IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 公益財団法人電磁材料研究所の特許一覧

<>
  • 特許-振動発電素子 図1
  • 特許-振動発電素子 図2
  • 特許-振動発電素子 図3
  • 特許-振動発電素子 図4
  • 特許-振動発電素子 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-17
(45)【発行日】2024-04-25
(54)【発明の名称】振動発電素子
(51)【国際特許分類】
   H10N 30/87 20230101AFI20240418BHJP
   H10N 30/06 20230101ALI20240418BHJP
   H10N 30/30 20230101ALI20240418BHJP
   H02N 2/04 20060101ALI20240418BHJP
【FI】
H10N30/87
H10N30/06
H10N30/30
H02N2/04
【請求項の数】 1
(21)【出願番号】P 2020111588
(22)【出願日】2020-06-29
(65)【公開番号】P2022010828
(43)【公開日】2022-01-17
【審査請求日】2023-04-21
(73)【特許権者】
【識別番号】000173795
【氏名又は名称】公益財団法人電磁材料研究所
(74)【代理人】
【識別番号】110000800
【氏名又は名称】デロイトトーマツ弁理士法人
(72)【発明者】
【氏名】川上 祥広
【審査官】柴山 将隆
(56)【参考文献】
【文献】特開2012-160621(JP,A)
【文献】特開2015-099039(JP,A)
【文献】特開2017-090276(JP,A)
【文献】特開2016-201401(JP,A)
【文献】特開2017-017939(JP,A)
【文献】特開昭63-072172(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10N 30/87
H10N 30/06
H10N 30/20
H02N 2/04
(57)【特許請求の範囲】
【請求項1】
支持部材により片持ち状態で支持され、前記支持部材を基準として延在している弾性変形可能な金属製の基板と、
前記基板の上に誘電体層を介して形成されている圧電体層と、
前記圧電体層の上に形成されている第1櫛歯電極および第2櫛歯電極と、を備え、
前記第1櫛歯電極を構成する複数の第1櫛歯部分および前記第2櫛歯電極を構成する複数の第2櫛歯部分が、前記支持部材の延在方向について交互に隣接するように、前記第1櫛歯電極および前記第2櫛歯電極が配置され
前記第1櫛歯部分および前記第2櫛歯部分のそれぞれの幅bが前記圧電体層の厚さtpよりも大きく、
前記誘電体層の誘電率ε a に対する前記圧電体層の誘電率ε p の比率r=(ε p /ε a )が50~300の範囲に含まれ、
前記誘電体層の厚さt a が1~3μmの範囲に含まれ、
前記圧電体層の厚さt p が10~50μmの範囲に含まれ、かつ、{2867・r -0.98 }+{11.2・ln(r)-68}t a +{37・r -0.6 }t a 2 以上の範囲に含まれ、
前記第1櫛歯部分と前記第2櫛歯部分との間隔aが100t a +10t p 以下の範囲に含まれ、かつ、前記第1櫛歯部分および前記第2櫛歯部分のそれぞれの前記幅bよりも大きい
ことを特徴とする振動発電素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、振動発電素子に関する。
【背景技術】
【0002】
