IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ハイペップ研究所の特許一覧

<>
  • 特許-新規化合物及びそれを含む血管新生剤 図1
  • 特許-新規化合物及びそれを含む血管新生剤 図2
  • 特許-新規化合物及びそれを含む血管新生剤 図3
  • 特許-新規化合物及びそれを含む血管新生剤 図4
  • 特許-新規化合物及びそれを含む血管新生剤 図5
  • 特許-新規化合物及びそれを含む血管新生剤 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-18
(45)【発行日】2024-04-26
(54)【発明の名称】新規化合物及びそれを含む血管新生剤
(51)【国際特許分類】
   C07K 7/06 20060101AFI20240419BHJP
   C07K 7/50 20060101ALI20240419BHJP
   A61K 38/08 20190101ALI20240419BHJP
   A61K 38/12 20060101ALI20240419BHJP
   A61P 9/00 20060101ALI20240419BHJP
   A61P 43/00 20060101ALI20240419BHJP
【FI】
C07K7/06 ZNA
C07K7/50
A61K38/08
A61K38/12
A61P9/00
A61P43/00 105
【請求項の数】 9
(21)【出願番号】P 2020559802
(86)(22)【出願日】2019-10-31
(86)【国際出願番号】 JP2019042953
(87)【国際公開番号】W WO2020116062
(87)【国際公開日】2020-06-11
【審査請求日】2022-08-10
(31)【優先権主張番号】P 2018226244
(32)【優先日】2018-12-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】502249851
【氏名又は名称】株式会社ハイペップ研究所
(74)【代理人】
【識別番号】110001656
【氏名又は名称】弁理士法人谷川国際特許事務所
(72)【発明者】
【氏名】軒原 清史
(72)【発明者】
【氏名】冨永 祐希
(72)【発明者】
【氏名】北川 篤
(72)【発明者】
【氏名】軒原 駿
【審査官】大久保 智之
(56)【参考文献】
【文献】特許第4338516(JP,B2)
【文献】国際公開第2005/094865(WO,A1)
【文献】特表2007-512351(JP,A)
【文献】中国特許出願公開第102212127(CN,A)
【文献】Biochemical and Biophysical Research Communications,2003年,Vol.310,pp.153-157
(58)【調査した分野】(Int.Cl.,DB名)
C07K 7/06
A61K 38/08
A61K 38/12
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
PubMed
(57)【特許請求の範囲】
【請求項1】
下記式[IV]で表される化合物。
Cyclic(Cys-O2Oc-SVVFGLRG-Cys)-NH2 [IV]
(ただし、O2Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)
【請求項2】
下記式[V]で表される請求項記載の化合物。
【化1】

[V]
【請求項3】
上記式[V]中の2個のCysが、いずれもL体である、請求項記載の化合物。
【請求項4】
上記式[V]中の2個のCysが、いずれもD体である、請求項記載の化合物。
【請求項5】
下記式[VI]で表される化合物。
Cyclic(O2Oc-SVVFGLRQ)-NH2 [VI]
(ただし、O 2 Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)
【請求項6】
下記式[VII]で表される請求項記載の化合物。
【化2】
[VII]
【請求項7】
