(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-22
(45)【発行日】2024-05-01
(54)【発明の名称】充電器
(51)【国際特許分類】
H02J 7/10 20060101AFI20240423BHJP
H02H 7/20 20060101ALI20240423BHJP
H01M 10/48 20060101ALI20240423BHJP
H01M 10/44 20060101ALI20240423BHJP
【FI】
H02J7/10 N
H02J7/10 H
H02H7/20 A
H01M10/48 P
H01M10/48 301
H01M10/44 Q
(21)【出願番号】P 2020153617
(22)【出願日】2020-09-14
【審査請求日】2023-06-19
(73)【特許権者】
【識別番号】000137292
【氏名又は名称】株式会社マキタ
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】岡林 寿和
(72)【発明者】
【氏名】水谷 真也
【審査官】田中 慎太郎
(56)【参考文献】
【文献】特表2010-521949(JP,A)
【文献】特開2005-073434(JP,A)
【文献】特開2001-136674(JP,A)
【文献】特開2007-215309(JP,A)
【文献】特開2007-330008(JP,A)
【文献】特開2013-056605(JP,A)
【文献】国際公開第2019/031273(WO,A1)
【文献】米国特許出願公開第2009/0015208(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/10
H02H 7/20
H01M 10/48
H01M 10/44
(57)【特許請求の範囲】
【請求項1】
外部電源から供給された第1の電力からバッテリを充電する第2の電力を生成する充電器であって、
前記充電器が前記外部電源に電気的に接続されている間、充電電流値に基づいた電流量を初期値に対して積算した積算値を、積算容量として算出するように構成された積算部と、
バッテリ容量と第1の温度閾値との第1の対応関係を含む対応情報を記憶した記憶部と、
前記バッテリの充電開始時において、前記記憶部に記憶されている前記第1の対応関係を用いて、前記積算部により算出された前記積算容量を前記バッテリ容量とした場合における前記第1の温度閾値を算出するように構成された第1の算出部と、
前記バッテリの充電開始時において、前記第1の算出部により算出された前記第1の温度閾値を検出閾値に設定するように構成された閾値設定部と、
前記充電器に含まれる発熱部品の部品温度を検出するように構成された検出部と、
前記検出部により検出された前記部品温度が、前記閾値設定部により設定された前記検出閾値以上になった場合に、前記充電電流値の低減を実行するように構成された低減部と、を備える、
充電器。
【請求項2】
前記積算部は、前記充電器が前記外部電源に電気的に接続されている間において、前記充電電流値が電流閾値未満である場合に、前記積算値から所定値を減算するように構成されている、
請求項1に記載の充電器。
【請求項3】
前記バッテリの公称容量を取得するように構成された取得部と、
前記記憶部に記憶されている前記第1の対応関係を用いて、前記取得部により取得された前記公称容量を前記バッテリ容量とした場合における前記第1の温度閾値を算出するように構成された第2の算出部と、を更に備え、
前記閾値設定部は、前記第1の算出部により算出された前記第1の温度閾値と前記第2の算出部により算出された前記第1の温度閾値のうちの値が小さい方を、前記検出閾値に設定するように構成されている、
請求項1又は2に記載の充電器。
【請求項4】
前記対応情報は、前記バッテリ容量と第2の温度閾値との第2の対応関係を含み、前記第2の温度閾値は、前記第1の温度閾値よりも小さく、
前記第1の算出部は、前記バッテリの充電開始時において、前記記憶部に記憶されている前記第2の対応関係を用いて、前記積算部により算出された前記積算容量を前記バッテリ容量とした場合における前記第2の温度閾値を更に算出するように構成され、
前記第2の算出部は、前記記憶部に記憶されている前記第2の対応関係を用いて、前記取得部により取得された前記公称容量を前記バッテリ容量とした場合における前記第2の温度閾値を更に算出するように構成され、
前記閾値設定部は、更に、前記バッテリの充電開始時において、前記第1の算出部により算出された前記第2の温度閾値と前記第2の算出部により算出された前記第2の温度閾値のうちの値が小さい方を解除閾値に設定するように構成されており、
前記低減部は、前記充電電流値を低減した後、前記検出部により検出された前記部品温度が、前記閾値設定部により設定された前記解除閾値未満になった場合に、前記充電電流値の低減を解除するように構成されている、
請求項3に記載の充電器。
【請求項5】
前記低減部は、前記バッテリの充電開始時において、前記検出部により検出された前記部品温度が、前記閾値設定部により設定された前記解除閾値以上である場合に、前記充電電流値の低減を実行するように構成されている、
請求項4に記載の充電器。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は充電器に関する。
【背景技術】
【0002】
特許文献1に記載の充電器は、所定の部品の温度を検出して、検出した温度が固定の部品温度閾値に到達した場合に、充電電流を低減している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
充電器には、互いに温度の上昇傾向が異なる複数の発熱部品が含まれる。しかしながら、充電器の設計の都合上、複数の発熱部品の各々に対して温度検出部を設けることは難しい。よって、複数の発熱部品のうちの一部の部品に対して温度検出部が設けられる。そのため、固定の部品温度閾値を用いると、検出温度が部品温度閾値未満であっても、他の部品の温度が部品温度閾値を超えることが起こりうる。ひいては、充電器を適切に保護できないことが起こりうる。
