IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイシンの特許一覧 ▶ 有限会社メカノトランスフォーマの特許一覧

特許7474429搬送物の気流制御システム及びこれを用いた搬送装置
<>
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図1
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図2
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図3
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図4
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図5
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図6
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図7
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図8
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図9
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図10
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図11
  • 特許-搬送物の気流制御システム及びこれを用いた搬送装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-17
(45)【発行日】2024-04-25
(54)【発明の名称】搬送物の気流制御システム及びこれを用いた搬送装置
(51)【国際特許分類】
   B65G 47/24 20060101AFI20240418BHJP
【FI】
B65G47/24 F
【請求項の数】 14
(21)【出願番号】P 2021131097
(22)【出願日】2021-08-11
(65)【公開番号】P2023025768
(43)【公開日】2023-02-24
【審査請求日】2022-12-05
(73)【特許権者】
【識別番号】599069507
【氏名又は名称】株式会社ダイシン
(73)【特許権者】
【識別番号】502254796
【氏名又は名称】有限会社メカノトランスフォーマ
(74)【代理人】
【識別番号】100100055
【弁理士】
【氏名又は名称】三枝 弘明
(72)【発明者】
【氏名】神戸 祐二
(72)【発明者】
【氏名】吉田 朋彦
(72)【発明者】
【氏名】渡邊 友幸
(72)【発明者】
【氏名】徐 世傑
(72)【発明者】
【氏名】矢野 健
(72)【発明者】
【氏名】矢野 昭雄
【審査官】内田 茉李
(56)【参考文献】
【文献】特開2017-080700(JP,A)
【文献】特開2007-099481(JP,A)
【文献】特開2017-081722(JP,A)
【文献】特開2006-335487(JP,A)
【文献】特開2016-098093(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B65G 47/24
(57)【特許請求の範囲】
【請求項1】
搬送路に沿って搬送される搬送物を気流によって制御するシステムであって、
気流源から延在する気流経路に接続されて前記搬送路に臨む噴気口と、
駆動信号を受けることにより該駆動信号の駆動波形に対応する開閉態様で前記気流経路を開閉可能に構成された開閉弁と、
前記搬送路上において前記噴気口に向かう前記搬送物を検出する搬送物検出器の検出態様に応じて判定を行う搬送物判定部と、
前記搬送物判定部の判定結果が前記搬送物の気流による制御を要する結果である場合には、前記判定結果に応じた前記駆動波形を備える前記駆動信号を出力し、前記駆動波形に対応する駆動態様により、前記搬送物が前記噴気口に臨むタイミングで前記開閉弁を開閉制御可能に構成された開閉弁制御駆動部と、
を具備し、
前記開閉弁制御駆動部は、前記判定結果に応じた前記駆動波形を生成し、前記駆動波形に基づいて前記駆動信号を形成することにより、複数の前記判定結果に応じて相互に異なる複数種の前記駆動波形に基づいて経時的要素が変化する複数種の前記駆動信号を出力可能に構成される、
搬送物の気流制御システム。
【請求項2】
前記搬送物判定部において複数の前記判定結果のうちの特定の前記判定結果が得られたときには、前記開閉弁制御駆動部は、既定の駆動情報に応じて、前記駆動信号を出力しない、請求項1に記載の搬送物の気流制御システム。
【請求項3】
前記開閉弁制御駆動部は、
既定の駆動情報に応じた前記判定結果に対応する駆動要素データを含む指令信号を前記タイミングに整合させて出力する開閉弁制御部と、
前記指令信号を受けたときに前記開閉弁を駆動するために前記駆動要素データに対応する前記駆動波形を備える前記駆動信号を出力する開閉弁駆動部と、
を有する、
請求項1又は2に記載の搬送物の気流制御システム。
【請求項4】
前記開閉弁駆動部は、
前記駆動要素データに対応する前記駆動波形を生成する駆動波形生成部と、
前記駆動波形を備える前記駆動信号を前記開閉弁に出力する駆動信号出力部と、
を有する、
請求項3に記載の搬送物の気流制御システム。
【請求項5】
前記駆動要素データは、前記駆動波形の態様を表現する数値を示す、
請求項3又は4に記載の搬送物の気流制御システム。
【請求項6】
前記気流経路の気流の態様を検出する気流態様検出器と、
前記開閉弁が開弁状態にあるときの前記気流態様検出器の検出態様に基づいて前記開閉弁制御駆動部による前記開閉弁の開閉制御の態様を修正する開閉弁駆動態様修正部と、
をさらに具備する、
請求項1-5のいずれか一項に記載の搬送物の気流制御システム。
【請求項7】
システム全体を管理する制御部と、予め設定された前記開閉弁の駆動態様を示す駆動情報を記憶する記憶部とをさらに具備し、
前記駆動情報は、前記駆動信号に備わる駆動波形に対応する複数の駆動要素データセットを含み、
前記開閉弁制御駆動部は、前記制御部により出力された、前記駆動情報から選択された1又は複数の駆動要素データセットのうち、前記判定結果に対応する駆動要素データに基づいて前記駆動波形を生成し、前記駆動波形を備える前記駆動信号を出力する、
請求項1、2又は6に記載の搬送物の気流制御システム。
【請求項8】
前記経時的要素は、前記駆動信号の駆動パルスの数である、
請求項1-7のいずれか一項に記載の搬送物の気流制御システム。
【請求項9】
前記経時的要素は、前記駆動信号のデューティー比である、
請求項1-8のいずれか一項に記載の搬送物の気流制御システム。
【請求項10】
前記経時的要素は、前記駆動信号の時間幅である、
請求項1-9のいずれか一項に記載の搬送物の気流制御システム。
【請求項11】
前記開閉弁制御駆動部は、前記判定結果に応じて強度が変化する複数種の前記駆動信号を出力可能に構成される、
請求項1-10のいずれか一項に記載の搬送物の気流制御システム。
【請求項12】
前記開閉弁は圧電バルブである、
請求項1-11のいずれか一項に記載の搬送物の気流制御システム。
【請求項13】
請求項1-12のいずれか一項に記載の搬送物の気流制御システムと、
