IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ビットセンシング インコーポレイテッドの特許一覧

特許7478473レーダを利用して病症を判断する装置、方法及びコンピュータプログラム
<>
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図1
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図2
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図3
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図4
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図5
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図6
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図7a
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図7b
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図8
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図9
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図10
  • 特許-レーダを利用して病症を判断する装置、方法及びコンピュータプログラム 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-24
(45)【発行日】2024-05-07
(54)【発明の名称】レーダを利用して病症を判断する装置、方法及びコンピュータプログラム
(51)【国際特許分類】
   A61B 5/16 20060101AFI20240425BHJP
   A61B 5/08 20060101ALI20240425BHJP
   A61B 5/113 20060101ALI20240425BHJP
   A61B 5/11 20060101ALI20240425BHJP
   G16H 50/20 20180101ALN20240425BHJP
【FI】
A61B5/16 130
A61B5/08
A61B5/113
A61B5/11 110
G16H50/20
【請求項の数】 15
(21)【出願番号】P 2022152090
(22)【出願日】2022-09-26
(65)【公開番号】P2023086084
(43)【公開日】2023-06-21
【審査請求日】2022-09-26
(31)【優先権主張番号】10-2021-0176123
(32)【優先日】2021-12-09
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】522360769
【氏名又は名称】ビットセンシング インコーポレイテッド
(74)【代理人】
【識別番号】100087398
【弁理士】
【氏名又は名称】水野 勝文
(74)【代理人】
【識別番号】100128783
【弁理士】
【氏名又は名称】井出 真
(74)【代理人】
【識別番号】100128473
【弁理士】
【氏名又は名称】須澤 洋
(74)【代理人】
【識別番号】100160886
【弁理士】
【氏名又は名称】久松 洋輔
(72)【発明者】
【氏名】チェ,ソン タク
【審査官】増渕 俊仁
(56)【参考文献】
【文献】特開2014-210137(JP,A)
【文献】国際公開第2018/003752(WO,A1)
【文献】国際公開第2020/203935(WO,A1)
【文献】特開2021-037293(JP,A)
【文献】特開2018-157870(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06-5/22
(57)【特許請求の範囲】
【請求項1】
レーダを利用して病症を判断する装置において、
対象客体に向けてレーダ信号を送信し、前記対象客体から反射され前記レーダ信号を受信する送受信部と、
前記レーダ信号に基づいて前記対象客体に関する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出する情報導出部と、
前記睡眠時間情報及び前記複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出する指数導出部と、
前記呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断する病症判断部と
を含
前記情報導出部は、前記レーダ信号と前記対象客体に対する平均呼吸信号とを比較することで前記複数の睡眠項目に関するイベント発生情報を導出し、
前記平均呼吸信号は、前記対象客体から反射されたレーダ信号のパターンと、前記レーダ信号の振幅の変化に基づいて計算される、病症判断装置。
【請求項2】
前記情報導出部は、前記対象客体に対する睡眠呼吸イベント及び睡眠動きイベントを検出することによって前記複数の睡眠項目に関するイベント発生情報を導出する、請求項に記載の病症判断装置。
【請求項3】
前記情報導出部は、前記複数の睡眠項目に対するパラメータを設定し、前記パラメータに基づいて前記複数の睡眠項目に関するイベント発生情報を導出し、
記パラメータは、イベント発生関連パラメータと、信号処理パラメータとを含む、請求項に記載の病症判断装置。