【0005】
本開示の1つの局面は、適切に保護可能な充電器を提供する。
【課題を解決するための手段】
【0006】
本開示の1つの局面は、外部電源から供給された第1の電力からバッテリを充電する第2の電力を生成する充電器であって、積算部と、記憶部と、第1の算出部と、閾値設定部と、検出部と、低減部と、を備える。積算部は、充電器が外部電源に電気的に接続されている間、充電電流値に基づいた電流量を初期値に対して積算した積算値を、積算容量として算出するように構成される。記憶部は、バッテリ容量と第1の温度閾値との第1の対応関係を含む対応情報を記憶する。第1の算出部は、バッテリの充電開始時において、記憶部に記憶されている第1の対応関係を用いて、積算部により算出された積算容量をバッテリ容量とした場合における第1の温度閾値を算出するように構成される。閾値設定部は、バッテリの充電開始時において、第1の算出部により算出された第1の温度閾値を検出閾値に設定するように構成される。検出部は、充電器に含まれる発熱部品の部品温度を検出するように構成される。低減部は、検出部により検出された部品温度が、閾値設定部により設定された検出閾値以上になった場合に、充電電流値の低減を実行するように構成される。
【0007】
本開示の1つの局面の充電器において、電力供給源に電気的に接続されている間、電流量を積算して積算容量が算出される。算出された積算容量は、充電器が複数のバッテリを続けて充電した場合には、複数のバッテリに供給された電流量の積算値となる。充電器に含まれる発熱部品の温度は、積算容量を容量とするバッテリを充電した場合と同程度に上昇する。したがって、積算容量は、充電器に含まれる発熱部品の温度状態を適切に表す。このような積算容量と第1の対応関係とに基づいて検出閾値を設定することにより、充電器に含まれる発熱部品の温度状態に応じて、検出閾値を設定することができる。例えば、発熱部品が、温度の検出対象である第1の部品と、検出対象よりも温度が高くなり得る第2の部品とを含んでいる場合がある。このような場合に、積算容量から第2の部品の温度を推定して、第2の部品の温度が許容温度を超える前に、第1の部品の温度が検出閾値に到達するように、検出閾値を設定することができる。許容温度は、部品の動作が保証される温度の上限値である。さらに、検出された部品温度が設定された検出閾値に到達した場合に、充電電流値を低減することにより、充電器を適切に保護することができる。
【0008】
また、積算部は、充電器が外部電源に電気的に接続されている間において、充電電流値が電流閾値未満である場合に、積算値から所定値を減算するように構成されていてもよい。
充電電流値が電流閾値未満である場合には、充電器の発熱部品は放熱して発熱部品の温度は低下する。したがって、充電器が電流供給源に電気的に接続されている間において、充電電流値が電流閾値未満の場合には、積算値から所定値が減算される。これにより、充電器の温度状態をより適切に表した積算値を、積算容量値として算出することができる。
【0009】
また、取得部と、第2の算出部と、を更に備えてもよい。取得部は、バッテリの公称容量を取得するように構成される。第2の算出部は、記憶部に記憶されている第1の対応関係を用いて、取得部により取得された公称容量をバッテリ容量とした場合における第1の温度閾値を算出するように構成される。閾値設定部は、第1の算出部により算出された第1の温度閾値と第2の算出部により算出された第1の温度閾値のうちの値が小さい方を、検出閾値に設定するように構成されていてもよい。
【0010】
積算容量に基づいて算出された第1の温度閾値と、バッテリの公称容量に基づいて算出された第1の温度閾値のうちの小さい方の値が、検出閾値に設定される。ここで、比較的高容量のバッテリを、比較的低容量のバッテリと同じ値の充電電流で充電すると、比較的低容量のバッテリの充電時よりも、充電器に含まれる発熱部品の温度上昇も緩やかになる。ただし、発熱部品によって温度上昇が緩やかになる度合が異なる。温度検出部の近くに配置された第1の部品の温度上昇が緩やかになる度合が、温度検出部から離れて配置された第2の部品の温度上昇が緩やかになる度合よりも大きくなることがあり得る。すなわち、高容量のバッテリの充電時には、第2の部品の温度が、第1の部品の温度よりも高くなることがあり得る。
【0011】
積算容量のみに基づいて検出閾値を設定すると、充電器が最初のバッテリパックを充電するときに、積算容量が小さいため、比較的大きな検出閾値が設定される。したがって、最初のバッテリパックの容量が比較的大きい場合に、第1の部品の温度が検出閾値に到達する前に、第2の部品の温度が許容温度を超えて、充電器を適切に保護できないことが起こり得る。また、公称容量のみに基づいて検出閾値を設定すると、比較的低容量のバッテリの充電時に、比較的大きな値の検出閾値が設定される。したがって、比較的高容量のバッテリを充電して、第2の部品の温度が比較的高くなっているときに、比較的低容量のバッテリを充電する場合に、充電器を適切に保護できないことが起こり得る。よって、積算容量に基づいて算出された第1の温度閾値と公称容量に基づいて算出された第1の温度閾値のうちの小さい方が検出閾値に設定される。これにより、どのような順序でバッテリを充電する場合でも、充電器を適切に保護することができる。
【0012】
また、対応情報は、バッテリ容量と第2の温度閾値との第2の対応関係を含んでもよい。第2の温度閾値は、第1の温度閾値よりも小さい。第1の算出部は、バッテリの充電開始時において、記憶部に記憶されている第2の対応関係を用いて、積算部により算出された積算容量をバッテリ容量とした場合における第2の温度閾値を更に算出するように構成されてもよい。第2の算出部は、記憶部に記憶されている第2の対応関係を用いて、取得部により取得された公称容量をバッテリ容量とした場合における第2の温度閾値を更に算出するように構成されてもよい。閾値設定部は、更に、バッテリの充電開始時において、第1の算出部により算出された第2の温度閾値と第2の算出部により算出された第2の温度閾値のうちの値が小さい方を解除閾値に設定するように構成されていてもよい。低減部は、充電電流値を低減した後、検出部により検出された部品温度が、閾値設定部により設定された解除閾値未満になった場合に、充電電流値の低減を解除するように構成されていてもよい。