検出対象の周波数の振動加速度を効率良くセンシングすることができると共に、効率の良い発電をすることを可能することができるようにした振動発電デバイスが提案されている(例えば、特許文献1参照)。フレーム部に支持されている振動子に形成された複数の発電部のそれぞれが、下部電極、圧電薄膜および上部電極により構成され、下部電極と上部電極との間に得られる、当該振動子の振動に応じた電圧の合成電圧が出力電圧として出力される。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-017939号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
圧電方式の振動発電素子では、振動板上に配置する圧電体にバルクの圧電セラミックスを使用した場合、曲げ変形により破損しやすいという課題がある。一方、曲げ変形に強い構造として強誘電体薄膜の分極の向きを揃えた圧電体層を使用する方法がある。圧電体層を形成する基板には一般的に、微細加工が可能なシリコン単結晶が使用されている。基板上に圧電体層を形成する構成では、膜の特性を向上させるために、結晶性の向上および粒成長を目的とした基板加熱および/または高温でのポストアニールが必要となる。そのため、基板上に高温で化学的に安定なPtおよび/または白金族の合金が下部電極層として形成される。その下部電極の上に圧電体層が形成され、圧電体層の上に上部電極が形成され、圧電体層が電極により挟み込まれた構造にするのが一般的である。
【0005】
しかし、基板加熱および/またはポストアニールを実施する場合、発電部を構成する下部電極にプラチナ(Pt)またはパラジウム(Pd)系の合金、などの貴金属が用いられており、デバイス全体のコストが高くなる。その一方、下部電極に貴金属が用いられていない場合、ポストアニールなどの熱処理プロセスで基板材の成分と圧電体層の成分が界面近傍で拡散し、特性が低下する。また、圧電体層を形成するシリコン単結晶基板は脆性材料であるため曲げ変形で破壊しやすいという課題がある。
【0006】
そこで、本発明は、コストの低減を図る一方で特性の向上および機械的堅牢性の向上を図りうる振動発電素子を提供することを目的とする。
【課題を解決する手段】
【0007】
本発明の振動発電素子は、
支持部材により片持ち状態で支持され、前記支持部材を基準として延在している弾性変形可能な金属製の基板と、
前記基板の上に誘電体層を介して形成されている圧電体層と、
前記圧電体層の上に形成されている第1櫛歯電極および第2櫛歯電極と、を備え、
前記第1櫛歯電極を構成する複数の第1櫛歯部分および前記第2櫛歯電極を構成する複数の第2櫛歯部分が、前記支持部材の延在方向について交互に隣接するように、前記第1櫛歯電極および前記第2櫛歯電極が配置され
前記第1櫛歯部分および前記第2櫛歯部分のそれぞれの幅bが前記圧電体層の厚さtpよりも大きく、
前記誘電体層の誘電率ε a に対する前記圧電体層の誘電率ε p の比率r=(ε p /ε a )が50~300の範囲に含まれ、
前記誘電体層の厚さt a が1~3μmの範囲に含まれ、
前記圧電体層の厚さt p が10~50μmの範囲に含まれ、かつ、{2867・r -0.98 }+{11.2・ln(r)-68}t a +{37・r -0.6 }t a 2 以上の範囲に含まれ、
前記第1櫛歯部分と前記第2櫛歯部分との間隔aが100t a +10t p 以下の範囲に含まれ、かつ、前記第1櫛歯部分および前記第2櫛歯部分のそれぞれの前記幅bよりも大きい
【0008】
当該構成の振動発電素子によれば、基板と圧電体層(強誘電体層)との間に誘電体層が形成されている。このため、第1櫛歯電極と第2櫛歯電極との間に電圧が印加された際に、圧電体層の厚み方向に対して平行な方向の電界成分が主要成分となることが回避される。したがって、圧電体層の上において隣接する第1櫛歯部分および第2櫛歯部分の間に、当該圧電体層の抗電界よりも十分に強い電界が印加された際、圧電体層の内部において圧電体層の厚み方向に対して垂直な面方向または基板の延在方向に自発分極の向きを揃えることが可能になる。
【0009】
