプレイから60cm以内にいる人間の観察者に対し、視覚的な不快感を与えることなく、少なくとも45度の対角視域を提供する、意図された(設計された)視点を提供する。このシステムは、人間の観察者の各眼により、単眼奥行きを同時に検出することを可能にする単一の隣接するライトフィールドを生成する。この単眼奥行きは、人間の観察者からディスプレイまでの実際の距離よりも大きくすることが出来る。そしてこの単眼奥行きは、人間の観察者が意図している視点に位置している場合、ディスプレイの実際のサイズの少なくとも2倍(2×)の(人間の観察者によって認識される)知覚的サイズを提供する。「単眼奥行き」とは、片方の眼により知覚される光学的奥行きである。眼は、眼の水晶体の焦点距離を変えることにより、光学的奥行きに適応することが出来る。単眼奥行きは、光の波面の真の曲率に依存する。これは、視差のみに基づく立体視奥行きとは対照的である。本願で紹介する技術では、単眼奥行きは、動的にも変更可能であるのに対し、従来の裸眼視立体ディスプレイでは、単眼奥行きは、ディスプレイパネルの表面の物理的位置に固定される。
【0008】
例えば、いくつかの実施形態では、本願で紹介する技術によるディスプレイシステムは、観察者の眼から約20cmに配置されるように設計されていて、そしてほぼ対角80インチの知覚的(すなわち、人間の観察者によって知覚される)ディスプレイサイズを提供する。これは、ほぼ対角24インチのディスプレイを使用して、90度以上の視域および少なくとも60cmの水平スパンを有するヘッドボックス(有用な視覚領域)を有する高品質の仮想画像を、人間の観察者に視覚的な不快感を与えることなく、提供する。この文脈において、「水平」とは、人間の観察者が通常の(意図された)方法でディスプレイを視覚しているときに、人間の観察者の2つの眼の幾何学的中心を通る仮想線に平行であることを意味する。
【0009】
本願で紹介する技術は、同心ライトフィールドを生成し、単眼から両眼への混成を提供する。本願で使用される「同心ライトフィールド」(「湾曲ライトフィールド」とも呼ばれる)という用語は、観察者から一定の半径にあるディスプレイの任意の2ピクセル(「第1ピクセル」および「第2ピクセル」と呼ばれる)に対し、第1ピクセルでディスプレイの表面に垂直な方向に第1ピクセルから射出された光コーンの主光線が、第2のピクセルでディスプレイの表面に垂直な方向に第2ピクセルから射出された光コーンの主光線と交差するライトフィールドを意味する。同心ライトフィールドは、システムの光軸(曲率の中心)から遠く離れたピクセルを含む全てのポイントで、眼に焦点を結ぶことができる画像を生成する。この場合、画像は平坦ではなく湾曲していて、そしてこの画像は、ライトフィールドの前の適切な視覚スペース(ヘッドボックス)内で視認可能である。
【0010】
本願で使用される「単眼から両眼への混成」(MBH: monocular-to-binocular hybridization)という用語は、立体画像が、少なくとも1つの次元(例えば、水平方向)において、ディスプレイの観察者の2つの眼の間の距離よりも有意に大きい(例えば、少なくとも2倍の)隣接する視認可能な空間領域で生成され、観察者の各眼は、ライトフィールドが提供しつつある単眼奥行きを検出することが出来、そしてこの奥行きの正しい立体キューを検出することが出来るという特徴を指す。MBHは、視聴のために両眼の分離(眼鏡を装着する必要がある立体HMDおよび3D等の場合に必要な、2つの眼に対する2つの画像の分離)を必要としない、つまり、左眼と右眼で見た画像間にギャップが存在しない画像を生成する。
【0011】
本願で紹介する技術は、眼の緊張および/またはユーザの眼の他の同様に関連する疲労を軽減および/または排除するデバイスをユーザに提供することが出来る。また、これは、画像が2つの視覚ゾーンに分割されていない同心ライトフィールドディスプレイを提供するデバイスを、ユーザに提供することも出来る。また、この技術は、視覚ゾーンがユーザの眼に近すぎることがないデバイスをユーザに提供することができる。本願で紹介する技術は、ユーザが、ライトフィールド投影の中心にいることを可能にし、そして投影される画像における両眼のギャップを排除または最小化するデバイスをユーザに提供することが出来る。本願で紹介する技術は、ラップアラウンド視覚体験またはパノラマ視覚体験を形成するために、ユーザの顔に向かって連続的に収束する光線束を生成するデバイスをユーザに提供することも出来る。
【0012】
本願で紹介する技術は、MBHを有する同心ライトフィールドを実現するためのシステムおよび方法を含む。図1図3に示されるように、特定の実施形態では、本願で紹介する技術によるディスプレイシステム1は、ディスプレイ部2およびスタンド3を含む。このディスプレイ部2は、使用時にスタンド3に取り付けられ、そしてコネクタ4によりこのスタンド33に取り外し可能に取り付けても良い。図1は、スタンド3に取り付けられたディスプレイ部2の斜視図を示している。図2は、ディスプレイ部2自体の斜視図を示し、図3は、スタンド3自体の斜視図を示している。
【0013】
このシステムは、従来のHMDデバイスほど近くはないが、使用時に、ユーザ(本願では「観察者」とも呼ばれる)の眼の非常に近くに、ディスプレイ部2を配置できるように設計されている。したがって、スタンド3は、ベース5、および1つまたは複数のジョイント7によって接続された複数の細長い部材6を含むことが出来る。ジョイント7の少なくともいくつかは、接続された部材6の旋回および/または回転運動を可能にして、必要に応じて、ディスプレイ部2の位置および方位のユーザによる調整を可能にする。
【0014】
少なくともいくつかの実施形態では、ベース5は、図1に示されるように、複数の部材6の最下部の部材に接続可能である。複数の部材6は、本願で紹介する技術が、本願で紹介する技術の目的と意図を実現することが出来るであろう、任意の形状、サイズ、材料、特徴、タイプまたは種類、方位、位置、数量、コンポーネント、およびコンポーネントの配置とすることが出来る。複数の部材6は、端と端を互いに枢動可能に取り付けることが出来る。最下部の部材は、ベース5の上面に取り付けることが出来る。最上部の部材は、コネクタ4の後端に取り付けることができる。コネクタ4の後端は、複数の部材6の最上部の部材に取り付けることができる。一方、コネクタ4の前端は、図1に示されるように、ディスプレイ部2に取り付けられている。
【0015】