【請求項4】
前記呼吸関連指数情報は、前記複数の睡眠項目に関するイベント発生情報に当たる総発生回数を前記睡眠時間情報で分けた値である、請求項1に記載の病症判断装置。
【請求項5】
前記呼吸関連指数情報は、無呼吸-低呼吸指数情報を含み、
前記指数導出部は、前記複数の睡眠項目のうち無呼吸項目に関するイベント発生情報及び低呼吸項目に関するイベント発生情報に基づいて前記無呼吸-低呼吸指数情報を導出する、請求項1に記載の病症判断装置。
【請求項6】
前記呼吸関連指数情報は、呼吸障害指数情報を含み、
前記指数導出部は、前記複数の睡眠項目のうち無呼吸項目に関するイベント発生情報、低呼吸項目に関するイベント発生情報、及び呼吸努力関連項目に関するイベント発生情報に基づいて前記呼吸障害指数情報を導出する、請求項1に記載の病症判断装置。
【請求項7】
前記病症判断部は、前記睡眠関連病症に関する疾病群分布情報及び対照群分布情報と前記呼吸関連指数情報を比較することで前記睡眠関連病症に当たるか否かを判断する、請求項1に記載の病症判断装置。
【請求項8】
レーダを利用して病症を判断する装置によって実行される方法において、
前記装置によって、対象客体に向けてレーダ信号を送信するステップと、
前記装置によって、前記対象客体から反射される前記レーダ信号を受信するステップと、
前記装置によって、前記レーダ信号に基づいて前記対象客体に関する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出するステップと、
前記装置によって、前記睡眠時間情報及び前記複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出するステップと、
前記装置によって、前記呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断するステップとを含
前記イベント発生情報を導出するステップは、
前記装置によって、前記レーダ信号と前記対象客体の平均呼吸信号とを比較するステップと、
前記装置によって、前記比較結果に基づいて前記複数の睡眠項目に関するイベント発生情報を導出するステップとを含み、
前記平均呼吸信号は、前記対象客体から反射されたレーダ信号のパターンと、前記レーダ信号の振幅の変化に基づいて計算される、病症判断方法。
【請求項9】
前記イベント発生情報を導出するステップは、
前記対象客体に対する睡眠呼吸イベント及び睡眠動きイベントを検出することによって前記複数の睡眠項目に関するイベント発生情報を導出するステップ
をさらに含む、請求項に記載の病症判断方法。
【請求項10】
前記イベント発生情報を導出するステップは、
前記複数の睡眠項目に対するパラメータを設定するステップと、
記パラメータに基づいて前記複数の睡眠項目に関するイベント発生情報を導出するステップと
をさらに含み、
記パラメータは、イベント発生関連パラメータと、信号処理パラメータとを含む、請求項に記載の病症判断方法。
【請求項11】
前記呼吸関連指数情報は、前記複数の睡眠項目に関するイベント発生情報に当たる総発生回数を前記睡眠時間情報で分けた値である、請求項に記載の病症判断方法。
【請求項12】
前記呼吸関連指数情報は、無呼吸-低呼吸指数情報を含み、
呼吸関連指数情報を導出するステップは、
前記複数の睡眠項目のうち無呼吸項目に関するイベント発生情報及び低呼吸項目に関するイベント発生情報に基づいて前記無呼吸-低呼吸指数情報を導出するステップ
を含む、請求項に記載の病症判断方法。
【請求項13】
前記呼吸関連指数情報は、呼吸障害指数情報を含み、
呼吸関連指数情報を導出するステップは、
前記複数の睡眠項目のうち無呼吸項目に関するイベント発生情報、低呼吸項目に関するイベント発生情報、及び呼吸努力関連項目に関するイベント発生情報に基づいて前記呼吸障害指数情報を導出するステップ
をさらに含む、請求項に記載の病症判断方法。
【請求項14】
睡眠関連病症に当たるか否かを判断するステップは、
前記睡眠関連病症に関する疾病群分布情報及び対照群分布情報と前記呼吸関連指数情報を比較するステップと、
前記比較結果に基づいて前記睡眠関連病症に当たるか否かを判断するステップと
を含む、請求項に記載の病症判断方法。
【請求項15】
レーダを利用して病症を判断する命令語のシーケンスを含むコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラムにおいて、
前記コンピュータプログラムは、コンピューティング装置によって実行される場合、
対象客体に向けてレーダ信号を送信し、
前記対象客体から反射され前記レーダ信号を受信し、
前記レーダ信号に基づいて前記対象客体に関する睡眠時間情報を導出し、前記レーダ信号と前記対象客体の平均呼吸信号とを比較し、前記比較結果に基づいて複数の睡眠項目に関するイベント発生情報を導出し、
前記睡眠時間情報及び前記複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出し、
前記呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断するようにする命令語のシーケンスを含
前記平均呼吸信号は、前記対象客体から反射されたレーダ信号のパターンと、前記レーダ信号の振幅の変化に基づいて計算される、コンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーダを利用して病症を判断する装置、方法及びコンピュータプログラムに関する。
【背景技術】
【0002】
睡眠ポリグラフ検査は、睡眠の質と量を測定し、睡眠疾患と睡眠関連障害を診断する検査である。一般的に、睡眠中に人の体から出てくる生理的、物理的な信号を測定することで様々な睡眠疾患と睡眠障害を診断する。例えば、脳波、眼電図、筋電図、心電図、動脈血、酸素飽和度、腹部と胸部の呼吸運動、呼吸気流、いびき及び体の姿勢などを測定する。