これにより、圧電体層を面方向に分極の向きが揃えられた圧電体として機能させることができる。そして、片持ち梁を構成する金属基盤の曲げ変形に応じて圧電体層に分極方向と平行に応力が印加されることにより、圧電縦効果によって複数の第1櫛歯部分を有する第1櫛歯電極と複数の第2櫛歯部分を有する第2櫛歯電極との間に電圧を発生させることが可能になる。
【0010】
このように当該構成の振動発電素子によれば強誘電体層の膜表面にのみ電極を形成することで圧電層を形成することが可能となり、貴金属を電極として使用する必要がなく熱処理を行うことが可能になる。
【図面の簡単な説明】
【0011】
図1】本発明の一実施形態としての振動発電素子の上面図。
図2図1のII-II断面線に沿った振動発電素子の断面図。
図3】櫛歯電極間に電圧印加時の圧電体層における電界を示す模式図。
図4】電界比が閾値となる誘電体層および圧電体層のそれぞれの厚さならびに誘電率比の関係図。
図5】電界比が閾値となる誘電体層の厚さおよび櫛歯部分の間隔ならびに圧電体層の厚さの関係図。
【発明を実施するための形態】
【0012】
(構成)
図1および図2に示されている本発明の一実施形態としての振動発電素子は、基板10と、基板10の上に誘電体層102を介して形成されている圧電体層20と、圧電体層20の上に形成されている第1櫛歯電極41および第2櫛歯電極42と、を備えている。
【0013】
(基板)
基板10は、例えば、可撓性があるまたは弾性変形可能な略矩形状の厚さ20~200μmの金属板材により構成されている。基板10は、好ましくはAlを含有している耐熱性ステンレス鋼からなり、表面には酸化アルミニウム(Al23)を主成分とする、厚さ1μm以上の誘電体層102が形成されている。この誘電体層102により、圧電体層20に基板10と共に熱処理が施された場合でも、基板10および圧電体層20のそれぞれの成分の拡散が防止されうる。
【0014】
(固定方法)
略矩形板状の基板10は、その下面(圧電体層20が形成された一方の主面とは反対側にある他方の主面)の一端部において支持部材11に接合または接着されることにより、当該支持部材11によって片持ち状態で支持され、支持部材11を基準として第1指定方向(X方向)に延在している。圧電体層20が形成された基板10を挟持する樹脂製のクランプ、または、基台および基板10を当該基台取り付けるためのネジなどの機械的固定機構により支持部材11が構成されていてもよい。
【0015】
(圧電材料)
圧電体層20は、生体に装着する用途および廃棄時の環境負荷の観点から、非鉛系圧電セラミック材料により構成されていることが好ましい。圧電体層20は、例えば、チタン酸バリウム(BaTiO3)、(KxNa1-x)NbO3系、(Bi0.5Na0.5)TiO3系、(Bi0.50.5)TiO3を主成分とした非鉛圧電材料の薄膜により構成されている。
【0016】
(圧電体層および誘電体層の構成)
圧電体層20の厚さtpは、例えば10~50μmの範囲に含まれるように調整される。これは、圧電体層20の厚さtpが50μmを超える場合、基板10の曲げ変形により圧電体層20にクラックなどの機械的破壊が発生しやすくなるためである。また、圧電体層20の厚さtpが10μmに満たない場合、発電エネルギーが低下するためである。
【0017】
圧電体層20の誘電率εpよりも低い誘電率εaを有する誘電体層102を形成することが好ましい。これは、圧電体層20の分極処理に際して、面方向(主面に平行な方向)の電界強度が圧電体層20の抗電界Ecとなるように、第1櫛歯電極41および第2櫛歯電極42の間、ひいては隣接しあう第1櫛歯部分412および第2櫛歯部分422の間に電圧が印加された際、圧電体層20の厚さ方向(Z方向)の電界成分が主成分になることを回避するためである。
【0018】
誘電体層102の厚さtaが1~3μmの範囲に含まれるように調整される。これは、電界成分の制御の効果を図りながら、その形成の容易を図るためである。図3には、隣接しあう第1櫛歯部分412および第2櫛歯部分422の間に電圧が印加された場合における、圧電体層20における電界方向成分が当該方向を向く矢印により模式的に示されている。
