IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エセックス・グループ・インコーポレイテッドの特許一覧

特許7478098コロナ耐性ポリイミド絶縁体を持つマグネットワイヤ
<>
  • 特許-コロナ耐性ポリイミド絶縁体を持つマグネットワイヤ 図1
  • 特許-コロナ耐性ポリイミド絶縁体を持つマグネットワイヤ 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-23
(45)【発行日】2024-05-02
(54)【発明の名称】コロナ耐性ポリイミド絶縁体を持つマグネットワイヤ
(51)【国際特許分類】
   H01B 7/00 20060101AFI20240424BHJP
   H01B 3/30 20060101ALI20240424BHJP
   C08K 3/36 20060101ALI20240424BHJP
   C08K 3/22 20060101ALI20240424BHJP
   C08L 79/08 20060101ALI20240424BHJP
【FI】
H01B7/00 303
H01B3/30 D
C08K3/36
C08K3/22
C08L79/08 Z
【請求項の数】 31
(21)【出願番号】P 2020562727
(86)(22)【出願日】2019-05-06
(65)【公表番号】
(43)【公表日】2021-09-02
(86)【国際出願番号】 US2019030804
(87)【国際公開番号】W WO2019217254
(87)【国際公開日】2019-11-14
【審査請求日】2022-02-16
(31)【優先権主張番号】62/667,649
(32)【優先日】2018-05-07
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】598077037
【氏名又は名称】エセックス フルカワ マグネット ワイヤ ユーエスエイ エルエルシー
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100173473
【弁理士】
【氏名又は名称】高井良 克己
(72)【発明者】
【氏名】アラン アール ナー
【審査官】神田 太郎
(56)【参考文献】
【文献】米国特許出願公開第2002/0142161(US,A1)
【文献】特表2001-512888(JP,A)
【文献】国際公開第2017/042159(WO,A1)
【文献】米国特許第05861578(US,A)
【文献】米国特許第05654095(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 7/00
H01B 3/30
C08K 3/36
C08K 3/22
C08L 79/08
(57)【特許請求の範囲】
【請求項1】
以下:
導伝体;および
前記導伝体の周りに形成されたポリマー性エナメル絶縁体の少なくとも1つの層であって、該ポリマー性エナメル絶縁体が、ポリイミド中に分散されたフィラー、およびホルムアルデヒド材料と反応させたアミン部分を含む添加剤を含む、上記少なくとも1つの層
を含むマグネットワイヤであって、
前記フィラーが、20重量パーセントから80重量パーセントの間の酸化シリカおよび20から80重量パーセントの間の酸化チタンを含み、
前記ポリマー性エナメル絶縁体が、260の熱クラス、280、またはそれより大きい熱クラスを有する、
上記マグネットワイヤ。
【請求項2】
前記フィラーが、60重量パーセントから80重量パーセントの間の酸化チタンおよび20重量パーセントから40重量パーセントの間の酸化シリカを含む、請求項1に記載のマグネットワイヤ。
【請求項3】
前記ポリマー性エナメル絶縁体が、10重量パーセントから25重量パーセントの間のフィラーを含む、請求項1に記載のマグネットワイヤ。
【請求項4】
前記ポリマー性エナメル絶縁体が、15重量パーセントから20重量パーセントの間のフィラーを含む、請求項1に記載のマグネットワイヤ。
【請求項5】
前記添加剤が、接着促進剤として作用する、請求項1に記載のマグネットワイヤ。
【請求項6】
前記添加剤が、サイメルを含む、請求項1に記載のマグネットワイヤ。
【請求項7】
ポリマー性エナメル絶縁体の前記少なくとも1つの層が、ポリマー性エナメル絶縁体の複数の層を含む、請求項1に記載のマグネットワイヤ。
【請求項8】
ポリマー性エナメル絶縁体の前記少なくとも1つの層の周りに形成されたトップコート絶縁体層をさらに含む、請求項1に記載のマグネットワイヤ。
【請求項9】
前記トップコート絶縁体層が、充填されていない層を含む、請求項8に記載のマグネットワイヤ。
【請求項10】
前記トップコート絶縁体層が、ポリアミドイミドを含む、請求項8に記載のマグネットワイヤ。
【請求項11】
前記トップコート絶縁体層が、組み合わされたポリマー性エナメル絶縁体およびトップコート絶縁体層との合計厚さの5から15パーセントの間を含む、請求項8に記載のマグネットワイヤ。
【請求項12】
以下:
導伝体;および
前記導伝体の周りに形成された充填されたポリマー性エナメル絶縁体であって、該充填されたポリマー性エナメル絶縁体が、(i)10重量パーセントから25重量パーセントのフィラーを含む、上記充填されたポリマー性エナメル絶縁体
を含むマグネットワイヤであって、
前記フィラーが、20から80重量パーセントの酸化シリカおよび20から80重量パーセントの酸化チタンを含み、
前記ポリマー性エナメル絶縁体が、260の熱クラス、280、またはそれより大きい熱クラスを有する、
上記マグネットワイヤ。
【請求項13】
前記フィラーが、60重量パーセントから80重量パーセントの間の酸化チタンおよび20重量パーセントから40重量パーセントの間の酸化シリカを含む、請求項12に記載のマグネットワイヤ。
【請求項14】
前記充填されたポリマー性エナメル絶縁体が、15重量パーセントから20重量パーセントの間のフィラーを含む、請求項12に記載のマグネットワイヤ。
【請求項15】
前記充填されたポリマー性エナメル絶縁体が、ホルムアルデヒド材料と反応させたアミン部分を含む添加剤をさらに含み、前記添加剤が、接着促進剤として作用する、請求項12に記載のマグネットワイヤ。
【請求項16】
前記充填されたポリマー性エナメル絶縁体が、ホルムアルデヒド材料と反応させたアミン部分を含む添加剤をさらに含み、前記添加剤が、サイメルを含む、請求項12に記載のマグネットワイヤ。
【請求項17】
前記充填されたポリマー性エナメル絶縁体が、ポリマー性エナメル絶縁体の複数の層を含む、請求項12に記載のマグネットワイヤ。
