(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-22
(45)【発行日】2024-05-01
(54)【発明の名称】CAESシステム
(51)【国際特許分類】
F02C 6/16 20060101AFI20240423BHJP
F02C 1/05 20060101ALI20240423BHJP
F02C 7/143 20060101ALI20240423BHJP
【FI】
F02C6/16
F02C1/05
F02C7/143
(21)【出願番号】P 2020124951
(22)【出願日】2020-07-22
【審査請求日】2023-06-09
(73)【特許権者】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】100083806
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100098327
【氏名又は名称】高松 俊雄
(72)【発明者】
【氏名】内藤 俊之
【審査官】松浦 久夫
(56)【参考文献】
【文献】特開2015-095976(JP,A)
【文献】特開平07-224679(JP,A)
【文献】特開2019-173608(JP,A)
【文献】特開2018-182996(JP,A)
【文献】独国特許出願公開第102010050428(DE,A1)
【文献】米国特許出願公開第2020/0032802(US,A1)
【文献】特表2013-509531(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02C 6/16
F02C 1/05
F02C 7/143
(57)【特許請求の範囲】
【請求項1】
圧縮装置と、
前記圧縮装置で圧縮された空気を貯蔵する貯蔵装置と、
前記貯蔵装置から放出された空気によって回転するタービンを含み、前記タービンの回転によって発電する発電装置と、
前記タービンの回転を前記圧縮装置に伝達するクラッチと、
を備え
、
前記圧縮装置から前記貯蔵装置に向かって流れる空気の熱を、前記貯蔵装置から前記タービンに向かって流れる空気の熱と交換する、CAESシステム。
【請求項2】
前記圧縮装置は前記貯蔵装置に向かって流れる圧縮された空気を冷却する第1熱交換器を含み、
前記発電装置は前記貯蔵装置から前記タービンに向かって流れる膨張された空気を加熱する第2熱交換器を含み、
前記第1熱交換器と前記第2熱交換器との間を熱交換媒体が循環する、請求項
1に記載のCAESシステム。
【請求項3】
前記圧縮装置から前記貯蔵装置に向かって流れる空気の熱を、前記タービンを通過して膨張した空気の熱と交換する、請求項
1又は2に記載のCAESシステム。
【請求項4】
前記圧縮装置は前記貯蔵装置に向かって流れる圧縮された空気を冷却する第1熱交換器を含み、
前記発電装置は第3熱交換器を含み、
前記第1熱交換器と前記第3熱交換器との間を熱交換媒体が循環し
前記第3熱交換器は前記タービンを通過して膨張された空気の熱と前記熱交換媒体の熱とを交換する、請求項1~
3のいずれか一項に記載のCAESシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、CAESシステムに関する。
【背景技術】
【0002】
二酸化炭素排出量を低減させるため、太陽光及び風力のような再生可能エネルギーを利用した発電が注目されている。しかしながら、これらの発電による発電量は、天候及び季節によって変動するために安定しておらず、需要と供給のバランスが崩れた場合には、停電が発生するおそれもある。そこで、これらの再生可能エネルギーを利用した場合であっても、安定した発電量を供給するための蓄エネルギーシステムが求められている。
【0003】
蓄エネルギーシステムの一種として、CAES(圧縮空気エネルギー貯蔵)システムが知られている。CAESシステムは、電力の供給が過剰な場合には、余剰電力でタンクに空気を圧縮して貯蔵しておき、需要が供給を上回って電力が不足している場合には、圧縮して貯蔵した空気を放出してタービンを回転させることで発電することができる。そのため、CAESシステムによれば、電力の需要と供給のバランスを保ちながらエネルギーを貯蔵することができる。