【0003】
睡眠の質と量を測定する基礎的な方法は、手首活動量計(Wrist Actigraphy)を利用して睡眠時間を測定することである。具体的に、手首活動量計を着用した着用者の活動状態を基に着用者の睡眠時間を測定し、睡眠中の寝返り(Toss)などを検出する。
【0004】
また、手首に着用する光電容積脈波(Photoplethysmography、PPG)測定装置を利用し、着用者の睡眠中の心拍数及び心拍変動度を測定している。具体的に、着用者の睡眠段階を区別し、酸素飽和度(SpO2)を測定することで、無呼吸による酸素飽和度の低下(Desaturation)を検出する。
【0005】
しかし、従来技術による検査方法は、睡眠の質(例:疲労度に応じた満足感など)を予測するのに意味があるが、無呼吸の発生原因である閉塞性睡眠時無呼吸症(Obstructive Sleep Apnea、OSA)と中枢性睡眠時無呼吸症(Central Sleep Apnea、CSA)を区別することができない。
【0006】
具体的に、睡眠時無呼吸症は、睡眠中に喉の奥の気道が塞がりながら呼吸がよく途切れる閉塞性睡眠時無呼吸症と、睡眠中に息をしようとする人体反応自体がなくなる中枢性睡眠時無呼吸症とに区分される。閉塞性睡眠時無呼吸症は、睡眠時無呼吸症の約90%を占める代表的な睡眠疾患であり、中枢性睡眠時無呼吸症は、一部のみから観察される睡眠疾患である。
【0007】
従来技術による検査方法は、人の身体一部に検査装置を取り付けた状態で検査を進行しなければならないという不便が存在し、睡眠疾患をより精密に検査するためには、高コストの検査装置のみに依存しなければならないという限界が存在する。
【先行技術文献】
【特許文献】
【0008】
【文献】韓国登録特許公報第10-2321991号(2021年10月29日付にて登録)
【文献】韓国公開特許公報第10-2018-0077453号(2018年7月9日付にて公開)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、上述した従来技術の問題点を解決するためのものであり、レーダを利用して人の睡眠中の呼吸パターンを分類するだけでなく、睡眠中に発生する睡眠呼吸障害も検出することのできる睡眠呼吸分析装置、方法及びコンピュータプログラムを提供することを目的としている。
【0010】
但し、本実施例が解決しようとする技術的課題は、上記したような技術的課題に限定されるものではなく、また他の技術的課題が存在し得る。
【課題を解決するための手段】
【0011】
上述した技術的課題を解決するための技術的手段として、本発明の一実施例は、レーダを利用して病症を判断する装置において、対象客体に向けてレーダ信号を送信し、当該対象客体から反射される当該レーダ信号を受信する送受信部と、当該レーダ信号に基づいて当該対象客体に関する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出する情報導出部と、当該睡眠時間情報及び当該複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出する指数導出部と、当該呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断する病症判断部とを含む、病症判断装置を提供しても良い。
【0012】
本発明の他の実施例は、レーダを利用して病症を判断する方法において、対象客体に向けてレーダ信号を送信するステップと、当該対象客体から反射される当該レーダ信号を受信するステップと、当該レーダ信号に基づいて当該対象客体に関する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出するステップと、当該睡眠時間情報及び当該複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出するステップと、当該呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断するステップとを含む、病症判断方法を提供しても良い。
【0013】
本発明のまた他の実施例は、
レーダを利用して病症を判断する命令語のシーケンスを含むコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラムにおいて、当該コンピュータプログラムは、コンピューティング装置によって実行される場合、対象客体に向けてレーダ信号を送信し、当該対象客体から反射される当該レーダ信号を受信し、当該レーダ信号に基づいて当該対象客体に関する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出し、当該睡眠時間情報及び当該複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出し、当該呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断するようにする命令語のシーケンスを含む、コンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラムを提供しても良い。
【0014】
上述した課題を解決するための手段は、単なる例示であり、本発明を制限する意図で解釈されてはならない。上述した例示的な実施例の他にも、図面及び発明の詳細な説明に記載された追加の実施例が存在し得る。
【発明の効果】
【0015】