請求項1~のいずれか1項に記載の化合物を有効成分として含む血管新生剤。
【請求項8】
血管新生剤用の、請求項1~のいずれか1項に記載の化合物。
【請求項9】
請求項1~のいずれか1項に記載の化合物の、血管新生剤の製造のための使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規化合物及びそれを含む血管新生剤に関する。本発明の血管新生剤は虚血性疾患の治療のみならず人工骨等の生体代用材料を用いた臓器の再生・修復・移植や、細胞移植にも有用である。
【背景技術】
【0002】
現在日本人の死因として、心筋梗塞、脳梗塞など血管の閉塞に起因する虚血のためにおこる疾患がかなり多数を占めている。また、死因とならないまでも閉塞性大動脈硬化症のように下肢の切断を余儀なくされ、QOL(生活の質)の損なわれる疾患も見られる。これらの虚血性疾患に対しては、新たに血管を形成することによる血管新生療法に大きな期待が寄せられている。また、従来より、骨補填材またインプラント材として、アパタイトやチタン等が用いられている。これらの従来の生体材料は、周囲の軟・硬組織との親和性が良くないために本来の機能が十分発揮できない場合が多い。さらに、血管新生は人工骨等の生体代用材料を用いた臓器の再生・修復の際等、生体材料の生着にも重要な役割を果たしている。再生医療では代用臓器、生体材料等を移植する。移植部位の生着には、酸素や栄養分を運搬するための血管の新生が不可決であり、迅速な接着と血管の新生とは移植後のQOLを左右するとされる。
【0003】
周囲の軟・硬組織との親和性を良好にするために、生体接着機能性分子ペプチドを用いることが提案されている。例えば、生体硬組織の組成・結晶性に類似した炭酸アパタイトと、生体接着機能性分子ペプチドの1つであるコラーゲンとを混合した複合体を代用骨として用いることが提案されている(K. Nokihara et al., The Japanese Peptide Society, Osaka, 373-376, 2001., Development of Biomimetic Materials: Novel Composite Material Carrying Immobilized Functional Peptides; M. Okazaki et al., Dentistry in Japan, 37, 95-100, 2001, A New Concept of CO3 apatite-Collagen Composites with Adhesion Motif as Biomaterials.)。この複合体は生体親和性が良好であり、バイオミメティックな代用骨として有望である。
【0004】
もし、このような生体材料表面、内面に血管が新生されれば、移植生体材料の表面、内面の細胞へ術後早期に豊富な血液により栄養、酸素が十分に供給され、細胞の機能を発揮するのに最適の環境が形成され、その結果、生体と良好な生着性が得られるため好都合である。
【0005】
また、近年、人工多能性幹細胞(iPS)の技術によって自己組織由来の細胞を移植することで拒絶反応を回避する再生医療の研究が盛んである。例えば現在、対症療法しかない糖尿病の根本治療も、iPSによる自己細胞の移植(膵臓のランゲルハンス島ベータ細胞移植)によって可能であると考えられ、研究がすすめられている。しかしながら、移植部位での血管の生成が生着の鍵となっている。
【0006】
従来、再生医療を目的として、神経成長因子(NGF)や塩基性線維芽細胞増殖因子(bFGF)がよく知られており、一定の効果が認められているものの、細胞ががん化したり浸潤が起きることが知られており、臨床における実用上問題と考えられる。
【0007】
一方、本願発明者は、ペプチドから成る血管新生剤を先に発明し、特許を取得している(特許文献1)。ペプチドは、生体内でアミノ酸に代謝・分解されるので、安全性が高いという大きな利点がある。もし、特許文献1に記載されている公知のペプチド血管新生剤よりも生体内における血管新生効果が高い血管新生剤が得られれば有利であることは言うまでもない。
【先行技術文献】
【特許文献】
【0008】