【0004】
CAESシステムとして、特許文献1は、圧縮空気貯蔵発電装置を開示している。圧縮空気貯蔵発電装置は、モーターと機械的に接続され、空気を圧縮する圧縮機と、圧縮機により圧縮された空気を貯蔵する蓄圧タンクと、蓄圧タンクから供給される圧縮空気によって駆動される膨張機と、膨張機と機械的に接続された発電機を備える。また、圧縮空気貯蔵発電装置は、膨張機のケーシングを加熱する加熱手段を備える。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記圧縮空気貯蔵発電装置は、加熱手段を備えるため、膨張機における放熱に起因する充放電効率の低下を抑制することができる。しかしながら、特許文献1のようなCAESシステムであっても、タービンの動力は有効に利用されていないため改善の余地がある。
【0007】
そこで、本開示は、必要に応じてタービンの動力を有効利用可能なCAESシステムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本開示に係るCAESシステムは、圧縮装置と、圧縮装置で圧縮された空気を貯蔵する貯蔵装置とを備える。さらに、CAESシステムは、貯蔵装置から放出された空気によって回転するタービンを含み、タービンの回転によって発電する発電装置と、タービンの回転を圧縮装置に伝達するクラッチとを備える。
【0009】
CAESシステムは、圧縮装置から貯蔵装置に向かって流れる空気の熱を、貯蔵装置からタービンに向かって流れる空気の熱と交換してもよい。圧縮装置は貯蔵装置に向かって流れる圧縮された空気を冷却する第1熱交換器を含み、発電装置は貯蔵装置からタービンに向かって流れる膨張された空気を加熱する第2熱交換器を含み、第1熱交換器と第2熱交換器との間を熱交換媒体が循環してもよい。CAESシステムは圧縮装置から貯蔵装置に向かって流れる空気の熱を、タービンを通過して膨張した空気の熱と交換してもよい。圧縮装置は貯蔵装置に向かって流れる圧縮された空気を冷却する第1熱交換器を含み、発電装置は第3熱交換器を含み、第1熱交換器と第3熱交換器との間を熱交換媒体が循環し、第3熱交換器はタービンを通過して膨張された空気の熱と熱交換媒体の熱とを交換してもよい。
【発明の効果】
【0010】
本開示によれば、必要に応じてタービンの動力を有効利用可能なCAESシステムを提供することができる。
【図面の簡単な説明】
【0011】
【
図1】一実施形態に係るCAESシステムを示す概略図である。
【発明を実施するための形態】
【0012】
以下、いくつかの例示的な実施形態について、図面を参照して説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
【0013】
図1に示すように、CAESシステム1は、圧縮装置10と、貯蔵装置20と、発電装置30と、クラッチ40とを備える。なお、
図1において空気の流れを点線で示し、熱交換媒体の流れを実線で示している。
【0014】
圧縮装置10は、大気中の空気を圧縮し、貯蔵装置20に圧縮された空気を供給する。圧縮装置10は、電動機11と、圧縮機12と、第1熱交換器13とを含んでいる。
【0015】
電動機11は圧縮機12を駆動させることができる。電動機11はインバーターを含んでおり、インバーターは回転軸16の回転速度を調節することができる。そのため、電動機11は、圧縮装置10による圧縮する空気の量を調節することができる。
【0016】
圧縮機12は空気を圧縮することができる。圧縮機12は、回転軸16を介して電動機11と接続されており、電動機11は圧縮機12と連動して駆動する。圧縮機12は、第1圧縮機12aと、第2圧縮機12bとを含んでいる。第1圧縮機12aは、第2圧縮機12bと回転軸16を介して機械的に接続されており、第2圧縮機12bは、第1圧縮機12aと連動して駆動する。そのため、電動機11は、第1圧縮機12a及び第2圧縮機12bと連動して駆動する。
【0017】