上述した本発明の課題を解決するための手段の何れか一つによれば、人の睡眠中にレーダを利用して睡眠と係わる人の呼吸信号を分析することができ、これにより、人の睡眠中における呼吸障害による覚醒(arousal)回数を算出することができる。人の呼吸信号を利用して睡眠障害を検出し、睡眠関連疾患を判断することができる。
【0016】
また、レーダを利用して閉塞性睡眠時無呼吸症、中枢性睡眠時無呼吸症及び混合性睡眠時無呼吸症などを含む睡眠関連病症を判断することができる。つまり、睡眠ポリグラフ検査を進行しなくても、睡眠ポリグラフ検査のように人の睡眠関連病症を精密に判断し、原因を分析することができる。
【0017】
さらに、レーダを利用して日常生活でも簡便に人の睡眠呼吸を分析することができるので、睡眠と係わる病症を持続的に追跡観察することができる。それだけでなく、非対面でも容易に進行可能な睡眠呼吸分析装置、方法及びコンピュータプログラムを提供することができる。
【図面の簡単な説明】
【0018】
図1】本発明の一実施例に係る睡眠呼吸分析システムの構成図である。
図2】本発明の一実施例に係る睡眠呼吸分析装置の構成図である。
図3】本発明の一実施例に係る平均呼吸信号を算出する過程を説明するための例示的な図である。
図4】本発明の一実施例に係る時間感度因子及び振幅感度因子を説明するための例示的な図である。
図5】本発明の一実施例に係る第1の睡眠呼吸パターン情報及び第2の睡眠呼吸パターン情報を説明するための例示的な図である。
図6】本発明の一実施例に係る第1の睡眠呼吸イベント及び第2の睡眠呼吸イベントを説明するための例示的な図である。
図7a】本発明の一実施例に係る複数の睡眠項目に対する最適なパラメータを説明するための例示的な図である。
図7b】本発明の一実施例に係る睡眠ポリグラフ検査に関するデータセットの例示的な図である。
図8】本発明の一実施例に係る睡眠関連病症の分布情報に関する例示的な図である。
図9】本発明の一実施例に係る対象客体が睡眠関連病症に当たるか否かを判断する過程を説明するための例示的な図である。
図10】本発明の一実施例に係る睡眠呼吸分析方法のフローチャートである。
図11】本発明の一実施例に係る病症判断方法のフローチャートである。
【発明を実施するための形態】
【0019】
以下では、添付した図面を参照しながら、本発明の属する技術分野において通常の知識を有する者が容易に実施できるように本発明の実施例を詳しく説明する。ところが、本発明は、様々な異なる形態で具現されることができ、ここで説明する実施例に限定されるものではない。そして、図面において、本発明を明確に説明するために、説明とは関係ない部分は省略しており、明細書全体に亘って類似した部分に対しては類似した図面符号を付けている。
【0020】
明細書全体において、ある部分が他の部分と「連結」されているという場合、これは「直接的に連結」されている場合だけでなく、その中間に他の素子を挟んで「電気的に連結」されている場合も含む。また、ある部分がある構成要素を「含む」という場合、これは、特に反対の記載がない限り、他の構成要素を除くのではなく、他の構成要素をさらに含み得ることを意味し、1つ又はそれ以上の他の特徴や数字、段階、動作、構成要素、部分又はこれらを組み合わせたものの存在又は付加可能性を予め排除するものではないと理解されなければならない。
【0021】
本明細書において「部」とは、ハードウェアによって実現されるユニット(unit)、ソフトウェアによって実現されるユニット、両方を利用して実現されるユニットを含む。また、1つのユニットが2つ以上のハードウェアを利用して実現されても良く、2つ以上のユニットが1つのハードウェアによって実現されても良い。
【0022】
本明細書において、端末又はデバイスが行うと記述された動作や機能のうち一部は、当該端末又はデバイスと連結されたサーバにおいて代わりに行われても良い。それと同様に、サーバが行うと記述された動作や機能のうち一部も、当該サーバと連結された端末又はデバイスにおいて行われても良い。
【0023】
以下、添付された図面を参照しながら、本発明の一実施例を詳しく説明することとする。
【0024】
図1は、本発明の一実施例に係る睡眠呼吸分析システムの構成図である。図1を参照すると、睡眠呼吸分析システム1は、睡眠呼吸分析装置100と、レーダ110とを含んでいても良い。
【0025】
図1の睡眠呼吸分析システム1の各構成要素は、一般的にネットワーク(network)を介して連結される。例えば、図1に示すように、睡眠呼吸分析装置100及びレーダ110は、同時に又は時間間隔を空けて連結されても良い。
【0026】
ネットワークは、端末及びサーバのようなそれぞれのノードの相互間に情報交換が可能な連結構造を意味するものであり、構内通信網(LAN:Local Area Network)、広域通信網(WAN:Wide Area Network)、インターネット(WWW:World Wide Web)、有無線データ通信網、電話網、有無線テレビ通信網などを含む。無線データ通信網の一例には、3G、4G、5G、3GPP(3rd Generation Partnership Project)、LTE(Long Term Evolution)、WIMAX(World Interoperability for Microwave Access)、ワイファイ(Wi-Fi)、ブルートゥース通信、赤外線通信、超音波通信、可視光通信(VLC:Visible Light Communication)、ライファイ(LiFi)などが含まれるが、これに限定されるものではない。
【0027】
睡眠呼吸分析装置100は、対象客体111の睡眠中にレーダ110を利用して対象客体111の呼吸信号を分析しても良い。睡眠呼吸分析装置100は、対象客体111の呼吸信号を利用して対象客体111の睡眠障害を検出し、睡眠関連疾患を判断しても良い。