【請求項18】
前記充填されたポリマー性エナメル絶縁体の周囲に形成されたトップコート絶縁体層をさらに含む、請求項12に記載のマグネットワイヤ。
【請求項19】
前記トップコート絶縁体層が、充填されていない層を含む、請求項18に記載のマグネットワイヤ。
【請求項20】
前記トップコート絶縁体層が、ポリアミドイミドを含む、請求項18に記載のマグネットワイヤ。
【請求項21】
前記トップコート絶縁体層が、組み合わされた充填されたポリマー性エナメル絶縁体およびトップコート絶縁体層との合計厚さの5から15パーセントの間を含む、請求項18に記載のマグネットワイヤ。
【請求項22】
以下:
導伝体を提供すること;および
前記導伝体の周りにポリマー性エナメル絶縁体を形成することであって、該ポリマー性エナメル絶縁体が、(i)10重量パーセントから25重量パーセントのフィラーを含む、上記形成すること
を含む、マグネットワイヤを形成する方法であって、
前記フィラーが、20から80重量パーセントの酸化シリカおよび20から80重量パーセントの酸化チタンを含み、
前記ポリマー性エナメル絶縁体が、260の熱クラス、280、またはそれより大きい熱クラスを有する、
上記方法。
【請求項23】
ポリマー性エナメル絶縁体を形成することが、ポリマー性エナメル絶縁体を60重量パーセントから80重量パーセントの間の酸化チタンおよび20重量パーセントから40重量パーセントの間の酸化シリカを含むフィラーで形成することを含む、請求項22に記載の方法。
【請求項24】
ポリマー性エナメル絶縁体を形成することが、15重量パーセントから20重量パーセントの前記フィラーを含むポリマー性エナメル絶縁体を形成することを含む、請求項22に記載の方法。
【請求項25】
前記ポリマー性エナメル絶縁体が、ホルムアルデヒド材料と反応させたアミン部分を含む添加剤をさらに含み、前記添加剤が、接着促進剤として機能する、請求項22に記載の方法。
【請求項26】
前記ポリマー性エナメル絶縁体が、ホルムアルデヒド材料と反応させたアミン部分を含む添加剤をさらに含み、前記添加剤が、サイメルを含む、請求項22に記載の方法。
【請求項27】
ポリマー性エナメル絶縁体を形成することが、ポリマー性エナメル絶縁体の複数の層を形成することを含む、請求項22に記載の方法。
【請求項28】
以下:
前記ポリマー性エナメル絶縁体の周りに形成されたトップコート絶縁体層を形成することをさらに含む、
請求項22に記載の方法。
【請求項29】
トップコート絶縁体層を形成することが、充填されていないトップコート絶縁体層を形成することを含む、請求項28に記載の方法。
【請求項30】
トップコート絶縁体層を形成することが、ポリアミドイミドトップコート絶縁体層を形成することを含む、請求項28に記載の方法。
【請求項31】
トップコート絶縁体層を形成することが、組み合わされたポリマー性エナメル絶縁体とトップコート絶縁体層との合計厚さの5から15パーセントの間を含むトップコート絶縁体層を形成することを含む、請求項28に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
この出願は、2018年5月7日に出願された「コロナ耐性ポリイミドマグネットワイヤ絶縁体(Corona Resistant Polyimide Magnet Wire Insulation)」と題された米国仮出願第62/667,649号の優先権を主張し、その内容は参照によりその全体が本明細書に組み込まれる。
【0002】
(技術分野)
本開示の実施形態は、概して、マグネットワイヤおよび、より具体的には、モーター巻線の寿命を改善するように設計されたコロナ耐性ポリイミドから形成された絶縁体を含むマグネットワイヤに関する。
【背景技術】
【0003】
(背景)
巻線または磁気巻線とも呼ばれるマグネットワイヤは、インバータ駆動モーター、モータースタータージェネレーター、変圧器等の、多種の電気機械およびデバイスで利用使用される。マグネットワイヤは、典型的に、中心導伝体の周囲に形成されたポリマー性エナメル絶縁体を含む。エナメル絶縁体は、マグネットワイヤにワニスを塗布し、オーブン中でワニスを硬化させて溶剤を除去することにより、薄いエナメル層を形成することによって形成される。このプロセスは、目的のエナメルのビルドまたは厚さが達成されるまで繰り返される。エナメル層を形成するために利用されるポリマー性材料は、特定の最高動作温度での使用を意図される。また、電気デバイスは、ワイヤの絶縁体を破壊または劣化し得る比較的高い電圧条件に供され得る。例えば、インバータは、特定のタイプのモーターに入力される可変周波数を生成し得、可変周波数は、モーターの早期巻線障害を引き起こす急峻な波形を示し得る。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ワイヤ絶縁体の劣化の結果としての早期故障を減らすため、試みがなされてきた。これらの試みは、電気機械およびデバイスの取扱いおよび製造の最中のワイヤおよび絶縁体への損傷を最小限にすること、および必要に応じてより短いリード長を使用することを含んでいた。さらに、インバータドライブとモーターの間のリアクトルコイルまたはフィルターは、インバータドライブ/モーターの組合せによって生成される電圧スパイクおよび高周波を低減することにより、巻線の寿命を延ばすことができる。しかしながら、このようなコイルは高価であり、システムの全体的なコストを増加させる。絶縁体の量を増やすと、電気デバイスの巻線の寿命を延ばすことができるが、このオプションは高価であり、デバイス内の銅のスペースの量を減らすため、モーターの効率が低下する。また、特定の数のエナメル層に達すると、層間剥離が発生し得る。それゆえ、電気デバイス内に存在するより高い温度および/または電圧に長期間耐えるように設計された絶縁体を持つ改良されたマグネットワイヤの機会が存在する。
【課題を解決するための手段】
【0005】
詳細な説明は、添付の図を参照して示される。図では、参照番号の左端の数字は、参照番号が最初に表示される図を同定する。異なる図で同じ参照番号を使用している場合は、同様または同一の項目を提示する;しかしながら、種々の実施形態は、図に示されているもの以外の要素および/または構成要素を利用し得る。また、図面は、本明細書に記載の例示的な実施形態を説明するために提供され、本開示の範囲を限定することを意図するものではない。
【図面の簡単な説明】
【0006】
図1図1ABは、本開示の種々の実施形態に従って形成され得る例示的なマグネットワイヤ構築の断面図を示す。