前記搬送路に沿って前記搬送物を搬送する搬送機構と、
を具備する搬送装置。
【請求項14】
前記搬送機構は、前記搬送路を振動させることにより前記搬送物を搬送する、
請求項13に記載の搬送装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は搬送物の気流制御システム及びこれを用いた搬送装置に関する。
【背景技術】
【0002】
従来から、パーツフィーダなどの搬送装置において、搬送路上で搬送物を搬送する途中で、不正な姿勢などを備える搬送物を搬送路から排除したり、或いは、搬送物の姿勢を反転させたりするために、搬送物に対してエアなどの気流を吹き付ける場合がある。搬送路の搬送面には上記気流を噴出するための噴気口が設けられ、この噴気口と搬送物との位置関係により、搬送物が搬送路上から吹き飛ばされたり、搬送物が搬送路上で回転したりする。このような搬送物に対して気流を作用させるといった搬送物の気流制御システムや搬送装置としては、以下の特許文献1に記載されたものが知られている。
【0003】
上記のような搬送装置では、一般に、エアコンプレッサやエアボンベなどの圧縮空気などの気流供給源から開閉弁を介して上記噴気口へ気流を供給する気流経路が樹脂チューブなどの気流配管により設けられる。このとき、開閉弁の手前(気流供給源の側)にニードルによってエア圧を制御可能に構成された、スピードコントローラとしても用いられるニードル弁(絞り弁)を取り付け、このニードル弁のニードルのねじ込み量を手動で設定することにより、開閉弁に供給されるエア圧、或いは、開弁時に流れるエア流量を調整している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2006-335487号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、上記従来の搬送装置では、近年、ミリサイズやマイクロサイズなどの微細な電子部品を搬送する場合があったり、搬送物を高速に供給することが要求される場合があったりすることから、噴気口から吹き付けられる気流の圧力や流量の調整が困難になってきている。例えば、気流の圧力や流量が不足すると搬送物の排除や反転が生じなくなって搬送物の選別不良を招くという問題がある。また、気流の圧力や流量が過剰になると、気流を吹き付ける必要のない前後の搬送物まで吹き飛ばしたり反転させたりしてしまうことがあることから、搬送物の供給効率の低下を招くという問題がある。特に、搬送装置がパーツフィーダなどの振動式搬送装置である場合には、搬送物が振動を受けて搬送されていくことから不安定な状態にあるため、気流の圧力や流量の設定次第で問題が生ずる確率が増大する。
【0006】
一方、駆動電圧・電流の比例制御により開閉弁の弁開度を調整することによって搬送物の気流制御の態様を調整する場合も考えられるが、前述の微細な搬送物を高速に選別するためには、高速に開閉可能な開閉弁が要求されるようになっているため、このような高速な開閉弁では、弁開度の比例制御で搬送物が受ける気流の態様を正確に再現できず、必ずしも良好な搬送物の気流制御の態様を実現できないという問題がある。例えば、圧電バルブは高速に動作するものの、温度特性やヒステリシス特性を備えることにより、搬送物の気流制御の態様を高精度かつ再現性良く実現することが難しい。
【0007】
そこで、本発明は上記問題を解決するものであり、その課題は、搬送物の種類、搬送条件、搬送物に対する制御態様等に応じて気流の圧力や流量等の供給態様を広範囲に設定可能に構成することにより、搬送物の状況に応じた気流による制御態様を実現可能とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の搬送物の気流制御システムは、搬送路に沿って搬送される搬送物を気流によって制御するシステムであって、気流源から延在する気流経路に接続されて前記搬送路に臨む噴気口と、駆動信号を受けることにより該駆動信号の駆動波形に対応する開閉態様で前記気流経路を開閉可能に構成された開閉弁と、前記搬送路上において前記噴気口に向かう前記搬送物を検出する搬送物検出器の検出態様に応じて判定を行う搬送物判定部と、前記搬送物判定部の判定結果が前記搬送物の気流による制御を要する結果である場合には、前記判定結果に応じた前記駆動波形を備える前記駆動信号を出力し、前記駆動波形に対応する駆動態様により、前記搬送物が前記噴気口に臨むタイミングで前記開閉弁を開閉制御可能に構成された開閉弁制御駆動部と、を具備する。ここで、前記開閉弁制御駆動部は、前記判定結果に応じた前記駆動波形を生成し、前記駆動波形に基づいて前記駆動信号を形成することにより、複数の前記判定結果に応じて相互に異なる複数種の前記駆動波形に基づいて前記駆動信号を出力可能に構成される。
【0009】
本発明によれば、搬送物の判定結果に応じた駆動波形を備える駆動信号により、開閉弁が当該駆動波形に対応する開閉態様で開閉する。このため、気流経路に沿って供給される気流の態様を判定結果に応じた上記駆動波形に対応する態様に制御できることから、判定結果に適合した気流の態様により、搬送物に対する気流による制御態様を広範囲に設定することができる。この場合に、上記判定結果と駆動波形との関係は、前記搬送物の種類、搬送条件、搬送物に対する制御態様などに応じて予め定められる駆動情報として設定されることが好ましい。この駆動情報(DAI)は、複数の駆動要素データセット(DAS)を有することが好ましい。ここで、各駆動要素データセット(DAS)は、判定結果(S)に対応する複数の駆動要素データ(DA)を含む。また、開閉弁制御駆動部による開閉弁の開閉制御により、駆動信号(D)の駆動波形(W)に対応した気流波形(V)が噴気口から搬送物に吹き付けられることが望ましい。
【0010】
本発明において、前記搬送物判定部において特定の前記判定結果が得られたときには、前記開閉弁制御駆動部は、既定の駆動情報に応じて、前記駆動信号を出力しないことが好ましい。ここで、当該規定の駆動情報(DAI)のうち、上記特定の判定結果(S)に対応する駆動要素データ(DA)は、駆動波形(W)の駆動要素を0(又は無効)とするものであることが望ましい。
【0011】
本発明において、前記開閉弁制御駆動部は、既定の駆動情報に応じて前記判定結果に対応する駆動要素データを含む指令信号を前記タイミングに整合させて出力する開閉弁制御部と、前記指令信号を受けたときに前記開閉弁を駆動するために前記駆動要素データに対応する前記駆動波形を備える前記駆動信号を出力する開閉弁駆動部と、を有することが好ましい。この場合において、前記開閉弁駆動部は、前記駆動要素データに対応する前記駆動波形を生成する駆動波形生成部と、前記駆動波形を備える前記駆動信号を前記開閉弁に出力する駆動信号出力部とを有することが望ましい。
【0012】
本発明において、前記駆動要素データは、前記駆動波形の態様を表現する数値を示すことが好ましい。例えば、当該数値としては、駆動波形の高さ、時間幅、デューティー比、パルス数などを表現する数値が挙げられる。
【0013】
本発明において、前記気流経路の気流の態様を検出する気流態様検出器と、前記開閉弁が開弁状態にあるときの前記気流態様検出器の検出態様に基づいて前記開閉弁制御駆動部による前記開閉弁の開閉制御の態様を修正する開閉弁駆動態様修正部と、をさらに具備することが好ましい。この場合において、前記開閉弁駆動態様修正部は、前記開閉弁が開弁状態にあるときの前記気流態様検出器の検出態様に応じて前記駆動情報(駆動要素データセット、或は、駆動要素データ)を修正することが望ましい。また、前記気流態様検出器は、前記開閉弁と前記噴気口の間の前記気流経路の気流の態様を検出することが望ましい。