【文献】特許第4338516号掲載公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本願発明の目的は、特許文献1に記載されるペプチド血管新生剤よりも血管新生効果が高い新規な化合物及びそれを含む血管新生剤を提供することである。
【課題を解決するための手段】
【0010】
特許文献1に記載した血管新生剤であるAGPは低分子のペプチドであり、副作用が全くなく安全であるが効き目の持続性が弱い。その理由を検討した結果、半減期が短いこと(生体内で分解/代謝される)に起因すると考えられた。そこで効果の持続性に注目して構造を改良、生体内での内因性酵素に対抗性を持たせた。このためには非天然アミノ酸の利用が考えられるが毒性の観点からNおよびC末端の修飾で生体の内因性酵素に対抗性を持たせるデザインを行った。元々、AGPは接着作用もあり、移植周辺の組織との融和性が期待できる。
【0011】
以上の観点から本願発明者が鋭意研究した結果、高い血管新生効果を持つ新規化合物を見出し、本発明を完成した。
【0012】
すなわち、本発明は、以下のものを提供する。
(1) 下記式[IV]で表される化合物。
Cyclic(Cys-O2Oc-SVVFGLRG-Cys)-NH2 [IV]
(ただし、O2Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)
(2) 下記式[V]で表される(1)記載の化合物。
【0013】
【化1】

[V]
【0014】
(3)上記式[V]中の2個のCysが、いずれもL体である、(2)記載の化合物。
(4)上記式[V]中の2個のCysが、いずれもD体である、(2)記載の化合物。
(5)下記式[VI]で表される化合物。
Cyclic(O2Oc-SVVFGLRQ)-NH2 [VI]
(ただし、O 2 Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)
(6)下記式[VII]で表される(1)記載の化合物。
【0015】
【化2】
[VII]
【0018】
(7) (1)~(6)のいずれか1項に記載の化合物を有効成分として含む血管新生剤。
(8) 血管新生剤用の、(1)~(6)のいずれか1項に記載の化合物。
(9) (1)~(6)のいずれか1項に記載の化合物の、血管新生剤の製造のための使用。
【発明の効果】
【0019】
本発明により、優れた血管新生作用を持つ新規化合物及びそれを有効成分として含有する血管新生剤が提供された。
【図面の簡単な説明】
【0020】
図1】下記実施例1の化合物のHPLCとLCMSの結果を示す図である。
図2】下記実施例2の化合物のHPLCとLCMSの結果を示す図である。
図3】下記実施例3の化合物のHPLCとLCMSの結果を示す図である。
図4】下記実施例4の化合物のHPLCとLCMSの結果を示す図である。
図5】下記実施例で行った、血管新生アッセイの方法の説明図である。
図6】下記実施例で行った、各種ペプチドの安定性試験の結果を示す図である。
【発明を実施するための形態】
【0021】
上記のとおり、本発明の化合物は、下記式[I]
Cyclic(Cys-O 2 Oc-SVV(F/Y)GLR-G-Cys)-NH2
(ただし、O 2 Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)、
下記式[II]
Cyclic(O2Oc-SVV(F/Y)GLRQ)-NH2 [II]
(ただし、O 2 Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)、
又は
下記式[III]
O2Oc-SVV(F/Y)GLR-NH2 [III]
(ただし、O 2 Ocで表されるオキシエチレン単位数は2~6の間で変化し得る)
で表される化合物である。
【0022】