【0013】
第1の温度閾値が検出閾値として設定され、第1の温度閾値よりも小さい第2の温度閾値が解除閾値として設定される。これにより、部品温度が検出閾値以上になると充電電流値の低減が実行され、部品温度が解除閾値よりも低くなると、充電電流値の低減が解除される。したがって、充電電流値の低減を適切に実行及び解除することができる。
【0014】
また、低減部は、バッテリの充電開始時において、検出部により検出された部品温度が、閾値設定部により設定された解除閾値以上である場合に、充電電流値の低減を実行するように構成されていてもよい。
【0015】
2個のバッテリを連続して充電する場合に、1個目のバッテリの充電時に、充電電流値の低減が実行され、充電電流値の低減が解除される前に、2個目のバッテリの充電が開始されことが起こり得る。このような場合、2個目のバッテリの充電開始時に、部品温度が解除閾値未満になってから充電電流値の低減を解除することが望ましい。バッテリの充電開始時において、解除閾値を超えている場合に充電電流値の低減を実行することにより、複数のバッテリを連続して充電する場合でも、充電器を適切に保護することができる。
【図面の簡単な説明】
【0016】
【
図1】本実施形態に係る充電器及びバッテリパックの外観を示す図である。
【
図2】本実施形態に係る充電器及びバッテリパックの電気的構成を示すブロック図である。
【
図3】積算充電容量を算出する処理を示すフローチャートである。
【
図4A】充電制御処理の一部を示すフローチャートである。
【
図4B】充電制御処理の残りの一部を示すフローチャートである。
【
図5】公称バッテリ容量及び積算充電容量に対する第1の温度閾値及び第2の温度閾値の関係を示す図である。
【
図6】低容量バッテリの充電時における、ダイオード及びトランスの温度の時間変化と温度閾値とを示す図である。
【
図7】高容量バッテリの充電時における、ダイオード及びトランスの温度の時間変化と温度閾値とを示す図である。
【
図8】高容量バッテリの充電時における、ダイオード及びトランスの温度の時間変化と低容量充電時の温度閾値と高容量充電時の温度閾値とを示す図である。
【発明を実施するための形態】
【0017】
以下、図面を参照しながら、本開示を実施するための形態を説明する。
<1.構成>
まず、本実施形態に係る充電器3の構成について、
図1及び
図2を参照して説明する。充電器3は、バッテリパック2を充電する装置である。バッテリパック2は、電動作業機に装着されて、電動作業機に電力を供給する。バッテリパック2の容量は、種々の値を取り得る。すなわち、バッテリパック2は、比較的高容量でもよいし、比較的低容量でもよい。電動作業機は、電動工具、園芸工具、ライト、掃除機などを含む。電動工具は、レーザー墨出し器、ハンマドリル、インパクトドライバ、マルノコなどを含む。園芸工具は、草刈機、トリマー、芝刈り機などを含む。
【0018】
図1に示すように、充電器3は、第1装着部61と、第1端子部62と、電源コード31と、を備える。バッテリパック2は、第2装着部51と、第2端子部52と、を備える。
第1装着部61は、充電器3の上面に設けられており、第1端子部62は、第1装着部61に設けられている。第2装着部51は、バッテリパック2の裏面に設けられている。第2端子部52は、第2装着部51に設けられており、複数の板状の端子を備える。第1装着部61は、第2装着部51の形状に対応した形状に構成されている。第1端子部62は、第2端子部52に嵌合するように構成された複数の端子を備える。
【0019】
第2装着部51は、スライドして第1装着部61に装着される。第1装着部61に第2装着部51が装着されると、第1端子部62が備える複数の端子に、第2端子部52が備える複数の板状の端子が嵌合する。これにより、バッテリパック2が充電器3に物理的且つ電気的に接続される。
【0020】
電源コード31は、外部電源70に接続される。外部電源70は、例えば、AC100Vの商用電源である。充電器3は、外部電源70から供給された第1の電力から第2の電力を生成し、生成した第2の電力をバッテリパック2へ供給する。なお、外部電源70は、商用電源に限らない。外部電源70は、直流電源、例えばシガーソケットでもよい。
【0021】
図2に示すように、充電器3は、第1端子部62に含まれる複数の端子として、第1正極端子34と、第1負極端子35と、第1信号端子36と、第1シリアル端子37と、を備える。
【0022】
また、充電器3は、第1MPU32と、第1通信部33と、シャント抵抗器38と、電源回路40と、を備える。
電源回路40は、スイッチング電源であり、トランス41と、ダイオード42と、温度検出部43と、を備える。また、電源回路40は、図示しないFET等のスイッチング素子なども備える。電源回路40は、第1正極端子34及び第1負極端子35に接続されており、生成した第2の電力を、第1正極端子34及び第1負極端子35を介して、バッテリパック2へ供給する。
【0023】
詳しくは、トランス41は、外部電源70の交流電圧を降圧する。ダイオード42は、トランス41の2次側に接続され、トランス41により降圧された交流電圧を整流する。トランス41、ダイオード42、及び図示しないスイッチング素子は、充電器3が充電電流を出力することによって発熱する発熱部品に相当する。
【0024】
温度検出部43は、電源回路40に含まれる発熱部品の部品温度Tcを検出する。具体的には、温度検出部43は、ダイオード42の近傍に設けられており、部品温度Tcとして、ダイオード42の温度を検出する。そして、温度検出部43は、検出した部品温度Tcを第1MPU32へ出力する。
【0025】