第1圧縮機12aと第2圧縮機12bとは、配管14を介して接続されている。また、圧縮機12と貯蔵装置20とは、配管15を介して接続されている。具体的には、第2圧縮機12bと貯蔵装置20とは、配管15を介して接続されている。第1圧縮機12aの吸入口から吸引された空気は、第1圧縮機12aの吐出口から圧縮されて押し出される。第1圧縮機12aから押し出された空気は、配管14を通じて第2圧縮機12bに吸引される。第2圧縮機12bの吸入口から吸引された空気は、第2圧縮機12bの吐出口から圧縮されて押し出される。第2圧縮機12bの吐出口から押し出され、圧縮された空気は、貯蔵装置20に供給される。このようにして、圧縮装置10で圧縮された空気は、配管15を介して貯蔵装置20に供給される。
【0018】
なお、電動機11は、第1圧縮機12aと接続される第1電動機と、第2圧縮機12bと接続される第2電動機とを含み、第1電動機が第1圧縮機12aを駆動させ、第2電動機が第2圧縮機12bを駆動させてもよい。圧縮機12は、空気を圧縮して貯蔵装置20に供給することができれば特に限定されず、ターボ圧縮機及びスクリュー圧縮機のような公知の圧縮機を用いることができる。
【0019】
第1熱交換器13は、圧縮機12で圧縮した空気の熱と、熱交換媒体の熱とを交換する。第1熱交換器13により、圧縮機12で圧縮され、加熱された空気の熱と、後述する熱交換媒体の熱とが交換され、圧縮機12で圧縮された空気が冷却される。したがって、第1熱交換器13は、貯蔵装置20に向かって流れる圧縮された空気を冷却することができる。第1熱交換器13は、インタークーラー13aと、アウタークーラー13bとを含んでいる。
【0020】
インタークーラー13aは、第1圧縮機12aと第2圧縮機12bとを接続する配管14に設けられている。また、インタークーラー13aは、熱交換媒体が流れる配管61に設けられている。インタークーラー13aは、配管14内を流れる空気の熱と、配管61内を流れる熱交換媒体の熱とを交換する。そのため、インタークーラー13aは、第1圧縮機12aで圧縮され、加熱された空気を冷却することができる。
【0021】
アウタークーラー13bは、第2圧縮機12bと貯蔵装置20とを接続する配管15に設けられている。また、アウタークーラー13bは、熱交換媒体が流れる配管53に設けられている。アウタークーラー13bは、配管15内を流れる空気の熱と、配管53内を流れる熱交換媒体の熱とを交換する。そのため、アウタークーラー13bは、第2圧縮機12bで圧縮され、加熱された空気を冷却することができる。
【0022】
なお、本実施形態では、圧縮装置10が2台の圧縮機12を含む例について説明している。しかしながら、圧縮装置10は、単一の圧縮機12のみを含んでもよく、3台以上の複数の圧縮機12を含んでいてもよい。圧縮効率を高くする場合には、複数の圧縮機12が設けられることが好ましい。
【0023】
貯蔵装置20は、圧縮装置10によって圧縮された空気を貯蔵する。貯蔵装置20は、圧縮装置10と発電装置30との間に配置される。貯蔵装置20は、配管15を介して圧縮装置10に接続され、配管25を介して発電装置30に接続される。
【0024】
貯蔵装置20は、貯蔵タンク21を含む。貯蔵タンク21は、圧縮装置10で圧縮された空気を貯蔵する。本実施形態に係る貯蔵装置20は、1台の貯蔵タンク21を含んでいるが、複数の貯蔵タンク21を含んでいてもよい。貯蔵タンク21は、圧縮された空気を貯蔵することができれば特に限定されず、耐圧タンクのような公知のタンクを用いることができる。
【0025】
流量調節器22は、配管15に設けられ、圧縮装置10から貯蔵装置20へ流れる空気の流路を開閉する。流量調節器23は、配管25に設けられ、貯蔵装置20から発電装置30へ向かって流れる空気の流路を開閉する。流量調節器22と流量調節器23との開度を調節することによって、貯蔵装置20が貯蔵する空気の量を調節することができる。
【0026】
貯蔵タンク21には、圧力計24が設けられており、圧力計24によって貯蔵タンク21内の圧力が計測される。圧力計24で得られた貯蔵タンク21内の圧力に関する信号に基づいて流量調節器22及び流量調節器23の開度が調節されてもよい。
【0027】
