(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-17
(45)【発行日】2024-04-25
(54)【発明の名称】積層ダイ構造におけるパワーゲーティング
(51)【国際特許分類】
H01L 21/822 20060101AFI20240418BHJP
H01L 27/04 20060101ALI20240418BHJP
H01L 25/07 20060101ALI20240418BHJP
H01L 25/065 20230101ALI20240418BHJP
H01L 25/18 20230101ALI20240418BHJP
G11C 5/04 20060101ALI20240418BHJP
【FI】
H01L27/04 D
H01L25/08 C
G11C5/04 200
(21)【出願番号】P 2021510885
(86)(22)【出願日】2019-08-21
(86)【国際出願番号】 US2019047386
(87)【国際公開番号】W WO2020046655
(87)【国際公開日】2020-03-05
【審査請求日】2022-07-28
(32)【優先日】2018-08-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591025439
【氏名又は名称】ザイリンクス インコーポレイテッド
【氏名又は名称原語表記】XILINX INCORPORATED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】ドゥベイ,プラシャント
(72)【発明者】
【氏名】アグラワル,サンディープ・ラム・ゴパル
【審査官】石塚 健太郎
(56)【参考文献】
【文献】米国特許出願公開第2015/0348962(US,A1)
【文献】米国特許第09754923(US,B1)
【文献】特表2018-503262(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 27/04
H01L 21/822
H01L 25/07
G11C 5/04
(57)【特許請求の範囲】
【請求項1】
装置であって、
積層ダイ構造を備え、前記積層ダイ構造は、
第1の半導体基板を含む第1のダイを含み、前記第1の半導体基板は第1のパワーゲーティング領域を含み、前記積層ダイ構造はさらに、
前記第1のダイに接合される第2のダイを含み、前記第2のダイは第2の半導体基板を含み、前記第2の半導体基板は第1の回路領域と第2のパワーゲーティング領域とを含み、前記積層ダイ構造はさらに、
前記第2のダイに接合される第3のダイを含み、前記第3のダイは第3の半導体基板を含み、前記第3の半導体基板は第2の回路領域を含み、
前記積層ダイ構造は、前記第1の回路領域に電力を供給するように構成された第1のパワーゲーティングされた電力経路を含み、
前記第1のパワーゲーティングされた電力経路は、前記第1の半導体基板の前記第1のパワーゲーティング領域内にあり、前記第1のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第1のパワーゲーティングデバイスを含み、
前記積層ダイ構造は、前記第2の回路領域に電力を供給するように構成された第2のパワーゲーティングされた電力経路を含み、
前記第2のパワーゲーティングされた電力経路は、前記第2の半導体基板の前記第2のパワーゲーティング領域内にあり、前記第2のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第2のパワーゲーティングデバイスを含
み、
前記第2のダイは、前記第2の半導体基板上に第1のメタライゼーション層をさらに含み、
前記第1のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内において前記第1の回路領域への第1のルーティングを含み、
前記第2のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内における第1の金属スタックと、前記第2の半導体基板を貫通する第1の基板貫通ビア(TSV)とを含み、前記第1の金属スタックは、前記第1のルーティングから分離している、装置。
【請求項2】
前記第3のダイは、前記第3の半導体基板上に第2のメタライゼーション層をさらに含み、
前記第2のパワーゲーティングされた電力経路は、前記第2のメタライゼーション層内において前記第2の回路領域への第2のルーティングをさらに含む、請求項
1に記載の装置。
【請求項3】
前記第3のダイは、前記第3の半導体基板上に第2のメタライゼーション層をさらに含み、
前記積層ダイ構造は、前記第2の半導体基板上において第3の回路領域に電力を供給するように構成された第1のパワーゲーティングされない電力経路を含み、
前記第1のパワーゲーティングされない電力経路は、前記第1の金属スタックの少なくとも一部を含み、
前記積層ダイ構造は、前記第3の半導体基板上において第4の回路領域に電力を供給するように構成された第2のパワーゲーティングされない電力経路を含み、
前記第2のパワーゲーティングされない電力経路は、前記第1の金属スタックと、前記第2の半導体基板を貫通する第2のTSVと、前記第2のメタライゼーション層内における第2の金属スタックの少なくとも一部とを含む、請求項
1または
2のいずれか1項に記載の装置。
【請求項4】
前記第2のダイは、前記第2の半導体基板上に第1のメタライゼーション層をさらに含み、
前記第1のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内において第1のルーティングを含み、前記第1のルーティングは、前記第1のダイと前記第2のダイとの間の第1の接合界面から前記第1の回路領域までである、請求項1~
3のいずれか1項に記載の装置。
【請求項5】
前記第3のダイは、前記第3の半導体基板上に第2のメタライゼーション層を含み、
前記第2のパワーゲーティングされた電力経路は、前記第2のメタライゼーション層内において第2のルーティングをさらに含み、前記第2のルーティングは、前記第2のダイと前記第3のダイとの間の第2の接合界面から前記第2の回路領域までである、請求項
4に記載の装置。
【請求項6】
装置であって、
積層ダイ構造を備え、前記積層ダイ構造は、
第1の半導体基板を含む第1のダイを含み、前記第1の半導体基板は第1のパワーゲーティング領域を含み、前記積層ダイ構造はさらに、
前記第1のダイに接合される第2のダイを含み、前記第2のダイは第2の半導体基板を含み、前記第2の半導体基板は第1の回路領域と第2のパワーゲーティング領域とを含み、前記積層ダイ構造はさらに、
前記第2のダイに接合される第3のダイを含み、前記第3のダイは第3の半導体基板を含み、前記第3の半導体基板は第2の回路領域を含み、
前記積層ダイ構造は、前記第1の回路領域に電力を供給するように構成された第1のパワーゲーティングされた電力経路を含み、
前記第1のパワーゲーティングされた電力経路は、前記第1の半導体基板の前記第1のパワーゲーティング領域内にあり、前記第1のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第1のパワーゲーティングデバイスを含み、
前記積層ダイ構造は、前記第2の回路領域に電力を供給するように構成された第2のパワーゲーティングされた電力経路を含み、
前記第2のパワーゲーティングされた電力経路は、前記第2の半導体基板の前記第2のパワーゲーティング領域内にあり、前記第2のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第2のパワーゲーティングデバイスを含み、
前記第2のダイは、さらに、
前記第2の半導体基板上の第1のメタライゼーション層と、
前記第2の半導体基板を貫通する第1の基板貫通ビア(TSV)と、
前記第2の半導体基板を貫通する第2のTSVと、
前記第1のメタライゼーション層に設けられ、前記第1のダイと前記第2のダイとの間の第1の接合界面から前記第1のTSVまで延在する第1の金属スタックと、
前記第1のメタライゼーション層に設けられ、前記第1の接合界面から前記第1の回路領域に延在する第1のルーティングとを含み、前記第1のルーティングは、前記第1の金属スタックから分離され、前記第1のパワーゲーティングされた電力経路は、前記第1のルーティングを含み、
前記第2のパワーゲーティングデバイスは、前記第1の金属スタックと前記第2のTSVとの間で電気的に接続され、
前記第3のダイは、さらに、
前記第3の半導体基板上の第2のメタライゼーション層と、
前記第3の半導体基板を貫通する第3のTSVと、
前記第2のメタライゼーション層に設けられ、前記第2のダイと前記第3のダイとの間の第2の接合界面から前記第3のTSVまで延在する第2の金属スタックとを含み、前記第2の金属スタックは前記第1のTSVに接続され、前記第3のダイは、さらに、
前記第2のメタライゼーション層に設けられ、前記第2の接合界面から前記第2の回路領域に延在する第2のルーティングを含み、前記第2のルーティングは、前記第2の金属スタックから分離されている
、装置。
【請求項7】
装置を動作させる方法であって、
電力電圧を、積層ダイ構造において第1の電力経路に与えることを含み、
前記積層ダイ構造は、第2のダイに接合される第1のダイを含み、前記第2のダイに接合される第3のダイを含み、
前記第1のダイは、第1のパワーゲーティングデバイスを含み、
前記第2のダイは、前記第1の電力経路に電気的に接続された第1の回路領域を含み、前記方法はさらに、
前記積層ダイ構造内において第2の電力経路に電力電圧を供給することを含み、
前記第2のダイは、第2のパワーゲーティングデバイスを含み、
前記第3のダイは、前記第2の電力経路に電気的に接続される第2の回路領域を含み、前記方法はさらに、
前記第1のパワーゲーティングデバイスを制御して、前記第1の電力経路内の電流の、前記第2のダイの前記第1の回路領域への流れを、選択的に遮断するかまたは遮断しないことと、
前記第2のパワーゲーティングデバイスを制御して、前記第2の電力経路内の電流の、前記第3のダイの前記第2の回路領域への流れを、選択的に遮断するかまたは遮断しないこととを含
み、
前記第1のダイは、第1の半導体基板と、前記第1の半導体基板上の第1のメタライゼーション層とを含み、
前記第2のダイは、第2の半導体基板と、前記第2の半導体基板上の第2のメタライゼーション層とを含み、
前記第1のダイと前記第2のダイとの間の接合界面は、前記第1のダイの、前記第1のメタライゼーション層を有する側に対応し、前記第2のダイの、前記第2のメタライゼーション層を有する側に対応する、装置を動作させる方法。
【請求項8】
前記第3のダイは、第3の半導体基板と、前記第3の半導体基板上の第3のメタライゼーション層とを含み、
前記第2のダイと前記第3のダイとの間の接合界面は、前記第2のダイの、前記第2の半導体基板を有する側に対応し、前記第3のダイの、前記第3のメタライゼーション層を有する側に対応する、請求項
7に記載の方法。
【請求項9】
装置を動作させる方法であって、
電力電圧を、積層ダイ構造において第1の電力経路に与えることを含み、
前記積層ダイ構造は、第2のダイに接合される第1のダイを含み、前記第2のダイに接合される第3のダイを含み、
前記第1のダイは、第1のパワーゲーティングデバイスを含み、
前記第2のダイは、前記第1の電力経路に電気的に接続された第1の回路領域を含み、前記方法はさらに、
前記積層ダイ構造内において第2の電力経路に電力電圧を供給することを含み、
前記第2のダイは、第2のパワーゲーティングデバイスを含み、