ディスプレイ部2は、図4に概略的に示されるように、コンピュータ45、少なくとも1つのディスプレイ41、および光学サブシステム46を収容する機械的ハウジングを有する。光学サブシステム46は、準備光学系42、リレー光学系43、および射出瞳44を含む。コンピュータ45は、本願で紹介する技術が、本願で紹介する技術の目的と意図を実現することを可能にするであろう、任意の形状、サイズ、材料、特徴、タイプまたは種類、方位、場所、数量、コンポーネント、およびコンポーネントの配置とすることが出来る。図4に示されるように、コンピュータ45は、主にコンテンツエンジン47および(オプションとして)1つまたは複数のセンサ48を含むことが出来る。センサ48は、例えば、1つまたは複数の追跡センサ、位置特定センサ、または他の同様のオブジェクトおよび/または前述のアイテムの任意の組み合わせを含むことが出来る。このようなセンサは、また、例えば、マッピングセンサ、カメラセンサ、飛行時間(ToF)センサ、デュアルモノカメラセンサリグ、視線追跡センサ、手追跡センサ、ヘッド追跡センサ、および他の同様のまたは同様に関連するオブジェクトを含むことが出来る。
【0016】
コンピュータ45は、例えば、1つまたは複数の従来のプログラマブルマイクロプロセッサ、デジタル信号プロセッサ、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、またはこのようなタイプのデバイスの任意の組み合わせとするまたはこれらを含むことが出来る。コンピュータ45のコンテンツエンジン47は、コンピュータ45が、画像を生成するためのデジタル画像コンテンツ49を生成することを可能にする。コンテンツエンジン47の少なくとも一部は、ソフトウェアまたはファームウェアとして実装することが出来る。デジタルコンテンツ49は、ユーザに表示されるべき分離されたコンテンツ、このディスプレイに関するいくつかのローカリゼーションおよび/または追跡データに基づくコンテンツ、他の同様に関連するアイテム、および/またはこれらのアイテムの組み合わせとすることが出来る。コンピュータ45は、デジタルコンテンツに対して必要な歪みまたは修正を事前に補償して、ユーザに生成されるべき必要な画像を生成することができる。この結果、(デジタルコンテンツに基づく)画像は、このデジタル画像コンテンツが、3D、2D、多焦点、および/または他の同様に関連するタイプまたは種類であるかどうかに応じて、アスペクト比および構造が修正されて、ディスプレイ部2からユーザの眼に射出される。コンピュータ45は、デジタル画像コンテンツ49を、コンテンツエンジン47からディスプレイ部2のディスプレイ41に送る。他の実施形態では、コンピュータ45および/またはコンテンツエンジン47は、ディスプレイ部2の外部にあっても良い。
【0017】
さらに図4を参照すると、ディスプレイ部2は、コンピュータによって提供されるデジタルコンテンツ49から画像を生成することが出来る少なくとも1つのディスプレイ41を含む。ディスプレイ41は、例えば、画像パネル、プロジェクタ、液晶オンシリコンデバイス(LCoS)またはこれら任意の1つまたは複数とすることが出来、またはこれらを含むことが出来る。ディスプレイ41がパネルであるまたはパネルを含む場合、このパネルは、例えば、平坦にするまたは湾曲させることが出来、そして液晶ディスプレイ(LDC)、有機発光ダイオード(OLED)、発光ダイオード(LED)、または他の同様の関連タイプとすることが出来る。ディスプレイ41がプロジェクタであるまたはプロジェクタを含む場合、このプロジェクタは、例えば、異なる角度で複数のプロジェクタにより投影される散乱または拡散スクリーン、ピコプロジェクタ、レーザプロジェクタ、または他の同様に関連するオブジェクトに類似したタイプまたは種類とすることが出来る。ディスプレイ41は、任意の形態および/または形状で生成された光線束を介して、画像を準備光学系42に供給することが出来る。ディスプレイ部2のバックライトは、同心領域で裸眼立体視3Dを提供するために、角度とともに変化させても良い。いくつかの実施形態では、このような角度光は、垂直共振器面発光レーザアレイ(VCSEL)によって準備される。いくつかの実施形態では、ディスプレイ41は、3D画像に計算方法を提供するためのLCDパネルのスタックである、またはそれを含む。
【0018】
図4に示されるように、ディスプレイ部は、準備光学系42も含む。この準備光学系42は、ディスプレイから生成された光線束を受け取り、この生成された光線束を調整して、奥行きおよび/または知覚された画像のサイズを調整および/またはチューニングし、そしてこの調整された光線束をリレー光学系43に提出する。図5A~5Dは、準備光学系42の異なる実施形態を詳細に示している。これらの図および以下で説明する後続の図では、矢印はシステム内の光線束経路の例を示している。準備光学系42は、例えば、湾曲(例、共役)ミラー、レンチキュラーレンズレットアレイ、フィールド展開(FE: field-evolving)キャビティ、フレネル板、調整可能レンズ、投影スクリーン、機械的調整、および/または他の同様に関係するまたは関連するオブジェクトを含んでいても良い。準備光学系42は、また、画像を2Dフォーマットから3Dプレゼンテーションに変換することができるようなものとしても良い。
【0019】
準備光学系42は、いくつかの代替の実施形態の何れかを有することが出来る。図5Aの実施形態では、準備光学系42は、光線束の軌道を変調することによって、すなわち、光線束の経路長を動的に変更することによって、仮想画像の焦点面を変えることが出来る電界進展(FE: field-evolving)キャビティを含む。いくつかの例では、FEキャビティは、ディスプレイの様々なセクションを様々な焦点距離に送ることが出来る。この実施形態では、準備光学系42は、2つの波長板51の間にビームスプリッタ板52を含むことができる。一方の波長板51はディスプレイ41の近接し、他方の波長板51は液晶(LC)板53の片側に近接している。液晶(LC)板53の反対側は、偏光依存ビームスプリッタ54に近接している。
【0020】
図5A~5Dおよび以下で論じられる他の図において、矢印は、システム内の光線束経路の例を示している。図5Aの左側部分では、ディスプレイ41から射出された光線は、x偏光されている。この光線は、ディスプレイ41からより遠くにある波長板51から射出するときにy偏光になる。次に、この光線は、偏光依存ビームスプリッタ54から観察者に向かって(図示せず、しかし図の左側に向かって)射出するときに再びx偏光になる。逆に、図5Aの右側では、偏光依存ビームスプリッタ54によってディスプレイ41に向かって反射される光線は、y偏光のままであるが、それらは、ディスプレイ41から遠くにある波長板51によって観察者に向かって(左に)反射されるときに、x偏光に変換される。
【0021】
図5Bの実施形態では、準備光学系42は、画像が、収差、歪み、および/または指向性輝度補正について補償されることが可能となるように、ディスプレイ41の提出端または側に受動光学系55を含むことが出来る。このような受動光学系55の例は、例えば、フレネル板、レンチキュラーレンズレットアレイ、視差バリア、層状マスク、および/または他の同様に関係するまたは同様に関連するオブジェクトを含むことが出来る。
【0022】