【0028】
例えば、睡眠呼吸分析装置100は、睡眠中の対象客体111と所定距離を維持した位置に配置され、レーダ110を介して対象客体111に向けてレーダ信号を送信しても良く、対象客体111から反射されるレーダ信号を受信しても良い。
【0029】
睡眠呼吸分析装置100は、レーダ110を利用して対象客体111の閉塞性睡眠時無呼吸症、中枢性睡眠時無呼吸症及び混合性睡眠時無呼吸症などを含む睡眠関連病症を判断しても良い。
【0030】
よって、睡眠呼吸分析装置100を利用すれば、睡眠ポリグラフ検査を進行しなくても、睡眠ポリグラフ検査のように対象客体111の睡眠関連病症を精密に判断し、原因を分析することができる。
【0031】
これにより、睡眠呼吸分析装置100は、レーダ110を利用して対象客体111の睡眠と係わる呼吸信号を分析することで、従来の睡眠ポリグラフ検査を進行する過程における煩雑さを簡素化することができる。また、睡眠呼吸分析装置100は、日常生活で簡便に対象客体111の睡眠呼吸を持続的に分析することができ、睡眠関連病症の追跡観察を進行することができる。また、非対面で対象客体111の睡眠呼吸を分析することができるという効果もある。
【0032】
以下、睡眠呼吸分析装置100の各構成要素を検討することとする。
【0033】
図2は、本発明の一実施例に係る睡眠呼吸分析装置の構成図である。図2を参照すると、睡眠呼吸分析装置100は、送受信部210と、情報導出部220と、指数導出部230と、病症判断部240とを含んでいても良い。但し、上記の構成要素210~240は、睡眠呼吸分析装置100によって制御され得る構成要素を例示的に示したものに過ぎない。
【0034】
以下、睡眠呼吸分析装置100の各構成要素を検討することとする。
【0035】
送受信部210は、対象客体に向けてレーダ信号を送信しても良い。送受信部210は、対象客体から反射されるレーダ信号を受信しても良い。例えば、送受信部210は、レーダを利用して対象客体に向けてレーダ信号を送信し、対象客体から反射されるレーダ信号を受信しても良い。
【0036】
情報導出部220は、対象客体から反射されるレーダ信号を利用して対象客体の平均呼吸信号を導出し、平均呼吸信号に基づいて対象客体の睡眠呼吸パターン情報を生成し、睡眠中に発生する睡眠呼吸イベントを検出しても良い。
【0037】
情報導出部220は、平均呼吸信号導出部221と、睡眠呼吸パターン情報生成部222と、睡眠呼吸イベント検出部223とを含んでいても良い。平均呼吸信号導出部221は、レーダ信号に基づいて対象客体に対する平均呼吸信号を導出しても良い。例えば、平均呼吸信号導出部221は、対象客体から反射されるレーダ信号のパターン、信号の振幅の変化を利用し、対象客体の通常の呼吸に当たる信号を算出しても良い。
【0038】
平均呼吸信号導出部221は、対象客体から反射されるレーダ信号と2つの感度因子を利用し、対象客体に対する平均呼吸信号を算出しても良い。以下、図3及び図4を参照しながら平均呼吸信号を算出する過程を検討することとする。
【0039】
図3は、本発明の一実施例に係る平均呼吸信号を算出する過程を説明するための例示的な図である。図3を参照すると、平均呼吸信号導出部221は、対象客体から反射されるレーダ信号310を利用して対象客体の平均呼吸信号311を導出し、対象客体の睡眠呼吸に関する状態情報312を生成しても良い。
【0040】
例えば、平均呼吸信号導出部221は、レーダ信号310に基づき、時間感度因子及び振幅感度因子を利用して平均呼吸信号311を導出しても良い。平均呼吸信号導出部221は、下記数学式1を利用しても良い。
【0041】
【数1】
【0042】
数学式1において、mは、対象客体の平均呼吸信号であり、xは、対象客体から反射されて受信したレーダ信号である。Lは、特定連続区間の時間長さを意味する時間感度因子であり、シーケンス単位でレーダ信号の周波数と秒単位の長さとを掛けた整数である。そして、Fは、特定連続区間の振幅に反応する振幅感度因子である。
【0043】
例えば、平均呼吸信号導出部221は、時間感度因子及び振幅感度因子を利用して対象客体に対する平均呼吸信号を算出しても良い。数学式1を参照すると、対象客体に対する平均呼吸信号は、時間感度因子が大きくなるほど、振幅感度因子が小さくなるほど、時間に応じた信号の波形が鈍り、時間感度因子が小さくなるほど、振幅感度因子が大きくなるほど、時間に応じた信号の波形が急変し得る。
【0044】
平均呼吸信号導出部221は、対象客体から受信したレーダ信号310と平均呼吸信号311とを比較しても良い。例えば、平均呼吸信号導出部221は、レーダ信号310のうち平均呼吸信号311よりも小さい区間を検出しても良い。平均呼吸信号導出部221は、レーダ信号310のうち平均呼吸信号311よりも小さい区間を検出し、睡眠呼吸に関する状態情報312を生成しても良い。
【0045】
平均呼吸信号導出部221は、レーダ信号310のうち平均呼吸信号311よりも小さい区間に対して「1」を付与し、それ以外の区間に対して「0」を付与しても良い。例えば、平均呼吸信号導出部221は、検出結果に基づいて対象客体の睡眠呼吸に関する呼吸状態情報を生成しても良い。つまり、対象客体の睡眠呼吸に関する状態情報312は、「1」又は「0」の値で表現されても良い。
【0046】
図4は、本発明の一実施例に係る時間感度因子及び振幅感度因子を説明するための例示的な図である。例えば、平均呼吸信号導出部221は、対象客体から受信したレーダ信号に基づいて対象客体に対する平均呼吸信号を算出しても良い。このとき、平均呼吸信号導出部221は、時間感度因子及び振幅感度因子を活用しても良い。
【0047】