前記第3のダイは、前記第2の電力経路に電気的に接続される第2の回路領域を含み、前記方法はさらに、
前記第1のパワーゲーティングデバイスを制御して、前記第1の電力経路内の電流の、前記第2のダイの前記第1の回路領域への流れを、選択的に遮断するかまたは遮断しないことと、
前記第2のパワーゲーティングデバイスを制御して、前記第2の電力経路内の電流の、前記第3のダイの前記第2の回路領域への流れを、選択的に遮断するかまたは遮断しないこととを含み、
前記電力電圧を、前記積層ダイ構造内において、パワーゲーティングされない電力経路に供給することをさらに含み、
前記積層ダイ構造は、前記第1のダイを通るパワーゲーティングされない電力経路をさらに有し、
前記第2のダイは、前記パワーゲーティングされない電力経路に電気的に接続された第2の回路領域を含む
、装置を動作させる方法。
【請求項10】
装置であって、
積層ダイ構造を備え、前記積層ダイ構造は、
第1の半導体基板を含む第1のダイを含み、前記第1の半導体基板は、第1のパワーゲーティング領域を含み、第1のパワーゲーティングデバイスが、前記第1の半導体基板の前記第1のパワーゲーティング領域にあり、電流の流れを遮断するように構成され、前記積層ダイ構造はさらに、
前記第1のダイに接合される第2のダイを含み、前記第2のダイは、
第1の回路領域および第2のパワーゲーティング領域を含む第2の半導体基板を含み、第2のパワーゲーティングデバイスが、前記第2の半導体基板の前記第2のパワーゲーティング領域にあり、電流の流れを遮断するように構成され、前記第2のダイはさらに、
前記第2の半導体基板上の第1のメタライゼーション層と、
前記第2の半導体基板を貫通する第1の基板貫通ビア(TSV)および第2のTSVと、
前記第1のメタライゼーション層に設けられ、前記第1のダイと前記第2のダイとの間の第1の接合界面から前記第1のTSVまで延在する第1の金属スタックと、
前記第1のメタライゼーション層に設けられ、前記第1の接合界面から前記第1の回路領域まで延在する第1のルーティングとを含み、前記第1のルーティングは、前記第1のパワーゲーティングデバイスと前記第1の回路領域との間で直列に接続され、前記第1のルーティングは前記第1の金属スタックとは分離しており、前記積層ダイ構造はさらに、
前記第2のダイに接合される第3のダイを含み、前記第3のダイは、
第2の回路領域を含む第3の半導体基板と、
前記第3の半導体基板上の第2のメタライゼーション層と、
前記第2のメタライゼーション層に設けられ、前記第2のダイと前記第3のダイとの間の第2の接合界面から延在する第2の金属スタックとを含み、前記第2の金属スタックは前記第1のTSVに接続され、前記第3のダイはさらに、
前記第2のメタライゼーション層に設けられ、前記第2の接合界面から前記第2の回路領域まで延びる第2のルーティングを含み、前記第2のルーティングおよび前記第2のTSVは、前記第2のパワーゲーティングデバイスと前記第2の回路領域との間に直列に接続され、前記第2のルーティングは前記第2の金属スタックとは別である、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の例は、一般に、積層ダイ構造に関し、特に、積層ダイ構造におけるパワーゲーティングに関する。
【背景技術】
【0002】
背景
集積回路(IC)業界では、異なるダイを互いの上に積み重ねる技術が開発されてきた。この技術は、一般に積層ダイ技術または三次元(3D)IC技術と呼ばれ得る。積層ダイは、たとえば、基板貫通ビア(またはいくつかの例では、シリコン貫通ビア)を実現することによって、垂直に相互接続することができる。ICの異なる部分に対して異なるダイを実現することによって、別々のダイを異なる処理によって製造することができ、それは、異なる処理をICの形成に統合するのに役立ち得る。さらに、積層ダイ構造は、より小さいフットプリントを有することができる。しかしながら、この依然として開発中の技術には、いくつかの課題が残っている。
【発明の概要】
【課題を解決するための手段】
【0003】
概要
本開示の例は、積層ダイ構造のためのパワーゲーティングを提供する。一般に、本明細書に記載されるような積層ダイ構造は、電源からの電流の流れに対して(例えば、低減された長さに起因して)低減された抵抗経路を有することができる。したがって、潜在的な利点の中でも、とりわけ、経路に沿った電圧降下が低減され得る。
【0004】
本開示の一例は、装置である。本装置は、積層ダイ構造を含む。積層ダイ構造は、第1のダイと、第1のダイに接合される第2のダイとを含む。第1のダイは、第1の半導体基板と、第1の半導体基板上の第1のメタライゼーション層と、第1の半導体基板を貫通する第1の基板貫通ビア(TSV)と、第1のメタライゼーション層を貫通する第1の金属スタックとを含む。第1の半導体基板は、第1の回路領域を含む。第2のダイは、第2の回路領域を含む第2の半導体基板を含む。積層ダイ構造は、第1の回路領域に電力を供給するように構成された第1の電力経路を含む。第1の電力経路は、第1の電力経路を通る電流の流れを遮断するように構成された第1のパワーゲーティングデバイスを含む。第1の電力経路は、第1の半導体基板から最も遠位にある、第1のメタライゼーション層のうちのあるメタライゼーション層にある、第1の金属スタックの金属線または金属ビアを通らない。積層ダイ構造は、第2の回路領域に電力を供給するように構成された第2の電力経路をさらに含む。第2の電力経路は、第1のTSVおよび第1の金属スタックを通る。
【0005】
本開示の別の例は、装置である。本装置は、積層ダイ構造を含む。積層ダイ構造は、第1のダイと、第1のダイに接合される第2のダイとを含む。第1のダイは第1の半導体基板を含み、第1の半導体基板は第1のパワーゲーティング領域を含む。第2のダイは第2の半導体基板を含み、第2の半導体基板は第1の回路領域を含む。積層ダイ構造は、第1の回路領域に電力を供給するように構成された第1のパワーゲーティングされた電力経路を含む。第1のパワーゲーティングされた電力経路は、第1の半導体基板の第1のパワーゲーティング領域内にあり、第1のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第1のパワーゲーティングデバイスを含む。
【0006】
本開示の別の例は、装置である。本装置は、積層ダイ構造を含む。積層ダイ構造は、第1のダイと、第1のダイに接合される第2のダイとを含む。第1のダイは、第1のダイと第2のダイとの間の第1の接合界面で第2のダイに電力を供給するように構成される。第2のダイは、第1の回路領域と第1のパワーゲーティング領域とを含む第1の半導体基板と、第1の半導体基板上の第1のメタライゼーション層と、第1の半導体基板を貫通する第1の基板貫通ビア(TSV)とを含む。第1のパワーゲーティングされた電力経路が、第1の接合界面から、第1のTSV、第1のパワーゲーティング領域の第1のパワーゲーティングデバイス、および第1のメタライゼーション層の第1のルーティングを通って、第1の回路領域に至る。
【0007】
本発明の他の実施例は、集積回路を動作させる方法である。電力電圧が、積層ダイ構造において第1の電力経路に与えられる。積層ダイ構造は、第2のダイに接合される第1のダイを含む。第1のダイは、第1のパワーゲーティングデバイスを含む。第2のダイは、第1の電力経路に電気的に接続される第1の回路領域を含む。第1のパワーゲーティングデバイスは、第1の電力経路内の電流の、第2のダイの第1の回路領域への流れを、選択的に遮断するかまたは遮断しないように、制御される。
【0008】
本開示の別の例は、集積回路を動作させる方法である。電力電圧が、積層ダイ構造において第1の電力経路および第2の電力経路に与えられる。積層ダイ構造は、第2のダイに接合される第1のダイを含む。第1のダイは、第1の回路領域を含む第1の半導体基板と;第1の半導体基板上の第1のメタライゼーション層と;第1の半導体基板を貫通する第1の基板貫通ビア(TSV)と;第1のメタライゼーション層を貫通する金属スタックとを含む。第2のダイは、第2の回路領域を含む第2の半導体基板を含む。第1の電力経路は、第1の回路領域に電力を与えるように構成され、第1のパワーゲーティングデバイスを含む。第1の電力経路は、第1の半導体基板から最も遠位にある、第1のメタライゼーション層のうちのあるメタライゼーション層内にある、金属スタックの金属線または金属ビアを通らない。第2の電力経路は、第2の回路領域に電力を与えるように構成される。第2の電力経路は、第1のTSVおよび金属スタックを通る。第1のパワーゲーティングデバイスは、第1の電力経路における電流の流れを選択的に遮断するように、または遮断しないように制御される。
【0009】
これらの態様および他の態様は、以下の詳細な説明を参照することによって理解され得る。
【0010】
図面の簡単な説明
本開示の上述の特徴が詳細に理解され得るように、上記で簡単に要約した本開示のより具体的な説明が、添付の図面に一部が示される例示的な実現例のいくつかを参照することによって、与えられ得る。しかしながら、添付の図面は、典型的な例示的な実現例を示すにすぎず、したがって、本開示が他の等しく有効な例を認めることができるように、その範囲を限定すると見なすべきではないことに留意されたい。
【図面の簡単な説明】
【0011】
【
図1】本開示のいくつかの例による三次元(3D)ダイスタックである。
【
図2】本開示のいくつかの例による、
図1の3Dダイスタックにおける電力分配およびパワーゲーティングのための簡略化された回路概略図である。
【
図3】本開示のいくつかの例による別の3Dダイスタックである。
【
図4】本開示のいくつかの例による、
図3の3Dダイスタックにおける電力分配およびパワーゲーティングのための簡略化された回路概略図である。
【
図5】本開示のいくつかの例による、3Dダイスタックを動作させるための方法のフローチャートである。
【発明を実施するための形態】
【0012】
理解を容易にするために、可能な場合には、同一の参照番号を使用して、図面に共通の同一の要素を示している。1つの例の要素は、他の例に有益に組み込まれ得ることが企図される。
【0013】
詳細な説明
本開示の例は、積層ダイ構造のためのパワーゲーティングを提供する。一般に、本明細書に記載されるような積層ダイ構造は、電源からの電流の流れに対して(例えば、低減された長さに起因して)低減された抵抗経路を有することができる。よって、経路に沿った電圧降下を低減することができる。いくつかの例では、積層ダイ構造内の、上に位置するダイは、上に位置するダイに電力を与える、下に位置するダイに、表側を上にした向きで接合される。電力は、上に位置するダイ内の1つ以上の基板貫通ビア(TSV)を通してパワーゲーティングデバイスに与えられ、次いで、上に位置するダイ内の回路領域にルーティングされる。電力は、上に位置するダイ内の金属線およびビアスタックを通して、別の、上に位置するダイに与えられ得、この金属線およびビアスタックは、当該別の、上に位置するダイ内のTSVに電気的に接続され得る。いくつかの例では、積層ダイ構造内の、上に位置するダイは、当該上に位置するダイに電力およびパワーゲーティングを与える、下に位置するダイに、表側を下にした向きで接合される。下に位置するダイは、金属線およびビアスタックと、パワーゲーティングデバイスと、ルーティングとを有することができる。パワーゲーティングデバイスは、金属線およびビアスタックに電気的に接続され、さらに、下に位置するダイ内のルーティングに電気的に接続される。上に位置するダイは、下に位置するダイのルーティングに接続されるルーティングを有し、上に位置するダイのルーティングは、当該上に位置するダイの回路領域に電気的に接続される。上に位置するダイは、金属線およびビアスタックと、共に接続されるTSVとをさらに含むことができ、上に位置するダイの金属線およびビアスタックに電気的に接続されるパワーゲーティングデバイスを含むことができる。パワーゲーティングデバイスは、さらに、別の、上に位置するダイ内のルーティングに電気的に接続され得るTSVに電気的に接続されることができ、そのルーティングは、さらに、当該別の、上に位置するダイの回路領域に電気的に接続され得る。これらの例では、ダイにTSVを実現するために使用される面積に著しく影響を及ぼすことなく、ダイにわたる電圧降下を低減し得、またはより少ないTSV(およびしたがって、より小さいTSV領域面積)を実現することによって、ダイにわたる電圧降下を低減し得る。さらに、金属線およびビアスタックならびにTSVは、フルに利用されてもよい。これらおよび他の可能な利点は、本明細書の説明から明らかになるであろう。