【0014】
本発明において、前記開閉弁制御駆動部は、前記判定結果に応じて経時的要素が変化する複数種の前記駆動信号を出力可能に構成されることが好ましい。ここで、駆動信号の経時的要素とは、駆動パルスの数、デューティー比、時間幅などの時間的変動態様を示す駆動態様の要素をいう。駆動信号の経時的要素を変化させることにより、開閉弁の開閉態様の時間的変動態様を変化させることができるので、気流の強さ(圧力や流量)以外の観点で気流を調整することにより、搬送物の位置や姿勢をさらに容易かつ精密に制御することが可能になる。
【0015】
本発明において、前記開閉弁制御駆動部は、前記判定結果に応じて強度が変化する複数種の前記駆動信号を出力可能に構成されることが好ましい。上記経時的要素の如何に拘わらず、駆動信号の強度は気流の圧力や流量に直接変化させることができるため、気流の態様を最も大きく変化させる要素である。
【0016】
本発明において、前記開閉弁は、圧電バルブであることが好ましい。これによれば、開閉態様の制御・駆動を高速に行うことができるため、搬送物の高速搬送や高密度搬送にも容易に対応することが可能になる。
【0017】
次に、本発明に係る搬送装置は、上記の搬送物の気流制御システムと、前記搬送路に沿って前記搬送物を搬送する搬送機構と、を具備することが好ましい。この場合において、前記搬送機構は、前記搬送路を振動させることにより前記搬送物を搬送することが望ましい。
【発明の効果】
【0018】
本発明によれば、開閉弁制御駆動部による開閉弁に対する開閉制御により、気流の圧力や流量を、搬送物の種類、搬送条件、搬送物に対する制御態様等に応じて広範囲に設定可能に構成することにより、搬送物の状況に応じた気流による制御態様を実現可能とし、最終的に、搬送物の選別不良や供給効率の低下を防止することができる。
【図面の簡単な説明】
【0019】
図1】本発明に係る搬送物の気流制御システム及び搬送装置の第1実施形態の全体構成例を模式的に示す概略構成図である。
図2】各実施形態の搬送物の外観と搬送物に対する判定結果に対応する搬送姿勢を示す説明図(a)-(d)である。
図3】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図4】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図5】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図6】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図7】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図8】各実施形態の駆動信号(a)及び各駆動信号に対応する気流態様(b)の例を対応させて示す説明図である。
図9】第2実施形態の全体構成例を模式的に示す概略構成図である。
図10】各実施形態に用いることのできる動作プログラムの手順を示す概略フローチャートである。
図11】第2実施形態において用いられる開閉弁駆動態様修正部の手順の例を示す概略フローチャートである。
図12】開閉弁として好適な圧電バルブの一例を示す概略断面図(a)及び側面図(b)である。
【発明を実施するための形態】
【0020】
次に、添付図面を参照して本発明の実施形態について詳細に説明する。最初に、図1及び図2を参照して、本発明に係る搬送物の気流制御システム及び搬送装置の第1実施形態の全体構成例を説明する。ここで、図1は本実施形態の全体構成例を模式的に示す概略構成図、図2は本実施形態の気流による制御対象となる搬送物の例を示す説明図(a)-(d)である。
【0021】
本実施形態の搬送装置100は、搬送路121(搬送面121a、121b)に沿って搬送物Pを搬送するように構成された搬送機構120に用いられる搬送物の気流制御システムを有する。搬送機構120は、詳細な図示を省略するが、例えば、振動式搬送装置としての公知のパーツフィーダやリニアフィーダなどによって構成される。図示例では、一つの搬送路121において、それぞれ搬送面121bの一部に噴気口122が開口し、この噴気口122から吹き付けられる気流により搬送物Pの搬送位置や搬送姿勢が制御される例を示してある。搬送機構120は、搬送コントローラ113により搬送駆動部114を制御・駆動することによって搬送路121に沿って搬送物Pが搬送されるように構成される。本実施形態では、搬送駆動部114としては電磁駆動体や圧電駆動体が用いられ、搬送路121を所定の振動周波数、振幅、振動方向で振動させることによって、搬送路121上の搬送物Pが個々に前進するようになっている。搬送コントローラ113は、搬送装置100の全体を管理する制御部111によって制御される。
【0022】
本実施形態の搬送物の気流制御システムには、エアコンプレッサ等の気体圧縮機構やガスボンベなどの圧縮エア等を供給する気流供給源(気流源)101と、気流の圧力を制御するレギュレータ102と、このレギュレータ102に接続されるエアチューブなどの気流配管103と、この気流配管103に接続される電磁弁や圧電バルブなどの開閉弁104と、開閉弁104に接続されるエアチューブなどの気流配管105と、気流配管105に接続され、上記搬送機構120の上記搬送路121を構成する搬送ブロックに形成された気流通路120aとからなる気流経路が形成される。この気流経路では、開閉弁104の開閉態様に応じて気流の態様が制御され、上記気流通路120aの出口である噴気口122における搬送物Pに対する気流の吹付け態様が定まる。この気流経路における気流の態様とは、気流の圧力、気流の流量、気流の流速、気流の継続時間などの、気流の経時的な変動態様をも含めた様子をいう。
【0023】
上記開閉弁104としては、高速に開閉動作を行うことができる開閉弁を用いることが好ましく、特に、圧電体の変形を利用して気流経路を開閉する圧電バルブを用いることが好ましい。例えば、図12に示す圧電バルブ134では、筐体134a内において、入口134bに連通した内部空間134cに収容固定された支持体134dと一対の傾動アーム134eに両端が接続された圧電体134fを備える。傾動アーム134eは、圧電体134fと支持体134dにそれぞれ傾動可能に支持される。一対の傾動アーム134eはそれぞれ弾性体134gを介して弁体134hを保持している。傾動アーム134e及び弾性体134gは圧電体134fの変位拡大機構を構成し、弁体134hを駆動する。駆動部134DRから与えられる電圧により生ずる圧電体134fの長手方向の伸縮に応じて、上記一対の傾動アーム134eが内外に傾動することによって弾性体134gを介して弁体134hが移動し、内部空間134cの出口134iを開閉させる。
【0024】
なお、開閉弁104としては、気流経路を実際に閉鎖できるものに限らず、実質的に閉鎖した場合と同等の状態を実現できるものであればよい。例えば、気流経路を外部(大気)に開放可能に構成され、開放時に気流が外部(大気)に流れることによって気流経路の下流側に気流が流れにくくなるように構成したものであっても構わない。
【0025】