上記式[I]中、SVV(F/Y)GLRGの部分は、アミノ酸の一文字表記で表したアミノ酸配列を示しており、N末端から4番目の(F/Y)は、フェニルアラニン又はチロシンを意味する。すなわち、SVV(F/Y)GLRGは、SVVFGLRG(配列番号1)又はSVVYGLRG(配列番号2)を表す。これらの配列のうち、4番目のアミノ酸がフェニルアラニンであるものの方が、血管新生活性がより高いので好ましい。また、これらのアミノ酸配列を構成する各アミノ酸は、それぞれ独立してL型でもD型でもよいが、L型の方が副作用等の懸念が少ないことに加え、工業生産上経済的に有利である。
【0023】
上記式[I]で表される化合物(4番目のアミノ酸がフェニルアラニンであるもの)であって、架橋部分のオキシエチレン単位(-O-CH2-CH2-)の数が2個のものは、上記構造式[V]で表される。
【0024】
上記構造式[V]で表される化合物のうち、2個のCysのいずれもがL型であるもの又はいずれもがD型であるものが好ましく、特にいずれもがL型であるものが経済性の観点から好ましい。
【0025】
上記式[II]中、SVV(F/Y)GLRQの部分は、アミノ酸の一文字表記で表したアミノ酸配列を示しており、N末端から4番目の(F/Y)は、フェニルアラニン又はチロシンを意味する。すなわち、SVV(F/Y)GLRQは、SVVFGLRQ(配列番号3)又はSVVYGLRQ(配列番号4)を表す。これらの配列のうち、4番目のアミノ酸がフェニルアラニンであるものの方が、血管新生活性がより高いので好ましい。また、これらのアミノ酸配列を構成する各アミノ酸は、それぞれ独立してL型でもD型でもよいが、L型の方が副作用等の懸念が少ないことに加え、工業生産上経済的に有利である。
【0026】
上記式[II]で表される化合物(4番目のアミノ酸がフェニルアラニンであるもの)であって、架橋部分のオキシエチレン単位(-O-CH2-CH2-)の数が2個のものは、次の構造式[VIII]で表される。
【0027】
【化4】
[VIII]
【0028】
この構造のうち、ペプチドの両末端を架橋している架橋構造中のオキシエチレン単位の数は2個~6個のものが可能であり、2個のもの(すなわち、上記式[VIII]で表されるもの)が特に好ましい。なお、上記式[IV]で表される化合物には立体異性体が複数存在するが、いずれの立体異性体をも用いることができ、それらの混合物も用いることができる。
【0029】
上記式[III]中、SVV(F/Y)GLRの部分は、アミノ酸の一文字表記で表したアミノ酸配列を示しており、N末端から4番目の(F/Y)は、フェニルアラニン又はチロシンを意味する。すなわち、SVV(F/Y)GLRは、SVVFGLR(配列番号5)又はSVVYGLR(配列番号6)を表す。これらの配列のうち、4番目のアミノ酸がフェニルアラニンであるものの方が、血管新生活性がより高いので好ましい。また、これらのアミノ酸配列を構成する各アミノ酸は、それぞれ独立してL型でもD型でもよいが、副作用のリスクが小さいL型が好ましい。なお、配列番号5及び配列番号6の各アミノ酸配列から成るペプチドは、特許文献1に血管新生剤として記載されているものである。
【0030】
上記式[III]で表される化合物(4番目のアミノ酸がフェニルアラニンであるもの)であって、N末端の付加部分のオキシエチレン単位の数が2個のものは、上記構造式[IX]で表される。
【0031】
上記各化合物において、ペプチド部分は、市販のペプチド合成機を用いた化学合成により容易に作製することができる。また、N末端にO2Oc構造を付加したり、環化したりする方法は、下記実施例に具体的に記載されており、下記実施例以外の化合物についても下記実施例に記載された方法に準じて容易に行うことができる。
【0032】
上記本発明の各化合物(以下、便宜的に「ペプチド系化合物」)は、単独で、又は生理緩衝液中に溶解した注射液等の形態で、血管新生が望まれる組織に局所投与することができる。手術や外傷により生じた創傷等の近傍に本発明の血管新生剤を、注射や塗布、噴霧等の方法により局所投与することにより、血管新生が促進され、創傷の治癒が促進される。ここで、注射又は塗布若しくは噴霧等に用いるペプチド系化合物溶液中のペプチド系化合物濃度は、特に限定されないが、通常、1~10μg(マイクログラム)/mL程度である。また、投与量は、傷などの大きさや深さにより適宜選択できるが、傷全体がペプチド系化合物溶液で被覆される程度でよい。また、傷が治癒するまで、1日~数日毎に1回~数回投与することができる。また、注射液には、他の消毒剤や消炎鎮痛剤など、通常、傷の治療薬に含まれる種々の成分を含んでいてもよい。