【0014】
以下、図面を参照して様々な特徴について説明する。図面は、一定の縮尺で描かれる場合またはそうでない場合があり、同様の構造または機能の要素は、図面全体を通して同様の参照番号によって表されることに留意されたい。図面は、特徴の説明を容易にすることのみを意図していることに留意されたい。これらは、特許請求される発明の網羅的な説明として、または特許請求される発明の範囲に対する限定として意図されるものではない。さらに、例示された例は、示されるすべての態様または利点を有する必要はない。特定の例に関連して説明される態様または利点は、必ずしもその例に限定されず、たとえそのように図示されなくても、またはそのように明示的に説明されなくても、任意の他の例において実施され得る。単に本明細書での便宜上、ダイの「表側」は、概して、ダイの、能動デバイスおよびそれら能動デバイス間のそれぞれの相互接続が上に配置された側に対応する。本明細書の例に示されるように、メタライゼーション層は、ダイの表側に形成されてもよい。さらに、単に本明細書での便宜上、ダイの「裏側」は、ダイの表側とは反対の側に対応する。
【0015】
図1は、本開示のいくつかの例による三次元(3D)ダイスタックを示す。3Dダイスタックは、第1のダイ10と、第2のダイ30と、第3のダイ50とを含む。第2のダイ30の裏側は、第1のダイ10の表側に取り付けられ(例えば、接合され)、第3のダイ50の裏側は、第2のダイ30の表側に取り付けられる(例えば、接合される)。以下でさらに詳述するように、第1のダイ10は、電力分配および制御回路を含み、入力/出力回路も含み得る。いくつかの例では、第2のダイ30および第3のダイ50は、プロセッサシステムなどのフィールドプログラマブルゲートアレイ(FPGA)のための1つ以上のサブシステムおよび1つ以上のプログラマブルロジック領域を含み得、便宜上、「ファブリック」ダイと称され得る。いくつかの例では、第3のダイ50は、第2のダイ30の複製ダイまたは冗長ダイであるが、他の例では、第3のダイ50は、第2のダイ30とは異なる構成であり得るか、またはそれを含み得る。
図1の図示および本明細書における記載は、3Dダイスタックにおけるパワーゲーティングに関連する特徴のものである。他の特徴が、第1のダイ10、第2のダイ30、および/または第3のダイ50に含まれてもよい。
【0016】
第1のダイ10は、半導体基板12(例えば、シリコン基板)を含み、半導体基板12内および/または上には、様々な能動デバイス(例えば、トランジスタ)が配置される。第1のダイ10は、半導体基板12上にメタライゼーション層14をさらに含む。メタライゼーション層14は、それぞれの金属層が中に配置された多数の誘電体層を含む。金属層は、下にある金属層または他の特徴をそれぞれの金属層の金属線に接続することができる金属線および/またはビアを含むことができる。メタライゼーション層14は、15、16および/または17層のメタライゼーション層のような任意の数のメタライゼーション層を含むことができ、各メタライゼーション層14は、金属線および/またはビアが中に配置された誘電体を含む。半導体基板12は、3Dダイスタック内において電力を制御および/または分配するためのデバイスが配置される電力管理領域16を有する。メタライゼーション層14内の金属線およびビアスタック18は、電力管理領域16から第1のダイ10の表側表面まで延在する。金属線およびビアスタック18は、各メタライゼーション層14内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック18は垂直に整列されない。
【0017】
第2のダイ30は、様々な能動デバイスが中および/または上に配置される半導体基板32(例えば、シリコン基板)を含む。第2のダイ30は、半導体基板32上にメタライゼーション層34をさらに含む。メタライゼーション層14と同様に、メタライゼーション層34は、それぞれの金属層が中に配置された多数の誘電体層を含む。
【0018】
基板貫通ビア(TSV)領域36が、半導体基板32内に配置され、第2のダイ30の裏側(例えば、半導体基板32の裏側)から半導体基板32を通って延びる多数のTSVを含む。第1のパワーゲーティング領域38-1および第2のパワーゲーティング領域38-2が、半導体基板32内に配置され、各々、個々におよび/または集合的に、第2のダイ30内の回路の1つ以上の他の領域への電力の分配(例えば、パワーゲーティング)を制御するデバイスを含む。例えば、第1のパワーゲーティング領域38-1および第2のパワーゲーティング領域38-2内のデバイスは、デバイスを通る電流の流れを選択的に遮断するように制御されることができる。第1の回路領域40-1および第2の回路領域40-2が、半導体基板32内に配置され、各々、個々にまたは集合的に、設計された機能を実行するデバイスを含む。例えば、第1の回路領域40-1および第2の回路領域40-2は、各々、処理システム、プログラマブルロジック領域(例えば、FPGA内のファブリックロジック)、アクセラレータ、メモリ、もしくは任意の他の回路のためのデバイスを含むか、またはそれらとすることができる。
【0019】
メタライゼーション層34内の金属線およびビアスタック42は、TSV領域36から第2のダイ30の表側表面まで延在する。金属線およびビアスタック42は、各メタライゼーション層34内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック42は垂直に整列していない。金属線44が、金属線およびビアスタック42から横方向に延在し、第1のパワーゲーティング領域38-1(例えば、第1のパワーゲーティング領域38-1におけるパワーゲーティングデバイスのソース)および第2のパワーゲーティング領域38-2(例えば、第2のパワーゲーティング領域38-2におけるパワーゲーティングデバイスのソース)に電気的に接続される。図示した例では、金属線44は、最下層のメタライゼーション層(例えば、M0層)にある。特に図示しないが、最下層のメタライゼーション層と半導体基板32との間に層間誘電体が配置されていてもよい。層間誘電体は、例えば、コンタクトがその中に配置されてもよく、コンタクトは、トランジスタのソース/ドレインおよび/またはトランジスタのゲートに対して形成されてもよい。当業者が容易に理解するように、M0層は、一般にバック・エンド・オブ・ザ・ライン(BEOL)処理と呼ばれるものの間に形成されてもよく、コンタクトを有する層間誘電体は、一般にフロント・エンド・オブ・ザ・ライン(FEOL)処理と呼ばれるものの間に形成されてもよい。他の例では、金属線44は、6番目に最も低いメタライゼーション層(例えば、M5層)ほど半導体基板32から離れないような、メタライゼーション層34のうちの別の下層のメタライゼーション層(例えば、M1層、M2層など)内にあってもよい。
【0020】
メタライゼーション層34は、第1のルーティング46-1および第2のルーティング46-2をさらに含む。第1のルーティング46-1は、メタライゼーション層34内に金属線およびビアを含み、第1のパワーゲーティング領域38-1(例えば、第1のパワーゲーティング領域38-1におけるパワーゲーティングデバイスのドレイン)を第1の回路領域40-1に電気的に接続する。第1のルーティング46-1は、メタライゼーション層34のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。同様に、第2のルーティング46-2は、メタライゼーション層34内において金属線およびビアを含み、第2のパワーゲーティング領域38-2(例えば、第2のパワーゲーティング領域38-2におけるパワーゲーティングデバイスのドレイン)を第2の回路領域40-2に電気的に接続する。第2のルーティング46-2は、メタライゼーション層34のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。例えば、第1のルーティング46-1および第2のルーティング46-2の各々は、(i)1つ以上の金属線およびビアスタックと、(ii)メタライゼーション層34のうちの上側(例えば最上層)メタライゼーション層内において、例えばより大きな断面の金属線で電力を横方向に分配する金属線とを含むことができる。より具体的には、例えば、第1のルーティング46-1および第2のルーティング46-2の各々は、それぞれ第1のパワーゲーティング領域38-1および第2のパワーゲーティング領域38-2から垂直に延在する第1の金属線およびビアスタックと、それぞれ第1の回路領域40-1および第2の回路領域40-2から垂直に延在する第2の金属線およびビアスタックと、上層のメタライゼーション層内において第1の金属線およびビアスタックと第2の金属線およびビアスタックとの間に延在する金属線とを含むことができる。第1のルーティング46-1および第2のルーティング46-2における金属線およびビアスタックのいずれか(例えば、第1の金属線およびビアスタック)は、金属線およびビアスタック42に近接し、(たとえば、パワーゲーティングデバイスを介して)それから電気的に分離可能であり得る。
【0021】
第3のダイ50は、様々な能動デバイスが中および/または上に配置される半導体基板52(例えば、シリコン基板)を含む。第3のダイ50は、半導体基板52上にメタライゼーション層54をさらに含む。メタライゼーション層14および34と同様に、メタライゼーション層54は、それぞれの金属層が中に配置された多数の誘電体層を含む。
【0022】
TSV領域56が、半導体基板52に配置され、第3のダイ50の裏側(例えば、半導体基板52の裏側)から半導体基板52を通って延びる多数のTSVを含む。第1のパワーゲーティング領域58-1および第2のパワーゲーティング領域58-2が、半導体基板52内に配置され、各々、個々におよび/または集合的に、第3のダイ50内の回路の1つ以上の他の領域への電力の分配(例えば、パワーゲーティング)を制御するデバイスを含む。例えば、第1のパワーゲーティング領域58-1および第2のパワーゲーティング領域58-2内のデバイスは、デバイスを通る電流の流れを選択的に遮断するように制御されることができる。第1の回路領域60-1および第2の回路領域60-2が、半導体基板52内に配置され、各々、個々にまたは集合的に、設計された機能を実行するデバイスを含む。例えば、第1の回路領域60-1および第2の回路領域60-2は、各々、処理システム、プログラマブルロジック領域(例えば、FPGA内のファブリックロジック)、アクセラレータ、メモリ、もしくは任意の他の回路のためのデバイスを含むか、またはそれらとすることができる。
【0023】