図2】図A~2Bは、本開示の種々の実施形態に従って形成され得る例示的なマグネットワイヤ構築の断面図を示す。
【発明を実施するための形態】
【0007】
(詳細な説明)
本開示の特定の実施形態は、ポリイミド絶縁体を持つ従来のマグネットワイヤと比較して改善されたコロナ耐性および/または熱寿命の向上を有するポリイミド(「PI」)絶縁体を含むマグネットワイヤを対象とする。本開示の他の実施形態は、改善されたコロナ耐性および/または熱寿命の向上を有するPI絶縁体を含むマグネットワイヤを作製する方法に関する。本開示の一態様によれば、充填材料は、PIポリマーまたは樹脂に添加することができる。また、充填材料は、少なくとも酸化チタン(TiO)および酸化シリカ(SiO))の配合を含んでもよい。配合は、酸化クロム(CrO)等、必要に応じて他の適した材料をさらに含んでもよい。フィラーの添加は、マグネットワイヤ上に充填されたPIから形成されたエナメル層のコロナ抵抗および/または熱寿命を改善し得る。結果として、マグネットワイヤおよび/またはマグネットワイヤを組み込んだ電気デバイス(例えば、モーター等)の寿命は、部分放電および/または他の悪条件の下で増加または延長され得る。フィラーの添加は、マグネットワイヤの熱伝導率も向上させ得る。特に、フィラーは、導伝体からの増強された熱放散を促進し得る。
【0008】
フィラー材料は、任意の適した比率でPIに追加してもよい。例えば、特定の実施形態では、充填されたPIエナメル絶縁体層中のフィラーの合計量は、約10重量パーセント(10%)から約25重量パーセント(25%)の間であってもよい。他の実施形態では、フィラーの合計量は、約15重量パーセント(15%)から約20重量パーセント(20%)の間であってもよい。種々の他の実施形態において、フィラーの総量は、約5、7.5、10、12.5、15、17.5、20、25、30、35、40、45、または50重量パーセント、上記の値のいずれか2つの間の範囲に含まれる量、あるいは上記の値の1つによって最小または最大のいずれかの端で囲まれた範囲に含まれる量であってもよい。
【0009】
さらに、フィラーに組み込まれる種々の成分に対して、多種の混合比または混合比を利用してもよい。例えば、酸化チタンおよび酸化シリカは、多種の適した重量比で混合してもよい。種々の実施形態において、フィラーは、約20重量パーセント(20%)から約80重量パーセント(80重量%)の酸化シリカおよび約20重量パーセント(20%)から約80重量パーセント(80重量%)の酸化チタンを含んでもよい。例えば、フィラーは、20~40重量%の酸化シリカおよび60~80重量%の酸化チタンを含んでもよい。必要に応じて、多種の他の適した混合比を利用してもよい。
【0010】
本開示の実施形態は、本開示の特定の実施形態が示されている添付の図面を参照して、以下により完全に説明されよう。しかしながら、本発明は、多くの異なる形態で具体化してもよく、本明細書に記載の実施形態に限定されると解釈されるべきではない。むしろ、これらの実施形態は、本開示が完全かつ完全であり、本発明の範囲を当業者に完全に伝えるように提供される。同様の番号は、全体を通して同様の要素を指す。
【0011】
ここで図面を参照すると、図1Aは、エナメル絶縁体でコートされた導伝体110を含んでもよい、例示的な円形マグネットワイヤ100の断面端面図を示す。任意の適した数のエナメル層が、必要に応じて利用されてもよい。示されるように、ベースコート120およびトップコート130等の複数のエナメル絶縁体層が、導伝体110の周りに形成されてもよい。他の実施形態では、エナメル絶縁体の単層が、利用されてもよい。なお他の実施形態では、2層を超えるエナメル絶縁体が、利用されてもよい。さらに、1以上のエナメル層は、適した無機フィラーを含んでもよく、フィラーは、酸化シリカおよび酸化チタンの組合せを含んでもよい。
【0012】
同様に、図1Bは、エナメル絶縁体でコーティングされた導伝体160を含んでもよい、例示的な長方形のマグネットワイヤ150の断面端面図を示す。任意の適した数のエナメル層が、必要に応じて利用されてもよい。示されるように、ベースコート170およびトップコート180等の複数のエナメル絶縁体層が、導伝体160の周りに形成されてもよい。他の実施形態では、エナメル絶縁体の単層が利用されてもよい。なお他の実施形態では、2層を超えるエナメル絶縁体が、利用されてもよい。さらに、1以上のエナメル層は、適した無機フィラーを含んでもよく、フィラーは、酸化シリカおよび酸化チタンの組合せを含んでもよい。図1の円形ワイヤ100は、以下により詳細に説明される;しかしながら、図1Bの長方形ワイヤ150の種々の構成要素が図1Aの円形ワイヤ100について説明したものと同様であり得ることが、理解されよう。
【0013】
導伝体110は、多種の適した材料または材料の組合せから形成されてもよい。例えば、導伝体110は、銅、アルミニウム、アニールされた銅、無酸素銅、銀メッキ銅、ニッケルメッキ銅、銅被覆アルミニウム(「CCA」)、銀、金、導電性合金、バイメタル、または他の適した導電性材料から形成されてもよい。また、導伝体110は、図示の円環状(circular)または円形(round)の断面形状等の任意の適した断面形状で形成されてもよい。他の実施形態では、導伝体110は、長方形(図1Bに示されるように)、正方形、楕円形(elliptical)、卵楕円形(oval)、または任意の他の適した断面形状を有してもよい。長方形のような特定の断面形状に望まれるように、導伝体は、丸みを帯びた、鋭い、滑らかな、湾曲した、角度を付けられた、切り詰められた、または他の形状化された角を有してもよい。導伝体110はまた、任意の適したゲージ、直径、高さ、幅、断面積等のような任意の適した寸法で形成されてもよい。
【0014】