【0033】
また、ペプチド系化合物をキャリアに結合し、ペプチド系化合物が結合されたキャリアを生体に埋め込むことにより血管新生を促進することもできる。これはキャリアに固定化している為に必要な部位に選択的に作用させることができ、新たなDDS(ドラッグデリバリーシステム)としての可能性に富んでいる。生体材料移植部に本発明の血管新生剤を、塗布、噴霧等の方法により局所投与することにより、血管新生が促進され、術後の治癒が促進される。ここで、キャリアとしては、特に限定されるものではなく、代用骨や代用歯、人工臓器等に用いられる樹脂や、タンパク質等の生体高分子を挙げることができる。樹脂に上記ペプチド系化合物を結合することにより、該樹脂を生体に埋め込んだ際に、樹脂と接する周辺組織中での血管新生が促進され、樹脂の生体との親和性がより向上する。また、より好ましい態様として、タンパク質(本明細書において、特に断りがない限り「タンパク質」という語は、糖タンパク質やリンタンパク質等のタンパク質含有複合体を包含する)をキャリアとして用いるができる。
【0034】
ここで、キャリアとして用いるタンパク質は、生体適合性を有するいずれのタンパク質であってもよく、とりわけ、生体組織との接合を良好にするために、細胞接着性タンパク質であることが好ましい。細胞接着性タンパク質の好ましい例として、コラーゲン(ゼラチン)、フィブロネクチン、ビトロネクチン及びラミニン等並びにこれらの部分加水分解物を挙げることができるがこれらに限定されるものではない。なお、これらのタンパク質は、アレルゲンを除去した精製タンパク質であることが、アレルギー反応の防止の観点から好ましい。例えば、コラーゲンとしては、動物由来のコラーゲンが種々市販されているが、これらは純度が低く、アレルゲンが含まれており、品質の再現性も劣るので臨床用途に適用することは好ましくない。動物由来のコラーゲンを部分加水分解し、アレルゲンを除去したゼラチンが臨床用途のために市販されている。さらに、遺伝子製造のヒト型コラーゲンも市販されている。このような精製されたコラーゲン又はその部分加水分解物を用いることが好ましい。
【0035】
キャリアに結合されるペプチド系化合物の量は、特に限定されず、適宜選択することができるが、通常、キャリアとペプチド系化合物の重量比率(キャリア:ペプチド系化合物)が100:1~1:1程度であり、好ましくは20:1~5:1程度である。
【0036】
キャリアとペプチド系化合物との結合は、共有結合によることが好ましい。結合は、例えばペプチド系化合物のN末端のアミノ基と、キャリア中の任意のアミノ基をグルタルアルデヒド等の結合架橋剤を用いて結合することにより容易に行うことができ、下記実施例に詳細な結合方法の一例が記載されている。また、人工臓器等の樹脂に結合する場合には、この樹脂中に、アミノ基等の、ペプチド系化合物との結合に用いることができる基を含むモノマーを共重合させておき、当該アミノ基等とペプチド系化合物のN末端のアミノ基を結合することができる。
【0037】
ペプチド系化合物を結合したキャリアは、塗布又は噴霧する他にそのままで生体内に埋め込むことができる。キャリアとして、細胞接着性タンパク質を採用した場合には、ペプチド系化合物結合キャリアは、縫合糸、各種整形手術材料、傷口の癒着促進剤等として単独又は他の薬効成分とともに用いることができる。また、ペプチド系化合物を結合したキャリアタンパク質を、炭酸アパタイトや、本発明のペプチド系化合物を結合していない細胞接着性タンパク質等の他の材料と混合したものを代用骨等として用いることができる。この場合、代用骨等の最終の生体材料中に含まれるペプチド系化合物の量は、特に限定されないが、通常、生体材料100g当たり、0.1mg~10mg程度である。
【0038】
以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
【0039】
1.実施例1~4及び比較例1