一方、搬送路121の噴気口122が設けられた上記箇所121bの上流側に隣接する搬送物検出箇所には、カメラ等の画像取得装置109が設置されている。画像取得装置109は、上記搬送物検出箇所において搬送物Pを撮像し、その画像を搬送物判定部115に出力する。搬送物判定部115では、画像処理部115aにおいて上記画像に対し、搬送物Pの良否、搬送姿勢などを判別するための画像処理が行われる。例えば、画像の二値化、エッジ抽出、パターニング処理などである。この画像処理によって得られた情報から判定出力部115bは判定結果Sを出力する。この判定結果Sは、搬送物Pが良品であるか、不良品であるか、正常な搬送姿勢であるか、非正常な搬送姿勢であるか、複数の搬送姿勢のいずれであるか、などを示す情報である。この判定結果Sは開閉弁制御駆動部116に送出され、開閉弁制御駆動部116では、判定結果Sに応じた駆動信号Dを開閉弁104に送出し、開閉弁104を判定結果Sに応じた開閉態様となるように開閉制御することができる。ここでいう開閉態様とは、開閉弁104の弁開度、開弁時間、弁開度の時間的変動の状態などである。
【0026】
本実施形態の制御装置としては、MPU(マイクロプロセッサユニット)などの演算処理部を装備する制御部111と、後述する種々の駆動要素データセットDASを含む駆動情報DAIを格納する記憶部112とを有する。制御部111は、搬送物の気流制御システム全体を管理する。この制御部111は、必要に応じて、搬送コントローラ113を介して搬送機構120の制御をも行う。記憶部112は、各種メモリ等により構成され、搬送物の種類、搬送条件、気流による搬送物に対する制御態様などの状況に応じて予め設定された開閉弁104の駆動態様を示す駆動情報DAIを記憶する。この駆動情報DAIは、駆動信号Dに備わる駆動波形Wに対応する複数の駆動要素データセットDASを含む。駆動要素データセットDASは、より具体的には、例えば、搬送物Pの種類(製品番号、サイズ、形状、重量、密度等を示す値等)、搬送条件(搬送機構120の駆動周波数、駆動電圧、搬送速度、搬送密度等)、搬送物Pの気流による制御の態様(搬送路121上からの搬送物Pの排除、搬送物Pの反転等の搬送姿勢の変更(変更角度量を含む。)等)、搬送物Pに対する気流の吹付条件(搬送路上の搬送物Pに対する噴気口の開口大きさ、開口形状、開口位置、開口高さ、開口向き等)などに応じて開閉弁の駆動波形を定めるためのデータ(駆動要素データDA)の集合体である。駆動要素データセットDASは、さらに、搬送物判定部115が出力する複数の判定結果Sのそれぞれに対応する複数の駆動要素データDAを備える。
【0027】
図2は、本実施形態の搬送物判定部115によって判定される搬送物Pの搬送姿勢を説明するための図(a)-(d)である。本実施形態では、搬送路121上の搬送物Pの四つの姿勢を、図2(a)に示す正規の姿勢P0に揃えることを目的とし、図2(b)-(d)に示す他の姿勢P1-P3を修正するために、噴気口122から気流を吹き付ける例を示す。なお、搬送物Pは直方体状に構成されることから、搬送路121上の搬送方向前後の姿勢も考慮すれば、搬送姿勢は全部で8種類となるが、本実施形態では、搬送物Pの搬送方向前後の姿勢は搬送路121上の別の場所で制御するものとする。
【0028】
搬送物Pは、搬送方向の両端に電極部Pa、Pbが設けられ、これらの電極部PaとPbの間の側面部Pcの一つの側面に他の表面と異なる外観のマーク部Pdを備える。上記画像取得装置109は、側面部Pcのうち、搬送路121の搬送面121aと121bにそれぞれ対向する二つの側面を除いた残りの二つの側面を撮影可能となるように設置される。正規の搬送姿勢P0は、図2(a)に示すように搬送面121b側にある側面にマーク部Pdが表れる姿勢である。また、他の搬送姿勢P1は、図2(b)に示すように、側面部Pcのうち、搬送面121bに対面する側面にマーク部Pdが存在する姿勢である。この姿勢は、側面部Pcのうち、搬送面121a,121bに対面しない二つの側面のいずれにもマーク部Pdが表れず、かつ、搬送面121bの側にマーク部Pdの側縁Pdsを画像取得装置109によって認識することができる場合に、判定される。さらに、他の搬送姿勢P2は、図2(c)に示すように、側面部Pcのうち、搬送面121aに対面する側面にマーク部Pdが存在する姿勢である。この姿勢は、側面部Pcのうち、搬送面121a,121bに対面しない二つの側面のいずれにもマーク部Pdが表れず、かつ、搬送面121aの側にマーク部Pdの側縁Pdtを画像取得装置109によって認識することができる場合に、判定される。また、他の搬送姿勢P3は、図2(d)に示すように、側面部Pcのうち、搬送面121a側に露出する側面にマーク部Pdが存在する姿勢である。この姿勢は、側面部Pcのうち、搬送面121a,121bに対面しない二つの側面のうちの搬送面121aの側に露出する側面にマーク部Pdが表れる場合に、判定される。また、上記P0-P3の4つの姿勢以外の残り4つの搬送姿勢(搬送方向前後の向きが逆の場合)は、一括してP4とする。
【0029】
搬送物判定部115は、制御部111から記憶部112に記憶されていた処理データを受け取り、この処理データに基づいて、画像取得装置109を作動させるとともに、画像取得装置109によって撮影され、取得された画像を画像処理部115aにおいて既定の処理態様に沿って処理する。また、判定出力部115bは、画像処理部115aによって得られた情報から搬送物Pの搬送姿勢P0-P4に対応する判定結果Sを出力する。この判定結果Sは、搬送物Pが上記搬送姿勢P0にあれば、例えば「0」であり、搬送物Pが上記搬送姿勢P1にあれば、例えば「1」であり、搬送物Pが上記搬送姿勢P2にあれば、例えば「2」であり、搬送物Pが上記搬送姿勢P3にあれば、例えば「3」であり、搬送物Pが上記搬送姿勢P4にあれば、例えば「4」である。判定結果Sは、このように数値(数字)であってもよいが、他の文字や記号であってもよく、特に限定されない。また、判定結果Sは、全てが同じ特性に関するものでなくてもよい。例えば、本実施形態では、上記搬送姿勢P0-P3のいずれの搬送姿勢でもない複数の搬送姿勢である場合を「4」としている。また、上記搬送姿勢の如何による判定方法に代えて、或いは、当該判定方法に加えて、搬送姿勢以外の他の観点、例えば、搬送物の損傷の有無や良品か不良品か、で判定するようにしてもよい。
【0030】
開閉弁制御駆動部116は、制御部111から記憶部112に記憶されていた駆動情報DIを受け取る。駆動情報選択部1161は、この駆動情報DIに基づいて上記搬送物判定部115から出力される判定結果Sに対応する駆動要素データDAを選択する。上記判定結果Sと駆動要素データDAとは予め所定の対応関係となるように関連付けられている。駆動情報DIに含まれる駆動要素データセットDASは、駆動波形Wを示す複数のパラメータのいずれか少なくとも一つであるとともに、各セットDASが複数の判定結果Sにそれぞれ対応する複数の駆動要素データDAを含む。例えば、駆動要素データセットDAS(Hv)は駆動波形Wの高さを示す複数のデータDA(Hv)で構成される。また、駆動要素データセットDAS(Tm)は駆動波形Wの時間幅を示す複数のデータDA(Tm)で構成される。さらに、駆動要素データセットDAS(Dt)は駆動波形Wのデューティー比を示す複数のデータDA(Dt)で構成される。また、駆動要素データセットDAS(Np)は駆動波形Wの駆動パルスの数を示す複数のデータDA(Np)で構成される。同時に用いられる駆動要素データセットDASは一つであっても複数であってもよい。指令信号出力部1162は、上記選択された駆動要素データセットDASに関し、搬送物判定部115から出力された判定結果Sに対応する駆動要素データDAを含む指令信号Cを出力する。上記駆動情報選択部1161及び指令信号出力部1162は、開閉弁制御部116Aに相当する。