発電装置30は、貯蔵装置20から放出された空気によって発電する。発電装置30は、第2熱交換器31と、タービン32と、発電機33と、第3熱交換器34とを含む。タービン32と、発電機33とは、回転軸35を介して機械的に接続されている。また、回転軸35には、減速機36も設けられている。
【0028】
第2熱交換器31は、貯蔵装置20とタービン32とを接続する配管25に設けられている。また、第2熱交換器31は、熱交換媒体が流れる配管54に設けられている。第2熱交換器31は、配管25内を流れる空気の熱と、配管54内を流れる熱交換媒体の熱とを交換する。そのため、貯蔵装置20から放出された空気を加熱することができる。
【0029】
タービン32は、貯蔵装置20から放出された空気によって回転する。貯蔵装置20から放出された空気は、配管25を介してタービン32に供給される。タービン32に供給された空気は、タービン32を通過し、タービン32を回転させる。タービン32を通過した空気は、大気中に放出される。タービン32は、単一のタービンであってもよく、複数のタービンであってもよい。
【0030】
発電機33は、回転軸35を介してタービン32と機械的に接続されており、タービン32の回転と連動している。したがって、発電装置30は、タービン32の回転によって発電する。
【0031】
第3熱交換器34は、タービン32を通過し、膨張した空気を排出する配管37に設けられている。また、第3熱交換器34は、熱交換媒体が流れる配管63に設けられている。第3熱交換器34は、配管37内を流れる空気の熱と、配管63内を流れる熱交換媒体の熱とを交換する。
【0032】
減速機36は、回転軸35を介してタービン32と機械的に接続されており、タービン32の回転軸35から得られる動力を、ギアの回転速度を減じて出力することで、減速比に比例したトルクを生成することができる。減速機36によって生成されたトルクは、回転軸16を介して圧縮装置10に伝達される。減速機36を使用することで、クラッチ40をできるだけ切断せずに、できるだけ長い間接続した状態で運転することが容易となるため、タービン32の回転エネルギーの多くを圧縮装置10に伝達することができる。
【0033】
クラッチ40は、タービン32の回転を圧縮装置10に伝達することができる。クラッチ40は、回転軸16及び回転軸35に機械的にそれぞれ接続されている。クラッチ40は、回転軸16と回転軸35とを、機械的に接続又は切断可能なように設けられている。クラッチ40は、接続された場合にはタービン32の回転が圧縮装置10に伝達され、完全に切断された場合にはタービン32の回転が圧縮装置10に伝達されないように構成されている。すなわち、クラッチ40が接続された場合には、回転軸16と回転軸35とが連動して回転するため、タービン32の回転が圧縮装置10に伝達される。クラッチ40が完全に切断された場合には、回転軸16と回転軸35とが連動して回転しないため、タービン32の回転が圧縮装置10に伝達されない。
【0034】
クラッチ40を接続した場合には、タービン32の回転を圧縮装置10に伝達することができる。そのため、圧縮装置10で空気を圧縮させるために必要なエネルギーを、タービン32の回転によって補うことができ、圧縮装置10の駆動の負荷を低減することができる。例えば、圧縮装置10の立ち上がり始めなどには、クラッチ40を接続し、タービン32の回転を圧縮装置10に伝達することで、圧縮装置10の駆動の負荷を低減することができる。一方、圧縮装置10の駆動が十分であり、タービン32の回転速度が小さい場合には、クラッチ40を切断し、圧縮装置10がタービン32の機械的抵抗を受けてエネルギーが消費されることを抑制することができる。
【0035】
以上の説明の通り、電力の供給が過剰な場合には、圧縮装置10で空気が圧縮され、圧縮装置10で圧縮された空気は貯蔵装置20に貯蔵される。需要が供給を上回って電力が不足している場合には、貯蔵装置20に貯蔵された空気を放出し、放出された空気によってタービン32が回転し、タービン32の回転によって発電される。
【0036】