図5Cの実施形態では、準備光学系42は、その長さ(すなわち、ディスプレイ41からビームスプリッタ54までの距離)を、機械的アクチュエータ56または他の同様の機構により変更または変化させることが出来る受動FEキャビティを含む。図5Dの実施形態では、準備光学系42は、受動光学系55を含む。この受動光学系55は、受動光学系55に対するディスプレイ41の配置または距離を変更するための、ディスプレイ41に取り付けられている、機械的アクチュエータ57と組み合わされている。
【0023】
再び図4を参照すると、ディスプレイ部2は、また、リレー光学系43も含むことが出来る。リレー光学系43は、例えば、自由形状のバックバイザ、導波路、ホログラフィック素子を備えたスクリーン、またはそれらの任意の組み合わせとすることが出来、またはそれらを含むことが出来る。しかしながら、リレー光学系43は、また、湾曲または平坦である、電磁メタ表面を有するまたは有さない、ホログラフィック素子を有するまたは有さない、回折格子を有するまたは有さない、フレネル格子を有するまたは有さない、偏光または非偏光の、透明または不透明の、幾何光学系を利用するまたは導波路を利用する、および/または他の同様に関係するおよび/または同様に関連するオブジェクトまたは機能である、特徴および特性の任意の組み合わせを有することも出来る。図6は、リレー光学系43が、どのようにこれらの機能/特性の何れかの様々な組み合わせを含むことができるかを示している。リレー光学系43は、一端部で準備光学系から提出された光線束を受け取ることができ、そしてそれらの光線束を射出瞳までリレーすることが出来る。
【0024】
図4に示されるように、ディスプレイ部は、射出瞳44を有することができる。射出瞳44は、ディスプレイ部2から射出しそして伝播する光線束を取り囲む、仮想の3次元マニホールド周囲開口とすることが出来る。射出瞳44は、ユーザの顔の正面と、ユーザが画像を見るディスプレイ部2の残りの部分との間に配置しても良い。
【0025】
特定の実施形態では、以下でさらに説明されるように、準備光学系42は、同心ライトフィールドを提供するために、共役ミラーの様な湾曲ミラーを含む。視軸に平行な垂直面で見たときに、共役ミラーは、断面で見たときに楕円の部分的な形状(つまり、その半径が最小の楕円の端)を有する。楕円には2つの焦点(focal points)がある。本願で紹介する技術では、ディスプレイ部2は、観察者のヘッドが、ミラーに最も近い焦点またはその近く(すなわち、この焦点から数センチメートル以内)に位置し、そしてミラーが部分的に形成する楕円の2つの焦点の間に配置されるように、設計されている。
【0026】
従来、ほとんどの湾曲ミラーは、双曲線、放物線、双円錐、または球形であった。このようなミラーは、一般に、望遠鏡またはレーザおよびセンシングアプリケーションの様な、光が光学素子の対称軸に近い場合の、近軸領域でのシングルポイント画像化には適している。しかしながら、これらのミラーは、中心では非常に良好に機能する傾向があるが、エッジが軸から大きく外れそして最早近軸領域には無い場合、このエッジの画像は失敗するので、これらのミラーは、ディスプレイでは失敗する。このため、ディスプレイとミラーが非常に接近している場合、これらのミラーは、高い画像精度で大きな水平視域を提供することには適していない。例えば、もし、ある人が、長くて平坦な水平ディスプレイを有し、そしてそれを放物面ミラーの焦点にまたはそれよりも近くに配置し、そして放物面ミラーを通してその反射を見ると、その人は、ディスプレイの中心での画像は、許容できるが、画像がディスプレイの中心から遠く離れるに連れて、その画像がますます歪んだりぼやけたりすることを認識するであろう。
【0027】
共役ミラーを使用することによって生成することができる同心ライトフィールドは、これらの問題を解決する。図13Aが、平面ライトフィールド132を示すのに対し、図13Bは、同心ライトフィールド131を示す。図13Aおよび図13Bのそれぞれには、ディスプレイの様々な異なるピクセルから発する光線のいくつかの束が示されている。図13Bの湾曲ディスプレイによって生成された同心ライトフィールド131の場合、全てのピクセルからの垂直光線は、焦点に向かっておよび他のピクセルからの垂直光線に向かって収束するであろう。これに対し、図13Aの平面ライトフィールド132では、異なるピクセルからの垂直光線は、平行であり、したがって収束しない。代替の実施形態では、共役ミラーの代わりに回折ミラーまたはナノ構造ミラーを使用することが出来ることに留意されたい。
【0028】
本願で紹介する技術の特定の実施形態では、図14に示されるように、観察者8のヘッドは、共役ミラー143の焦点141(共役ミラー143が部分的にトレースする楕円144の2つの焦点141、142の一方)にまたはその近くに配置される。ディスプレイ41は、ユーザの視域の上にあり、かつミラー143の近くにある。ビームスプリッタ145は、側面から見たときに45度の角度で視域内に配置されている。観察者が表示された画像を見ているとき、楕円144の他の焦点142は、観察者のヘッドの後ろにある。
【0029】
少なくとも1つの実施形態では、楕円144の焦点141、142の間の距離は約1.2mであり、そして観察者8は、彼または彼女のヘッドが、観察者の視軸(図示せず)に沿って測定して、ミラー143に最も近い焦点141からその距離の約10%(この例では約12cm)内に配置されている限り、ディスプレイ全体の高品質の画像を知覚することが出来る。観察者は、(表示軸に沿う)その範囲内で前後に移動しても、高品質の画像を見ることが出来る。観察者8が実際に見るものであるミラー143内の反射は、焦点141、142の間の軸(図示せず)に垂直であり、したがって、楕円144の長軸と同軸にある。観察者8が、楕円144の焦点の1つの近く(例、焦点間の距離の約10%以内)にいる事実により、観察者8が、ミラー143の各エッジに対してほぼ等しい距離を有することが可能になり、これにより、エッジ収差が低減される。
【0030】
さらに、楕円144の第2の焦点142がより遠くにあるという事実は、放物線ミラーまたは双曲線ミラーとは異なり、共役ミラー143のエッジから伝搬する光線は、実際には発散し続けるのではなく、代わりに、より速く内側に曲がる。これにより、ディスプレイの中心から離れたピクセルも、ディスプレイの中心にあるピクセルと同じように焦点を結ぶことが出来る。
【0031】
このように共役ミラーを使用することにより、仮想拡大2Dまたは3D画像が、全てのピクセルが眼に焦点を結ぶことができる湾曲表面または湾曲ボリューム上で、視認可能である、非常に広い領域を提供することが可能になる。これは、システムの光軸(曲率の中心)から離れたピクセルを含む、仮想画像上の全ての点が、眼に焦点を結ぶことができ、そして仮想画像が平坦ではなく湾曲しているので、ディスプレイの前にレンズおよび拡大鏡がある場合とは異なる。
【0032】