【0031】
上記指令信号Cは開閉弁駆動部116Bの駆動波形生成部1163に入力され、駆動波形生成部1163は、指令信号Cに含まれる上記駆動要素データに基づいて駆動波形Wを生成する。この駆動波形Wの例は、図3図8に示される。なお、図3図8に示す各例では、搬送姿勢P0は正規の搬送姿勢であり、気流制御の必要なし、搬送姿勢P1は気流による90度反転、搬送姿勢P2は気流による180度反転、搬送姿勢P3は気流による270度反転をそれぞれ行い、搬送姿勢P4は気流により搬送路121上から排除する場合を想定している。これらの搬送物Pを回転させる気流の吹き付け態様、或いは、搬送物Pを排除する気流の吹き付け態様は、気流の強さ(圧力、流量など)と、気流の継続時間とに関係し、場合によっては、これら以外の気流の経時的な変動態様にも関係し得る。駆動波形Wは、アナログ増幅器などからなる駆動信号出力部1165に出力され、駆動信号出力部1165は、上記駆動波形Wに基づいた信号態様となるように、電力供給部1164から供給される電力を用いて駆動信号Dを形成する。以上のように、開閉弁制御駆動部116は、駆動要素データDA若しくは駆動要素データセットDASに基づいて、駆動信号Dを調整し、開閉弁104へ出力する。なお、駆動信号Dの出力タイミングは指令信号Cの出力タイミングと対応している。そして、指令信号Cの出力タイミングは、駆動信号Dの出力タイミングが判定対象とされた搬送物が噴気口122に臨む位置に配置されるタイミングと一致するように、予め、或いは、調整操作により、設定される。
【0032】
図3(a)は、駆動要素データセットDAS(Hv)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Hv)=0、S=1(P1)のときにDA(Hv)=20、S=2(P2)のときにDA(Hv)=30、S=3(P3)のときにDA(Hv)=40、S=4(その他)のときにDA(Hv)=100とする。この例では、判定結果Sに応じて駆動要素データDA(Hv)を増減し、駆動波形Wの高さ、すなわち、駆動信号Dの電圧値Hvを増減させている。そして、その結果、駆動要素データDAに基づいて開閉弁制御駆動部116により出力される駆動信号Dによって駆動される開閉弁104の開閉動作により、開閉弁104の開閉態様に対応して図3(b)に示す気流の圧力Pが増減する。図示例では、駆動要素データセットDAS(Hv)のみを選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの時間幅Tmは一定値であり、デューティー比Dtは1、駆動パルス数Npも1である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データはDA(Hv)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図3(b)に示すように、気流経路中の気流の態様(気流波形V)は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の強さ(圧力)Pは、駆動要素データHvの値に対応する駆動波形Wの高さに対応している。ただし、この例においても、判定結果に応じて、駆動要素データDA(Hv)に加えて、後述する駆動パルスの数、駆動信号のデューティー比、駆動信号の時間幅などの経時的な要素を変えるようにしても構わない。なお、このような複数種類の駆動要素データDAを適宜に組み合わせた駆動要素データセットDASに基づいて駆動波形Wや駆動信号Dを適宜に形成することができる点は、以下の図4図8に示す各例においても同様である。
【0033】
図4(a)は、駆動要素データセットDAS(Tm)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Tm)=0、S=1(P1)のときにDA(Tm)=20、S=2(P2)のときにDA(Tm)=30、S=3(P3)のときにDA(Tm)=40、S=4(その他)のときにDA(Tm)=100とする。図示例では、駆動要素データセットDAS(Tm)のみを選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの高さHvは一定値であり、デューティー比Dtは1、駆動パルス数Npも1である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データDA(Tm)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図4(b)に示すように、気流経路中の気流の態様(気流波形V)は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の継続時間は、駆動要素データDA(Tm)の値に対応する駆動波形Wの時間幅に対応している。
【0034】
図5(a)は、駆動要素データセットDAS(Dt)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Dt)=0、S=1(P1)のときにDA(Dt)=20、S=2(P2)のときにDA(Dt)=30、S=3(P3)のときにDA(Dt)=40、S=4(その他)のときにDA(Dt)=90とする。図示例では、駆動要素データセットDAS(Dt)のみを選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの高さHvは一定値であり、駆動パルス数Npは3である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データDA(Dt)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図5(b)に示すように、気流経路中の気流の態様(気流波形V)は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の強さ(圧力)や継続時間は、駆動要素データDA(Dt)の値に対応する駆動波形Wのデューティー比に対応している。
【0035】
図6(a)は、駆動要素データセットDAS(Np)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Np)=0、S=1(P1)のときにDA(Np)=3、S=2(P2)のときにDA(Np)=6、S=3(P3)のときにDA(Np)=9、S=4(その他)のときにDA(Np)=12とする。図示例では、駆動要素データセットDAS(Np)のみを選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの高さHvは一定値であり、デューティー比Dtも一定値である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データDA(Np)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図6(b)に示すように、気流経路中の気流の態様(気流波形V)