次に、熱交換媒体の流れについて説明する。CAESシステム1は、熱交換媒体循環装置50を備えている。熱交換媒体循環装置50は、低温タンク51と、高温タンク52とを含んでいる。低温タンク51及び高温タンク52には熱交換媒体が貯蔵されている。高温タンク52には、低温タンク51よりも高い温度で熱交換媒体が貯蔵されている。低温タンク51は例えば50℃で保温され、高温タンク52は例えば200℃で保温される。配管53は、低温タンク51と高温タンク52とを接続し、低温タンク51から高温タンク52へ熱交換媒体が流れるように導く。配管54は、高温タンク52と低温タンク51とを接続し、高温タンク52から低温タンク51へ流れる熱交換媒体を導く。
【0037】
配管53には、ポンプ55が設けられており、低温タンク51に貯蔵された熱交換媒体を高温タンク52に移送することができる。配管54には、ポンプ56が設けられており、高温タンク52に貯蔵された熱交換媒体を低温タンク51に移送することができる。
【0038】
低温タンク51には、液面計66が設けられており、液面計66によって低温タンク51内の熱交換媒体の液量が計測され、低温タンク51内の液量が必要に応じて調節される。低温タンク51へ供給される熱交換媒体の供給量は、配管54に設けられた流量調節器57及び配管63に設けられた流量調節器64によって調節されてもよい。低温タンク51から排出される熱交換媒体の排出量は、配管53に設けられた流量調節器58及び配管61に設けられた流量調節器62によって調節されてもよい。液面計66で得られた低温タンク51内の熱交換媒体の液量に関する信号に基づいて流量調節器57、流量調節器64、流量調節器58及び流量調節器62の開度が調節されてもよい。
【0039】
高温タンク52には、液面計65が設けられており、液面計65によって高温タンク52内の熱交換媒体の液量が計測され、高温タンク52内の液量が必要に応じて調節される。高温タンク52へ供給される熱交換媒体の供給量は、配管53に設けられた入口側の流量調節器59によって調節されてもよい。高温タンク52から排出される熱交換媒体の排出量は、配管54に設けられた出口側の流量調節器60によって調節されてもよい。液面計65で得られた高温タンク52内の熱交換媒体の液量に関する信号に基づいて流量調節器59及び流量調節器60の開度が調節されてもよい。
【0040】
配管53には、上述したようにアウタークーラー13bが設けられている。アウタークーラー13bは、配管15及び配管53に接続されており、配管15内を流れる空気の熱と、配管53内を流れる熱交換媒体の熱とを交換する。配管15内を流れる空気は、圧縮装置10によって空気が圧縮されて温度が上昇する。そのため、アウタークーラー13bは、配管53内を流れる熱交換媒体を加熱し、配管15内を流れる空気を冷却する。
【0041】
配管54には、第2熱交換器31が設けられている。第2熱交換器31は、配管25及び配管54に接続されており、配管25内を流れる空気の熱と、配管54内を流れる熱交換媒体の熱とを交換する。貯蔵装置20から放出される空気は、膨張するため、温度が低下する。そのため、第2熱交換器31は、配管54内を流れる熱交換媒体を冷却し、配管25内を流れる空気を加熱する。すなわち、第2熱交換器31は、貯蔵装置20からタービン32に向かって流れる膨張された空気を加熱する。これにより、膨張された空気がタービン32を通過するため、タービン32の回転を促進することができる。また、タービン32に温められた空気が供給されることから、タービン32が凍結することを防止することもできる。
【0042】
以上のように、圧縮装置10によって圧縮された空気は、アウタークーラー13bで冷却され、貯蔵装置20に貯蔵される。貯蔵装置20から放出された空気は、第2熱交換器31で加熱されてタービン32を通過する。一方、低温タンク51から排出された熱交換媒体は、アウタークーラー13bで加熱され、高温タンク52に供給される。高温タンク52から排出された熱交換媒体は、第2熱交換器31で冷却され、低温タンク51に供給される。すなわち、第1熱交換器13と第2熱交換器31との間を熱交換媒体が循環する。そのため、CAESシステム1は、圧縮装置10から貯蔵装置20に向かって流れる空気の熱を、貯蔵装置20からタービン32に向かって流れる空気の熱と交換することができる。
【0043】