【0019】
(櫛歯電極の説明)
第1櫛歯電極41は、支持部材11による支持箇所を基準として基板10の延在方向(+X方向)に延在している第1基礎部分411と、第1基礎部分411から基板10の延在方向に対して垂直な方向(-Y方向)に延在している複数の第1櫛歯部分412と、を有している。第2櫛歯電極42は、支持部材11による支持箇所を基準として基板10の延在方向(+X方向)に延在している第2基礎部分421と、第2基礎部分421から基板10の延在方向に対して垂直な方向(+Y方向)に延在している複数の第2櫛歯部分422と、を有している。第1櫛歯電極41および第2櫛歯電極42は、金属などの導電体により構成されている。第1櫛歯電極41および第2櫛歯電極42のそれぞれは、圧電体層20の上面を全面的に覆うものではないため、第1櫛歯電極41および/または第2櫛歯電極42が貴金属で構成されていてもその材料コストの低減が図られている。
【0020】
(圧電式振動発電エネルギーの関係式と寸法パラメータ)
基板10の長手方向(X方向)について複数の第1櫛歯部分412および複数の第2櫛歯部分422が存在する範囲の長さである基板10の梁長L、第1櫛歯部分412および第2櫛歯部分422の基板10の短手方向(Y方向)についての重なり長さwe、圧電体層20の圧電縦効果の圧電定数d33、圧電体層20の厚さtpおよび誘電率εp、真空の誘電率ε0、第1櫛歯部分412および第2櫛歯部分422のそれぞれの幅b、第1櫛歯部分412と第2櫛歯部分422との間隔a、ならびに、基板20の延在方向の曲げ変形により圧電体層40に加わる応力Tおよび当該応力Tに応じた第1櫛歯電極41および第2櫛歯電極42の電位差に応じた発電エネルギーU33の間に、関係式(01)で表わされる関係がある。
【0021】
33={d33 2/(2εpε0)}(wepL)T2{a/(a+b)} ‥(01)。
【0022】
関係式(01)は、基板10が圧電体層20の分極軸と平行な方向(第2指定方向)に応力が加わる片持ち梁構造であるため、圧電縦効果による発電エネルギーを表わす式である。
【0023】
(圧電横効果の場合)
図示しないが、従来の振動発電素子は、圧電体層を上下から一対の電極で挟み込む構造であり、分極方向が圧電体層の厚さ方向である一方、圧電体層に応力が印加される方向は分極方向と垂直な方向である。これは、圧電横効果素子であり、圧電横効果の発電エネルギーは関係式(01)の圧電定数がd31となり、a/(a+b)の項が不要になる。よって、発電エネルギーU31は関係式(02)で表わされる。
【0024】
31={d31 2/(2εpε0)}T2(wepL) ‥(02)。
【0025】
圧電セラミックスの場合、材料のポアソン比の関係から一般的に圧電定数d33≒2×d31の関係がある。したがって、同じ応力が基板10および圧電体層20に加わった場合、圧電縦効果による発電エネルギーU33が圧電横効果による発電エネルギーU31よりも大きくなるには、関係式(01)および関係式(02)から、不等式4a/(a+b)>1で表わされる関係が成り立つ必要がある。すなわち、U33>U31の関係が成り立つためには、第1櫛歯電極41の第1櫛歯部分412および第2櫛歯電極42の第2櫛歯部分422のそれぞれの電極幅bと、第1櫛歯部分412および第2櫛歯部分422の間隔aと、の間には不等式b/a<3で表わされる関係が成り立つ必要がある。
【0026】
(誘電体層の効果)
基板10の上に形成された圧電体層20が熱処理される際の誘電体層102(拡散バリア層)の誘電率εaが圧電体層20の誘電率εpよりも小さいことに着目し、その厚さtaを制御することで基板10の上に形成された圧電体層20を全体的に圧電縦効果素子として機能させることができる。
【0027】