図示のベースコート120およびトップコート130等の任意の数のエナメル層は、導伝体110の周りに形成されてもよい。エナメル層は、通常、ポリマーワニスを導伝体110に塗布し、次いで、導伝体110を適したエナメルオーブンまたは炉で焼くことによって形成される。ポリマーワニスは、通常、1以上の溶媒に懸濁された熱硬化性ポリマー材料または樹脂を含む。熱硬化性または熱硬化性ポリマーは、軟質の固体または粘性の液体(例えば、粉末等)から不溶性または架橋された樹脂に不可逆的に硬化し得る材料である。熱硬化性ポリマーは、通常、溶融プロセスによってポリマーが分解または劣化するため、押し出しによる塗布のために溶融することができない。したがって、熱硬化性ポリマーを溶剤に懸濁してワニスを形成し、これを塗布および硬化してエナメルフィルム層を形成されてもよい。ワニスを塗布した後、ベーキングまたは他の適した硬化の結果として溶剤が除去され、それによって固体のポリマー性エナメル層が残る。必要に応じて、エナメルの複数の層を導伝体110に適用して、所望のエナメルの厚さまたはビルド(例えば、導伝体および任意の下層の厚さを差し引くことによって得られるエナメルの厚さ)を達成することができる。各エナメル層は、同様のプロセスを利用して形成されてもよい。換言すれば、第1のエナメル層は、例えば、適したワニスを塗布し、導伝体をエナメルオーブンに通すことによって形成されてもよい。続いて、適したワニスを塗布し、導伝体を同じエナメルオーブンまたは異なるエナメルオーブンのいずれかに通すことによって、第2のエナメル層を形成されてもよい。実際、エナメルオーブンは、オーブンを通るワイヤの複数の通過を容易にするように構成されてもよい。種々の実施形態で望まれるように、1以上のエナメルオーブンに加えて、またはその代替として、他の硬化装置を利用してもよい。例えば、1以上の適した赤外光、紫外線、電子ビーム、および/または他の硬化システムを利用してもよい。
【0015】
必要に応じて、ベースコート120およびトップコート130等のエナメルの各層は、任意の適した数の副層で形成されてもよい。例えば、ベースコート120は、単一のエナメル層、あるいは、所望の構築または厚さが達成されるまで形成される複数のエナメル層または副層を含んでもよい。同様に、トップコート130は、1以上の副層を含んでもよい。エナメルの各層および/または総エナメルビルドは、約0.0002、0.0005、0.007、0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.010、0.012、0.015、0.017、または0.020インチの厚さ、前述の値のいずれか2つの間の範囲に含まれる厚さ、および/または前述の値の1つによって最小端または最大端のいずれかに制限される範囲に含まれる厚さ等の任意の所望の厚さを有してもよい。
【0016】
エナメル層を形成するために、必要に応じて、多種の異なるタイプのポリマー材料を利用してもよい。適した熱硬化性材料の例としては、ポリイミド、ポリアミドイミド、アミドイミド、ポリエステル、ポリエステルイミド、ポリスルホン、ポリフェニレンスルホン、ポリサルファイド、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミド、ポリケトン等が挙げられるが、これらに限定されない。本開示の一態様によれば、少なくとも1つのエナメル層は、ポリイミド(「PI」)を含んでもよい。特定の実施形態では、複数のポリイミド層を形成されてもよい。例えば、ベースコート120およびトップコート130の両方は、PI層として形成されてもよい。他の実施形態では、1以上のPI層を、他のタイプの材料から形成されたエナメル層と組み合わせてもよい。例えば、ベースコート120は、PIから形成されてもよく、一方、トップコート130は、別のポリマー材料またはポリマー材料の配合を含む。また、本開示の一態様によれば、および以下でより詳細に説明されるように、1以上のPI層は、適したフィラーを含んでもよい。
【0017】
特定の実施形態では、ベースコート120は、充填されたPIの1以上の層を含んでもよく、ポリアミドイミド(「PAI」)を含むトップコート130は、ベースコート120上に形成されてもよい。必要に応じて、PIベースコート120とPAIトップコート130との間の任意の適したビルドまたは厚さ比を、利用してもよい。特定の実施形態では、PIベースコート120とPAIトップコート130との間の厚さまたはビルド比は、約95/5から約85/15の間であってもよい。換言すれば、PAIトップコート130の厚さまたはビルドは、組み合わされたエナメル絶縁体の全体の厚さまたはビルドの約5.0パーセントから約15.0パーセントの間を構成してもよい。他の実施形態では、トップコート130は、組み合わされたエナメル絶縁体の全体の厚さまたは構造の約2、3、5、7、10、12、15、20、または25パーセントを構成してもよい。
【0018】
図2Aは、例示的な3コート円形マグネットワイヤ200の断面端面図を示す。図2Aに示す実施形態は、ポリマーベースコート220に囲まれた導伝体210、ベースコート220上に配置された第1のポリマー層230、および第1のポリマー層230上に配置された第2のポリマー層240を含む。同様に、図2Bは、例示的な3コート長方形マグネットワイヤ250の断面端面図を示す。ワイヤ250は、ポリマーベースコート270に囲まれた導伝体260、ベースコート270上に配置された第1のポリマー層280、および第1のポリマー層280上に配置された第2のポリマー層290を含む。図2Aの円形ワイヤ200は、より詳細に以下に説明される;しかしながら、図2の長方形ワイヤ250の種々の構成要素が理解されよう。図2Bは、図2Aの円形ワイヤ200について説明したものと同様であってもよい。
【0019】
図2Aのワイヤ200に関して、導伝体210は、図1Aを参照して上記で説明された導伝体110と同様であってもよい。また、多種の適したポリマーを利用して、エナメル220、230、240の種々の層を形成してもよい。適した熱硬化性材料の例としては、ポリイミド、ポリアミドイミド、アミドイミド、ポリエステル、ポリエステルイミド、ポリスルホン、ポリフェニレンスルホン、ポリサルファイド、ポリフェニレンサルファイド、ポリエーテルイミド、ポリアミド、ポリケトン等が挙げられるが、これらに限定されない。本開示の一態様によれば、少なくとも1つのエナメル層は、ポリイミド(「PI」)を含んでもよい。また、ベースコート220、第1のポリマー層230、および第2のポリマー層240のそれぞれは、任意の所望の数の副層を含んでもよい。特定の実施形態では、複数のPI層が、形成されてもよい。例えば、3つの層220、230、240はすべて、PIから形成されてもよい。
【0020】
他の実施形態では、1以上のPI層を、他のタイプの材料から形成されたエナメル層と組み合わせてもよい。例えば、ベースコート220は、PAIまたは導伝体210と導伝体の周りに形成された絶縁体との間の強化された接着を促進する別のポリマー材料から形成されてもよい。次いで、第1のポリマー層230は、任意の適した数の充填されたPI層から形成されてもよい。次いで、第2のポリマー層240は、充填されたPI層の上にトップコートとして形成されてもよい。例えば、第2のポリマー層240は、図1Aを参照して上で論じたトップコート130と同様のPAIトップコートとして形成されてもよい。