熱交換媒体循環装置50は、配管54と並列に配置され、第3熱交換器34が設けられる配管63を含んでいてもよい。配管63は、一端が第2熱交換器31及び流量調節器57に対して上流側の配管54に接続されており、もう一端が第2熱交換器31及び流量調節器57に対して下流側の配管54に接続されている。すなわち、第3熱交換器34は、熱交換媒体の流路において、第2熱交換器31と並列に設けられている。
【0044】
第3熱交換器34は、配管37及び配管63に接続されており、配管37内を流れる空気の熱と、配管63内を流れる熱交換媒体の熱とを交換する。配管37内を流れる空気は、タービン32によって空気が膨張されて温度が低下する。そのため、第3熱交換器34は、配管63内を流れる熱交換媒体を冷却し、配管37内を流れる空気を加熱する。タービン32から放出された空気は、大気中に放出される。
【0045】
一方、高温タンク52から排出された熱交換媒体は、第3熱交換器34で冷却され、低温タンク51に供給される。低温タンク51から排出された熱交換媒体は、第1熱交換器13で加熱され、高温タンク52に供給される。すなわち、第1熱交換器13と第3熱交換器34との間を熱交換媒体が循環する。そのため、第3熱交換器34は、タービン32を通過して膨張された空気の熱と熱交換媒体の熱とを交換することができる。したがって、CAESシステム1は、圧縮装置10から貯蔵装置20に向かって流れる空気の熱を、タービン32を通過して膨張した空気の熱と交換する。
【0046】
高温タンク52から第2熱交換器31に供給される熱交換媒体の供給量は、配管54に設けられた流量調節器57の開閉によって調節されてもよい。高温タンク52から第3熱交換器34に供給される熱交換媒体の供給量は、配管63に設けられた流量調節器64の開閉によって調節されてもよい。流量調節器57及び流量調節器64は三方弁であってもよく、三方弁によって第2熱交換器31及び第3熱交換器34に供給される熱交換媒体の供給量が調節されてもよい。高温タンク52から配管63内を流れる熱交換媒体は、第3熱交換器34によって冷却され、配管54内で第2熱交換器31によって冷却された熱交換媒体と合流し、低温タンク51に供給される。なお、第2熱交換器31及び第3熱交換器34は必須の構成要素ではなく、CAESシステム1は、第2熱交換器31及び第3熱交換器34の少なくともいずれか一方を含んでいてもよい。
【0047】
熱交換媒体循環装置50は、配管53と並列に配置され、インタークーラー13aが設けられる配管61を含んでいてもよい。配管61は、一端がアウタークーラー13b及び流量調節器58に対して上流側の配管53と接続されており、もう一端がアウタークーラー13b及び流量調節器58に対して下流側の配管53と接続されている。すなわち、インタークーラー13aは、熱交換媒体の流路において、アウタークーラー13bと並列に設けられている。インタークーラー13aは、上述したように配管14及び配管61に接続されており、配管14内を流れる空気の熱と、配管61内を流れる熱交換媒体の熱とを交換する。配管14内を流れる空気は、第1圧縮機12aによって空気が圧縮されて温度が上昇する。そのため、インタークーラー13aは、配管61内を流れる熱交換媒体を加熱し、配管14内を流れる空気を冷却する。
【0048】
低温タンク51からアウタークーラー13bに供給される熱交換媒体の供給量は、配管53に設けられた流量調節器58の開閉によって調節される。低温タンク51からインタークーラー13aに供給される熱交換媒体の供給量は、配管61に設けられた流量調節器62の開閉によって調節される。流量調節器58及び流量調節器62は三方弁であってもよく、三方弁によってアウタークーラー13b及びインタークーラー13aに供給される熱交換媒体の供給量が調節されてもよい。低温タンク51から配管61内を流れる熱交換媒体は、インタークーラー13aによって加熱され、配管53内でアウタークーラー13bによって加熱された熱交換媒体と合流し、高温タンク52に供給される。なお、インタークーラー13a及びアウタークーラー13bは必須の構成要素ではなく、CAESシステム1は、インタークーラー13a及びアウタークーラー13bの少なくともいずれか一方を含んでいてもよい。