は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の強さ(圧力)や継続時間は、駆動要素データDA(Np)の値に対応する駆動波形Wの駆動パルス数に対応している。
【0036】
図7(a)は、駆動要素データセットDAS(Hv)とDAS(Tm)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Hv)=0、DA(Tm)=0、S=1(P1)のときにDA(Hv)=40、DA(Tm)=60、S=2(P2)のときにDA(Hv)=60、DA(Tm)=70、S=3(P3)のときにDA(Hv)=80、DA(Tm)=90、S=4(その他)のときにDA(Hv)=100、DA(Tm)=100とする。この例では、判定結果Sに応じて駆動要素データDA(Hv)とDA(Tm)を共に増減し、駆動波形Wの高さと時間幅、すなわち、駆動信号Dの電圧値Hvと時間幅Tmを共に増減させている。そして、その結果、駆動要素データセットDASに基づいて開閉弁制御駆動部116により出力される駆動信号Dによって駆動される開閉弁104の開閉動作により、開閉弁104の開閉態様に対応して図3(b)に示す気流の圧力Pが増減する。図示例では、駆動要素データセットDAS(Hv)とDAS(Tm)を選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの駆動パルス数Npは1である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データDA(Hv)=0、DA(Tm)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図7(b)に示すように、気流経路中の気流の態様(気流波形V)は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の強さ(圧力)や継続時間は、駆動要素データDA(Hv)やDA(Tm)の各値に対応する駆動波形Wの高さや時間幅に対応している。
【0037】
図8(a)は、駆動要素データセットDAS(Hv)とDAS(Dt)を選択したときの判定結果S=1-4のときの各駆動波形Wに対応する駆動信号Dを示す。例えば、判定結果S=0(搬送姿勢P0)のときに駆動要素データDA(Hv)=0、DA(Dt)=0、S=1(P1)のときにDA(Hv)=50、DA(Dt)=20、S=2(P2)のときにDA(Hv)=70、DA(Dt)=30、S=3(P3)のときにDA(Hv)=85、DA(Dt)=40、S=4(その他)のときにDA(Hv)=100、DA(Dt)=90とする。図示例では、駆動要素データセットDAS(Hv)とDAS(Dt)を選択しているため、選択されない駆動要素データセットに関する初期値として、駆動信号Dの駆動パルス数Npは一定値(3)である。なお、搬送姿勢P0であるときの判定結果S=0の場合は駆動要素データDA(Hv)=0、DA(Dt)=0であるため、駆動波形Wを備えた駆動信号Dそのものが出力されない。これらの駆動信号Dが開閉弁104に与えられると、図8(b)に示すように、気流経路中の気流の態様(気流波形V)は、駆動信号Dに対応したものとなる。すなわち、気流波形Vの気流の強さ(圧力)や継続時間は、駆動要素データDA(Hv)とDA(Dt)の各値に対応する駆動波形Wの高さとデューティー比に対応している。
【0038】
なお、上記の各種の駆動要素データセットDASが選択されたときの、他の選択されない種類の駆動要素データセットの初期値は、予め設定され、記憶部112などに保存される。これらの初期値は、所定の駆動要素データセットDASが選択されたときに、選択された駆動要素データセット以外の条件を定めるために、必要に応じて読み出される。もちろん、選択されない駆動要素データセットであっても、駆動波形Wの生成に必要のない初期値は不要である。
【0039】
上記のように、開閉弁制御駆動部116は、駆動情報DAIから選択された1又は複数の駆動要素データセットDASのうち判定結果Sに対応する駆動要素データDAに基づいて駆動波形Wを生成し、その駆動波形Wを備える駆動信号Dを開閉弁104に出力することにより、噴気口122から搬送物Pに気流が吹き付けられることによって搬送物Pの判定結果Sに応じた気流による搬送物Pの制御態様になるように、開閉弁104により気流経路の気流の態様(気流波形V)が形成される。ここで、気流波形Vは、気流の時間変動の態様を含む気流の態様である。したがって、従来のように、開閉弁104の弁開度を駆動電圧や駆動電流の値を(比例)制御することしかできない場合とは異なり、判定結果Sに対応する駆動波形Wを備える駆動信号Dにより、開閉弁104は駆動波形Wに対応する気流の態様(気流波形V)を広範囲に実現できる。このためには、本実施形態のような判定結果Sに対応する駆動要素データDAに基づいて駆動波形Wを生成する機能を備える開閉弁制御駆動部116と、本実施形態のような駆動信号Dの駆動波形Wに対応する経時的要素を含む気流の態様(気流波形V)を形成することの可能な開閉弁104とが必要になる。
【0040】
ところで、前述のように開閉弁104に圧電バルブを用いる場合には、圧電バルブの応答性が早いことから、駆動信号Dに対応する開閉弁104の開閉動作により実現される開閉態様を意図したものにすることが難しい場合がある。すなわち、駆動信号Dの立ち上がりにおいて気流のオーバーシュートが発生するなど、駆動信号Dの駆動波形Wに対応した気流の圧力Pの変動を実現できない場合がある。また、圧電バルブでなくとも、開閉弁104の駆動特性により、上記と同様の問題が生ずる場合もある。これらの場合には、予め、駆動要素データに基づいて上記駆動波形Wを生成する際に、開閉弁104の応答性その他の駆動特性を考慮して、指令信号Cが出力されたときに、上記駆動波形生成部1163において、開閉弁104の駆動特性に応じて予め定められた波形補正データに応じて、駆動要素データDAから駆動波形Wを生成する際に、駆動波形Wを補正(整形)するように構成する。また、上記駆動要素データDAに基づいて形成される駆動波形Wをデジタルフィルタなどを用いて整形するようにしてもよい。さらに、駆動波形Wから駆動信号Dを出力する際に、或いは、駆動信号Dを開閉弁104に供給する際に、上記波形補正データの代わりに、回路定数などによって開閉弁104の駆動特性に対応する駆動信号Dとなるように信号波形を補正しても構わない。このようにすると、指令信号Cを複雑化したり、指令信号Cのデータ量を増加したりすることなく、開閉弁104を適切に駆動することができるようになる。ただし、上記指令信号出力部1162において、上記駆動要素データDAを含むとともに、開閉弁104の駆動特性に応じた波形補正データを含む指令信号Cを出力するように構成し、駆動波形生成部1163において、駆動要素データDAとともに上記波形補正データを用いて波形補正された駆動波形Wを生成するようにしても構わない。なお、以上のように開閉弁104の駆動特性に合わせて駆動波形Wや駆動信号Dを補正(整形)する手段は、以下の図9に示す第2実施形態でも同様に構成できる。
【0041】