本願で紹介する技術による湾曲または同心ライトフィールドは、平均的な成人の両眼の間の約6cmの距離よりもはるかに大きい(例、少なくとも10倍の)、数十センチメートルのオーダの(すなわち、少なくとも60cmの)、ディスプレイの前にある広い領域を照らすことが出来る。この結果、両方の眼は、ライトフィールドが提供しつつある単眼奥行きを理解できるのみならず、その奥行きでの正しい立体の手がかりを拾うことも出来る。単眼奥行きは、眼の水晶体の適応(焦点距離の変化)により片方の眼が知覚する奥行きであり、他方、両眼の奥行きは、左眼と右眼の画像間の視差に基づいて認識される。ヘッドマウントディスプレイの様なほとんどの従来のシステムでは、曲率が、自然の人間のホロプタに取って代わるほど急すぎる、または完全に平坦である、の何れかである。これは、特に視域が広がるにつれて、眼の疲れの原因になり得る。
【0033】
加えて、本願で紹介する技術は、両眼の視覚にギャップがない非常に広い視域を提供する。2本のパイプを通して見ているように見える、眼の間にギャップがあるゴーグルとは異なり、本願で紹介する技術では、パイプのような効果(両眼マスク)は生じない。これは、単眼から両眼への混成(MBH: monocular-to-binocular hybridization)、および可視ゾーンが、各眼の前の2つの局所的なポイントでは無く、大きな連続領域である事実による。これにより、ユーザは、ヘッドを動かしたり回転させたりし、そして奥行きを正しく認識することが出来る。
【0034】
人間の脳は、8つの手がかり(そのうちの5つは文脈的であり、3つは光学的である)に基づいて奥行きを知覚する。光学的手がかりは、運動視差、静的視差、および適応手がかりである。もし、光の波面が、仮想距離を模倣するように進む場合、知覚される3Dは、適応奥行きの手がかりを提供するのみならず、運動視差および静的視差も提供する。しかしながら、ディスプレイシステムは、これらの奥行きの手がかりの1つしか提供しない場合がある(例えば、裸眼立体視および立体視ヘッドセットの場合、視差に依存する奥行きしか提供されない)。これらのヘッドセットは、視差を提供する奥行きの全てに対して、単眼奥行きの手がかりを提供することは無い。全ての立体AR/ARヘッドセットおよび眼鏡をかける必要がある如何なる3D体験も、および眼鏡なし裸眼立体視3Dディスプレイのほとんどは、左眼と右眼に異なるコンテンツの光が供給されて、視差が形成されるアプローチに依存している。従来のほとんどの実装は、左眼と右眼の間のクロストークを排除するために、ある種の両眼眼鏡を装着することを必要とする。
【0035】
これに対し、本願で紹介する技術は、ディスプレイシステムの前の非常に大きな隣接する領域で知覚可能である、単眼奥行き(片方の眼が知覚することが出来る奥行き)を提供する。これは、各眼に正しい奥行きを提供するのみならず、シーン内の奥行きが異なるオブジェクトに対して2つの眼のマッチングする輻輳(視差)も提供する、MBHである。
【0036】
図15A、15Bおよび15Cは、従来の技術と、本願で紹介する技術によって提供されるMBHとの間の違いを示す。具体的には、図15Aおよび15Bは、それぞれ、従来の湾曲ディスプレイHMDおよび平坦ディスプレイHMDで発生する両眼領域(両眼隔離)におけるギャップ151を示している。これに対し、図15Cは、本願で紹介する技術を使用して提供されるMBH(ギャップが無い)を示している。
【0037】
従来の技術とは異なり、本願で紹介する技術による有効な両眼視覚領域は、観察者の眼の間の距離よりも著しく大きいので、観察者は、彼女のヘッドを回転および動かし、そして彼女の眼を左右に回転させることが出来、そしてそのような状況でも眼の間にギャップの無い奥行きを見ることが出来る。したがって、本願で紹介する技術によって提供されるMBHは、観察者が単眼奥行きを知覚することができる領域が、観察者の眼の間の距離よりも大きいことを意味し、この結果、各眼の適応が正しいのみならず、眼の輻輳がこの適応に従うことになる。この混成は、従来の3Dディスプレイよりもはるかにリアルな奥行きの表現を形成する。
【0038】
図16は、共役ミラーを使用して同心ライトフィールドとMBHを実現する、本願で紹介する技術によるディスプレイシステムの実施形態を示している。閉塞するまたは部分的に透明にすることが出来る共役ミラー163は、ディスプレイ部2の背部、すなわち、上述した調整可能なスタンド3に取り付けることができるバイザを形成する。この実施形態では、ディスプレイ部は、その発光面が下方に向くように水平に配置され、ミラーの前でかつその上に配置される、平坦な指向性のまたは強化されたバックライトを含む。ディスプレイ41は、バックライト161の下にかつそれ平行に配置される。バックライト161は、標準的なサイド光拡散バックライト、または好ましくは、指向性フィルムまたは指向性層をその上に備えるバックライト、または方向を変える回折層を有するバックライトのような、指向性バックライト、の何れかとすることが出来る。少なくともいくつかの実施形態では、これらの素子は、より良いコントラストおよびダイナミックレンジを提供するためにバックライトを特定の領域で調光することができるマイクロLEDバックライトの様な、局所調光技術を有する。バックライトのこれら素子は、例えば、サイド光導波路、マイクロLEDアレイ、回折指向性導波路、光拡散器とすることが出来る。
【0039】
指向性光透過特性を有するプライバシーフィルム162または他のタイプの層が、ディスプレイ41の下向き面上に配置される。プライバシーフィルムは、例えば、100度よりも小さい通過角を有していても良い。ビームスプリッタ165は、ミラー163と観察者8との間に(側面から断面的に見て、視軸に垂直に)45度の角度で配置されている。
【0040】
動作中、バックライト161によって射出され、そしてディスプレイ41によって変調された光は、下向きに伝播し、次いで、ビームスプリッタ165で反射してミラー163に向かって反射し、ミラー163は、光を回転偏光でビームスプリッタ165に向かって反射し、次で、光はビームスプリッタ165を通過し、そして観察者8の眼に伝播する。吸収偏光器166は、反射を低減するために、ビームスプリッタ163の下面に配置しても良い。ディスプレイ部2の下部バッフル167は、ディスプレイに平行に、ビームスプリッタ163の下に配置しても良い。1つまたは複数のオーディオスピーカー168は、例えば、下部バッフル167の下側に取り付けるように、任意の都合の良い場所に配置することができる。
【0041】
図17は、本願で紹介する技術によるディスプレイシステムの別の実施形態を示している。この実施形態では、ディスプレイ部2は、例えば、OLED素子の様な多数の隣接するアクティブディスプレイから作製することが出来る湾曲ディスプレイ41を含む。第1の湾曲4分の1波長板171は、湾曲ディスプレイ41の発光面上に直接配置される。半反射湾曲ミラー173は、1つの4分の1波長板171の上に配置される。第2の湾曲4分の1波長板171は、半反射湾曲ミラー173の表面に直接配置される。湾曲液晶(LC)板174は、オプションで、第2の4分の1波長板の表面に配置される。湾曲ワイヤグリッド偏光子または偏光依存ビームスプリッタ175は、LC板174(存在する場合)または第2の4分の1波長板171の表面上に配置される。線176は、観察者8の視線を表す。