下記表1に示す各化合物を合成した。なお、比較例1は、対照として、水を添加した例である。なお、実施例2のcAGP-2の2個のCysのみD型であるが、これら以外のアミノ酸は、全ての実施例においてL型である。
【0040】

【0041】
以下の説明においては、環化したペプチド系化合物などの、ペプチド部分を含む化合物も便宜的に「ペプチド」と呼ぶことがある。
【0042】
1. ペプチドの合成
共通部分(ペプチド鎖の伸長)
Fmoc化学による高効率固相法(K. Nokihara et. al., Innovation and Perspectives in Solid-Phase Synthesis 1992, ed., R. Epton, Intercept Limited, Andover, UK, 445-448, 1992, Design and Applications of a Novel Simultaneous Multiple Solid-Phase Peptide Synthesizer; 軒原清史、有機合成化学協会誌、52, 347-358, 1994, 高効率ペプチド合成:多種品目同時自動合成とペプチドライブラリー)に基づき、ペプチド自動合成機を用いて表1に示されるアミノ酸配列からなるペプチドレジン(cAGP(cyclic angiogenic peptideの略)と命名)を合成した。なおcAGP-1のGln残基は、合成時にはFmoc-Glu(OAll)-OHを用いて伸長しておき、環化時にGlnに変換される。
【0043】
cAGP-1(脱All保護、環化反応、切り出し)
ペプチドレジンをジクロロメタンで洗浄し、テトラキス (トリフェニルホスフィン)パラジウム (0) 0.1 eq.を加え、フェニルシラン5 eq.を加え振とうした(30℃、2.5時間)。DMF(ジメチルホルムアミド)で洗浄し環化反応(HATU 5 eq./DIEA(N,N-ジイソプロピルエチルアミン、DMF中)10 eq. 30℃、3.5時間)した。ペプチドをレジンから切り出し得られたペプチドを、高性能液体クロマトグラフィー質量分析計(HPLC-MS)で検定し、目的物であることを確認した(質量理論値と一致)。ペプチドを高性能液体クロマトグラフィー(HPLC)により精製し凍結乾燥することで目的物を得た。このとき同一質量数で溶出位置が異なる2本が得られたため(図1中の下の図)、それぞれを分離分取した。得られたペプチドを、それぞれLCMSで検定し、一方が本発明の実施例1の化合物(図1中の上の図)、他方がその環状ダイマー(本発明の範囲外)であり、また、それぞれが高純度であることを確認した(単一成分、質量理論値と一致)。
【0044】
cAGP-2, cAGP-3(切り出し、環化)
ペプチドをレジンから切り出し得られたペプチドを、HPLC-MSで検定し、目的物の直鎖体であることを確認した(質量理論値と一致)。ペプチドをHPLCにより精製し凍結乾燥した。得られたペプチドを0.1M酢酸アンモニウムに溶かし、ジメチルスルホキシド(DMSO)を濃度20重量%になるよう加え終夜振とうした(ペプチド終濃度0.5 mg/mL)。H2Oを加え2倍希釈して凍結乾燥した。得られた粗ペプチドはHPLCにより精製し凍結乾燥した。得られたペプチドをLCMSで検定し、高純度であることを確認した(単一成分、質量理論値と一致)。
【0045】
AGP-O 2 Oc(切り出し)
ペプチドをレジンから切り出し得られたペプチドをLCMSで検定し、目的物であることを確認した(質量理論値と一致)。ペプチドをHPLCにより精製し凍結乾燥した。得られたペプチドをLCMSで検定し、高純度であることを確認した(単一成分、質量理論値と一致)。
【0046】
共通部分(カウンターイオンの交換)
上記、各ペプチドの合成、精製で得られた高純度ペプチドを0.01 N HCl/MeCNで再溶解し凍結乾燥することで塩酸塩に変換した。
【0047】
上記方法により得られた各化合物のHPLC及びLCMSの結果を図1図4に示す。
【0048】
実施例3 血管新生アッセイ
1.方法