メタライゼーション層54内の金属線およびビアスタック62は、TSV領域56から第3のダイ50の表側表面まで延在する。金属線およびビアスタック62は、各メタライゼーション層54内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック62は垂直に整列していない。金属線64は、金属線およびビアスタック62から横方向に延在し、第1のパワーゲーティング領域58-1(例えば、第1のパワーゲーティング領域58-1におけるパワーゲーティングデバイスのソース)および第2のパワーゲーティング領域58-2(例えば、第2のパワーゲーティング領域58-2におけるパワーゲーティングデバイスのソース)に電気的に接続される。図示した例では、金属線64は、最下層のメタライゼーション層(例えば、M0層)にある。他の例では、金属線64は、6番目に最も低いメタライゼーション層(例えば、M5層)ほど半導体基板52から離れないような、メタライゼーション層54のうちの別の下層のメタライゼーション層(例えば、M1層、M2層など)内にあってもよい。
【0024】
メタライゼーション層54は、第1のルーティング66-1および第2のルーティング66-2をさらに含む。第1のルーティング66-1は、メタライゼーション層54内に金属線およびビアを含み、第1のパワーゲーティング領域58-1、例えば、第1のパワーゲーティング領域58-1内のパワーゲーティングデバイスのドレインを、第1の回路領域60-1に電気的に接続する。第1のルーティング66-1は、メタライゼーション層54のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。同様に、第2のルーティング66-2は、メタライゼーション層54内に金属線およびビアを含み、第2のパワーゲーティング領域58-2(例えば、第2のパワーゲーティング領域58-2におけるパワーゲーティングデバイスのドレイン)を第2の回路領域60-2に電気的に接続する。第2のルーティング66-2は、メタライゼーション層54のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。例えば、第1のルーティング66-1および第2のルーティング66-2は、第2のダイ30の第1のルーティング46-1および第2のルーティング46-2に関して上述したような様々な金属線およびビアスタックならびに金属線を含むことができる。
【0025】
図示されていないが、下に位置するダイの表側を上に位置するダイの裏側に取り付ける(例えば接合する)ことによって、1つ以上の追加のダイを第3のダイ50上に積層することができる。各追加のダイは、TSVと金属線およびビアスタックとをさらに含むことができ、
図1の第2のダイ30および第3のダイ50に図示されるのと同様に、下層の金属層内の金属線が、金属線およびビアスタックから延在して、パワーゲーティング領域に接続する。
【0026】
図1の3Dダイスタックでは、第1のダイ10の金属線およびビアスタック18と、TSV領域36のTSVならびに第2のダイ30の金属線およびビアスタック42と、TSV領域56のTSVならびに第3のダイ50の金属線およびビアスタック62とは、電気的に且つ直列に接続されている。いくつかの例では、第1のダイ10の金属線およびビアスタック18の金属部は、第1のダイ10と第2のダイ30との間の接合界面で、第2のダイ30のTSV領域36内のTSVに、金属対金属接合され、同様に、第2のダイ30の金属線およびビアスタック42の金属部は、第2のダイ30と第3のダイ50との間の接合界面において、第3のダイ50のTSV領域56内のTSVに、金属対金属接合される。
【0027】
3D積層ダイは、パワーゲーティングされた電力経路を含む。電力管理領域16は、以下でさらに説明されるように、電力電圧を与える。電力管理領域16における電力電圧から、第1のパワーゲーティングされた電力経路が、第1のダイ10の金属線およびビアスタック18を通り、そしてTSV領域36のTSV、金属線およびビアスタック42の下部、金属線44、第1のパワーゲーティング領域38-1内のパワーゲーティングデバイス、および第2のダイ30の第1のルーティング46-1を介して、第2のダイ30の第1の回路領域40-1まで形成される。同様に、電力管理領域16における電力電圧から、第2のパワーゲーティングされた電力経路が、第1のダイ10の金属線およびビアスタック18を通り、そしてTSV領域36のTSV、金属線およびビアスタック42の下部、金属線44、第2のパワーゲーティング領域38-2内のパワーゲーティングデバイス、および第2のダイ30の第2のルーティング46-2を通って、第2のダイ30の第2の回路領域40-2まで形成される。第1のパワーゲーティングされた電力経路も第2のパワーゲーティングされた電力経路も、メタライゼーション層34のうちの最上層メタライゼーション層(例えば、半導体基板32から最も遠位にある)にある金属線およびビアスタック42の金属線またはビアを通らない。第1のパワーゲーティングされた電力経路および/または第2のパワーゲーティングされた電力経路は、それぞれ、パワーゲーティング領域38-1および38-2と回路領域40-1および40-2との間に、メタライゼーション層34において最上層のメタライゼーション層内に金属線および/またはビアを含んでもよいルーティング46-1および46-2を含む。
【0028】
さらに、電力管理領域16における電力電圧から、第3のパワーゲーティングされた電力経路が、第1のダイ10の金属線およびビアスタック18を通り;TSV領域36のTSVならびに第2のダイ30の金属線およびビアスタック42を通り;TSV領域56のTSV、金属線およびビアスタック62の下部、金属線64、第1のパワーゲーティング領域58-1内のパワーゲーティングデバイス、ならびに第3のダイ50の第1のルーティング66-1を通って、第3のダイ50の第1の回路領域60-1まで、形成される。同様に、電力管理領域16における電力電圧から、第4のパワーゲーティングされた電力経路が、第1のダイ10の金属線およびビアスタック18を通り;TSV領域36のTSVならびに第2のダイ30の金属線およびビアスタック42を通り;TSV領域56のTSV、金属線およびビアスタック62の下部、金属線64、第2のパワーゲーティング領域58-2内のパワーゲーティングデバイス、ならびに第3のダイ50の第2のルーティング66-2を通って、第3のダイ50の第2の回路領域60-2まで、形成される。第3のパワーゲーティングされた電力経路も第4のパワーゲーティングされた電力経路も、メタライゼーション層54のうちの最上層メタライゼーション層(例えば、半導体基板52から最も遠位にある)にある金属線およびビアスタック42の金属線またはビアを通らない。第3のパワーゲーティングされた電力経路および/または第4のパワーゲーティングされた電力経路は、それぞれ、パワーゲーティング領域58-1および58-2と回路領域60-1および60-2との間に、メタライゼーション層54において最上層メタライゼーション層内に金属線および/またはビアを含んでもよいルーティング66-1および66-2を含む。
【0029】
パワーゲーティングされた電力経路の説明から明らかなように、異なるパワーゲーティングされた電力経路は、様々な物理的構成要素(例えば、TSV、金属線およびビアスタックなど)を共有することができる。さらに、
図1には示されていないが、第2のダイ30および第3のダイ50は、パワーゲーティングされない電力経路を含むことができる。これらのパワーゲーティングされない電力経路も、上述のパワーゲーティングされた電力経路の様々な物理的構成要素を共有してもよい。例えば、電力管理領域16における電力電圧から、第1のパワーゲーティングされない電力経路が、第1のダイ10の金属線およびビアスタック18を通り、TSV領域36のTSV、金属線およびビアスタック42、メタライゼーション層34のうちの上層のメタライゼーション層内の金属線、ならびに第2のダイ30のメタライゼーション層34内の様々なルーティングを通って、第2のダイ30の別の回路領域まで形成され得る。同様に、電力管理領域16における電力電圧から、第2のパワーゲーティングされない電力経路が、第1のダイ10の金属線およびビアスタック18を通り;TSV領域36のTSVならびに第2のダイ30の金属線およびビアスタック42を通り;TSV領域56のTSV、金属線およびビアスタック62、メタライゼーション層54のうちの上層のメタライゼーション層内の金属線、ならびに第3のダイ50のメタライゼーション層54内の様々なルーティングを通って、第3のダイ50の別の回路領域まで、形成され得る。
【0030】
上記の説明は、それぞれの経路の一部を形成するメタライゼーション層内の各ビア、および/またはそれぞれの経路の一部を形成するそれぞれの基板内のデバイスへの各コンタクトを明示的に記述しない場合がある。このような説明の欠如は、理解を簡潔かつ簡単にするためのものである。当業者は、そのようなビアおよび/またはコンタクトの存在を容易に理解するであろう。
【0031】
図2は、本開示のいくつかの例による、
図1の3Dダイスタックにおける電力分配およびパワーゲーティングのための簡略化された回路図を示す。電力電圧Vccpが、第1のダイ10の電力管理領域16によって与えられる。スタック抵抗18Rは、第1のダイ10の金属線およびビアスタック18の抵抗であり、電力電圧Vccpに接続される。次いで、スタック抵抗18RはTSV抵抗36Rに接続され、TSV抵抗36Rは、第2のダイ30のTSV領域36のTSV、ならびに半導体基板32と金属線44との間の第2のダイ30の金属線およびビアスタック42の任意の部分の抵抗である。次いで、TSV抵抗36Rは、スタック抵抗42Rおよびパワーゲーティングスイッチ38Sに接続される。スタック抵抗42Rは、金属線44から第3のダイ50との接合界面までの第2のダイ30の金属線およびビアスタック42の抵抗である。パワーゲーティングスイッチ38Sは、電力の流れを遮断することができる1つ以上のスイッチまたはデバイス(例えば、1つ以上のパワー電界効果トランジスタ(FET))を示す。次いで、パワーゲーティングスイッチ38Sは、ルーティング抵抗46Rに接続され、ルーティング抵抗46Rは、第2のダイ30の回路領域において第1のデバイス電力電圧Vcc1をさらに与える。
【0032】
パワーゲーティングスイッチ38Sは、第1のパワーゲーティング領域38-1および第2のパワーゲーティング領域38-2におけるパワーゲーティングデバイスを表すことができ、ルーティング抵抗46Rは、第1のルーティング46-1および第2のルーティング46-2の抵抗を表すことができる。第1のパワーゲーティング領域38-1および第1のルーティング46-1は、第1のパワーゲーティング領域38-1、第2のパワーゲーティング領域38-2、第1のルーティング46-1、および第2のルーティング46-2が、電流電圧分析のために、有効パワーゲーティングスイッチ38Sおよびルーティング抵抗46Rまで低減され得るように、第2のパワーゲーティング領域38-2および第2のルーティング46-2と並列であってもよい。
図1の第2のダイ30において金属線44によって抵抗が形成され得るが、そのような抵抗は(例えば、相互接続された構成要素の近接のため)無視できる、および/または
図2の図示において他の抵抗に組み込まれる、と仮定される。
【0033】