【0042】
図7A~12は、本願で紹介する技術の様々な追加の代替の実施形態および例示的な詳細を示している。これらの図のそれぞれにおいて、ディスプレイ部2は、単純化のためにこれらの図には示されていないスタンド3(例えば、上述したようなヒンジ付きアーム)に取り付けることができる。図7Aの実施形態では、ディスプレイ部2は、少なくとも2つのディスプレイパネル71を含む。一方のディスプレイパネルはユーザの視域の上に配置され、そして他のディスプレイパネルはユーザの視域の下に配置される。各ディスプレイパネル71は、ディスプレイパネル71の発光面上に準備光学系72がコーティングされている。また、この実施形態では、ディスプレイ部2は、光線束をユーザの視域にリレーまたは反射するための自由形状のバックバイザ73の形態のリレー光学系を含む。
【0043】
図7Bの実施形態では、ディスプレイ部2は、ユーザの視域の下(または上、または横)に単一のディスプレイパネル71を含む。このディスプレイパネル71は、準備光学系72を、光線束を投射するディスプレイパネルの表面上にコーティングすることが出来る。この実施形態のディスプレイ部2は、また、準備光学系を備えたディスプレイパネル71に隣接しておよび/またはその反対側に、ビームスプリッタ板75を含む。この準備光学系を備えたディスプレイパネルから投射された光線束は、自由形状のバックバイザの形でリレー光学系に到達または反射される前に、ビームスプリッタ板に供給される。ビームスプリッタ板は、次いで、光線束をユーザの視域に送る。
【0044】
図7Cの実施形態では、この代替実施形態のディスプレイ部2は、ディスプレイパネル71が、ユーザの視域の両側に配置されている点を除いて、図5Aのディスプレイ部と同様であると見ることが出来る。図7Dに示されるさらに別の実施形態では、この代替実施形態のディスプレイ部2は、リレー光学系が、自由形状のバックバイザに代えて、平坦であるまたは湾曲した特徴の何れかのホログラフィック素子76であることを除いて、図7Bのディスプレイ部と同様であると見ることが出来る。ホログラフィック素子76は、各層が、赤、青、緑、または他の色空間の様なディスプレイの異なる色チャネルを担う3層パネルの形態とすることが出来る。破線は、仮想イメージからの光線のトレースを表す。
【0045】
図8A~8Cに示されるように、本願で紹介する技術は、本願で紹介する技術の代替の実施形態の第2のセットを含む。図8Aの実施形態では、ディスプレイ部2は、ユーザの視域の各反対側にある、少なくとも2つのプロジェクタ86の形態のディスプレイを含む。また、この実施形態では、ディスプレイ部2は、湾曲ホログラフィック素子スクリーン84を含む。光線束は、プロジェクタ86から湾曲ホログラフィック素子スクリーン84に向かって投射される。そこから、光線束は、出射瞳に向けられ、そしてユーザの視域まで向けられる。
【0046】
図8Bに示される別の実施形態では、ディスプレイ部2は、図7Bおよび7Dの実施形態のディスプレイ部と同様である。しかしながら、この実施形態では、ディスプレイ部のディスプレイは、平坦または湾曲パネルの代わりに、1つまたは複数のプロジェクタ86を利用する。各プロジェクタ86は、準備光学系82を通過する前に、散乱スクリーン81を介して光線束を供給することができる。散乱スクリーン81は、例えば、指向性としても良い。少なくともいくつかの実施形態では、高密度ディスプレイ3D画像を作成するために、散乱スクリーン810は、複数のプロジェクタ86によって供給させる形成することが出来る。次に、この画像は、準備光学系82に供給することが出来る。これに代えて、散乱スクリーン81は、リレー光学系に供給される3次元画像用の超マルチビュー光線束を形成するために、同様に、複数のプロジェクタ86によって供給させることが出来る。この実施形態では、ビームスプリッタ87も、また、上述した態様で使用される。
【0047】
図8Cの実施形態では、ディスプレイ部は、1つまたは複数のプロジェクタ86、自由形状のバックバイザ83の形態のリレー光学系、および透明な散乱スクリーン88を含み、これにより、準備光学系が不必要となる。この実施形態では、1つまたは複数のプロジェクタ86は、図示されるように、ユーザの視域の側面に隣接して、および透明散乱スクリーンの透明側面に隣接しておよび/またはその反対側に配置することができる。透明散乱スクリーン88は、例えば、光線束が、透明散乱スクリーンから自由形状のバックバイザに向かって反射および/または散乱することが出来るように、金属マイクロワイヤまたはナノワイヤアレイを備えたメッシュ状のオブジェクトから作成することが出来る。ここで、これらの光線束の輻輳が、ユーザの眼に対して用意されている。透明散乱スクリーン88は、透過モードおよび/または反射モードで交互に動作させることができる。透明散乱スクリーン88は、光線束が、透明散乱スクリーン88から散乱および/または反射することを可能にするために、その面全体にわたって様々な厚さおよび表面粗さを備えていても良い。
【0048】
図9A~9Cは、本願で紹介する技術の代替の実施形態の第3のセットを示している。図9Aの実施形態では、ディスプレイ部2は、ディスプレイ部の上部および下部に1つずつ、少なくとも2つのディスプレイ41を含む。準備光学系42は、光透過経路内で各ディスプレイの前に設けても良い。光線束は、各ディスプレイ41から、関連する準備光学系42を介して、リレー光学系43の上端および下端に供給させても良い。いくつかの代替実施形態では、各ディスプレイ41およびそれに適応する準備光学系42は、側面に配置することが出来、そしてより具体的には、ディスプレイ部2のリレー光学系43の側面に配置することが出来る。
【0049】
図9Aの実施形態では、リレー光学系は、導波路93とすることが出来る。導波路93は、電磁波を閉じ込め、そして電磁波のいくつかのモードが伝播することを可能にする単層または多層構造としても良い。導波路93は、平坦であるまたは湾曲したパネルとしても良い。導波路93は、光線束が射出瞳に射出することを可能にするために、角度の付いた、埋め込まれた反射面を有する透明材料としても良い。これに代えて、導波路93の射出面は、光線束が、回折して導波路から射出することができるように、回折格子を特徴とする表面を含んでいても良い。これに代えて、導波路93は、光線束が、電磁波のいくつかのモードに限定され、そして導波路の射出面に沿って伝播することができる、薄いガラス板に類似させても良い。
【0050】