温度検出部43は、例えば、サーミスタである。ダイオード42とトランス41と温度検出部43は、1つの基板に設けられている。基板は第1の面と第2の面を有する。ダイオード42及びトランス41は、基板の第1の面に配置されている。ダイオード42及びトランス41の各々端子は、基板を貫通して第2の面から突出して、第2の面に半田付けされている。温度検出部43は、基板の第2の面において、ダイオード42の端子の半田部分の近傍に配置されている。
【0026】
ここで、トランス41の近傍に温度検出部43を配置することは難しい。トランス41は内部で絶縁されている。トランス41の1次側に温度検出部43を配置しようとすると、絶縁設計が困難になり、電源回路40の設計の自由度が低下する。また、トランス41は、電力変換を行う素子であるため、パワー系の配線パターンが、トランス41の2次側の周辺においてプリント基板の多くの面積を占めている。そのため、トランス41の2次側に温度検出部43を配置すると、温度検出部43から出力されるアナログ信号に対してスイッチングノイズが重畳されやすい。ひいては、第1MPU32が、部品温度Tcを誤検出しやすい。これに対して、ダイオード42は、トランス41よりも第1MPU32の近くに配置されている。したがって、ダイオード42の近傍に温度検出部43を配置すると、トランス41の2次側の近傍に温度検出部43を配置した場合よりも、温度検出部43から第1MPU32までの配線が短くなる。そのため、ダイオード42の近傍に温度検出部43が配置されると、温度検出部43から出力されるアナログ信号に対してスイッチングノイズが重畳されにくい。すなわち、ダイオード42の近傍に温度検出部43を配置することにより、電源回路40の設計の自由度を比較的高くできるとともに、部品温度Tcの誤検出を抑制できる。なお、温度検出部43の配置はこれに限らない。例えば、基板のダイオード42の近傍にヒートシンクを設け、温度検出部43をヒートシンクに配置してもよい。
【0027】
シャント抵抗器38は、電源回路40と第1負極端子35とを接続する負極ラインに設けられている。シャント抵抗器38は、充電器3からバッテリパック2へ流れる充電電流の値(すなわち、充電電流値)を検出して、検出した充電電流値Ioを第1MPU32へ出力する。
【0028】
第1通信部33は、第1シリアル端子37に接続されている。第1通信部33は、シリアル通信を実行する回路である。
第1MPU32は、CPU32aとメモリ32bとを備え、第1信号端子36に接続されている。第1MPU32は、第1信号端子36を介して、バッテリパック2から信号を受信するとともに、バッテリパック2へ信号を送信する。また、第1MPU32は、第1通信部33及び第1シリアル端子37を介して、バッテリパック2とシリアル通信を実行する。
【0029】
そして、第1MPU32は、第1MPU32に入力される各種の情報に基づいて、積算容量算出処理及び充電制御処理を実行する。具体的には、第1MPU32は、電源コード31が外部電源70に電気的に接続されている間、入力された充電電流値Ioに基づいて、積算容量算出処理を実行する。また、第1MPU32は、第1信号端子36を介してバッテリパック2の装着を検出すると、入力された部品温度Tc及び要求電流値Idに基づいて、充電制御処理を実行する。積算容量算出処理及び充電制御処理の詳細は後述する。
【0030】
バッテリパック2は、第2端子部52に含まれる複数の板状の端子として、第2正極端子24と、第2負極端子25と、第2信号端子26と、第2シリアル端子27と、を備える。第2正極端子24は、第1正極端子34に接続される。第2負極端子25は、第1負極端子35に接続される。第2信号端子26は、第1信号端子36に接続される。第2シリアル端子27は、第1シリアル端子37に接続される。
【0031】
また、バッテリパック2は、バッテリ21と、第2MPU22と、第2通信部23とを備える。
バッテリ21は、直列に接続された複数のバッテリセルを備える。バッテリ21の正極は、第2正極端子24に接続されており、バッテリ21の負極は、第2負極端子25に接続されている。
【0032】
第2通信部23は、第2シリアル端子27に接続されている。第2通信部23は、シリアル通信を実行する回路である。
第2MPU22は、CPU22aとメモリ22bとを備え、第2信号端子26に接続されている。第2MPU22は、第2信号端子26を介して、充電器3から信号を受信するとともに、充電器3へ信号を送信する。また、第2MPU22は、第2通信部23及び第2シリアル端子27を介して、充電器3とシリアル通信を実行する。
【0033】
具体的には、第2MPU22は、充電時に、バッテリ21の電圧に基づいて、要求電流値Idを算出する。要求電流値Idは、バッテリ21の電圧が増加するのに応じて、減少する。そして、第2MPU22は、算出した要求電流値Idを、第2通信部23及び第2シリアル端子27を介して、充電器3へ送信する。
【0034】
<2.処理>
<2-1.積算容量算出処理>
次に、第1MPU32が実行する積算容量算出処理について、
図3のフローチャートを参照して説明する。
【0035】
充電器3の充電中は、トランス41、ダイオード42等の発熱部品の温度が上昇する。充電器3の発熱部品の温度が過度に高くなり許容温度を超えると、充電器3が故障する可能性がある。許容温度は発熱部品の動作が保証される温度の上限値である。そのため、発熱部品の温度が過度に高くなる前に、充電電流値Ioを抑制する必要がある。よって、第1MPU32は、部品温度Tcが温度閾値以上になった場合に、充電電流値Ioを抑制する。ただし、充電開始時における温度状態によらずに温度閾値を一定に設定すると、発熱部品を適切に保護できない可能性がある。
【0036】
トランス41及びダイオード42の温度上昇傾向は、バッテリパック2の容量に応じて変化する。
図6及び
図7は、同じ値の充電電流値Ioで比較的低容量及び比較的高容量のバッテリパック2を充電した場合における、充電器3のトランス41及びダイオード42の温度変化を示す。
【0037】
図6及び