次いで、スタック抵抗42RはTSV抵抗56Rに接続され、TSV抵抗56Rは、第3のダイ50のTSV領域56のTSV、ならびに半導体基板52と金属線64との間の第3のダイ50の金属線およびビアスタック62の任意の部分の抵抗である。次いで、TSV抵抗56Rは、スタック抵抗62Rおよびパワーゲーティングスイッチ58Sに接続される。スタック抵抗62Rは、金属線64からメタライゼーション層54のうちの最上層メタライゼーション層までの第3のダイ50の金属線およびビアスタック62の抵抗である。パワーゲーティングスイッチ58Sは、電力の流れを遮断することができる1つ以上のスイッチまたはデバイス(例えば、1つ以上のパワーFET)を示す。次いで、パワーゲーティングスイッチ58Sは、ルーティング抵抗66Rに接続され、ルーティング抵抗66Rは、第3のダイ50の回路領域において第2のデバイス電力電圧Vcc2をさらに与える。
【0034】
第2のダイ30について前述したものと同様に、パワーゲーティングスイッチ58Sは、第1のパワーゲーティング領域58-1および第2のパワーゲーティング領域58-2におけるパワーゲーティングデバイスを表すことができ、ルーティング抵抗66Rは、第1のルーティング66-1および第2のルーティング66-2の抵抗を表すことができる。
図1の第3のダイ50において金属線64によって抵抗が形成され得るが、そのような抵抗は無視できる、および/または
図2の図示において他の抵抗に組み込まれる、と仮定される。
【0035】
追加のダイを、前述のように、3Dダイスタックに含めることができる。1つ以上の追加のダイが3Dダイスタックに含まれ、そのようなダイが第2のダイ30および/または第3のダイ50と同じ構成を有する場合、それらのダイの回路図は複製され、
図2の第2のダイ30および第3のダイ50によって示されるパターンと同様に、3Dダイスタックに付加され得る。
【0036】
電力電圧Vccpは、第1のダイ10の電力管理領域16によって与えられる。第1のデバイス電力電圧Vcc1は、第2のダイ30の第1の回路領域40-1および第2の回路領域40-2において、そこにおけるデバイスを動作させるために供給される電圧である。また、第2のダイ30の第1の回路領域40-1および第2の回路領域40-2には、第1のデバイス電流Icc1が(累積的に)与えられる。第2のデバイス電力電圧Vcc2は、第3のダイ50の第1の回路領域60-1および第2の回路領域60-2において、そこにおけるデバイスを動作させるために供給される電圧である。また、第3のダイ50の第1の回路領域60-1および第2の回路領域60-2には、第2のデバイス電流Icc2が(累積的に)供給される。電圧分析の目的のために、第1のデバイス電流Icc1と第2のデバイス電流Icc2とは実質的に等しく、その結果、電力電流Iccpは、第1のデバイス電流Icc1(または第2のデバイス電流Icc2)の実質的に2倍になる、と仮定する。さらに、第2のダイ30における抵抗は第3のダイ50における対応する抵抗と実質的に等しく(例えば、TSV抵抗36Rおよび56Rは実質的に等しく、スタック抵抗42Rおよび62Rは実質的に等しく、ルーティング抵抗46Rおよび66Rは実質的に等しい)、パワーゲーティングスイッチ38Sにわたる電圧降下およびパワーゲーティングスイッチ58Sにわたる電圧降下は実質的に等しい、と仮定する。
【0037】
前述の状況下では、電力電圧Vccpから第1のデバイス電力電圧Vcc1への電圧降下は、(パワーゲーティングスイッチ38Sにわたる電圧降下)+(第1のデバイス電流Icc1×((i)スタック抵抗18RとTSV抵抗36Rとの和の2倍と(ii)ルーティング抵抗46Rとの和))である。例えば、Vccp - Vcc1 = V38S + Icc1*[2*(R18 + R36) + R46]である。前述の状況下では、電力電圧Vccpから第2のデバイス電力電圧Vcc2への電圧降下は、(パワーゲーティングスイッチ58Sにわたる電圧降下)+(第2のデバイス電流Icc2×((i)TSV抵抗36Rの3倍と(ii)スタック抵抗18Rの2倍と(iii)スタック抵抗42Rと(iv)ルーティング抵抗66Rとの和))である。例えば、Vccp - Vcc2 = V58S + Icc2*[3*R36 + 2*R18 + R42 + R66] = V38S + Icc1*[3*R36 + 2*R18 + R42 + R46]である。
【0038】
図示の例では、パワーゲーティング領域を通ってそれぞれのダイ上の回路領域に流れる電流は、ダイのTSVを通ってダイに入り、そのダイの金属およびビアスタックの上部を通って流れない。いくつかの例では、ダイのTSVの抵抗は、そのダイの金属およびビアスタックの抵抗より小さい。したがって、これらの例では、ダイの回路領域への電圧降下は、電流が金属およびビアスタックを通って入り、ダイのTSVを通って流れない場合と比較すると、ダイのTSVを通って入り、ダイの金属およびビアスタックを完全に通って流れるのではない電流により、低減される。
【0039】
図3は、本開示のいくつかの例による、3Dダイスタックを示す。3Dダイスタックは、第1のダイ110と、第2のダイ130と、第3のダイ160とを含む。第2のダイ130の表側は、第1のダイ110の表側に取り付け(例えば、接合)され、第3のダイ160の表側は、第2のダイ130の裏側に取り付け(例えば、接合)される。第1のダイ110は、以下でさらに詳述するように、電力分配および制御回路を含み、入力/出力回路も含んでもよい。いくつかの例では、第2のダイ130および第3のダイ160は、プロセッサシステムなどのFPGAのための1つ以上のサブシステムおよび1つ以上のプログラマブルロジック領域を含み得、便宜上、「ファブリック」ダイと称され得る。いくつかの例では、第3のダイ160は、第2のダイ130の複製ダイまたは冗長ダイであるが、他の例では、第3のダイ160は、第2のダイ130とは異なる構成であり得るか、またはそれを含み得る。
図3の図示および本明細書における記載は、3Dダイスタックにおけるパワーゲーティングに関連する特徴のものである。他の特徴が、第1のダイ110、第2のダイ130、および/または第3のダイ160に含まれてもよい。
【0040】
第1のダイ110は、様々な能動デバイスが中および/または上に配置される半導体基板112(例えば、シリコン基板)を含む。第1のダイ110は、半導体基板112上にメタライゼーション層114をさらに含む。メタライゼーション層114は、前述の例に記載されるように、それぞれの金属層が中に配置された多数の誘電体層を含む。半導体基板112は、3Dダイスタックにおいて電力を制御および/または分配するためにデバイスが中に配置される電力管理領域116を有する。半導体基板112は、個別におよび/または集合的に、上に位置するダイ(例えば、第2のダイ130)内の回路の1つ以上の領域への電力の分配(例えば、パワーゲーティング)を制御するデバイスを含むパワーゲーティング領域118をさらに含む。例えば、パワーゲーティング領域118内のデバイスは、デバイスを通る電流の流れを選択的に遮断するように制御されることができる。
【0041】
メタライゼーション層114内の金属線およびビアスタック120は、電力管理領域116から第1のダイ110の表側表面まで延在する。金属線およびビアスタック120は、各メタライゼーション層114内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック120は垂直に整列していない。金属線122は、金属線およびビアスタック120から横方向に延在し、パワーゲーティング領域118(例えば、パワーゲーティング領域118内のパワーゲーティングデバイスのソース)に電気的に接続される。図示した例では、金属線122は、最下層のメタライゼーション層(例えば、M0層)にある。他の例では、金属線122は、メタライゼーション層114のうちの別の下層のメタライゼーション層(例えば、M1層、M2層など)にあってもよい。メタライゼーション層114は、ルーティング124をさらに含む。ルーティング124は、メタライゼーション層114内に金属線およびビアを含み、パワーゲーティング領域118(例えば、パワーゲーティング領域118内のパワーゲーティングデバイスのドレイン)に電気的に接続される。ルーティング124は、第1のダイ110の表側表面まで延在する。ルーティング124は、メタライゼーション層114のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。例えば、ルーティング124は、金属線およびビアスタック120とは別の金属線およびビアスタックを含むことができる。
【0042】
第2のダイ130は、様々な能動デバイスが中および/または上に配置される半導体基板132(例えば、シリコン基板)を含む。第2のダイ130は、半導体基板132上にメタライゼーション層134をさらに含む。メタライゼーション層114と同様に、メタライゼーション層134は、それぞれの金属層が中に配置された多数の誘電体層を含む。
【0043】
TSV領域136が、半導体基板132内に配置され、第2のダイ130の裏側(例えば、半導体基板132の裏側)から半導体基板132を通って延びる多数のTSVを含む。パワーゲーティング領域138は、半導体基板132内に配置され、個々におよび/または集合的に、上に位置するダイ(例えば、第3のダイ160)内の回路の1つ以上の領域への電力の分配(例えば、パワーゲーティング)を制御するデバイスを含む。例えば、パワーゲーティング領域138内のデバイスは、デバイスを通る電流の流れを選択的に遮断するように制御されることができる。TSV領域140が、半導体基板132内に配置され、第2のダイ130の裏側(例えば、半導体基板132の裏側)から半導体基板132を通って延びる多数のTSVも含む。回路領域142が、半導体基板132に配置され、個々にまたは集合的に、設計された機能を実行するデバイスを含む。例えば、回路領域142は、処理システム、プログラマブルロジック領域(例えば、FPGA内のファブリックロジック)、アクセラレータ、メモリ、もしくは任意の他の回路を含むか、またはそれらのためのデバイスとすることができる。
【0044】
メタライゼーション層134内の金属線およびビアスタック144が、TSV領域136から第2のダイ130の表側表面まで延在する。金属線およびビアスタック144は、各メタライゼーション層134内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック144は垂直に整列していない。金属線146が、金属線およびビアスタック144から横方向に延在し、パワーゲーティング領域138(例えば、パワーゲーティング領域138内のパワーゲーティングデバイスのソース)に電気的に接続される。図示した例では、金属線146は、最下層のメタライゼーション層(例えば、M0層)にある。他の例では、金属線146は、メタライゼーション層134のうちの別の下層のメタライゼーション層(例えば、M1層、M2層など)にあってもよい。金属線148が横方向に延在し、パワーゲーティング領域138(例えば、パワーゲーティング領域138内のパワーゲーティングデバイスのドレイン)とTSV領域140との間に接続される。金属線148は、最下層のメタライゼーション層または別の下層のメタライゼーション層にあってもよく、さらに、金属線146と同じメタライゼーション層にあってもよい。メタライゼーション層134は、ルーティング150をさらに含む。ルーティング150は、メタライゼーション層134内に金属線およびビアを含み、第2のダイ130の表側表面から延在し、回路領域142に電気的に接続される。ルーティング150は、メタライゼーション層134のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。例えば、ルーティング150は、金属線およびビアスタック144とは別の金属線およびビアスタックを含むことができる。