これに代えて、図9Aの実施形態における導波路93は、光ガイドとすることが出来る。光線束が、光ガイドの射出面から射出する前に数回しか反射しないような単層または多層透明パネルとすることが出来ることを除いて、光ガイドは、形状、サイズ、材料、特徴、タイプまたは種類、方位、位置、量、コンポーネント、およびコンポーネントの配置において、上述の導波路と同様のものとすることが出来る。
【0051】
図9Bの実施形態では、光線束が、自由形状のバックバイザ93から射出瞳を介してユーザに送られる前に、導波路93が光線束を自由形状のバックバイザ94に供給することが出来るように、ディスプレイ部2は、自由形状バックバイザ94の形態の追加のリレー光学系を含む。
【0052】
図9Cの実施形態では、ディスプレイ部は、湾曲LCoSディスプレイ41を含む。この湾曲LCoSディスプレイの内面または内側面は、例えば、レンチキュラーレンズレットアレイまたは同様のオブジェクトの形態の準備光学系42でコーティングまたは被覆することが出来る。準備光学系42の内面または内側面は、湾曲導波路95によって覆っても良い。この準備光学系は、湾曲FEキャビティ、または同様のオブジェクトの形態としても良い。ディスプレイからの光線束を指向性とすることが出来る少なくともいくつかの場合、ディスプレイ部2は、反射性の湾曲表面を備えた導波路も、他の同様に関連するリレー光学系も、含まなくて良い。
【0053】
図10A~10Eは、本願で紹介する技術の別の実施形態のセットを示している。図10Aの実施形態では、ディスプレイ部2は、1つまたは複数の空間マッピングおよび位置特定センサ108を含み、これらのセンサは、それぞれ、奥行きおよび/またはマッピング情報を提供することが出来る、1つまたは複数のステレオカメラ、飛行時間(ToF)カメラ、奥行きカメラ、および/または他の任意のモジュールを含むことが出来る。これらのセンサ108は、とりわけ、ディスプレイ部2の配置および/または方位情報を取得しても良い。また、この実施形態は、視線追跡モジュール、ヘッド追跡モジュール、および/またはユーザのヘッドの配置および/または視線に関する情報を提供するまたは利用して、画像を調整および/または較正するまたはレンダリングされたデータを操作する他のモジュールを含むことが出来る。これらのセンサ108の出力は、例えば、ユーザがディスプレイと対話するために、またはディスプレイの位置に基づいてコンテンツを調整するために、使用することが出来る。より具体的な例は、ディスプレイが回転式オフィスチェアに取り付けられている場合(例えば、図11Bおよび11Cを参照)、そしてユーザが椅子を回転させると、センサ108によって与えられる位置特定データに基づいて、ディスプレイの内容がデジタル的に変化する場合である。これは、ディスプレイの物理サイズにデジタル拡張を提供し、そして様々なデジタルファイルを様々な位置に配置するために使用することが出来る。別の例は、ライトフィールドにより、観察者が対話することが出来る3Dオブジェクトが提供される場合、およびセンサ108を使用して、対話に関する情報をキャプチャしそしてそれをディスプレイシステムにフィードバックして、ユーザに表示されるべきコンテンツを決定することができる場合である。
【0054】
図10Bの実施形態では、(前述の他の実施形態のディスプレイ部と同様のものとすることが出来る)ディスプレイ部2は、1つまたは複数の剛性部材111または同様のオブジェクトによって、肩当て110に取り付けられている。この肩当て110は、例えば、バックパックのようなオブジェクトにおいて広く見出される肩ストラップと同様のものとすることが出来る。また、この肩当ては、画像のレンダリングを支援するために、コンピュータ45(図4)または別のコンピュータ(図示せず)を含んでいても良い。これに代えて、この肩当て110は、このようなコンピュータを収容することが出来るネックレスのようなオブジェクト(図示せず)を含むことが出来る。
【0055】
図10Cの実施形態では、(他の実施形態のディスプレイ部と同様のものとすることが出来る)ディスプレイ部2は、眼鏡のような構造112内に含ませることが出来る。ディスプレイ部2は、ユーザの視域の一方の端からユーザの視域の反対側の端まで、またはユーザの一方の眼から他方の眼まで機能する単一の連続リレー光学系を含んでいても良い。3次元知覚は、単一のディスプレイに適用される裸眼立体視メカニズムによって提供させても良い。
【0056】
図10Dの実施形態では、ディスプレイ部2を、タブレットまたはノートブックのようなコンピューティングデバイス114に収納することが出来るようにして、(他の実施形態のディスプレイ部と同様のものとすることが出来る)ディスプレイ部2は、1つまたは複数の剛性部材によって、タブレットまたはノートブックタイプのコンピューティングデバイス114に取り付けることが出来る。図10Eに示されるこの実施形態の変形例では、ディスプレイのコンテンツエンジンは、携帯電話、タブレット、ポータブルスクリーンパネル、または他の同様のオブジェクトのようなスマートデバイス115に含めることが出来る。
【0057】
図11A~11Cは、本願で紹介する技術の別の実施形態のセットを示している。図11Aの実施形態では、スタンド3のベース5は、ディスプレイシステムを使用している間に、ユーザが横になることが出来るように、ベッドまたは他の同様のオブジェクトに取り付けまたはマウントすることができる。図11Bの実施形態では、スタンド3は、椅子119、ソファ、または他の同様のオブジェクトのヘッドレストまたは背もたれに取り付けまたはマウントされ、ユーザが、スタンドのベースを置くことが出来る机またはテーブルが存在しない状況で、本願で紹介する技術を利用することを可能にする。いくつかの実施形態では、ディスプレイシステムは、遊園地の乗り物と同様に、椅子の動きを、ディスプレイ部から表示される画像コンテンツと連動させて同期させることが出来る他のセンサおよび/または機械的アクチュエータを含むことが出来る。図11Cに示される図11Bの実施形態の変形例では、ディスプレイ部2は、図11Bと同じようにスタンド3によって支持および/または懸架されていて、眼鏡のようにユーザの顔に装着することが出来る。
【0058】
図12は、ディスプレイ部2が、ユーザが装着するウェアラブル眼鏡122を含む、さらに別の実施形態を示している。ウェアラブル眼鏡122は、単純なレンズとすることが出来る。これに代えて、ウェアラブル眼鏡122は、立体情報を異なる偏光に符号化するスクリーンと共働して3次元コンテンツを提供する、交差偏光フィルムをレンズ上に含むことが出来る。これに代えて、ウェアラブル眼鏡122は、視野の奥行きを増加させて、ユーザのヘッドを、光学焦点を失うことなくディスプレイ部に近づけたり遠ざけたりすることができるように、直列の複数のレンズを含むことが出来る。
【0059】
特定の実施態様の例
本願で紹介する技術の特定の実施形態は、以下の番号が付けられた例に要約されている。
【0060】
1.