誘電体層102の誘電率εaに対する圧電体層20の誘電率εpの比率r=(εp/εa)が50~300の範囲に含まれている。第1櫛歯部分412および第2櫛歯部分422のそれぞれの幅b(基板10の長手方向についてのサイズ)が圧電体層20の厚さtpよりも大きい。
【0028】
金属製の基板10の主面に誘電体層102を介して形成された圧電体層20の分極の向きを面内方向(X方向)に揃える分極処理に際して、圧電体層20の表面に形成された第1櫛歯電極41および第2櫛歯電極42の間に電圧が印加される。この際、第1櫛歯電極41および第2櫛歯電極42のそれぞれと基板10との間にも電位差が生じる。このため、第1櫛歯電極41および第2櫛歯電極42の間で圧電体層20の面内方向に電場の向きを揃える必要がある。
【0029】
FEM解析によれば、電極幅bが圧電体層20の厚さtpよりも大きい場合、第1櫛歯電極41および第2櫛歯電極42のそれぞれの下方では、電界方向が圧電体層20の厚さ方向にほぼ均一に分布し、第1櫛歯電極41および第2櫛歯電極42の間では圧電体層20の深さ位置に関わらず電界方向が圧電体層20の面内方向にほぼ均一に分布する。その一方、同じくFEM解析によれば、電極幅bが圧電体層20の厚さtpよりも小さい場合、電界方向が圧電体層20の厚さ方向に不均一に分布する。したがって、b>tpの条件下では、分極処理により圧電体層20の自発分極の向きを揃えるには、電界の圧電体層20の長手方向(X方向)の成分Exの大きさがEc以上となるように隣接している第1櫛歯部分412および第2櫛歯部分422の間の電界強度Eapが調整されればよい。
【0030】
(Eapの定義と、電界Ex,Ezの説明)
第1櫛歯電極41および第2櫛歯電極42の間に電圧Vが印加された場合、基板10の長手方向について間隔aで隣接している第1櫛歯部分412および第2櫛歯部分422の間の電界強度EapはV/aである。電界の圧電体層20の厚さ方向(Z方向)の成分をEz、電界の圧電体層20の長手方向(X方向)の成分をExとすると、圧電体層20の分極方向をx方向にそろえる観点から、電界のX方向成分Exの大きさが圧電体層20の抗電界Ec以上である必要がある。ExおよびEzは有限要素法によりシミュレーション計算可能である。
【0031】
(電界強度比Rの定義)
ここで、電界のX方向成分Exは、第1櫛歯部分412および第2櫛歯部分422の間で、圧電体層20の複数箇所(例えば、第1櫛歯部分412および第2櫛歯部分422の中間において、圧電体層20の表面から異なる複数の深さ箇所)の電界のX方向成分Exの平均値が採用される。例えば、圧電体層20の分極方向をx方向にそろえることができる条件として、Ex>Ecである必要がある。櫛歯型の電極パターンではExの大きさはEapよりも小さくなるためExをEcよりも大きくして分極処理を行うにはEapの大きさは膜を電極で挟み込む構造の時の電界強度よりも大きくする必要がある。そのため充分な大きさのExを印加するための製造条件としてEapをEcの3倍と設定する。現実的には櫛歯電極間で放電せず電界が圧電膜に印加される大きさのEapが選択されてもよい。Exの大きさは櫛歯電極の電極パターン寸法、圧電膜の形状寸法の条件によって変わるため、ExがEc以上となるような電極や圧電膜の形状を決定する必要がある。電界強度比R=Ex/Eapを定義するとEap≧3Ecの製造条件を満たすにはより電界強度比R=Ex/Eapが1/3以上であるという条件が採用される。
【0032】
図4には、誘電体層102の誘電率εaに対する圧電体層20の誘電率εpの比率r=(εp/εa)が50、100および300のそれぞれである場合において、電界強度比Rが1/3以上となる誘電体層102の厚さtaと圧電体層20の厚さtpとの関係を表わす近似曲線が、実線、一点鎖線および二点鎖線のそれぞれにより示されている。
【0033】
実線、一点鎖線および二点鎖線のそれぞれにより示されている当該近似曲線は、関係式(11)、(12)および(13)のそれぞれにより表わされる。
【0034】