図7に示すように、高容量のバッテリパック2を、低容量のバッテリパック2と同じ値の充電電流で充電すると、低容量のバッテリパック2よりも充電時間が延びて、バッテリ電圧の上昇が緩やかになる。したがって、充電器3から高容量のバッテリパック2へ供給する電力量は、低容量のバッテリパック2へ供給する電力量よりも緩やかに上昇する。これに伴い、電源回路40に含まれるトランス41及びスイッチング素子の温度は緩やかに上昇する。
【0038】
一方、異なる容量のバッテリパック2を同じ値の充電電流で充電する場合、理想的にはダイオード42の温度上昇速度は変化しない。しかしながら、ダイオード42は、トランス41等の温度上昇速度がバッテリパック2の容量の大きさに依存する発熱部品の近傍に配置される。そのため、実際には、高容量のバッテリパック2を、低容量のバッテリパック2と同じ値の充電電流で充電する場合、ダイオード42は周囲の発熱部品の熱の影響を受けて、温度上昇速度が緩やかになる。したがって、高容量のバッテリパック2の充電時には、低容量のバッテリパック2の充電時よりも、トランス41及びダイオード42の温度上昇が緩やかになる。ただし、ダイオード42の温度上昇は、トランス41の温度上よりもより緩やかになる。
【0039】
そのため、
図6に示すように、低容量バッテリ充電時には、ダイオード42の温度は、温度閾値に到達するまでの間、常にトランス41の温度よりも高い。一方、
図7に示すように、高容量バッテリ充電時には、ダイオード42の温度は、充電初期ではトランス41の温度よりも高いが、温度閾値に到達する前に、トランス41の温度よりも低くなり、トランス41の温度が先に温度閾値に到達する。しかしながら、上述したように、トランス41の温度を直接検出することは困難である。
【0040】
そこで、第1MPU32は、トランス41の温度を推定する。そして、推定した温度が許容温度を超える前に、ダイオード42の温度が温度閾値に到達するように、温度閾値を設定する。すなわち、第1MPU32は、ダイオード42の温度が比較的高い場合には、比較的低い場合よりも、温度閾値を小さく設定する。具体的には、第1MPU32は、トランス41の温度状態を表す指標として、積算容量A1(Ah)を算出する。積算容量A1は、充電器3が充電した容量の積算値である。例えば、積算容量A1が2Ahである場合、トランス41は、2Ahのバッテリパック2を充電したときと同程度の温度に上昇していることが推定される。
【0041】
第1MPU32は、電源コード31が外部電源70に接続されると、本処理の実行を開始し、電源コード31が外部電源70から外されると、本処理の実行を終了する。第1MPU32は、充電器3が外部電源70から電力の供給を受けている間、後述するS10~S30の処理を所定の処理周期Taで繰り返し実行する。
【0042】
まず、S10では、第1MPU32は、充電中か否か判定する。具体的には、第1MPU32は、充電電流値Ioが電流閾値Itha以上であるか否か判定する。電流閾値Ithaは、0Aに近い値、例えば、0.3Aに設定する。S10において、充電中と判定した場合は、S20の処理へ進み、充電中ではないと判定した場合は、S30の処理へ進む。
【0043】
S20では、第1MPU32は、積算容量A1を、現在の積算容量A1に、1処理周期分の電流量を加算した値に更新する。電流量は、現在の充電電流値Io(A)に周期Ta(h)を乗算した値である。ただし、積算容量A1が上限値に到達した場合には、積算容量A1の更新を停止する。上限値は、例えば10Ahである。
【0044】
本実施形態では、電源コード31が外部電源70に接続された時点における積算容量A1の初期値は0Ahに設定する。なお、初期値は0Ahに限らない。例えば、初期値は、前回、電源コード31を外部電源70から外した時点における、積算容量A1から推定してもよい。また、初期値は、電源コード31を外部電源70に接続した時点における、温度検出部43により検出された部品温度Tcから推定してもよい。S20の処理の後、S10の処理へ戻る。
【0045】
一方、S30では、第1MPU32は、積算容量A1を、現在の積算容量A1から設定値Bを減算した値に更新する。電源コード31が外部電源70に接続されている間であっても、充電中でない場合には、電源回路40に含まれる部品の温度は自然に低下する。設定値Bは、電源回路40の自然な温度降下速度に基づいて設定される。例えば、電源回路40の自然な温度降下速度が、1時間で3.6Ah減らす速度に相当する場合は、設定値Bは、1秒当たり3.6Asとする。
【0046】
充電器3が外部電源70に電気的に接続されている間、第1MPU32は、S10~S30の処理を繰り返し実行する。これにより、充電器3が連続して複数のバッテリパック2を充電する場合に、複数のバッテリパック2に供給される電力量がすべて積算されて積算容量A1が算出される。そのため、充電器3の温度状態を適切に表した積算容量A1を算出することができる。
【0047】
例えば、3個の2Ahの容量のバッテリパック2を連続して充電する場合、3個目のバッテリパック2を充電する時には、1個の4Ahの容量のバッテリパック2を充電した場合と同程度に、発熱部品の温度は上昇している。1回の充電ごとに積算容量A1をリセットすると、3個目のバッテリパック2の充電開始時における積算容量A1は、1個の2Ahの容量のバッテリパック2に供給した電流量を積算した値となる。したがって、1回の充電ごとに積算容量A1をリセットすると、充電器3の温度状態を適切に表していない積算容量A1が算出される。
【0048】
これに対して、充電器3が外部電源70に電気的に接続されている間中、充電器3から出力する電流量を積算することにより、3個目のバッテリパック2の充電開始時には、2個のバッテリパック2に供給した電流量が積算された積算容量A1が算出される。したがって、充電器3の温度状態を適切に表した積算容量A1を利用できる。
【0049】
<2-2.充電制御処理>
次に、第1MPU32が実行する充電制御処理について、
図4A及び