【0049】
熱交換媒体は、例えばオイルなどのような液体の媒体を使用することができる。熱交換媒体として液体を使用することにより、高い効率で空気と熱交換することができる。なお、熱交換媒体は、10~250℃の範囲内で液体であることが好ましい。このような熱交換媒体であれば、高温又は低温の空気と熱交換した場合であっても、熱交換媒体が気化又は固化するのを抑制することができる。
【0050】
以上の通り、本実施形態に係るCAESシステム1は、圧縮装置10と、圧縮装置10で圧縮された空気を貯蔵する貯蔵装置20とを備える。さらに、CAESシステム1は、貯蔵装置20から放出された空気によって回転するタービン32を含み、タービン32の回転によって発電する発電装置30と、タービン32の回転を圧縮装置10に伝達するクラッチ40とを備える。
【0051】
本実施形態に係るCAESシステム1では、クラッチ40がタービン32の回転を圧縮装置10に伝達する。そのため、例えば、クラッチ40を接続した場合には、圧縮装置10で空気を圧縮させるために必要なエネルギーを、タービン32の回転によって補うことができ、圧縮装置10の駆動の負荷を低減することができる。また、圧縮装置10が十分に駆動しており、タービン32の機械的抵抗を受けてエネルギーが消費されることを抑制したい場合には、クラッチ40を切断し、圧縮装置10と発電装置30とを独立して駆動させ、それぞれ異なる駆動速度で運転することができる。したがって、クラッチ40を利用することにより、必要に応じてタービン32の動力を有効利用することができる。
【0052】
また、CAESシステム1は、圧縮装置10から貯蔵装置20に向かって流れる空気の熱を、貯蔵装置20からタービン32に向かって流れる空気の熱と交換してもよい。これにより、貯蔵装置20に供給される空気を冷却し、貯蔵装置20により多くの空気を貯蔵することができる。また、タービン32に供給される空気を加熱することで空気の体積を大きくすることができることから、タービン32の回転を促進し、効率よく発電することができる。さらに、タービン32に温められた空気が供給されることから、タービン32が凍結することを防止することもできる。
【0053】
また、圧縮装置10は、貯蔵装置20に向かって流れる圧縮された空気を冷却する第1熱交換器13を含み、発電装置30は貯蔵装置20からタービン32に向かって流れる膨張された空気を加熱する第2熱交換器31を含んでもよい。第1熱交換器13と第2熱交換器31との間を熱交換媒体が循環してもよい。これにより、貯蔵装置20に供給される空気をより確実に冷却し、貯蔵装置20により多くの空気を貯蔵することができる。また、タービン32に供給される空気をより確実に加熱し、空気の体積を大きくすることができることから、タービン32の回転を促進し、効率よく発電することができる。
【0054】
また、CAESシステム1は、圧縮装置10から貯蔵装置20に向かって流れる空気の熱を、タービン32を通過して膨張した空気の熱と交換してもよい。これにより、貯蔵装置20に供給される空気を冷却し、貯蔵装置20により多くの空気を貯蔵することができる。
【0055】
また、圧縮装置10は、貯蔵装置20に向かって流れる圧縮された空気を冷却する第1熱交換器13を含んでもよい。発電装置30は第3熱交換器34を含み、第1熱交換器13と第3熱交換器34との間を熱交換媒体が循環してもよい。第3熱交換器34はタービン32を通過して膨張された空気の熱と熱交換媒体の熱とを交換してもよい。これにより、貯蔵装置20に供給される空気をより確実に冷却し、貯蔵装置20により多くの空気を貯蔵することができる。
【0056】
いくつかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正または変形をすることが可能である。上記実施形態のすべての構成要素、及び請求の範囲に記載されたすべての特徴は、それらが互いに矛盾しない限り、個々に抜き出して組み合わせてもよい。
【符号の説明】
【0057】
1 CAESシステム
10 圧縮装置
13 第1熱交換器
20 貯蔵装置
30 発電装置
31 第2熱交換器
32 タービン
34 第3熱交換器
40 クラッチ