p=α0(r=50)+α1(r=50)ta+α2(r=50)ta 2
=63-26ta+3ta 2 ‥(11)。
【0035】
p=α0(r=100)+α1(r=100)ta+α2(r=100)ta 2
=32-16.5ta+2.5ta 2 ‥(12)。
【0036】
p=α0(r=300)+α1(r=300)ta+α2(r=300)ta 2
=11-6ta+ta 2 ‥(13)。
【0037】
関係式(11)~(13)から、0次の係数α0(r)、1次の係数α1(r)および2次の係数α2(r)のそれぞれは、誘電率比率rの関数として、関係式(14)、(15)および(16)のそれぞれにより近似される。
【0038】
α0(r)=2867・r-0.98 ‥(14)。
【0039】
α1(r)=11.2・ln(r)-68‥(15)。
【0040】
α2(r)=37・r-0.6 ‥(16)。
【0041】
よって、誘電体層102の誘電率εaに対する圧電体層20の誘電率εpの比率r=(εp/εa)に対応して、電界強度比Rが1/3以上となる誘電体層102の厚さtaと圧電体層20の厚さtpとの関係は関係式(17)により表わされる。
【0042】
p≧α0(r)+α1(r)ta+α2(r)ta 2
={2867・r-0.98}+{11.2・ln(r)-68}ta+{37・r-0.6}ta2 ‥(17)。
【0043】
図5には、誘電体層102の厚さtが1μm、2μmおよび3μmのそれぞれである場合において、電界強度比Rが1/3以上となる圧電体層20の厚さtと第1櫛歯部分412および第2櫛歯部分422の間隔aとの関係を表わす近似曲線が、実線、一点鎖線および二点鎖線のそれぞれにより示されている。
【0044】
実線、一点鎖線および二点鎖線のそれぞれにより示されている当該近似曲線は、関係式(21)、(22)および(23)のそれぞれにより表わされる。
【0045】
a=β0(t=1)+β1(t=1)t
=100+10t ‥(21)。
【0046】
a=β0(t=2)+β1(t=2)t
=200+10t ‥(22)。
【0047】
a=β0(t=3)+β1(t=3)t
=300+10t ‥(23)。
【0048】
関係式(21)~(23)から、0次の係数β0(t)および1次の係数β1(t)のそれぞれは、誘電体層102の厚さtの関数として、関係式(24)、(25)および(26)のそれぞれにより近似される。
【0049】
β0(t)=100t ‥(24)。
【0050】
β(t)=10 ‥(25)。
【0051】
よって、圧電体層20の厚さtpに対応して、電界強度比Rが1/3以上となる誘電体層102の厚さtaと櫛歯部分間隔aとの関係は関係式(27)により表わされる。
【0052】
a≦β0(t)+β1(t)t
=100ta+10tp ‥(27)。
【0053】
(製造方法)
本発明の一実施形態としての振動発電素子の製造方法について説明する。
【0054】
(AD法による成膜)
真空中において、Alを含有している耐熱性ステンレス鋼からなる略矩形板状の基板10の上に、例えば粒径が1μm程度の非鉛圧電セラミックス粉末、具体的には、チタン酸バリウム(BaTiO3)粉末がノズルから噴射されて基板10に衝突させられることにより、エアロゾルデポジション(AD)による成膜が実施される。このAD法により所望の10~50μmの厚さの圧電体層20が形成される。
【0055】
(AD膜の可撓性および密着強度)
AD法により形成されたままの膜(アズデポ膜)は、基板10に対してアンカー効果により強固に接合される。この強固な接合は、最終的な状態の圧電体層20においても保たれる。そのため、振動発電素子を曲げ変形させた際に圧電体層20が割れたり基板10から剥がれたりする可能性が低減される。このように、AD法は、可撓性を有する圧電体層20を得るために適した方法である。
【0056】
(圧電体層の結晶粒径の調整)