【0045】
第3のダイ160は、様々な能動デバイスが中および/または上に配置される半導体基板162(例えば、シリコン基板)を含む。第3のダイ160は、半導体基板162上にメタライゼーション層164をさらに含む。メタライゼーション層114および134と同様に、メタライゼーション層164は、それぞれの金属層が中に配置された多数の誘電体層を含む。
【0046】
TSV領域166が、半導体基板162に配置され、第3のダイ160の裏側(例えば、半導体基板162の裏側)から半導体基板162を通って延びる多数のTSVを含む。パワーゲーティング領域168は、半導体基板162内に配置され、個々におよび/または集合的に、任意の上に位置するダイ内の回路の1つ以上の領域への電力の分配(例えば、パワーゲーティング)を制御するデバイスを含む。例えば、パワーゲーティング領域168内のデバイスは、デバイスを通る電流の流れを選択的に遮断するように制御されることができる。TSV領域170が、半導体基板162内に配置され、TSV領域170も、第3のダイ160の裏側(例えば、半導体基板162の裏側)から半導体基板162を通って延びるいくつかのTSVを含む。回路領域172が、半導体基板162に配置され、個々にまたは集合的に、設計された機能を実行するデバイスを含む。例えば、回路領域172は、処理システム、プログラマブルロジック領域(例えば、FPGA内のファブリックロジック)、アクセラレータ、メモリ、もしくは任意の他の回路を含むか、またはそれらのためのデバイスとすることができる。
【0047】
メタライゼーション層164内の金属線およびビアスタック174は、TSV領域166から第3のダイ160の表側表面まで延在する。金属線およびビアスタック174は、各メタライゼーション層164内において、垂直スタックで共に接続された1つ以上の線および1つ以上のビアを含む。他の例では、金属線およびビアスタック174は垂直に整列していない。金属線176は、金属線およびビアスタック174から横方向に延在し、パワーゲーティング領域168(例えば、パワーゲーティング領域168内のパワーゲーティングデバイスのソース)に電気的に接続される。図示した例では、金属線176は、最下層のメタライゼーション層(例えば、M0層)にある。他の例では、金属線176は、メタライゼーション層164のうちの別の下層のメタライゼーション層(例えば、M1層、M2層など)にあってもよい。金属線178が横方向に延在し、パワーゲーティング領域168(例えば、パワーゲーティング領域168内のパワーゲーティングデバイスのドレイン)とTSV領域170との間に接続される。金属線178は、最下層のメタライゼーション層または別の下層のメタライゼーション層にあってもよく、さらに、金属線176と同じメタライゼーション層にあってもよい。メタライゼーション層164は、ルーティング180をさらに含む。ルーティング180は、メタライゼーション層164内に金属線およびビアを含み、第3のダイ160の表側表面から延在し、回路領域172に電気的に接続される。ルーティング180は、メタライゼーション層164のいずれかにおいて金属線および/またはビアの任意の組み合わせを含むことができる。例えば、ルーティング180は、金属線およびビアスタック174とは別の金属線およびビアスタックを含むことができる。
【0048】
図示されていないが、下に位置するダイの裏側を上に位置するダイの表側に取り付ける(例えば接合する)ことによって、1つ以上の追加のダイを第3のダイ160上に積層することができる。各追加のダイは、TSV、金属線およびビアスタック、ならびに相互接続金属線をさらに含むことができ、下層の金属層内の金属線が、金属線およびビアスタックから延在してパワーゲーティング領域に接続し、パワーゲーティング領域は、さらに、
図3の第2のダイ130および第3のダイ160に示されると同様に、別の金属線によってTSVに接続される。
【0049】
図3の3Dダイスタックでは、第1のダイ110の金属線およびビアスタック120と、第2のダイ130の金属線およびビアスタック144ならびにTSV領域136内のTSVと、第3のダイ160の金属線およびビアスタック174ならびにTSV領域166内のTSVとは、電気的に、および直列に、接続されている。いくつかの例では、第1のダイ110の金属線およびビアスタック120の金属部は、第1のダイ110と第2のダイ130との間の接合界面において、第2のダイ130の金属線およびビアスタック144の金属部に金属対金属接合され、第2のダイ130のTSV領域136内のTSVは、第2のダイ130と第3のダイ160との間の接合界面において、第3のダイ160の金属線およびビアスタック174の金属部に金属対金属接合される。
【0050】
加えて、第1のダイ110のルーティング124の金属部は、第1のダイ110と第2のダイ130との間の接合界面において、第2のダイ130のルーティング150の金属部に金属対金属接合され、第2のダイ130のTSV領域140内のTSVは、第2のダイ130と第3のダイ160との間の接合界面において、第3のダイ160のルーティング180の金属部に金属対金属接合される。したがって、第1のダイ110のパワーゲーティング領域118は、第2のダイ130の回路領域142に接続され、第2のダイ130の回路領域142に結合され、それへの電力分配を制御するように構成され、第2のダイ130のパワーゲーティング領域138は、第3のダイ160の回路領域172に接続され、それへの電力分配を制御するように構成される。
【0051】
より具体的には、3D積層ダイは、パワーゲーティングされる電力経路を含む。電力管理領域116は、以下でさらに説明されるように、電力電圧を与える。電力管理領域116における電力電圧から、第1のパワーゲーティングされた電力経路が、金属線およびビアスタック120の下部、金属線122、パワーゲーティング領域118内のパワーゲーティングデバイス、および第1のダイ110のルーティング124を通って、ならびに第2のダイ130のルーティング150を通って、第2のダイ130の回路領域142まで形成される。第1のパワーゲーティングされた電力経路は、金属線およびビアスタック144を通らない(例えば、メタライゼーション層134のうちの最上層のメタライゼーション層(例えば、半導体基板132から最も遠位の)にある、金属線およびビアスタック144の金属線またはビアを通らない)。さらに、電力管理領域116における電力電圧から、第2のパワーゲーティングされた電力経路が、第1のダイ110の金属線およびビアスタック120を通り;金属線およびビアスタック144、金属線146、パワーゲーティング領域138内のパワーゲーティングデバイス、金属線148、ならびに第2のダイ130のTSV領域140のTSVを通り;第3のダイ160のルーティング180を通って、第3のダイ160の回路領域172まで形成される。第2のパワーゲーティングされた電力経路は、金属線およびビアスタック174を通らない(例えば、メタライゼーション層164のうちの最上層のメタライゼーション層(例えば、半導体基板162から最も遠位の)にある、金属線およびビアスタック174の金属線またはビアを通らない)。さらに、電力管理領域116における電力電圧から、第3のパワーゲーティングされた電力経路が、第1のダイ110の金属線およびビアスタック120を通り;第2のダイ130の金属線およびビアスタック144ならびにTSV領域136のTSVを通り;金属線およびビアスタック174、金属線176、パワーゲーティング領域168内のパワーゲーティングデバイス、金属線178、ならびに第3のダイ160のTSV領域170のTSVを通り;上に位置するダイのルーティングを通って、上に位置するダイの回路領域まで形成されてもよい。
【0052】
パワーゲーティングされた電力経路の説明から明らかなように、異なるパワーゲーティングされた電力経路は、様々な物理的構成要素(例えば、TSV、金属線およびビアスタックなど)を共有することができる。さらに、
図3には示されていないが、第2のダイ130および第3のダイ160は、パワーゲーティングされていない電力経路を含むことができる。これらのパワーゲーティングされない電力経路も、上述のパワーゲーティングされた電力経路の様々な物理的構成要素を共有してもよい。例えば、電力管理領域116における電力電圧から、第1のパワーゲーティングされない電力経路が、第1のダイ110の金属線およびビアスタック120を通り、金属線およびビアスタック144の上部、メタライゼーション層134のうちの上層のメタライゼーション層内の金属線、ならびに第2のダイ130のメタライゼーション層134内の様々なルーティングを通って、第2のダイ130の別の回路領域まで形成され得る。同様に、電力管理領域116における電力電圧から、第2のパワーゲーティングされない電力経路が、第1のダイ110の金属線およびビアスタック120を通り;第2のダイ130の金属線およびビアスタック144ならびにTSV領域136のTSVを通り;金属線およびビアスタック174の上部、メタライゼーション層164のうちの上層のメタライゼーション層内の金属線、ならびに第3のダイ160のメタライゼーション層164内の様々なルーティングを通って、第3のダイ160の別の回路領域まで、形成され得る。
【0053】
上記の説明は、それぞれの経路の一部を形成するメタライゼーション層内の各ビア、および/またはそれぞれの経路の一部を形成するそれぞれの基板内のデバイスへの各コンタクトを明示的に記述しない場合がある。このような説明の欠如は、理解を簡潔かつ簡単にするためのものである。当業者は、そのようなビアおよび/またはコンタクトの存在を容易に理解するであろう。
【0054】
図4は、本開示のいくつかの例による、
図3の3Dダイスタックにおける電力分配およびパワーゲーティングのための簡略化された回路図を示す。電力電圧Vccpは、第1のダイ110の電力管理領域116によって与えられる。スタック抵抗120Rおよびパワーゲーティングスイッチ118Sは、電力電圧Vccpに接続される。スタック抵抗120Rは、金属線122から第2のダイ130との接合界面までの、第1のダイ110の金属線およびビアスタック120の抵抗である。パワーゲーティングスイッチ118Sは、電力の流れを遮断することができるパワーゲーティング領域118内の1つ以上のスイッチまたはデバイス(例えば、1つ以上のパワーFET)を示す。次いで、パワーゲーティングスイッチ118Sは、第1のダイ110内のルーティング124の抵抗を表すルーティング抵抗124Rに接続される。次いで、ルーティング抵抗124Rは、第2のダイ130内において第1のデバイス電力電圧Vcc1をさらに与えるルーティング抵抗150Rに接続される。ルーティング抵抗150Rは、第2のダイ130におけるルーティング150の抵抗を表す。
図3の第1のダイ110において金属線122によって抵抗が形成され得るが、そのような抵抗は(例えば、相互接続された構成要素の近接のため)無視できる、および/または
図4の図示において他の抵抗に組み込まれる、と仮定される。
【0055】