図4Bのフローチャートを参照して説明する。第1MPU32は、電源コード31が外部電源70に接続されると、充電制御処理を開始し、電源コード31が外部電源70から外されると、充電制御処理を終了する。第1MPU32は、積算容量算出処理と並列に、充電制御処理を実行する。
【0050】
S100では、充電器3にバッテリパック2が接続されているか否か判定する。第1信号端子36に第2信号端子26が接続されると、第1信号端子36の電位が変化し、第1MPU32に入力される入力信号の電位が変化する。第1MPU32は、第1信号端子36から入力される入力信号の電位の変化に応じて、バッテリパック2の接続を検出する。S100において、バッテリパック2の接続を検出した場合は、S110の処理へ進み、バッテリパック2の接続を検出していない場合は、接続を検出するまでS100の処理を繰り返し実行する。
【0051】
S110では、第1通信部33及び第1シリアル端子37を介して、バッテリパック2と初期通信を行い、バッテリパック2の公称バッテリ容量A2(Ah)と、要求電流値Idを取得する。
【0052】
上述したように、トランス41及びダイオード42の温度上昇傾向は、バッテリパック2の容量に応じて変化する。そして、
図7に示すように、高容量のバッテリパック2の充電時における温度閾値を、低容量のバッテリパック2の充電時における温度閾値と同じ値にすると、高容量のバッテリパック2の充電時に適切に充電器3を保護できないことが起こり得る。
【0053】
よって、
図8に示すように、高容量のバッテリパック2の充電時には、低容量のバッテリパック2の充電時よりも、温度閾値を小さく設定することが望ましい。そこで、本実施形態では、第1MPU23は、温度閾値(具体的には、後述する検出閾値THA及び解除閾値THB)を設定に、公称バッテリ容量A2を用いる。
【0054】
続いて、S120では、現在の積算容量A1を取得する。すなわち、充電開始における充電器3の温度状態を表す積算容量A1を取得する。
続いて、S130では、現在の部品温度Tcを取得する。
【0055】
続いて、S140では、S120において取得した積算容量A1と対応情報とを用いて、第1の検出閾値候補Tha_1と、第1の解除閾値候補Thb_1を算出する。
図5に示すように、対応情報は、積算容量A1及び公称バッテリ容量A2と温度閾値との対応関係に相当し、メモリ32bに記憶されている。この対応関係は、シミュレーションや実験により、バッテリ容量に対して充電電流値Ioの低減を開始する必要がある温度が求められている。
【0056】
温度閾値は、第1の温度閾値Thaと第2の温度閾値Thbとを含む。第1の温度閾値Thaは、部品温度Tcがその値を超えた時に、充電器3の保護を開始するための閾値である。第2の温度閾値は、部品温度Tcがその値よりも小さくなった時に、充電器3の保護を解除するための閾値である。対応関係は、関係式であってもよいし、テーブル(すなわち表)であってもよい。本実施形態では、対応関係を、関係式で表している。すなわち、積算容量A1及び公称バッテリ容量A2と第1の温度閾値Thaとの関係を第1の関係式で表し、積算容量A1及び公称バッテリ容量A2と第2の温度閾値Thbとの関係を第2の関係式で表している。
【0057】
具体的には、
図5に示すように、積算容量A1及び公称バッテリ容量A2を4つの領域、第1領域I、第2領域II、第3領域III、第4領域IVに分けて、領域ごとに第1の関係式及び第2の関係式を設定している。
図5において、各関係式の「x」は積算容量A1又は公称バッテリA2を代入する変数である。また、「y1」は第1の温度閾値Thaに対応する変数であり、「y2」は第2の温度閾値Thbに対応する変数である。第1の関係式の傾きは、第2の関係式の傾きと等しい。すなわち、第1の温度閾値Thaは、第2の温度閾値Thbを、所定の温度高くなるように、オフセットさせた値に相当する。
【0058】
第1MPU32は、第1の関係式において、S120において取得した積算容量A1に対応する第1の温度閾値Thaを、第1の検出閾値候補Tha_1として算出する。また、第2の関係式において、積算容量A1に対応する第2の温度閾値Thbを、第1の解除閾値候補Thb_1として算出する。
【0059】
続いて、S150では、S140と同様にして、S110において取得した公称バッテリ容量A2と第1の関係式及び第2の関係式を用いて、第2の検出閾値候補Tha_2及び第2の解除閾値候補Thb_2を算出する。
【0060】
続いて、S160では、S140で算出した第1の検出閾値候補Tha_1が、S150で算出した第2の検出閾値候補Tha_2よりも小さい否か判定する。S160において、第1の検出閾値候補Tha_1が第2の検出閾値候補Tha_2よりも小さいと判定した場合は、S170において、検出閾値THAに第1の検出閾値候補Tha_1を設定する。一方、S160において、第1の検出閾値候補Tha_1が第2の検出閾値候補Tha_2以上であると判定した場合は、S180において、検出閾値THAに第2の検出閾値候補Tha_2を設定する。すなわち、第1の検出閾値候補Tha_1及び第2の検出閾値候補Tha_2のうち、小さい方の値を検出閾値THAに設定する。
【0061】
続いて、S190では、S140で算出した第1の解除閾値候補Thb_1が、S150で算出した第2の解除閾値候補Thb_2よりも小さい否か判定する。S190において、第1の解除閾値候補Thb_1が第2の解除閾値候補Thb_2よりも小さいと判定した場合は、S200において、解除閾値THBに第1の解除閾値候補Thb_1を設定する。一方、S190において、第1の解除閾値候補Thb_1が第2の解除閾値候補Thb_2以上であると判定した場合は、S210において、解除閾値THBに第2の解除閾値候補Thb_2を設定する。すなわち、第1の解除閾値候補Thb_1及び第2の解除閾値候補Thb_2のうち、小さい方の値を解除閾値THBに設定する。
【0062】
充電器3が充電する1個目のバッテリパック2を充電する場合、積算容量A1は0Ahであるため、積算容量A1のみに基づいて検出閾値THA及び解除閾値THBを設定すると、比較的大きな値の検出閾値THA及び解除閾値THBが設定される。その結果、最初に比較的高容量のバッテリパック2を充電する時に、部品温度Tcが検出閾値THAに到達する前に、トランス41の温度が許容温度を超えて、充電器3を適切に保護できないことが起こり得る。