【0021】
別の例として、ベースコート220および第1のポリマー層230は、PI層として形成されてもよい。例えば、ベースコート220は、導伝体210への強化された接着を促進するPIから形成されてもよい。特定の実施形態において、ベースコート220は、第1のポリマー層230で使用されるPIとは異なる配合を有するPIから形成されてもよい。例えば、ベースコート220は、二無水物成分(例えば、パイロメトリティック二無水物またはPMDA)と2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(「BAPP」)を含むジアミン成分と反応させることによって形成されるPIを含んでもよい。第1のポリマー層230は、二無水物成分を4,4’-オキシジアニリン(「ODA」)と反応させることによって形成されたPIを含んでもよい。次いで、第2のポリマー層240は、充填されたPI層の上にトップコートとして形成されてもよい。例えば、第2のポリマー層240は、図1Aを参照して上で論じたトップコート130と同様のPAIトップコートとして形成されてもよい。
【0022】
実際、エナメルの多種の適した組合せは、任意の適した材料および/または材料の組合せから必要に応じて形成されてもよい。また、図1Aのワイヤ100と同様に、図2Aのワイヤ200は、適したフィラーを含む少なくとも1つのPI層を含んでもよい。特定の実施形態では、1以上の充填PI層が、導伝体210の周りに(例えば、導伝体210の周りに直接、1以上のベース層の周りに等)形成されてもよい。次いで、1以上の充填されていない層または充填されていないトップコート(例えば、充填されていない第2のポリマー層240)等の自己潤滑層が、1以上の充填されたPI層の周囲に形成されてもよい。例えば、PIの充填されていない層またはPAIの充填されていない層が、1以上の充填されたPI層の上に形成されてもよい。充填されていない層は、充填されたPI層のフィラーとして利用される研磨材料に関連する工具摩耗を減少させるのを支援し得る。
【0023】
図1A~2Bのワイヤ100、150、200、250を引き続き参照すると、特定の実施形態では、1以上の適した接着促進剤を組み込んでもよい。例えば、接着促進剤を利用して、導伝体とベースコートとの間のより大きな接着を支援または促進してもよい。別の例として、接着促進剤を利用して、エナメルの2つの異なる層間のより大きな接着を支援または促進してもよい。多種の適した接着促進剤を、必要に応じて利用してもよい。特定の実施形態において、Allnexによって製造および販売されているCymel材料等のCymel材料または樹脂を、PIと組み合わせて接着促進剤として利用してもよい。例えば、適したCymel材料を利用して、PIエナメル層とマグネットワイヤの下層(例えば、ベースコート、導伝体等)との間のより大きな接着を促進してもよい。特定の実施形態において、Cymel材料は、アミン部分をホルムアルデヒド材料と反応させることによって形成されてもよい。他のタイプのCymel材料および/または架橋材料を、必要に応じて利用してもよい。
【0024】
他の実施形態では、1以上の適した表面改質処理を、導伝体および/または任意の数のエナメル層に利用して、その後に形成されるエナメル層との接着を促進してもよい。適した表面改質処理の例には、プラズマ処理、紫外線(「UV」)処理、コロナ放電処理、および/またはガス火炎処理が挙げられるが、これらに限定されない。表面処理は、導伝体またはエナメル層のトポグラフィを変更し、および/または導伝体またはエナメル層の表面に官能基を形成し、その後に形成されるエナメルまたは他の層の結合を強化または促進し得る。特定の実施形態では、変更されたトポグラフィはまた、後続のエナメル層を形成するために利用されるワニスの濡れ性を増強または改善し得、処理された層の表面張力を変化させ得る。結果として、表面処理は、層間剥離を低減し得る。
【0025】
特定の実施形態において望まれるように、1つ以上の他の絶縁体層は、複数のエナメル層に加えて、マグネットワイヤ100、150、200、250に組み込まれてもよい。例えば、1つ以上の押し出された熱可塑性層(例えば、押し出されたオーバーコート等)、半導体性層、テープ絶縁体層(例えば、ポリマーテープ等)、および/またはコンフォーマルコーティング(例えば、パリレンコーティング等)は、マグネットワイヤ100、150、200、250に組み込まれてもよい。他の多種の絶縁体構成および/または層の組合せを、必要に応じて利用してもよい。また、全体的な絶縁体システムは、任意の適した材料および/または材料の組合せから形成された任意の数の適した副層を含んでもよい。
【0026】
本開示の一態様によれば、1以上のポリイミド層(および潜在的に他のエナメル層)は、適したフィラーを含んでもよい。例えば、マグネットワイヤ100、150、200、250等のマグネットワイヤに組み込まれた1以上のPIエナメル層は、適したフィラーを含んでもよい。また、フィラーは、少なくとも酸化チタン(TiO)および酸化シリカ(SiO)の配合を含んでもよい。配合は、酸化クロム(CrO)等、必要に応じて他の適した材料をさらに含んでもよい。フィラーの添加は、マグネットワイヤ上に充填されたPIから形成されたエナメル層のコロナ抵抗および/または熱寿命を改善し得る。結果として、マグネットワイヤおよび/またはマグネットワイヤを組み込んだ電気デバイス(例えば、モーター等)の寿命は、部分放電および/または他の悪条件の下で増加または延長され得る。
【0027】
特定の実施形態では、フィラーの添加はまた、マグネットワイヤ100、150、200、250の熱伝導率を改善し得る。実際、1つ以上の充填されたPI絶縁体層は、マグネットワイヤ100、150、200、250の導伝体から熱を伝導または引き離すように機能し得る。その結果、マグネットワイヤ100、150、200、250は、充填された絶縁体層を含まない従来のマグネットワイヤよりも比較的低い温度で動作し得る。例えば、電気機械で利用される場合、マグネットワイヤ100、150、200、250および/または電気機械は、充填された絶縁体層を利用しない従来のデバイスよりも低い、摂氏約5、6、7、8、9、10、11、または12の温度で動作し得る。この改善された熱伝導率は、より高い電圧でのマグネットワイヤおよび/または電気機械の動作を容易にし、それによって出力を改善し得る。
【0028】