次いで、スタック抵抗120Rはスタック抵抗144Rに接続され、スタック抵抗144Rは、第1のダイ110との接合界面から金属線146までの、第2のダイ130の金属線およびビアスタック144の抵抗である。スタック抵抗144Rには、TSV抵抗136Rおよびパワーゲーティングスイッチ138Sが接続される。TSV抵抗136Rは、第2のダイ130のTSV領域136におけるTSV、ならびに半導体基板132と金属線146との間における第2のダイ130の金属線およびビアスタック144の任意の部分の抵抗である。パワーゲーティングスイッチ138Sは、電力の流れを遮断することができる、パワーゲーティング領域138内の1つ以上のスイッチまたはデバイス(例えば、1つ以上のパワーFET)を示す。次いで、パワーゲーティングスイッチ138Sは、TSV抵抗140Rに接続され、TSV抵抗140Rは、第2のダイ130内のTSV領域140内のTSVの抵抗を表す。次いで、TSV抵抗140Rは、第3のダイ160において第2のデバイス電力電圧Vcc2をさらに与えるルーティング抵抗180Rに接続される。ルーティング抵抗180Rは、第3のダイ160におけるルーティング180の抵抗を表す。
図3の第2のダイ130内の金属線146および148によって抵抗が生成され得るが、そのような抵抗は無視できる、および/または
図4の図示において他の抵抗に組み込まれる、と仮定される。
【0056】
次いで、TSV抵抗136Rはスタック抵抗174Rに接続され、スタック抵抗174Rは、第2のダイ130との接合界面から金属線176までの、第3のダイ160の金属線およびビアスタック174の抵抗である。スタック抵抗174Rには、TSV抵抗166Rおよびパワーゲーティングスイッチ168Sが接続される。TSV抵抗166Rは、第3のダイ160のTSV領域166におけるTSV、ならびに半導体基板162と金属線176との間の第3のダイ160の金属線およびビアスタック174の任意の部分の抵抗である。パワーゲーティングスイッチ168Sは、電力の流れを遮断することができる、パワーゲーティング領域168内の1つ以上のスイッチ(例えば、1つ以上のパワーFET)を示す。次いで、パワーゲーティングスイッチ168Sは、第3のダイ160内のTSV領域170内のTSVの抵抗を表すTSV抵抗170Rに接続される。
図3の第3のダイ160内の金属線176および178によって抵抗が生成され得るが、そのような抵抗は無視できる、および/または
図4の図示において他の抵抗に組み込まれる、と仮定される。
【0057】
追加のダイを、前述のように、3Dダイスタックに含めることができる。1つ以上の追加のダイが3Dダイスタックに含まれ、そのようなダイが第2のダイ130および/または第3のダイ160と同じ構成を有する場合、それらのダイの回路図は複製され、
図4の第2のダイ130および第3のダイ160によって示されるパターンと同様に、3Dダイスタックに付加され得る。
【0058】
電力電圧Vccpは、第1のダイ110の電力管理領域116によって与えられる。第1のデバイス電力電圧Vcc1は、第2のダイ130の回路領域142において、そこにおけるデバイスを動作させるために供給される電圧である。さらに、第1のデバイス電流Icc1が、第2のダイ130の回路領域142に供給される。第2のデバイス電力電圧Vcc2は、第3のダイ160の回路領域172において、そこにおけるデバイスを動作させるために供給される電圧である。また、第2のデバイス電流Icc2が、第3のダイ160の回路領域172に供給される。電圧分析の目的のために、第1のデバイス電流Icc1と第2のデバイス電流Icc2とは実質的に等しく、その結果、電力電流ループは第1のデバイス電流Icc1(または第2のデバイス電流Icc2)の実質的に2倍になる、と仮定する。さらに、第2のダイ130における抵抗は第3のダイ160における対応する抵抗と実質的に等しく(例えば、TSV抵抗136Rおよび166Rは実質的に等しく、スタック抵抗144Rおよび174Rは実質的に等しく、ルーティング抵抗150Rおよび180Rは実質的に等しい等)、パワーゲーティングスイッチ118Sにわたる電圧降下およびパワーゲーティングスイッチ138Sにわたる電圧降下は実質的に等しい、と仮定する。
【0059】
前述の状況下では、電力電圧Vccpから第1のデバイス電力電圧Vcc1への電圧降下は、(パワーゲーティングスイッチ118Sにわたる電圧降下)+(第1のデバイス電流Icc1×ルーティング抵抗124Rと150Rとの和)である。例えば、Vccp - Vcc1 = V118S + Icc1*(R124 + R150)である。上述の状況下では、電力電圧Vccpから第2のデバイス電力電圧Vcc2への電圧降下は、(パワーゲーティングスイッチ138Sにわたる電圧降下)+(第2のデバイス電流Icc2×(スタック抵抗120Rおよび144RとTSV抵抗140Rとルーティング抵抗180Rとの和)である。例えば、Vccp - Vcc2 = V138S + Icc2*(R120 + R144 + R140 + R180] = V118S + Icc1*(R120 + R144 + R140 + R150]である。
【0060】
図示の例では、ダイ上の回路領域に流れる電流は、別の、異なるダイ上のパワーゲーティング領域から流れる。電流は、一般に、電流が流れる回路領域を含むダイ内で垂直に1回(例えば、下部メタライゼーションから上部メタライゼーションに延在して下部メタライゼーションに戻ることなく)延びるルーティングを通ってダイに入る。これは、ダイ内においてそれぞれのパワーゲーティング領域と直接整列されるメタライゼーション層においてなど、ダイ内における他の信号のためのルーティングのための、より多くの余地を可能にし得る。パワーゲーティング領域は、パワーゲーティング領域を含むダイのルーティングおよび/またはTSVを通じて回路領域のダイ上のルーティングに接続され得る。そのような例では、パワーゲーティング領域を通って回路領域に流れる電流は、より直接的であり得、したがって、より少ない金属構成要素を通って流れ得る。これにより、一般に電流経路の抵抗を低減することができ、電圧降下を低減することができる。さらに、TSV領域は、所望の電圧降下に対応するために、より少ないTSVが実現され得るので、サイズが低減され得る。さらに、パワーゲーティング領域は、パワーゲーティング領域が電力分配および制御を与える回路領域を形成するプロセスから少なくとも部分的に切り離される。この切り離しは、パワーゲーティング領域が回路領域とは異なるダイ上に形成されることによる。この切り離しは、回路領域が故障しているとき、または不良ダイ上にあるときに、電力がパワーゲーティング領域によって確実に遮断されるのを助けることができる。
【0061】
図1から
図4に示される例では、第1のダイ10および110は、表を上にした向きにあるものとして図示および説明される。他の例では、第1のダイは表を下にした向きとすることができ、第1のダイの構成要素は、第1のダイ上のTSVを介して第2のダイ上の構成要素に電気的に接続され得る。当業者は、そのような構造を実現するために行われ得る様々な修正を容易に理解するであろう。
【0062】
さらに、図には示されていないが、3Dダイスタックは、3Dダイスタックを別の基板(例えば、インターポーザ、パッケージ基板など)に接続するための外部電気コネクタ(例えば、マイクロバンプ、制御されたコラプスチップ接続(C4)バンプなど)を有することができる。外部電気コネクタは、ダイ(例えば、第1のダイ10または110)に対して、そのダイと上に位置するダイ(例えば第2のダイ30または130)との間の接合界面から反対に、取り付けることができる。したがって、
図1および
図3の構成では、第1のダイ10および110は、半導体基板12および112を通って延びるTSVをさらに含むことができ、外部電気コネクタは、TSVを通してメタライゼーション層14および114に、次いで半導体基板12および112上の様々な回路領域に入力/出力信号および電力を与えるために、TSVに電気的に接続されることができる。第1のダイが表を下向きにしている他の例では、外部電気コネクタは、メタライゼーション層14および114を介して半導体基板12および112上の様々な回路領域に入力/出力信号および電力を与えるために、メタライゼーション層14および114におけるルーティングに電気的に接続されることができる。表を下向きにした第1のダイを有するそのような例では、第1のダイは、第2のダイに電気的に接続されて、上に位置するダイに電力分配および/または制御を与えるためのTSVを含むことができる。
【0063】
図5は、本開示のいくつかの例による、3Dダイスタックを動作させるための方法500のフローチャートである。動作502では、3Dダイスタック内のパワーゲーティングされた電力経路に電力電圧が供給される。例えば、電力管理領域16および116は、上述のように、パワーゲーティングされた電力経路に電力電圧Vccpを供給することができる。動作504では、パワーゲーティングされた電力経路のうちの1つ以上における1つ以上のパワーゲーティングデバイスが、それぞれのパワーゲーティングされた電力経路における電流の流れを選択的に遮断するかまたは遮断しないように制御される。例えば、パワーゲーティングデバイスを有する(および/またはパワーゲーティングされる回路を含む)各ダイは、パワーゲーティングデバイスが接続されるパワーゲーティングされた電力経路に接続される回路領域によって実現される回路の状態を検出することができるハードウェアロジック、プログラムコード命令を実行するプロセッサなどをさらに含む。たとえば、ハードウェアロジック、プロセッサなどは、回路がいつ故障しているか、シャットダウンまたはスリープモードに入るべきかなどを検出することができる。ハードウェアロジック、プロセッサなどは、例えば、適切な条件下で開くように(例えば、回路を通した漏洩を防止するように)、または通常の動作下で閉じるように、パワーゲーティングデバイスを制御することができる。
【0064】
本開示の例は、積層ダイ構造のためのパワーゲーティングを提供する。一般に、本明細書に記載されるような積層ダイ構造は、電源からの電流の流れに対して(例えば、低減された長さに起因して)低減された抵抗経路を有することができる。したがって、潜在的な利点の中でも、とりわけ、経路に沿った電圧降下が低減され得る。
【0065】
一例では、装置は、積層ダイ構造を含んでもよく、前記積層ダイ構造は、第1の半導体基板を含む第1のダイを含み、前記第1の半導体基板は第1のパワーゲーティング領域を含み、前記積層ダイ構造はさらに、前記第1のダイに接合される第2のダイを含み、前記第2のダイは第2の半導体基板を含み、前記第2の半導体基板は第1の回路領域を含み、前記積層ダイ構造は、前記第1の回路領域に電力を供給するように構成された第1のパワーゲーティングされた電力経路を含み、前記第1のパワーゲーティングされた電力経路は、前記第1の半導体基板の前記第1のパワーゲーティング領域内にあり、前記第1のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第1のパワーゲーティングデバイスを含んでもよい。
【0066】
あるそのような装置では、前記積層ダイ構造は、前記第2のダイに接合される第3のダイをさらに含んでもよく、前記第3のダイは、第3の半導体基板を含み、前記第3の半導体基板は第2の回路領域を含んでもよく、前記第2の半導体基板は、第2のパワーゲーティング領域をさらに含んでもよく、前記積層ダイ構造は、前記第2の回路領域に電力を供給するように構成された第2のパワーゲーティングされた電力経路を含んでもよく、前記第2のパワーゲーティングされた電力経路は、前記第2の半導体基板の前記第2のパワーゲーティング領域内にあり、前記第2のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第2のパワーゲーティングデバイスを含んでもよい。
【0067】