光線を集合的に射出または伝送して第1の画像を形成するように、講じられているディスプレイ、および前記ディスプレイに光学的に結合されていて、そして前記ディスプレイからの前記光線を、前記第1の画像に基づいて仮想画像を形成し、そして人間の観察者が前記仮想画像を視覚しているときに前記人間の観察者の両眼を同時に包含する、単一の隣接するライトフィールドに、構成するように、講じられている光学サブシステム、を備えるディスプレイシステムであって、前記ディスプレイおよび前記ディスプレイ光学サブシステムが、前記人間の観察者の前記眼から少なくとも10cmの位置に配置されている間、前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍である、ディスプレイシステム。
【0061】
2.
前記ディスプレイシステムが、前記ディスプレイから少なくとも10cmの位置にあり、そして前記ディスプレイから60cm以下の位置にある前記人間の観察者に対し、意図されている視点を有する、例1に記載のディスプレイシステム。
【0062】
3.
対角線で少なくとも45度の視域を提供するように、講じられている、例1に記載のディスプレイシステム。
【0063】
4.
前記人間の観察者からの前記仮想画像の単眼奥行きが、前記人間の観察者からの前記ディスプレイの実際の奥行きよりも大きくなるになるように、講じられている、例1に記載のディスプレイシステム。
【0064】
5.
前記人間の観察者からの前記仮想画像の前記単眼奥行きが、前記人間の観察者からの前記ディスプレイの実際の奥行きの少なくとも5倍になるように、講じられている、例4に記載のディスプレイシステム。
【0065】
6.
前記ライトフィールドが、前記人間の観察者の視覚基準枠内で水平方向に少なくとも20cm延在する、隣接する空間領域に前記画像を形成し、そして前記人間の観察者の各眼が、前記隣接する空間領域内の任意の場所で前記ディスプレイの単眼奥行きを検出することが出来るように、講じられている、例1に記載のディスプレイシステム。
【0066】
7.
前記光学サブシステムが、同心ライトフィールドとして前記ライトフィールドを生成するために湾曲ミラーを備える、例1に記載のディスプレイシステム。
【0067】
8.
前記光学サブシステムが、共役、回折、またはナノ構造のミラーを備える、例1に記載のディスプレイシステム。
【0068】
9.
前記光学サブシステムが、仮想画像のサイズまたは奥行きを調整するように、講じられている準備光学系、および前記準備光学系から前記光線を受け取り、そして前記光線を前記ディスプレイシステムの射出瞳にリレーするように、講じられているリレー光学系を備える、例1に記載のディスプレイシステム。
【0069】
10.
前記準備光学系が、100度未満の通過角で指向性光伝送を実行するための層を備える、例9に記載のディスプレイシステム。
【0070】
11.
前記準備光学系が、前記光線束の軌道を変調して、前記仮想画像の焦点面を変更するためのフィールド展開(FE)キャビティを含む、例9に記載のディスプレイシステム。
【0071】
12.
前記FEキャビティが、前記ディスプレイの異なるセクションを異なる奥行きに設定するように、講じられている、例11に記載のディスプレイシステム。
【0072】
13.
前記準備光学系が、レンズレットアレイを備える、例9に記載のディスプレイシステム。
【0073】
14.
前記ディスプレイおよび前記光学サブシステムが、さらに、ディスプレイ部内に収容されている調整可能なアームを備え、そして前記ディスプレイ部が、前記調整可能なアームの端部から懸架されている、例1に記載のディスプレイシステム。
【0074】
15.
前記調整可能なアームが、前記調整可能なアームの調整を可能にする複数の部材を備える、例14に記載のディスプレイシステム。
【0075】
16.
前記ディスプレイシステムの配置または方位情報を取得するためのセンサモジュール、および前記ディスプレイシステムの前記配置または方位情報に基づいて前記画像を変更するプロセッサを、さらに備える。例1に記載のディスプレイシステム。
【0076】
17.
前記ディスプレイおよび前記光学サブシステムを含むディスプレイ部を、さらに、備える、例1に記載のディスプレイシステムであって、前記ディスプレイが、平坦であり、そして光線を視域に射出または伝送するために、前記ディスプレイシステムの視域に隣接しそしてその外側にあるように、講じられていて、そして前記光学サブシステムが、前記ディスプレイ部の内部背面を形成する、またはその上にあるように、講じられている湾曲ミラー、および前記ディスプレイの出力面に対して鋭角で前記視域内にあるように、講じられているビームスプリッタであって、前記ビームスプリッタが、前記ディスプレイからの前記光線を前記湾曲ミラーに向かって反射させ、前記湾曲ミラーが前記光線を反射させて前記ビームスプリッタに戻し、前記ビームスプリッタが、次で、前記湾曲ミラーで反射された前記光線を前記ディスプレイシステムの出射瞳に向けて伝送するように、講じられている、ビームスプリッタを含む、ディスプレイシステム。
【0077】
18.
前記ディスプレイが、湾曲していて、そして前記人間の観察者がディスプレイを視覚しているときに、前記人間の観察者の視線内に配置されている、例1に記載のディスプレイシステムであって、前記光学サブシステムが、前記ディスプレイよりも前記人間の観察者の意図された視覚位置の近くにあるように、講じられている一対の湾曲4分の1波長板であって、少なくとも1つの前記湾曲4分の1波長板が、前記ディスプレイに隣接している、一対の湾曲4分の1波長板、および前記人間の観察者の前記意図した視線内で前記4分の1波長板の間にあるように、講じられている湾曲半反射ミラー、を含む、例1に記載のディスプレイシステム。
【0078】
19.
前記光学サブシステムが、さらに、前記人間の観察者の前記意図された視覚位置に最も近い前記4分の1波長板の1つの表面上にある湾曲液晶板、および前記液晶板の表面にある湾曲偏光素子を含む、例18に記載のディスプレイシステム。
【0079】
20.
調整可能なアームの前記配置の調整を可能にするための複数の部材を含む調整可能なアーム、およびディスプレイ部の配置および方位が調整可能であるように、前記調整可能なアームに結合されそして前記調整可能なアームから懸架されている、ディスプレイおよび光学サブシステムを含むディスプレイ部を、さらに備える、例1に記載のディスプレイシステム。
【0080】
21.