フィラー材料は、任意の適した比率でPIに追加してもよい。例えば、特定の実施形態では、充填されたPIエナメル絶縁体層内のフィラーの総量は、約10重量パーセント(10%)から約25重量パーセント(25%)の間であってもよい。他の実施形態では、フィラーの総量は、約15重量パーセント(15%)から約20重量パーセント(20%)の間であってもよい。種々の他の実施形態において、フィラーの総量は、約5、7.5、10、12.5、15、17、17.5、20、25、30、35、40、45、または50重量パーセント、上記の値のいずれか2つの間の範囲、あるいは上記の値のいずれかによって最小または最大のいずれかの端で囲まれた範囲に含まれる量であってもよい。巻線の寿命の実質的な改善は、約5重量%をはるかに下回る総フィラーレベルでは観察されず、絶縁体の柔軟性は、約50重量%を超える総フィラーレベルでは許容できなくなり得る。
【0029】
フィラーに組み込まれる種々の成分に対して、多種の混合比または混合比を利用してもよい。例えば、酸化チタンおよび酸化シリカは、多種の適した重量比で配合してもよい。種々の実施形態において、フィラーは、約20重量パーセント(20%)から約80重量パーセント(80重量%)の酸化シリカ、および約20重量パーセント(20%)から約80重量パーセント(80重量%)の酸化チタンを含んでもよい。例えば、フィラーは、約20、25、30、33、35、40、45、50、55、60、65、67、70、75、または80重量パーセント、上記の値のいずれか2つの間の範囲(例えば、20%から40%等)、あるいは上記の値の1つによって最小または最大のいずれかの端で囲まれた範囲に含まれる重量パーセント(例えば、少なくとも20%等)の酸化ケイ素を含んでもよい。同様に、フィラーは、約20、25、30、33、35、40、45、50、55、60、65、67、70、75、または80重量パーセント、重量パーセントは、上記の値のいずれか2つの範囲(例えば、20%から40%等)、あるいは上記の値の1つによって最小または最大のいずれかの端で囲まれた範囲に含まれる重量パーセント(例えば、少なくとも20%等)の酸化チタンを含んでもよい。必要に応じて、第1の成分(例えば、酸化チタン)と第2の成分(例えば、酸化シリカ)の比は、約80/20、75/25、70/30、67/33、65/35、60/40、55/45、50/50、45/55、40/60、35/65、33/67、30/70、25/75、20/80、またはその他の適した比率であってもよい。
【0030】
一例として、酸化チタンおよび酸化シリカは、約75/25重量比で配合してもよい。換言すれば、フィラーは、重量で約75重量%の酸化チタンおよび約25重量%の酸化シリカを含んでもよい。PIエナメル層が約15.0重量%のフィラーを含む場合、PIエナメル層は、約11.25重量%の酸化チタンおよび約3.75重量%の酸化シリカを含んでもよい。多種の他のフィラー比(例えば、エナメル層内のフィラーの比)および/または配合比(例えば、フィラーを作製するために利用される成分の比)を、必要に応じて利用してもよい。上記の例は、限定することを意図したものではない。
【0031】
また、特定の実施形態では、フィラー中で利用される成分は、1以上の所望の特性に基づいて選択してもよい。例えば、第1のフィラー成分(例えば、酸化チタン等)は、比較的低い抵抗率を有する無機酸化物として選択してもよく、第2のフィラー成分(例えば、酸化シリカ等)は、比較的大きな表面積を有する無機酸化物として選択してもよい。次いで、エナメル層を形成する前に、混合物を、PIに加えてもよい。換言すれば、PI層は、大表面積の無機酸化物と低抵抗率の無機酸化物との混合物を含んでもよい。大きな表面積の無機酸化物は、より多くのエネルギーが絶縁体を透過することを可能にし、それによって電気デバイスの高電圧および高周波波形によって引き起こされる絶縁体の劣化を低減すると考えられている。酸化ケイ素またはシリカは、約90から約550m/gの範囲の表面積等、多種の比表面積を有するグレードで市販されている。例えば、Evonik Degussa Corporationから入手可能なAEROSIL 90の比表面積は90m/gであり、Cabot Corporationから入手可能なCAB-O-SIL EH-5の比表面積は380m/gである。特定の実施形態では、電気デバイスの巻線に存在する電圧波形に対する抵抗は、シリカ表面積の増加とともに改善され得る。したがって、約380m/gから約550m/gの間の比表面積を有するシリカグレードが好ましいか、または約380m/g、550m/g、または別の閾値を超える比表面積を有するシリカグレードが、向上したパフォーマンスを提供し得る。
【0032】
フィラーの成分は、任意の適した粒子サイズ、表面積、および/または他の寸法を含んでもよい。例えば、フィラー成分は、約1ミクロン未満の公称粒子サイズを有してもよい。特定の実施形態において、フィラー成分は、ナノ粒子を含んでもよい。また、多種の適した方法および/または技術を利用して、PIポリマーにフィラーを添加してもよい。特定の実施形態において、フィラーは、凝集物を所望の量、例えば、8「8」以下のヘグマンゲージまたはグラインド、未満に低減するために、ボールミルされるか、あるいはグラインドされるかまたはミルされてもよい。これらは一般に高濃度で製造され、最終製剤の最終的な「レットダウン」で低減することができる。必要に応じて、その粒子サイズが約1.0ミクロン未満になるまで、フィラーをミルまたはグラインドしてもよい。必要に応じて、他の粒子サイズを達成してもよい。フィラーは、PI樹脂、PAI担体樹脂、または別の樹脂のいずれかに組み込まれて、濃縮された「ペースト」を形成し得、これは、後でPIエナメルに添加されて、最終配合物を生成する。
【0033】
特定の実施形態では、フィラーは、溶媒の存在下で直接PIワニスの中へミルしてもよい。他の実施形態では、フィラーは、別の物質中でミルされ、次いで、PIワニスに添加されてもよい。必要に応じて、PIポリマーおよびフィラーを含むPIペーストを形成されてもよい。他の実施形態では、フィラーをミルするか、または別のポリマーペーストに配合してもよく、次いで、エナメル層を塗布する前に、ポリマーペーストをPIと組み合わせてもよい。例えば、フィラーは、ポリアミドイミド(「PAI」)の中へミルまたはグラインドしてPAIペーストを形成されてもよく、PAIペーストは、PIエナメル層を形成する前にPIと組み合わせてもよい。ミリング中に溶媒を添加すると、フィラー粒子が再凝集または凝集するのを防ぎ得ることが理解されよう。
【0034】