【0063】
また、公称バッテリ容量A2のみに基づいて検出閾値THA及び解除閾値THBを設定すると、比較的低容量のバッテリパック2の充電時に、比較的大きな値の検出閾値THA及び解除閾値THBが設定される。したがって、充電器3が比較的高容量のバッテリパック2を充電して、トランス41の温度が比較的高くなっているときに、比較的低容量のバッテリパック2を充電する場合、比較的大きな値の検出閾値THA及び解除閾値THBが設定される。その結果、比較的低容量のバッテリパック2を充電中に部品温度Tcが検出閾値THAに到達する前に、トランス41の温度が許容温度を超えて、充電器3を適切に保護できないことが起こり得る。
【0064】
本実施形態では、第1の検出閾値候補Tha_1及び第2の検出閾値候補Tha_2のうち、小さい方の値を検出閾値THAに設定し、第1の解除閾値候補Thb_1及び第2の解除閾値候補Thb_2のうち、小さい方の値を解除閾値THBに設定する。これにより、異なる容量の複数のバッテリパック2をどのような順番で充電する場合でも、充電器3を適切に保護することが可能な検出閾値THA及び解除閾値THBが設定される。
【0065】
続いて、S220では、S130において取得した部品温度Tcが、設定した解除閾値THBよりも小さいか否か判定する。S220において、部品温度Tcが解除閾値THB以上であると判定した場合は、S230の処理へ進む。
【0066】
S230では、高温フラグをオンにする。高温フラグは、充電器3の保護を開始するためのフラグである。バッテリパック2の充電開始時には、検出閾値THAよりも小さい解除閾値THBを用いて、充電器3の保護を開始するか否か判定する。今回のバッテリパック2の充電開始の前に、別のバッテリパック2を充電している場合がある。そして、別のバッテリパック2の充電時に、部品温度Tcが検出温度THA以上になり、充電器3の保護が開始されることがある。さらに、部品温度Tcが解除閾値THBよりも小さくなる前に、すなわち、充電器3の保護中に、別のバッテリパック2の充電が終了することがある。このような場合に、続けて今回のバッテリパック2の充電を開始する場合は、部品温度Tcが解除閾値THBまで下がるまで、充電器3の保護を続けることが望ましい。よって、バッテリパック2の充電開始時においては、解除閾値THBを用いて、充電器3の保護を開始するか否か判定する。
【0067】
続いて、S240では、S110において取得した要求電流値Idが低減電流値Ithbよりも小さいか否か判定する。低減電流値Ithbは、発熱部品の温度上昇を抑制することが可能な十分に小さい値であり、例えば、2Aである。
【0068】
S240において、要求電流値Idが低減電流値Ithb以上であると判定した場合は、S250の処理へ進む。S250では、要求電流値Idよりも低減された低減電流値Ithbの充電電流で充電を開始する。これにより、充電器3の発熱部品の温度上昇が抑制され、充電器3が保護される。S250の処理の後、S270の処理へ進む。
【0069】
一方、S240において、要求電流値Idが低減電流値Ithbよりも小さいと判定した場合は、S260の処理へ進む。S260では、要求電流値Idの充電電流で充電を開始する。この場合は、充電器3を保護すべき状況ではあるが、要求電流値Idが十分に小さい。したがって、要求電流値Idの充電電流で充電をしても、充電器3の発熱部品の温度上昇を抑制できるため、充電電流を低減する必要はない。
【0070】
要求電流値Idが低減電流値Ithbよりも小さくなる状況は、バッテリパック2が満充電に近くなり、バッテリ電圧が定格電圧に近づいたときに生じる。充電開始時にバッテリパック2が満充電に近い状況は、ユーザが継続的な連続充電(すなわち、継ぎ足し充電)を行うときに生じる。S260の処理の後、S270の処理へ進む。
【0071】
また、S220において、部品温度Tcが解除閾値THBよりも小さいと判定した場合は、S260の処理へ進む。この場合、充電開始時に部品温度Tcが十分に低下しているため、充電器3を保護する必要がない。よって、S260において、要求電流値Idの充電電流で充電する。S260の処理の後、S270の処理へ進む。
【0072】
続いて、S270では、充電中のバッテリパック2と通信を行い、要求電流値Idを取得する。要求電流値Idは、バッテリパック2の充電が進むにつれて減少する。第1MPU32は、要求電流値Idが0になったときに、バッテリパック2の充電を終了し、S100の処理へ戻る。
【0073】
続いて、S280は、現時点における部品温度Tcを取得する。
続いて、S290では、高温フラグがオンになっているか否か判定する。S290において、高温フラグがオンになっていると判定した場合は、S300の処理へ進む。
【0074】
S300では、S280で取得した部品温度Tcが解除閾値THBよりも小さいか否か判定する。すなわち、充電器3の保護を解除できるか否か判定する。S300において、部品温度Tcが解除閾値THBよりも小さいと判定した場合は、S310の処理へ進む。S310では、高温フラグをオフにし、S340の処理へ進む。
【0075】
一方、S300において、部品温度Tcが解除閾値THB以上であると判定した場合は、S320の処理へ進む。S320では、S270において取得した要求電流値Idが低減電流値Ithbよりも小さいか否か判定する。
【0076】
S320において、要求電流値Idが低減電流値Ithb以上であると判定した場合は、S330の処理へ進む。S330では、要求電流値Idよりも低減した低減電流値Ithbの充電電流で充電を続ける。S330の処理の後、S270の処理へ戻る。
【0077】
一方、S320において、要求電流値Idが低減電流値Ithbよりも小さいと判定した場合は、S340の処理へ進む。S340では、要求電流値Idの充電電流で充電を続ける。S340の処理の後、S270の処理へ戻る。