次に、図9を参照して第2実施形態について説明する。この第2実施形態は、上記第1実施形態と同様の構成を有し、基本的には同様に作動するため、同様の構成及びその作動態様については説明を省略する。本実施形態が第1実施形態と異なる点は、気流経路の気流の態様を検出するための気流態様検出器106と、開閉弁104が開弁状態にあるときの気流態様検出器106の検出値に基づいて開閉弁制御駆動部116による開閉弁104の開閉制御の態様を修正する開閉弁駆動態様修正部1166とを具備することである。本実施形態の場合には、制御部111は、気流態様検出器106の検出信号Tに基づいて、開閉弁104が開弁状態にあるときの気流経路における気流の態様(気流波形V)を検出し、この気流の態様に基づいて、駆動要素データセットDAS若しくは駆動要素データDAの修正内容を導出する。そして、図9に示すように、開閉弁駆動態様修正部1166は、指令信号出力部1162が出力する指令信号Cに含まれ得る、少なくとも選択された駆動要素データセットDAS、或いは、当該駆動要素データセットDASのうち判定結果Sに対応する所定の駆動要素データDAを修正する。そして、この所定の駆動要素データDAを含む指令信号Cの代わりに、所定の駆動要素データDAが修正されてなる修正後の駆動要素データDA′を含む指令信号C′を出力する。この指令信号C′により駆動波形生成部1163は上記修正に対応する駆動波形W′を生成し、駆動信号出力部1165は上記修正に対応する駆動信号D′を出力する。これにより、実際の気流経路における気流の態様に整合した駆動信号D′となることにより、噴気口122から搬送物Pに向けて吹き付けられる気流の態様がより適切なものに修正される。
【0042】
なお、開閉弁駆動態様修正部は、結果として、上記検出信号Tに基づいて修正された駆動波形W′を備える駆動信号D′が出力されるようにすればよい。したがって、本発明の開閉弁駆動態様修正部は、上記開閉弁駆動態様修正部1166とは異なり、開閉弁制御部116Aにおいて、指令信号C′が出力される前段階で上記駆動要素データDAを修正するように構成されてもよく、或いは、開閉弁駆動部116Bにおいて、駆動波形Wや駆動信号Dを修正するように構成されていてもよい。
【0043】
本実施形態において、図示例の場合には、気流態様検出器106は、好ましい例として、開閉弁104と噴気口122(気流通路120a)との間の気流配管105内の気流の態様を検出可能に構成される。これにより、開閉弁104の開閉態様に応じた気流の態様をより的確に検出できる。ただし、気流通路120a内や、噴気口122の近傍の気流の態様を検出するように構成されていてもよい。また、間接的にではあるものの、開閉弁104の開閉態様に応じた気流経路の上流側の圧力や流量の変動態様により、噴気口122に流れる気流の圧力、流量、流速などを推定することはできることから、気流態様検出器106は、開閉弁104の上流の気流配管103の気流の態様を検出可能に構成されていても構わない。
【0044】
図10は、上記の各実施形態において、上記制御部111によって実行される動作プログラムの処理手順を示す概略フローチャートである。なお、制御部111としては、本実施形態のようなMPUを演算処理部とする構成に限らず、種々のハードウェア構成を採用できる。このとき、図10は、ハードウェア構成の如何に拘わらず、制御部111の一般的な動作手順を示すものと理解されたい。
【0045】
まず、制御部111は、図示しない操作部(操作パネルその他の入力手段)への入力があるまで待機し(ステップ141)、搬送物Pの種類、搬送条件(駆動周波数、搬送速度等)、搬送路121の構造(搬送面が平坦か凹曲面状か等)、搬送物Pに対する気流制御の態様(反転か排除か、反転角度等)、搬送物Pに対する気流の吹付条件(噴気口の開口面積、高さ位置等)などに関する操作入力があれば(ステップ142)、当該操作入力に対応する1又は複数の駆動要素データセットDAS(上記のDAS(Hv),DAS(Tm),DAS(Dt),DAS(Np)等)を記憶部112に格納されていた駆動情報DAIから呼び出し、それを開閉弁制御駆動部116に出力する(ステップ143)。このとき、制御部111は、予め登録されている出力先の開閉弁制御駆動部116の構成条件(例えば、上記の搬送物Pに対する気流制御の態様や気流の吹付条件など)に応じて駆動要素データセットDASを自動的に選択(上記操作入力に対応する入力信号を自動で入力)するようにしてもよい。
【0046】
次に、開閉弁制御駆動部116は、駆動情報DAIのうち1又は複数の駆動要素データセットDASを選択し、この選択された駆動要素データセットDASのうちの搬送物判定部115が出力する判定結果Sに対応する駆動要素データDAを取り出すことが可能であり、最終的に、この駆動要素データDAにより、判定結果Sに対応する駆動波形Wを備える駆動信号Dが出力可能となるように設定される(ステップ144)。その後、搬送機構120から出力される連動信号や操作入力などの入力信号によって搬送物の搬送処理が開始されるまで待機する(ステップ145)。搬送処理が開始されると、画像取得装置109により撮影された画像(ステップ146)が搬送物判定部115において処理され、搬送物Pの判定が行われることにより、判定結果Sが出力される(ステップ147)。ここで、判定結果Sを受け取った開閉弁制御駆動部116は、当該判定結果Sに対応する上記駆動要素データDAを取り出す。このとき、当該駆動要素データDAにより、搬送物Pの気流制御を要する場合(搬送姿勢P1-P4の場合)であれば(ステップ148)、上記駆動要素データDAに基づいて駆動波形Wを備える駆動信号Dを出力し(ステップ149)、駆動信号Dに応じた開閉制御により開閉弁104を作動させ、噴気口122からの気流を吹き付けることにより搬送物Pの位置や姿勢を制御する。その後は、搬送処理が終了しない限り、次の搬送物Pに対して同様の判定処理とを繰り返す。判定結果Sが搬送物Pの気流制御を要しない場合(搬送姿勢P0の場合)には、搬送物の搬送処理が終了しない限り、そのまま次の搬送物に対して同様の判定処理を繰り返す。搬送処理が終了すると(ステップ150)、搬送機構120から出力される停止信号や停止の操作入力がなされない限り、上述の操作入力の待機状態に戻る。なお、以上の処理手順は、上記気流態様検出器106を備える場合においても同様に行われる。最終的にシステムが停止されれば(ステップ151)、処理を終了する。一方、システムが停止されなければ、再び最初の待機状態に戻る(ステップ141)。
【0047】
図11は、上記動作プログラムにおいて、気流態様検出器106と開閉弁駆動態様修正部1166を用いて、検出信号Tに基づいて修正された駆動信号D′により開閉弁104を駆動する第2実施形態における追加の手順を示す概略フローチャートである。制御部111は、開閉弁104が開弁状態にあった時の駆動信号Dの元となる上記駆動要素データセットDASと、この時の上記気流態様検出器106の検出信号Tとから、駆動要素データセットDASの修正を要するか否かを判別し、並びに、駆動要素データセットDASの修正を要する場合には、その修正内容を導出する。具体的には、制御部111は、開閉弁制御駆動部116から出力される駆動信号Dにより開閉弁104が開弁状態にあるときの検出信号Tから気流経路の気流の圧力、流量、流速、継続時間などの気流の態様を示す検出情報(値)を取得し、これらの検出情報から駆動要素データをどのように修正するかを決定する。例えば、駆動要素データセットDAS(Hv)、DAS(Tm)、DAS(Dt)、DAS(Np)の場合、制御部111は、上記駆動信号Dと上記検出情報との関係から、駆動信号Dによって想定されている基準よりも上記検出情報が所定の閾値よりも大きく異なる場合には、用いられている駆動要素データセットDASの修正を要するとして、その駆動要素データセットDASを修正し、これに基づいて、上記開閉弁駆動態様修正部1166において修正された駆動要素データDA′に基づいて指令信号Cを指令信号C′に変更する。これにより、駆動信号生成部1163は駆動波形W′を生成し、駆動信号出力部1165は駆動信号D′を出力する。なお、修正対象は、駆動要素データセットDAS全体でなく、出力された判定要素Sに対応する駆動要素データDAだけであってもよい。また、修正対象は、駆動要素データDAではなく、指令信号C,駆動波形W、駆動信号Dのいずれであってもよい。