充填されたペーストがPIポリマーに分散されると、PIポリマーは、任意の適した方法で導伝体に適用され得る。 例えば、未硬化のPI絶縁体は、マルチパスコーティングおよびワイピングダイを使用してマグネットワイヤに適用され、その後、高温で硬化(例えば、エナメルオーブンでの硬化)され得る。任意の所望の数のPIポリマー層を、マグネットワイヤに組み込むか、またはその上に形成されてもよい。種々の実施形態では、これらのPI層は、導伝体の周囲に直接、または1以上のベース層の上に形成されてもよい。さらに、特定の実施形態では、1以上の層(例えば、ポリアミドイミドトップコート、押し出し層等)が、PIポリマー層の上に形成されてもよい。
【0035】
1以上の充填されたPIエナメル層を含むマグネットワイヤ100、150、200、250は、従来のマグネットワイヤエナメルと比較して、改善されたコロナ耐性および/または熱性能を示し得る。例えば、1以上の充填されたPIエナメル層の使用は、熱クラス240以上のマグネットワイヤを提供し得る。特定の実施形態では、いくつかのフィラーの抗酸化特性はまた、260の熱クラス、280、またはそれより大きいの熱クラスを有する充填されたPI絶縁体を得る結果となり得る。1以上のPAI層(例えば、PAIトップコート)の追加は、マグネットワイヤの熱クラスを実質的に低下させることなく、追加の靭性および耐摩耗性を提供し得る。
【0036】
さらに、1以上のフィラーをPIに追加すると、絶縁体の熱劣化に悪影響を与えたり、破壊したりすることなく、インバータの寿命および/または電気機械の寿命を向上し得る。実際、特定の実施形態では、1以上のフィラーの添加は、特定の温度でのマグネットワイヤ絶縁体の熱寿命を向上または上昇し得る。例えば、充填されたPI絶縁体を使用すると、約300℃で約1,000、2,000、3,000、または4000時間を超える熱寿命が得られ得る。対照的に、従来の充填されていないPIの熱寿命は約300℃で約400~500時間であり得る。充填されたPIの陽性結果を示すいくつかの例を以下に詳細に説明する。
【0037】
図1A~2Bを参照して上で説明したマグネットワイヤ100、150、200、250は、例としてのみ提供される。種々の実施形態において所望されるように、図示されたマグネットワイヤ100、150、200、250に対して多種の代替案を作成することができた。例えば、1以上のエナメル層に加えて、多種の異なるタイプの絶縁体層をマグネットワイヤ100、150、200、250に組み込んでもよい。別の例として、マグネットワイヤ100、150、200、250および/または1以上の絶縁体層の断面形状を変更してもよい。実際、本開示は、多種の適したマグネットワイヤ構造を想定している。これらの構造は、任意の数の層および/または副層を持つ絶縁体システムを含んでもよい。
【実施例
【0038】
以下の実施例は、例示的かつ非限定的なものとして意図されており、本発明の特定の実施形態を表す。特に明記されていない限り、実施例で説明されているワイヤサンプルはすべて、「重い」エナメルビルドを持つ18AWGワイヤとして調製された。換言すれば、ワイヤエナメルは、マルチパスコーティングおよびワイピングダイを使用して18AWG銅線に適用された。「重い」エナメルビルドは、約3.0ミル(0.0762mm)の公称絶縁体ビルドを有する。
【0039】
表1に示す第1例では、PIエナメルの上に1以上の充填されていないポリアミドイミド(「PAI」)トップコート層を追加した場合の効果を比較している。比較サンプルを、熱老化、繰返し擦り傷、熱指数、および温度での熱寿命について試験した。
【0040】
【表1】
【0041】
表1に示すように、PIエナメル上に単層または多層のPAIトップコートを形成しても、ワイヤの熱特性にはほとんど影響しない。48時間の熱老化の結果はわずかに減少する;しかしながら、熱老化は、PIエナメルのみを有するワイヤとPAIトップコートを有するワイヤの間で同様である。これらの結果は、予想外である。なぜなら、PAIとPIが、通常、硬化の違いが認識されるために互いに組み合わせて使用されないからである。
【0042】
また、繰返し擦り傷試験で示されているように、PAIトップコートを追加すると、ワイヤの摩耗性能が大幅に向上する。繰返し擦り傷試験では、加重針を真っ直ぐなワイヤに接触させ、ワイヤ上で針を前後にこする。試験の結果は、絶縁体が貫通する前に必要ないくつかの擦り傷を示す。さらに、ワイヤサンプルのTechrand風向性結果は、同様であった。したがって、ワイヤサンプルは、同様の機械的性能を有していた。
【0043】
表2に示す2番目の例では、PI中のまたはPAIペースト中の濃縮物のいずれかとしてPIに追加し得る種々のフィラーを比較している。まず、表2は、PIエナメルに酸化チタンおよび酸化シリカを含むフィラーを添加することの影響を示す。表2に示す最初の例では、PIペーストを形成するためにフィラー材料をPIに直接添加し、次いでPIペーストをPIエナメルに添加した。次いで、表2は、PAIペーストを形成するためにフィラーがPAIに追加されたエナメルを示す。次いで、PAIペーストをPIエナメルに追加する。PAIペーストを、酸化チタンと酸化シリカの両方の配合、および酸化クロムと酸化シリカの配合の両方で調製した。充填されたPIエナメルのそれぞれについて、充填材をボールミルし、PIペーストまたはPAIペーストのいずれかを形成するために利用した。次いで、形成された「ペースト」をPIに追加した。PAIペーストが利用される場合、最終的な絶縁体中のPAIの総量は、絶縁体樹脂の最大約20重量%であり得、絶縁体の熱特性を損なうようには見えない。
【0044】
【表2】
【0045】
インバータの耐用年数を測定するために、多種のマグネットワイヤを、インバータドライブおよび三相モーターを使用して、Essex´s Magnet Wire Testing Laboratoryでテストした。典型的な誘電体ツイストペアはワイヤから作られ、200℃のオーブンに入れられた。次いで、575ボルト(1750ボルトのピークツーピーク)ACインバータドライブからの高電圧、高周波波形が各ツイストペアに送られた。それぞれがほぼ同じ長さのツイストペアを、短絡が発生するまで監視し、短絡までの時間を記録した。短絡(故障)までの時間が長いほど、絶縁体劣化に対する耐性が高い。多種のマグネットワイヤエナメル配合の故障までの時間は、測定または決定されたインバータ寿命と呼ばれ得る。
【0046】
表2に示すように、充填済みPIは、フィラー濃縮物のPAI「ペースト」を含む充填済みPIでさえ、充填されていないエナメル材料と比較して優れたインバータ使用寿命を提供し得る。また、充填されたPIは、充填されていないPI材料と比較して強化された熱老化を呈示し得る。接着促進剤の添加は、柔軟性を向上し、層間剥離を低減し、ワイヤサンプルの熱ショックおよび繰返し擦り傷を向上し得る。