【0078】
また、S290において、高温フラグがオフであると判定した場合は、S350の処理へ進む。S350では、S280で取得した部品温度Tcが検出閾値THAよりも小さいか否か判定する。すなわち、充電器3の保護を開始しなくてもよいか否か判定する。
【0079】
S350にいて、部品温度Tcが検出閾値THA以上であると判定した場合は、S360の処理へ進む。S360では、充電器3の保護を開始する必要があるため、高温フラグをオンにする。
【0080】
続いて、S370では、S270において取得した要求電流値Idが低減電流値Ithbよりも小さいか否か判定する。
S370において、要求電流値Idが低減電流値Ithb以上であると判定した場合は、S380の処理へ進む。S380では、要求電流値Idよりも低減された低減電流値Ithbの充電電流で充電を続ける。これにより、充電器3の発熱部品の温度上昇が抑制され、充電器3が保護される。
【0081】
一方、S370において、要求電流値Idが低減電流値Ithbよりも小さいと判定した場合は、S390の処理へ進む。S390では、要求電流値Idの充電電流で充電を続ける。この場合、充電器3を保護すべき状況であるが、要求電流値Idが十分に小さいので、充電電流を低減する必要はない。S390の処理の後、S270の処理へ戻る。
【0082】
また、S350において、部品温度Tcが検出閾値THAよりも小さいと判定した場合は、S390の処理へ進む。S390では、充電器3の保護を開始する必要がないため、S270において取得した要求電流値Idの充電電流で充電を続ける。S390の処理の後、S270の処理へ戻る。
【0083】
<3.効果>
以上説明した第1実施形態によれば、以下の効果が得られる。
(1)充電器3が外部電源70に電気的に接続されている間、バッテリパック2へ供給された電流量が積算される。これにより、充電器3に含まれるトランス41の温度状態を適切に表す積算容量A1が算出される。そして、積算容量A1と第1の関係式とに基づいて、検出閾値THAが設定される。すなわち、トランス41の温度状態に応じて、検出閾値THAが設定される。さらに、検出された部品温度Tcが設定された検出閾値THA以上になった場合に、要求電流値Idが低減電流値Ithbに低減される。したがって、充電器3を適切に保護することができる。
【0084】
(2)充電電流値Ioが電流閾値Itha未満である場合には、充電器3の発熱部品は放熱して発熱部品の温度は低下する。したがって、充電器3が外部電源70に電気的に接続されている間において、充電電流値Ioが電流閾値Itha未満の場合には、積算値から所定値が減算される。これにより、トランス41の温度状態をより適切に表した積算値を、積算容量値A1として算出することができる。
【0085】
(3)積算容量A1に基づいて算出された第1の検出閾値候補Tha_1と、公称バッテリ容量A2に基づいて算出された第2の検出閾値候補Tha_2のうちの小さい方の値が、検出閾値THAとして設定される。これにより、異なる容量の複数のバッテリパック2をどのような順番で充電する場合でも、充電器3を適切に保護することが可能な検出閾値THA及び解除閾値THBを設定できる。
【0086】
(4)第1の解除閾値候補Thb_1と第2の解除閾値候補Thb_2のうちの小さい方の値が解除閾値THBとして設定される。これにより、部品温度Tcが検出閾値THA以上になると充電電流値Ioの低減が実行され、部品温度Tcが解除閾値THBより低くなると、充電電流値Ioの低減が解除される。したがって、充電電流値Ioの低減を適切に実行及び解除することができる。
【0087】
(5)バッテリパック2の充電開始には、部品温度Tcが解除閾値THB以上である場合に、充電電流値Ioが低減される。これにより、複数のバッテリパック2を連続して充電する場合でも、充電器3を適切に保護することができる。
【0088】
(他の実施形態)
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
【0089】
(a)上記実施形態では、積算容量A1と公称バッテリ容量A2の両方を用いて、検出閾値THA及び解除閾値THBを設定したが、積算容量A1のみを用いて、検出閾値THA及び解除閾値THBを設定してもよい。積算容量A1と公称バッテリA2の両方を用いる方がより好適に充電器3を保護できるが、積算容量A1のみを用いても充電器3を保護できる。
【0090】
(b)上記実施形態では、充電開始時における積算容量A1を用いて、第1の検出閾値候補Tha_1と、第1の解除閾値候補Thb_1を算出していたが、本開示はこれに限定されない。充電中に、リアルタイムの積算容量A1を用いて、第1の検出閾値候補Tha_1及び第1の解除閾値候補Thb_1を算出し、さらに、検出閾値THA及び解除閾値THBを算出してもよい。例えば、充電中に、所定の時間間隔で、アルタイムの積算容量A1を用いて、第1の検出閾値候補Tha_1及び第1の解除閾値候補Thb_1を算出し、さらに、検出閾値THA及び解除閾値THBを算出してもよい。
【0091】
(c)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。
【0092】
(d)上述した充電器の他、当該充電器を構成要素とするシステム、当該充電器としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、充電器の保護方法など、種々の形態で本開示を実現することもできる。
【符号の説明】
【0093】
2…バッテリパック、3…充電器、21…バッテリ、22…第2MPU、32…第1MPU、22a,32a…CPU、22b,32b…メモリ、23…第2通信部、24…第2正極端子、25…第2負極端子、26…第2信号端子、27…第2シリアル端子、31…電源コード、33…第1通信部、34…第1正極端子、35…第1負極端子、36…第1信号端子、37…第1シリアル端子、38…シャント抵抗器、40…電源回路、41…トランス、42…ダイオード、43…温度検出部、70…外部電源。