本アッセイでは、ヒト臍帯静脈内皮細胞(HUVEC, Promocell GmbH製)を用いてアッセイを行った。細胞培養はPromocell社が推奨する方法に従って行った(血管内皮細胞、PromoCell GmbH製)。即ち、血管内皮細胞成長培地 (Promocell GmbH製)を25mL培養フラスコに調製し、そこにP/S (ペニシリン100mU/mL, ストレプトマイシン100μg/mL)を加えて混合し、凍結していたHUVECの細胞懸濁液1mLを加え、軽く混和して37℃で培養を開始した。血管新生アッセイは、Angeogenesis assay kit(Promocell GmbH製)の方法に基づいて行った。培養した細胞はフラスコの底面に接着しているためトリプシン-EDTA溶液で剥離、回収して細胞数を計測、1mL培地に再懸濁した(1.74 x 106個)。血管新生アッセイの模式図を図5に示した。図中1はアッセイに用いた96wellマイクロプレートの1ウェルを示している。ウェル一つにつき50μLの細胞外マトリックスゲル(キットに付属)を分注し、37℃で1 hインキュベートし、参照番号2に示すゲルを形成させた。この上に1ウェル当り17400個となるように調製したHUVEC細胞懸濁液と各血管新生因子(表1)を1μg/mLの濃度となるように混合した物を重層し(図中参照番号3)、37℃、CO2 5%で2~96時間培養した。培養中は落射式顕微鏡を用いて、図中の矢印の方向から観察し、血管新生の様子を観察した。
【0049】
2. 結果
培養初期段階(2~18 時間)では、比較例1(対照)を含めたすべての系で管構造の形成が認められた。培養48時間になると比較例1では管構造が維持できずに崩壊している様子が観察された。実施例1~4では、培養72時間で管構造が維持されていた。血管新生剤を投与する場合、投与は繰り返し行うことができるので、培養72時間で管構造が維持されていれば医薬としての実用性があると考えられる。
【0050】
実施例4 安定性試験
効果の持続性と薬物としての実用性を検証するため、細胞内因性の酵素に対する各ペプチドの安定性試験を行った。
【0051】
1.方法
(1) タンパク溶液の調製
ヒト血管内皮細胞(HUVEC(Human Umbilical Vein Endothelial Cells, Promocell GmbH.))を利用した。凍結保存していたHUVECをEndothelial Cell Growth Medium(Promocell GmbH.)で2日間培養した。この細胞をトリプシン-EDTAを用いる定法により剥離、回収してH2Oで洗浄し、Lysis Buffer for Enzyme extraction (TBS pH 7.5 5 mL, Triton X100(商品名) 5 mL, H2O 40 mL with cOmplete mini, Roche社製)を加えて氷上で30分間放置して細胞を溶解させた。この細胞溶解液を13,000 rpm, 4℃, 3 min 遠心して上清を回収し、A280(Nano drop, Thermofischer scientific)でタンパク質濃度を測定し、2 mg/mLに調製してアッセイ用タンパク溶液を調製した。
【0052】
(2) アッセイ
AGP溶液 4種類(各2mg/mL) 50μL + 上記細胞溶解液(2mg/mL)20μL+ H2O 30μLを、PCRチューブ内で混合し、37℃インキュベータで0、1、3、6時間の各時間インキュベートした。インキュベート後は90℃の湯浴で5分間加熱し、酵素を不活化後、LC-MS分析に供した。残存ペプチドは、LCでのUV 210nm検出ピークの面積値から定量した。
【0053】
2. 結果
結果を図6に示す。図6に示されるように、いずれの化合物も、6時間後に70%以上残存していた。特にペプチドの両末端をCysのジスルフィド結合でつないで環化したcAGP2、cAGP3では、6時間のアッセイ後でもほとんど分解せずに残存していることが分かった。また、AGP-O 2 Ocでも同程度の安定性を示した。

【符号の説明】
【0054】
1 ウェル
2 ゲル
3 HUVEC細胞懸濁液と各血管新生因子の混合物
図1
図2
図3
図4
図5
図6
【配列表】
0007475051000001.app