図4の(a)は、レーダ信号410から導出された時間感度因子の変化に応じた平均呼吸信号を示すグラフであり、(b)は、レーダ信号410から導出された振幅感度因子の変化に応じた平均呼吸信号を示すグラフである。
【0048】
図4の(a)に示された例示及び上述した数学式1を参照すると、時間感度因子の周期が短くなるほど、当該時間感度因子に対応する平均呼吸信号の波形は急変し得る。例えば、10秒周期の時間感度因子に対応する平均呼吸信号の波形411と、20秒周期の時間感度因子に対応する平均呼吸信号の波形412と、30秒周期の時間感度因子に対応する平均呼吸信号の波形413とを比較すると、10秒周期の時間感度因子に対応する平均呼吸信号の波形411が最も急変し得る。
【0049】
図4の(b)に示された例示及び上述した数学式1を参照すると、振幅感度因子の周期が短くなるほど、当該振幅感度因子に対応する平均呼吸信号の波形は鈍り得る。例えば、0.5周期の振幅感度因子に対応する平均呼吸信号の波形414と、1.0周期の振幅感度因子に対応する平均呼吸信号の波形415と、1.5周期の振幅感度因子に対応する平均呼吸信号の波形416とを比較すると、0.5周期の振幅感度因子に対応する平均呼吸信号の波形414が最も鈍り得る。
【0050】
睡眠呼吸パターン情報生成部222は、平均呼吸信号とレーダ信号とを比較することで対象客体に対する睡眠呼吸パターン情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、対象客体から受信したレーダ信号のうち対象客体の平均呼吸信号よりも小さい区間を検出しても良い。
【0051】
睡眠呼吸パターン情報生成部222は、レーダ信号のうち平均呼吸信号よりも小さい場合を検出し、対象客体の睡眠呼吸に関する呼吸状態情報を生成しても良い。つまり、睡眠呼吸パターン情報生成部222は、レーダを利用して対象客体の現在の睡眠呼吸と通常の睡眠呼吸とを比較した対象客体の睡眠呼吸状態情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式2を利用しても良い。
【0052】
【数2】
【0053】
数学式2において、aは、対象客体の睡眠呼吸に関する呼吸状態情報であり、x[i]は、対象客体から反射されて受信したレーダ信号であり、m[i]は、対象客体の平均呼吸信号である。
【0054】
例えば、睡眠呼吸パターン情報生成部222は、睡眠中に対象客体から受信したレーダ信号と対象客体の平均呼吸信号とを比較しても良い。睡眠呼吸パターン情報生成部222は、対象客体から受信したレーダ信号のうち対象客体の平均呼吸信号よりも小さい区間を検出しても良い。
【0055】
睡眠呼吸パターン情報生成部222は、対象客体の睡眠呼吸に関する呼吸状態情報を利用し、対象客体の睡眠状態の連続性を表現する第1の睡眠呼吸パターン情報及び第2の睡眠呼吸パターン情報を生成しても良い。以下、図5を参照しながら対象客体の睡眠呼吸パターン情報を生成する過程を検討することとする。
【0056】
図5は、本発明の一実施例に係る第1の睡眠呼吸パターン情報及び第2の睡眠呼吸パターン情報を説明するための例示的な図である。図5を参照すると、先ず、睡眠呼吸パターン情報生成部222は、対象客体の平均呼吸信号を生成しても良い。例えば、レーダ信号のうち平均呼吸信号よりも小さい区間は、対象客体の現在の呼吸状態情報が「1」と導出され(図5の図面符号510に当たる)、レーダ信号のうち平均呼吸信号よりも大きい区間は、対象客体の現在の呼吸状態情報が「0」と導出されても良い(図5の図面符号520に当たる)。
【0057】
そして、睡眠呼吸パターン情報生成部222は、対象客体から反射されるレーダ信号を対象客体の平均呼吸信号と比較し、第1の睡眠呼吸パターン情報511及び第2の睡眠呼吸パターン情報512を含む睡眠呼吸パターン情報を生成しても良い。
【0058】
睡眠呼吸パターン情報生成部222は、呼吸状態情報の持続有無に基づいて対象客体の睡眠呼吸に関する第1の睡眠呼吸パターン情報511を生成しても良い。睡眠呼吸パターン情報生成部222は、対象客体の現在の睡眠呼吸が通常の睡眠呼吸よりも小さい際に増加する値を有する第1の睡眠呼吸パターン情報511を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式3を利用して第1の睡眠呼吸パターン情報511を生成しても良い。
【0059】
【数3】
【0060】
数学式3において、c11は、第1の睡眠呼吸パターン情報511である。例えば、睡眠呼吸パターン情報生成部222は、数学式3及び図5を参照すると、対象客体から反射されるレーダ信号、即ち、対象客体の現在の呼吸が対象客体の平均呼吸信号よりも小さく、当該値が維持される場合に増加する値である第1の睡眠呼吸パターン情報511を算出しても良い。つまり、第1の睡眠呼吸パターン情報511は、対象客体の現在の呼吸状態情報が「1」に維持される場合に(図5の図面符号510に当たる)増加し得る値であり、対象客体の睡眠中に平均呼吸信号よりも小さい区間全体を意味しても良い。
【0061】
他の例において、睡眠呼吸パターン情報生成部222は、数学式3及び図5を参照すると、対象客体の現在の呼吸が対象客体の平均呼吸信号よりも高くなれば第1の睡眠呼吸パターン情報511を初期化しても良い。つまり、第1の睡眠呼吸パターン情報511は、対象客体の呼吸状態情報が「1」ではない場合に(図5の図面符号520に当たる)初期化されても良い。
【0062】
睡眠呼吸パターン情報生成部222は、呼吸状態情報の持続有無及び予め設定された閾値に基づいて第2の睡眠呼吸パターン情報512を生成しても良い。睡眠呼吸パターン情報生成部222は、対象客体の現在の睡眠呼吸が通常の睡眠呼吸よりも小さい際に増加するが、特定臨界時間に到逹すれば初期化され、再び増加する値を有する第2の睡眠呼吸パターン情報512を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式4を利用して第2の睡眠呼吸パターン情報512を生成しても良い。