前記ディスプレイ部が結合されているまたは結合することが出来るベースを、さらに備え、前記ベースが、家具のアイテムに取り外し可能となるように設計されている、
例1に記載のディスプレイシステム。
【0081】
22.
前記ディスプレイ部が結合されているまたは結合することが出来るベースを、さらに備え、前記ベースが、前記人間の観察者の胴体に取り外し可能に取り付け可能となるように設計されている、
例1に記載のディスプレイシステム。
【0082】
23.
コンテンツエンジンからの画像コンテンツに基づいて、集合的に第1の画像を形成する光線を射出または伝送するように、講じられているディスプレイ、および湾曲ミラーおよび前記湾曲ミラーに光学的に結合された受動的指向性光学素子を含む、前記ディスプレイに光学的に結合されている光学サブシステムであって、前記光学サブシステムが、前記ディスプレイからの前記光線を、前記第1の画像に基づいて仮想画像を形成しそして前記人間の観察者の各眼による単眼奥行きの同時検出を可能にする、単一の隣接する同心ライトフィールドに、構成するように、講じられていて、前記ディスプレイシステムが、少なくとも10cmの距離にありそして前記ディスプレイから60cm以下の距離にありそして対角線上に少なくとも45度の視域を提供する、前記人間の観察者に対して設計された視点を有するように、前記ライトフィールドが、講じられていて、前記ディスプレイが、さらに、前記人間の観察者が、前記設計された視点に位置するとき、前記仮想画像の単眼奥行きが、前記ディスプレイの実際の奥行きよりも大きく、そして前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍であるように、前記ライトフィールドが、講じられている、光学サブシステム、を備えるディスプレイシステム。
【0083】
24.
前記光学サブシステムが、前記同心ライトフィールドを生成するための湾曲ミラーを備える、例23に記載のディスプレイシステム。
【0084】
25.
前記光学サブシステムが、前記仮想画像のサイズまたは奥行きを調整するように、講じられている準備光学系、および前記準備光学系から前記光線を受け取り、そして前記光線を前記ディスプレイシステムの射出瞳にリレーするように、講じられているリレー光学系、を備える、例24に記載のディスプレイシステム。
【0085】
26.
前記準備光学系が、前記仮想画像の焦点面を修正するために光線束の軌道を変調または変更するためのフィールド展開(FE)キャビティを含む、例25に記載のディスプレイシステム。
【0086】
27.
ディスプレイシステムによってコンテンツを表示する方法であって、ディスプレイシステムにおいて、第1の画像を示す電子信号を取得するステップ、前記ディスプレイシステム内のディスプレイによって、集合的に前記第1の画像を形成する光線を生成するステップ、そして前記光線を、人間の観察者の両眼を同時に包含しそして前記第1の画像に基づいて仮想画像を形成する単一の隣接するライトフィールドに構成するステップであって、前記ライトフィールドが、前記人間の観察者の各眼による、単眼奥行きの同時検出を可能にし、前記ディスプレイが前記人間の観察者の眼から少なくとも10cmの位置に配置されている間、前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍であるように、前記ライトフィールドが、講じられている、ステップ、を備える方法。
【0087】
28.
前記人間の観察者にとっての前記画像の最適な視点が、前記ディスプレイから少なくとも10cmの距離で、そして前記ディスプレイから60cm以下の距離にある、例27に記載の方法。
【0088】
29.
前記仮想画像の焦点面を変更するために光線束の軌道を変調するために、フィールド展開(FE)キャビティを使用することをさらに備える、例27に記載の方法。
【0089】
30.
前記光線を処理することが、共役、回折、またはナノ構造の湾曲ミラーを使用することを備える、例25に記載の方法。
【0090】
31.
第1の画像を示す電子信号を取得するための手段と、集合的に前記第1の画像を形成する光線を生成するための手段、前記光線を、人間の観察者の両眼を同時に包含しそして前記第1の画像に基づいて仮想画像を形成する単一の連続するライトフィールドに構成する手段であって、前記ライトフィールドが、前記人間の観察者の各眼によって、単眼奥行きの同時検出を可能にし、前記ライトフィールドが、ディスプレイが前記人間の観察者の眼から少なくとも10cmの位置に配置されている間、前記人間の観察者にとっての前記ディスプレイの知覚的サイズが、前記ディスプレイの実際のサイズの少なくとも2倍となるように、講じてある手段、を備えるディスプレイシステム。
【0091】
32.
前記人間の観察者にとっての前記画像の最適な視点が、前記ディスプレイから少なくとも10cmの距離にありそして前記ディスプレイから60cm以下の距離にある、例31に記載のディスプレイシステム。
【0092】
33.
前記仮想画像の焦点面を修正するために光線束の軌道を変調するためにフィールド展開(FE)キャビティを使用するための手段をさらに備える、例31または例32に記載のディスプレイシステム。
【0093】
34.
前記光線を処理するための前記手段が、共役、回折、またはナノ構造の湾曲ミラーを備える、例31~33の何れかに記載のディスプレイシステム。
【0094】
上述した特徴および機能の何れかまたは全ては、上記に別段の記載がある場合、またはそのような実施形態がそれらの機能または構造のために互換性がない場合を除いて、互いに組み合わせることができることは、当業者には明らかであろう。物理的可能性に反しない限り、(i)本願に記載の方法/ステップは、任意の順序および/または任意の組み合わせで実行することが出来、そして(ii)それぞれの実施形態のコンポーネントは、任意の方法で組み合わせることができると想定される。
【0095】
主題は、構造的特徴および/または行為に固有の言語で説明されてきたが、添付の特許請求の範囲で定義される主題は、必ずしも上述した特定の特徴または行為に限定されないことを理解されたい。むしろ、上述した特定の特徴および行為は、特許請求の範囲を実施する例として開示され、他の同等の特徴および行為は、特許請求の範囲内にあることは、理解されるべきである。
【0096】
(関連出願への相互参照)
本出願は、2019年3月18日に出願された米国仮特許出願第62/820,096第07/09,096号の利益を主張し、その全体は、参照により本願に組み込まれている。
【0097】
本出願は、2020年2月18日に出願された米国仮特許出願第07/09,096号の利益を主張し、その全体は、参照により本願に組み込まれている。
図1
図2
図3
図4
図5A
図5B
図5C
図5D
図6
図7A
図7B
図7C
図7D
図8A
図8B
図8C
図9A
図9B
図9C
図10A
図10B
図10C
図10D
図10E
図11A
図11B
図11C
図12
図13A
図13B
図14
図15A
図15B
図15C
図16
図17