【0048】
以上説明した各実施形態によれば、制御部111により駆動情報DIから駆動要素データセットを選択し、開閉弁制御部116Aにより判定結果Sに対応する上記駆動要素データを含む指令信号C、C′を形成し、開閉弁駆動部116Bにより上記駆動要素データに対応する駆動波形W,W′を備える駆動信号D,D′を開閉弁104に与えることにより、上記駆動波形W,W′に対応する気流の態様を形成できる。したがって、搬送物Pの種類、搬送路121の構造、搬送物Pに対する気流制御の態様などの状況に応じた気流の態様を広範囲に実現することができるため、搬送物の選別不良や供給効率の低下を防止することができる。
【0049】
特に、第2実施形態では、開閉弁駆動態様修正部1166により、気流態様検出器106の検出信号Tに基づいて修正された指令信号C′、駆動波形W′又は駆動信号D′を形成することができるため、状況に応じた気流の態様をさらに好適化できることから、搬送物の気流による制御態様をさらに改善することが可能になる。
【0050】
また、開閉弁104として高速で応答速度の速い弁構造を用いる場合には、噴気口122から搬送物Pへ向けて吹き付けられる気流の態様、すなわち、気流の圧力、流量、流速などの精度や再現性を確保することが難しい場合がある。特に、高速応答の圧電バルブを用いることによって高速搬送で高密度の搬送機構120に対応することが可能になるが、通常の圧電バルブは温度特性やヒステリシス特性により、搬送物の気流制御のための気流の態様を正確にかつ再現性良く設定することが難しいという問題があった。しかし、本実施形態では、1又は複数の駆動要素データセットDASに基づく駆動波形Wを備える駆動信号Dで開閉弁104を駆動することにより、開閉弁104の開閉制御の態様を広範囲に設定できることから、搬送物の気流制御のための気流の態様を正確にかつ再現性良く設定することが可能になるというメリットがある。
【0051】
特に、第2実施形態では、気流態様検出器106の検出信号Tに基づいて駆動要素データ、駆動波形W、駆動信号D等を修正できるので、さらに正確にかつ再現性の良好な搬送物の気流制御を行うことができる。また、本実施形態では、開閉弁104の開状態の精度や再現性は、気流経路の気流の態様(圧力や流量)や温度、駆動信号の形状等によって影響を受けることがある。特に、圧電バルブなどの高速動作が可能な開閉弁では、気流経路の圧力や流量、環境温度、駆動電圧、駆動電流、開閉速度などによって開状態における開口面積が変化するため、噴気口122から吹き付けられる気流の態様を十分な精度で、再現性よく実現できない場合がある。このような場合でも、上述のように、開閉弁駆動態様修正部1166により駆動態様を修正することにより、開閉弁の影響を除去することが可能である。
【0052】
以上の各実施形態では、開閉弁104の駆動特性に応じて必要とされる上記駆動波形Wや駆動信号Dの補正(整形)とともに、或いは、その代わりに、開閉弁104よりも下流側にある給気経路(気流配管105)に気流フィルタを形成することができる。この気流フィルタは、上記駆動信号Dに基づく開閉弁104の開閉動作により生ずる開閉態様に応じて、気流経路120aを流れる気流の態様や噴気口122から噴出される気流の態様を、搬送物に対する気流制御にとって好適なものとするために、開閉弁104の出口から気流経路120aや噴気口122の間に設けられる気流経路における気流に影響を与える通気構造要素をいう。気流フィルタとしては、例えば、管路に形成されたオリフィス(絞り部)やラビリンス構造、管路に挿入された通気フィルタなど、気流の圧力変動を緩和させるための経路構造が挙げられる。
【0053】
第2実施形態では、開閉弁104の駆動特性に拘わらず、良好な気流の態様を実現可能とするように開閉弁104の開閉態様を好適にするために、開閉弁104の開閉動作に対して、気流経路における気流の態様に応じてフィードバック制御を施している。これは、特に、開閉弁104として図12に示す圧電バルブ134のような圧電弁を用いる場合には、圧電素子の動作態様が温度変化に敏感であるとともに、弁体の動作構造が気流経路の前後の圧力に影響を受けやすいためである。ここで、圧電バルブ等の開閉弁では電圧制御だけでは正確な出力(流量または圧力)を得られない。それは、開閉弁への印加電圧と吐出圧力(弁体の移動距離)の間にはヒステリシス特性があるためでもある。このため、開閉弁の開閉動作の精度を確保する上ではフィードバック制御を実施することは欠かせない。第2実施形態の構成は、開閉弁104の駆動特性に拘わらず、駆動信号Dにより開閉弁104の開閉態様を温度変化などの外乱に対して安定化させ、所望の気流の態様(圧力P)を高精度に実現する上で極めて効果的である。なお、フィードバック制御としては、第2実施形態の気流の態様に基づくフィードバック制御に代えて、或いは、これに加えて、開閉弁104の弁体の開閉態様を直接示す検出信号に基づいて、駆動信号Dと検出信号との差異に応じた駆動制御を行ってもよい。第1実施形態や第2実施形態において、開閉弁104の弁体の動作の態様(位置や姿勢など)を歪センサなどの検出器により検出して駆動波形Wや駆動信号Dを制御すると、開閉弁104の駆動特性にさらに適合した開閉態様を実現できる。
【0054】
なお、本発明に係る搬送物の気流制御システム及び搬送装置は、上述の図示例のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記各実施形態のそれぞれの特徴点は、支障がない限り、任意の組み合わせにて、相互に組み合わせて構成することができる。
【0055】
ちなみに、本明細書において、気流の態様とは気流経路や噴気口122における気流の圧力、流量、流速などといった、気流経路や噴気口における気流のありさま、状態、様子などを言う。また、搬送物に対する制御態様とは、噴気口からの気流の吹き付けによる搬送物を制御する態様、すなわち、気流による搬送物の制御のありさま、状態、様子などを言う。ここで、搬送物の制御とは、搬送物を、排除、反転、分配などにより、移動させたり、姿勢を変更させたりすることを言う。
【符号の説明】
【0056】
100…搬送装置(搬送物の気流制御システム)、101…気流供給源、102…レギュレータ、103…気流配管、104…開閉弁、105…気流配管、106…気流態様検出器、109…画像取得装置、111…制御部、112…記憶部、113…搬送コントローラ、114…搬送駆動部、115…搬送物判定部、115a…画像処理部、115b…判定出力部、116…開閉弁制動駆動部、116A…開閉弁制御部、1161…駆動情報選択部、1162…指令信号出力部、116B…開閉弁駆動部、1163…駆動波形生成部、1164…電力供給部、1165…駆動信号出力部、DI…駆動情報、Hv,Tm,Dt,Np…駆動要素データセット、120…搬送機構、120a…気流通路、121…搬送路、122…噴気口
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12