【0063】
【数4】
【0064】
数学式4において、c12は、第2の睡眠呼吸パターン情報512であり、Tは、予め設定された閾値であって、特定臨界時間530である。例えば、睡眠呼吸パターン情報生成部222は、数学式4及び図5を参照すると、第1の睡眠呼吸パターン情報511と同様に、対象客体から反射されるレーダ信号、即ち、対象客体の現在の呼吸が対象客体の平均呼吸信号よりも小さく、当該値が維持される場合に増加する値であるが、特定臨界時間(数学式4のT、530)に到逹すれば初期化し、再び増加する第2の睡眠呼吸パターン情報512を算出しても良い。
【0065】
例えば、睡眠呼吸パターン情報生成部222は、数学式4及び図5を参照すると、対象客体の現在の呼吸状態情報が「1」に維持される場合(510)、第2の睡眠呼吸パターン情報512の値を増加させても良いが、特定臨界時間530に到逹すれば第2の睡眠呼吸パターン情報512の値を初期化させ、再び増加させても良い。
【0066】
また、睡眠呼吸パターン情報生成部222は、レーダ信号のうち平均呼吸信号よりも大きい場合を検出し、対象客体の睡眠呼吸に関する動き状態情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、対象客体の睡眠中に感知される動きに関する動き状態情報を利用し、対象客体の睡眠動き状態の連続性を表現する第1の睡眠動きパターン情報及び第2の睡眠動きパターン情報を生成しても良い。
【0067】
先ず、睡眠呼吸パターン情報生成部222は、レーダ信号のうち平均呼吸信号よりも大きい場合を検出し、対象客体の睡眠呼吸に関する動き状態情報を生成しても良い。つまり、睡眠呼吸パターン情報生成部222は、レーダを利用して対象客体の現在の睡眠呼吸と通常の睡眠呼吸とを比較した対象客体の睡眠動き状態情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式5を利用しても良い。
【0068】
【数5】
【0069】
数学式5において、aは、対象客体の睡眠呼吸に関する動き状態情報であり、x[i]は、対象客体から反射されて受信したレーダ信号であり、m[i]は、対象客体の平均呼吸信号である。
【0070】
例えば、睡眠呼吸パターン情報生成部222は、数学式5を参照すると、睡眠中に対象客体から受信したレーダ信号のうち対象客体の平均呼吸信号よりも大きい区間を検出しても良く、検出結果に基づき、対象客体の睡眠呼吸に関する動き状態情報、第1の睡眠動きパターン情報及び第2の睡眠動きパターン情報を生成しても良い。
【0071】
睡眠呼吸パターン情報生成部222は、動き状態情報の持続有無に基づいて対象客体の睡眠動きに関する第1の睡眠動きパターン情報を生成しても良い。睡眠呼吸パターン情報生成部222は、対象客体の現在の睡眠呼吸が通常の睡眠呼吸よりも大きい際に増加する値を有する第1の睡眠動きパターン情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式6を利用しても良い。
【0072】
【数6】
【0073】
数学式6において、c21は、第1の睡眠動きパターン情報であり、aは、対象客体の睡眠呼吸に関する動き状態情報である。例えば、睡眠呼吸パターン情報生成部222は、数学式6を参照すると、対象客体から反射されるレーダ信号が対象客体の平均呼吸信号よりも大きく、当該値が維持される場合に増加する値である第1の睡眠動きパターン情報を算出しても良い。つまり、第1の睡眠動きパターン情報は、対象客体の睡眠中に平均呼吸信号よりも大きい区間全体を意味しても良い。
【0074】
睡眠呼吸パターン情報生成部222は、動き状態情報の持続有無及び予め設定された閾値に基づいて第2の睡眠動きパターン情報を生成しても良い。睡眠呼吸パターン情報生成部222は、対象客体の現在の睡眠呼吸が通常の睡眠呼吸よりも大きい際に増加するが、特定臨界時間に到逹すれば初期化され、再び増加する値を有する第2の睡眠動きパターン情報を生成しても良い。例えば、睡眠呼吸パターン情報生成部222は、下記数学式7を利用しても良い。
【0075】
【数7】
【0076】
数学式7において、c22は、第2の睡眠動きパターン情報であり、Tは、予め設定された閾値であって、特定臨界時間である。例えば、睡眠呼吸パターン情報生成部222は、数学式7を参照すると、第1の睡眠動きパターン情報と同様に、対象客体から反射されるレーダ信号が大きく、当該値が維持される場合に増加する値であるが、特定臨界時間に到逹すれば初期化し、再び増加する第2の睡眠動きパターン情報を算出しても良い。
【0077】
睡眠呼吸イベント検出部223は、睡眠呼吸パターン情報に基づいて睡眠呼吸イベントを検出しても良い。例えば、睡眠呼吸イベント検出部223は、第1の睡眠呼吸パターン情報及び第2の睡眠呼吸パターン情報を利用し、対象客体の睡眠中に第1の睡眠呼吸イベント及び第2の睡眠呼吸イベントを検出しても良い。以下、図6を参照しながら対象客体の睡眠呼吸パターン情報を生成する過程を検討することとする。
【0078】
図6は、本発明の一実施例に係る第1の睡眠呼吸イベント及び第2の睡眠呼吸イベントを説明するための例示的な図である。図6を参照すると、睡眠呼吸分析装置100は、第1の睡眠呼吸パターン情報610及び第2の睡眠呼吸パターン情報620から尖頭値640、650を検出し、第1の睡眠呼吸イベント及び第2の睡眠呼吸イベントを検出しても良い。
【0079】