あるそのような装置では、前記第2のダイは、前記第2の半導体基板上に第1のメタライゼーション層をさらに含んでもよく、前記第1のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内において前記第1の回路領域への第1のルーティングを含んでもよく、前記第2のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内における第1の金属スタックと、前記第2の半導体基板を貫通する第1の基板貫通ビア(TSV)とを含んでもよく、前記第1の金属スタックは、前記第1のルーティングから分離していてもよい。
【0068】
あるそのような装置では、前記第3のダイは、前記第3の半導体基板上に第2のメタライゼーション層をさらに含んでもよく、前記第2のパワーゲーティングされた電力経路は、前記第2のメタライゼーション層内において前記第2の回路領域への第2のルーティングをさらに含んでもよい。
【0069】
あるそのような装置では、前記第3のダイは、前記第3の半導体基板上に第2のメタライゼーション層をさらに含んでもよく、前記積層ダイ構造は、前記第2の半導体基板上において第3の回路領域に電力を供給するように構成された第1のパワーゲーティングされない電力経路を含んでもよく、前記第1のパワーゲーティングされない電力経路は、前記第1の金属スタックの少なくとも一部を含んでもよく、前記積層ダイ構造は、前記第3の半導体基板上において第4の回路領域に電力を供給するように構成された第2のパワーゲーティングされない電力経路を含んでもよく、前記第2のパワーゲーティングされない電力経路は、前記第1の金属スタックと、前記第2の半導体基板を貫通する第2のTSVと、前記第2のメタライゼーション層内における第2の金属スタックの少なくとも一部とを含んでもよい。
【0070】
あるそのような装置では、前記第2のダイは、前記第2の半導体基板上に第1のメタライゼーション層をさらに含んでもよく、前記第1のパワーゲーティングされた電力経路は、前記第1のメタライゼーション層内において第1のルーティングを含んでもよく、前記第1のルーティングは、前記第1のダイと前記第2のダイとの間の第1の接合界面から前記第1の回路領域までであってもよい。
【0071】
あるそのような装置では、前記積層ダイ構造は、前記第2のダイに接合される第1のダイを含んでもよく、前記第3のダイは、第3の半導体基板と、前記第3の半導体基板上の第2のメタライゼーション層とを含んでもよく、前記第3の半導体基板は、第2の回路領域を含んでもよく、前記第2の半導体基板は、第2のパワーゲーティング領域をさらに含んでもよく、前記積層ダイ構造は、前記第2の回路領域に電力を供給するように構成された第2のパワーゲーティングされた電力経路を含んでもよく、前記第2のパワーゲーティングされた電力経路は、前記第2の半導体基板の前記第2のパワーゲーティング領域内にあり、前記第2のパワーゲーティングされた電力経路を通る電流の流れを遮断するように構成された第2のパワーゲーティングデバイスを含んでもよく、前記第2のパワーゲーティングされた電力経路は、前記第2のメタライゼーション層内において第2のルーティングをさらに含んでもよく、前記第2のルーティングは、前記第2のダイと前記第3のダイとの間の第2の接合界面から前記第2の回路領域までであってもよい。
【0072】
あるそのような装置では、前記積層ダイ構造は、前記第2のダイに接合される第3のダイをさらに含んでもよく、前記第2のダイは、さらに、前記第2の半導体基板上の第1のメタライゼーション層と、前記第2の半導体基板を貫通する第1の基板貫通ビア(TSV)と、前記第2の半導体基板を貫通する第2のTSVと、前記第1のメタライゼーション層に設けられ、前記第1のダイと前記第2のダイとの間の第1の接合界面から前記第1のTSVまで延在する第1の金属スタックと、前記第1のメタライゼーション層に設けられ、前記第1の接合界面から前記第1の回路領域に延在する第1のルーティングとを含んでもよく、前記第1のルーティングは、前記第1の金属スタックから分離され、前記第1のパワーゲーティングされた電力経路は、前記第1のルーティングを含み、前記第2の半導体基板は、第2のパワーゲーティング領域をさらに含んでもよく、前記第2のパワーゲーティング領域は、前記第1の金属スタックと前記第2のTSVとの間に電気的に接続される第2のパワーゲーティングデバイスを含んでもよく、前記第3のダイはさらに、第2の回路領域を含む第3の半導体基板と、前記第3の半導体基板上の第2のメタライゼーション層と、前記第3の半導体基板を貫通する第3のTSVと、前記第2のメタライゼーション層に設けられ、前記第2のダイと前記第3のダイとの間の第2の接合界面から前記第3のTSVまで延在する第2の金属スタックとを含んでもよく、前記第2の金属スタックは前記第1のTSVに接続され、前記第3のダイは、さらに、前記第2のメタライゼーション層に設けられ、前記第2の接合界面から前記第2の回路領域に延在する第2のルーティングを含んでもよく、前記第2のルーティングは、前記第2の金属スタックから分離されていてもよい。
【0073】
別の例では、装置は、積層ダイ構造を備えてもよく、前記積層ダイ構造は、第1のダイと前記第1のダイに接合される第2のダイとを含み、前記第1のダイは、前記第1のダイと前記第2のダイとの間の第1の接合界面で前記第2のダイに電力を与えるように構成され、前記第2のダイは、第1の回路領域と第1のパワーゲーティング領域とを含む第1の半導体基板と、前記第1の半導体基板上の第1のメタライゼーション層と、前記第1の半導体基板を貫通する第1の基板貫通ビア(TSV)とを含み、第1のパワーゲーティングされた電力経路が、前記第1の接合界面から、前記第1のTSV、前記第1のパワーゲーティング領域の前記第1のパワーゲーティングデバイス、および第1のメタライゼーション層の第1のルーティングを通って、前記第1の回路領域に至る。
【0074】
あるそのような装置では、前記第1のメタライゼーション層は、前記第1のTSVに接続される金属スタックを含んでもよく、前記積層ダイ構造は、前記第2のダイに接合される第3のダイをさらに含んでもよく、前記第3のダイは、第2の回路領域と第2のパワーゲーティング領域とを含む第2の半導体基板と、前記第2の半導体基板上の第2のメタライゼーション層と、前記第2の半導体基板を貫通する第2のTSVとを含み、第2のパワーゲーティングされた電力経路が、前記第1の接合界面から、前記第1のTSV、前記金属スタック、前記第2のTSV、前記第2のパワーゲーティング領域の第2のパワーゲーティングデバイス、および前記第2のメタライゼーション層の第2のルーティングを通って、前記第2の回路領域に至る。
【0075】
あるそのような装置では、前記第1のダイの第1の接合側は、前記第1のメタライゼーション層を有する側に対応してもよく、前記第3のダイの第2の接合側は、前記第2の半導体基板を有する側に対応してもよく、前記第1の接合側は、前記第2のダイと前記第3のダイとの間の第2の接合界面で、前記第2の接合側に接合されてもよい。
【0076】
あるそのような装置では、前記第1のダイは、第2の半導体基板と、前記第2の半導体基板上の第2のメタライゼーション層とを含んでもよく、前記第1のダイの第1の接合側は、前記第2のメタライゼーション層を有する側に対応してもよく、前記第2のダイの第2の接合側は、前記第1の半導体基板を有する側に対応してもよく、前記第1の接合側は、前記第1の接合界面において前記第2の接合側に接合されてもよい。
【0077】
あるそのような装置では、前記第1のメタライゼーション層は、前記第1のTSVに接続される金属スタックを含んでもよく、前記第1のパワーゲーティングされた電力経路は、前記金属スタックと第1のパワーゲーティング領域の前記第1のパワーゲーティングデバイスとの間に接続される金属線を含んでもよく、前記金属線は、前記第1の半導体基板の6つのメタライゼーション層内にある、前記第1のメタライゼーション層のうちのあるメタライゼーション層内にあってもよい。
【0078】
あるそのような装置では、前記第1のメタライゼーション層は、前記第1のTSVに接続される金属スタックを含んでもよく、前記第1のパワーゲーティングされた電力経路は、前記第1の半導体基板から最も遠位にある、前記第1のメタライゼーション層のうちのあるメタライゼーション層にある、前記金属スタックの金属線またはビアを通らなくてもよい。
【0079】
あるそのような装置では、前記第1のメタライゼーション層は、前記第1のTSVに接続される金属スタックを含んでもよく、パワーゲーティングされない電力経路が、前記第1の接合界面から、前記第1のTSV、前記金属スタック、および前記第1のメタライゼーション層の第2のルーティングを通って、前記第1の半導体基板内の第2の回路領域に至ってもよい。
【0080】
本開示のさらなる例は、装置を動作させる方法である。そのような方法は、電力電圧を、積層ダイ構造において第1の電力経路に与えることを含んでもよく、積層ダイ構造は、第2のダイに接合される第1のダイを含み、第1のダイは、第1のパワーゲーティングデバイスを含み、第2のダイは、第1の電力経路に電気的に接続された第1の回路領域を含み、この方法はさらに、第1の電力経路内の電流の、第2のダイの第1の回路領域への流れを、選択的に遮断するかまたは遮断しないように、第1のパワーゲーティングデバイスを制御することを含んでもよい。
【0081】
あるそのような方法では、第1のダイは、第1の半導体基板と、第1の半導体基板上の第1のメタライゼーション層とを含んでもよく;第2のダイは、第2の半導体基板と、第2の半導体基板上の第2のメタライゼーション層とを含んでもよく;第1のダイと第2のダイとの間の接合界面は、第1のダイの、第1のメタライゼーション層を有する側に対応し、第2のダイの、第2のメタライゼーション層を有する側に対応する。
【0082】
あるそのような方法では、第1のダイは、第1の半導体基板と、第1の半導体基板上の第1のメタライゼーション層とを含んでもよく、第2のダイは、第2の半導体基板と、第2の半導体基板上の第2のメタライゼーション層とを含んでもよく、第1のダイと第2のダイとの間の接合界面は、第1のダイの、第1の半導体基板を有する側に対応してもよく、第2のダイの、第2のメタライゼーション層を有する側に対応する。
【0083】
あるそのような方法は、さらに、積層ダイ構造内において第2の電力経路に電力電圧を供給することを含んでもよく、積層ダイ構造は、第2のダイに接合される第3のダイをさらに含み、第2のダイは、第2のパワーゲーティングデバイスを含み、第3のダイは、第2の電力経路に電気的に接続される第2の回路領域を含み、この方法はさらに、第2のパワーゲーティングデバイスを制御して、第2の電力経路内の電流の、第3のダイの第2の回路領域への流れを、選択的に遮断するかまたは遮断しないことを含んでもよい。
【0084】
あるそのような方法は、積層ダイ構造内においてパワーゲーティングされない電力経路に電力電圧を供給することをさらに含んでもよく、積層ダイ構造は、第1のダイを通るパワーゲーティングされない電力経路をさらに有し、第2のダイは、パワーゲーティングされない電力経路に電気的に接続された第2の回路領域を含む。
【0085】
本明細書(以下の特許請求の範囲を含む)で使用される場合、項目のリスト「のうちの少なくとも1つ」に言及する語句は、単一のメンバーを含む、それらの項目の任意の組み合わせを指す。一例として、「x、y、およびzのうちの少なくとも1つ」は、x、y、z、x-y、x-z、y-z、x-y-z、およびそれらの任意の組み合わせ(例えば、x-y-yおよびx-x-y-z)を包含することを意図している。
【0086】
上記は本開示の例を対象とするが、本開示の他のさらなる例は、その基本的な範囲から逸脱することなく考案されることができ、その範囲は、以下の特許請求の範囲によって決定される。