【0047】
優れた結果を示した少数のサンプルは、酸化チタンおよび酸化シリカの組合せで満たされたPIエナメル質を含む。このフィラーの組合せは、熱老化試験中に最高の生存性結果を提供した。示されているように、1本のサンプルワイヤが熱老化試験中に290℃で5000時間以上提供された。これは、280の熱クラスまたは熱指数材料を提示し得る。
【0048】
酸化チタンおよび酸化シリカの組合せを含む充填PIエナメルで調製されたワイヤのサンプルもまた、いくつかの従来のマグネットワイヤと比較した。PIエナメルが充填されたワイヤは、18AWGヘビービルド銅線およびより大きな12AWG銅線の両方を含んでいた。18AWGワイヤサンプルは、0.0032インチのエナメルビルドで調製され、12AWGワイヤサンプルは、0.0043インチのエナメルビルドで調製された。次いで、これらのワイヤを、従来のエナメル線(例えば、従来の充填されていないPIワイヤ)と、導伝体に巻き付けられたコロナ耐性テープで絶縁された従来のワイヤの両方と比較した。コロナ耐性テープは、デュポン社製のKapton CRテープおよびカネカ社製のApicalテープの両方を含んでいた。以下の表3は、比較の結果を示す。
【0049】
熱耐久性、パルス耐久性、絶縁破壊、繰返し擦り傷試験を含め、多種の比較試験を、多種のワイヤで行なった。熱耐久性試験は、ASTM Internationalによって定められたASTM D2307規格に従って行なった。パルス耐久性テストは、中国のGB/T 21707-2008試験方法を使用して100nsの立ち上がり時間で行なった。絶縁破壊試験は、米国電機工業会が定めた標準のNEMA試験手順に従って、マグネットワイヤサンプルから形成されたツイストペアで行なった。
【0050】
繰返し擦り傷試験を、表1を参照して上で説明したのと同様の手順を使用して行なった。
【0051】
【表3】
【0052】
表3に示すように、PIが充填された18 AWGワイヤは、PIが充填されていない従来の18 AWGワイヤと比較して、パルス耐久性およびインバータ寿命がはるかに長い。したがって、充填されたPIワイヤは、充填されていないPIワイヤと比較して、コロナ抵抗性能を向上してきたであろう。
【0053】
また、PIが充填された12 AWGワイヤは、コロナ耐性のあるポリイミドテープで絶縁された12 AWGワイヤと比較して、パルス耐久性能が向上していた。充填されたPIワイヤは、絶縁体が薄いため、テープで絶縁されたワイヤよりも直径を小さくすることができる。 したがって、12 AWG充填PIワイヤを、従来はコロナ耐性テープ絶縁体を備えたワイヤを利用すると同時に、特定の改善された性能特性を提供する用途に組み込むことが可能となり得る。エナメル絶縁体ワイヤは、テープ絶縁体の従来のワイヤよりも処理および取扱いが簡単であり得る。 エナメル線は、自動巻き取り機で巻き取って巻き取ることができる;しかしながら、これらのマシンは従来のテープ絶縁体を損傷し得る。
【0054】
表4に示されている4番目の例では、酸化チタンと酸化シリカの両方を異なる配合比で含むPIにフィラーを追加した場合の効果を比較している。フィラー材料は、ワイヤサンプルをコーティングする前にPIに追加されたペーストに配合された。また、充填されたPI層は、約15重量%のフィラーを含んでいた。ワイヤサンプルを、毎分約20フィートの線速度で形成した。
【0055】
【表4】
【0056】
表4に示すように、酸化チタンと酸化ケイ素を含むフィラーを添加すると、PIエナメルを含むマグネットワイヤのインバータ寿命が向上する。 充填されたPIエナメルの上にPAIトップコートを追加すると、向上した繰返し擦り傷の結果が提供され得る。
【0057】
電圧耐久性試験では、3500ボルトの信号が、約155℃、約10%の伸びでワイヤサンプルに伝達された。そこでは、伸びによってワイヤに追加の応力が加わる。次いで、各ワイヤサンプルの故障までの時間を測定した。DfおよびTan Deltaテストでは、ワイヤサンプルの電気絶縁の損失を測定する。
【0058】
表4に示すように、より高量の酸化チタンであるほど、向上した耐電圧性が提供される;しかしながら、より高量の酸化チタンであるほど、Dfおよびtanデルタ値で呈示されるように、絶縁体中の増加した電気的損失にも寄与する。同様に、より高量の酸化ケイ素であるほど、絶縁体中のより少ない電気的損失が提供され、一方でより低い電圧耐久性能を有する。絶縁体性能は、フィラーとしての酸化チタンおよび酸化ケイ素の配合により最適化することができる。例えば、絶縁体性能は、約20重量%から約80重量%の酸化チタンおよび約20重量%から約80重量%の酸化ケイ素を含むフィラーで最適化することができる。一例の実施形態では、向上した性能は、約60重量%から約80重量%の酸化チタンおよび約20重量%から40重量%の酸化ケイ素を含むフィラーにより達成することができる。
【0059】
また、表2~4に含まれるサンプルは、特定の配合比および全体的な充填率(例えば、絶縁体の約15重量%等)を提供するが、多種の他の適した配合比および/または充填率が、他の実施形態で利用されてもよい。
【0060】
条件語、とりわけ、「することができる(can)」、「することができた(could)」、「し得た(might)」、または「し得る/してもよい(may)」等は、特に明記しない限り、または使用される文脈内で別の方法で理解されない限り、概して、特定の特徴、要素、および/または操作を、特定の実施形態が含むことができたものであり、一方、他の実施形態が含まないことを伝えることを意図する。したがって、そのような条件付き言語は、一般に、機能、要素、および/または操作が1以上の実施形態に必要とされること、または1以上の実施形態が、ユーザ入力またはプロンプトの有無、これらの特徴、要素、および/または操作が含まれるか、または特定の実施形態で実行されるかどうかにかかわらず、決定するための論理を必然的に含むことを意味することを意図しない。
【0061】
本明細書に示される開示の多くの修正および他の実施形態は、前述の説明および関連する図面に提示された教示の利点を有することが明らかであろう。それゆえ、本開示は、開示された特定の実施形態に限定されるべきではなく、改変および他の実施形態は、添付の特許請求の範囲内に含まれることが意図されていることを理解されたい。 本明細書では特定の用語が使用されているが、それらは一般的かつ説明的な意味でのみ使用されており、限定の目的ではない。
図1
図2