アズデポ膜の微細組織は、AD法に使用した粉末の粒径よりも小さく、数十nm程度まで微細化されているために圧電性が低いため、熱処理により結晶粒成長を促進する必要がある。一方、セラミックスの破壊は一般的に粒界面で発生するため、圧電体層20の強度を向上させるには粒界面が多い微結晶組織の方が望ましい。圧電特性の向上の観点から圧電体層20を構成する結晶の平均結晶粒径が100nm以上になり、かつ、圧電体層20の強度の確保の観点から圧電体層20を構成する結晶の平均結晶粒径が2000nm以下になるように、アズデポ膜に対して800~1200℃で1~4hrにわたり熱処理が施される。
【0057】
(誘電体層(拡散バリア層)の形成)
熱処理工程において基板10と圧電体層20との間にAlの酸化物(Al23)を主成分とする誘電体層102が形成される。これにより、誘電体層102がステンレス製の基板10と圧電体層20との間の成分拡散を抑制する拡散バリア層として機能し、900℃以上の高温で熱処理される際に基板10と圧電体層20とが反応する事態が回避される。ステンレス製の基板10の主面に1μm以上の厚さの誘電体層102があらかじめ形成されてもよく、Alを含有しているステンレス製の基板10の主面に圧電体層20が直接的に形成された後、当該圧電体層20に熱処理が施されることで誘電体層102が形成されてもよい。
【0058】
(櫛歯電極の形成)
熱処理された後の圧電体層20の上に第1櫛歯電極41および第2櫛歯電極42が形成される。第1櫛歯電極41および第2櫛歯電極42は、導電性膜からなるものであり、例えば0.4~0.6μmの厚みを有している。導電性膜は例えばスパッタ法または蒸着法により形成することができる。第1櫛歯電極41および第2櫛歯電極42は、Au膜に限定されるものではなく、Cu膜またはCu合金膜など、他の金属からなる金属膜であってもよく、Au/Ni/Tiなどの多層構造であってもよい。
【0059】
(分極処理)
アズデポ膜およびこれが熱処理されて得られた熱処理後膜は多結晶組織であるため、そのままでは、電気分極の向きがランダムである。そこで、分極の向きを揃えるために分極反転する電界強度以上の電圧(所定の電圧)が第1櫛歯電極41および第2櫛歯電極42の間で熱処理後膜に印加される。誘電体層102が基板10と圧電体層20との間に形成されていない場合および圧電体層20の厚さtpに対して誘電体層102の厚さtaが過度に小さい場合、電界の圧電体層20の厚み方向(Z方向)成分が主成分となりやすくなるため、誘電体層102の厚さtaは1μm以上であることが望ましい。誘電体層102(拡散バリア層)の誘電率εaが圧電体層20の誘電率εpよりも小さくすることで圧電体層20における電界の面方向成分または第2指定方向成分(Y方向成分)が主成分となる。
【0060】
また、ステンレスなどの金属基板10の主面に、厚さが3μmを超える誘電体層102を形成するには、薄膜形成法では成膜レートが遅いため生産効率の観点で現実的ではない。AD法などの厚膜形成法によれば、厚さが3μmを超える誘電体層102を形成することは可能であるが、発電エネルギー向上の観点から誘電体層102を厚くするよりも圧電体層20を厚くする方が性能向上に対する効果が大きい。このため、誘電体層102の厚さが3μm以下に調節された。また、誘電体層102を形成する方法としてAlを含むステンレス基材を使用することで、当該基材に含まれているAlの熱酸化によって誘電体層102を形成することが可能であり、圧電体層102の熱処理過程でも被膜が厚く成長し、かつ圧電体層102と誘電体層20の密着強度を向上させる効果が奏される。
【0061】
これにより、本発明の一実施形態としての振動発電素子が製造される(図1および図2参照)。
【符号の説明】
【0062】
10‥基板、11‥支持部材、20‥圧電体層(強誘電体層)、41‥第1櫛歯電極、42‥第2櫛歯電極、102‥誘電体層(拡散バリア層)、411‥第1基礎部分、412‥第1櫛歯部分、421‥第2基礎部分、422‥第2櫛歯部分。
図1
図2
図3
図4
図5