睡眠呼吸イベント検出部223は、第1の睡眠呼吸パターン情報610のうち閾値以上に当たる値に基づいて第1の睡眠呼吸イベントを検出しても良い。睡眠呼吸イベント検出部223は、対象客体の睡眠中に特定臨界時間よりも大きい範囲において対象客体の睡眠呼吸が通常よりも小さい場合の睡眠呼吸イベントが発生した回数を検出した第1の睡眠呼吸イベントを検出しても良い。例えば、睡眠呼吸イベント検出部223は、下記数学式8を利用して第1の睡眠呼吸イベントを検出しても良い。
【0080】
【数8】
【0081】
数学式8において、d11は、第1の睡眠呼吸イベントであり、c11は、第1の睡眠呼吸パターン情報610であり、Tは、予め設定された閾値であって、特定臨界時間630である。数学式8及び図6を参照すると、睡眠呼吸分析装置100は、第1の睡眠呼吸パターン情報610のうち特定臨界時間630を超える区間において尖頭値(Peak)640を検出し、カウントすることによって、第1の睡眠呼吸イベントが発生した回数を検出しても良い。
【0082】
睡眠呼吸イベント検出部223は、第2の睡眠呼吸パターン情報620のうち閾値に到逹する値に基づいて第2の睡眠呼吸イベントを検出しても良い。睡眠呼吸イベント検出部223は、対象客体の睡眠中に特定臨界時間に到逹した睡眠呼吸イベントの発生回数を検出した第2の睡眠呼吸イベントを検出しても良い。例えば、睡眠呼吸分析装置100は、下記数学式9を利用して第2の睡眠呼吸イベントを検出しても良い。
【0083】
【数9】
【0084】
数学式9において、d12は、第2の睡眠呼吸イベントであり、c12は、第2の睡眠呼吸パターン情報620であり、Tは、予め設定された閾値であって、特定臨界時間630である。数学式9及び図6を参照すると、睡眠呼吸分析装置100は、第2の睡眠呼吸パターン情報620のうち特定臨界時間630に到逹した尖頭値650を検出し、カウントすることによって、第2の睡眠呼吸イベントが発生した回数を検出しても良い。
【0085】
つまり、睡眠呼吸イベント検出部223は、第1の睡眠呼吸イベント及び第2の睡眠呼吸イベントを混合して検出することにより、無呼吸/低呼吸イベントの持続時間に応じた様態を表現することができる。
【0086】
また、睡眠呼吸イベント検出部223は、睡眠動きパターン情報に基づいて睡眠動きイベントを検出しても良い。睡眠呼吸イベント検出部223は、第1の睡眠動きパターン情報のうち閾値以上に当たる値に基づいて第1の睡眠動きイベントを検出しても良い。睡眠呼吸イベント検出部223は、対象客体の睡眠中に特定臨界時間よりも大きい範囲において対象客体の睡眠呼吸が通常よりも大きい場合の睡眠動きイベントが発生した回数を検出した第1の睡眠動きイベントを検出しても良い。例えば、睡眠呼吸イベント検出部223は、下記数学式10を利用しても良い。
【0087】
【数10】
【0088】
数学式10において、d21は、第1の睡眠動きイベントであり、c21は、第1の睡眠動きパターン情報であり、Tは、予め設定された閾値であって、特定臨界時間である。数学式10を参照すると、睡眠呼吸イベント検出部223は、第1の睡眠動きパターン情報のうち特定臨界時間を超える区間において尖頭値(Peak)を検出し、カウントすることによって、第1の睡眠動きイベントが発生した回数を検出しても良い。
【0089】
睡眠呼吸イベント検出部223は、第2の睡眠動きパターン情報のうち閾値に到逹する値に基づいて第2の睡眠動きイベントを検出しても良い。睡眠呼吸イベント検出部223は、対象客体の睡眠中に特定臨界時間に到逹した睡眠動きイベントの発生回数を検出した第2の睡眠動きイベントを検出しても良い。例えば、睡眠呼吸イベント検出部223は、下記数学式11を利用して第2の睡眠動きイベントを検出しても良い。
【0090】
【数11】
【0091】
数学式11において、d22は、第2の睡眠動きイベントであり、c22は、第2の睡眠動きパターン情報であり、Tは、予め設定された閾値であって、特定臨界時間である。数学式11を参照すると、睡眠呼吸イベント検出部223は、第2の睡眠動きパターン情報のうち特定臨界時間に到逹した尖頭値を検出し、カウントすることによって、第2の睡眠動きイベントが発生した回数を検出しても良い。
【0092】
つまり、睡眠呼吸イベント検出部223は、第1の睡眠動きイベント及び第2の睡眠動きイベントを混合して検出することにより、睡眠呼吸イベントに対する誤探知を防止することができる。
【0093】
睡眠呼吸イベント検出部223は、複数の睡眠項目(又は睡眠検査項目)に対する最適なパラメータを設定しても良い。例えば、睡眠呼吸イベント検出部223は、レーダを利用して抽出できる睡眠検査項目を設定しても良い。睡眠呼吸イベント検出部223は、人の腹腔(Abdominal)及び四肢(Limb)の動きなどに基づき、無呼吸(Apnea)、低呼吸(Hypopnea)、無呼吸と低呼吸の原因となる中枢性(Central)及び各種の一時的な覚醒(Arousal)及び睡眠段階などを含む各種の睡眠検査項目を設定しても良い。
【0094】
最適なパラメータは、イベント発生関連パラメータと、信号処理パラメータとを含んでいても良い。例えば、イベント発生関連パラメータは、対象客体の睡眠中に検出された第1の睡眠呼吸パターン情報、第2の睡眠呼吸パターン情報、第1の睡眠動きパターン情報、及び第2の睡眠動きパターン情報に関する回帰係数であっても良く、信号処理パラメータは、例えば、数学式1のF、T、Lに当たり、複数の睡眠項目のそれぞれを検出するためのパラメータであっても良い。
【0095】
睡眠呼吸イベント検出部223は、最適なパラメータに基づいて複数の睡眠項目に関するイベント発生情報を導出しても良い。例えば、睡眠呼吸イベント検出部223は、信号処理パラメータを変化させ、複数の睡眠項目のそれぞれに対するイベント発生回数を算出しても良い。
【0096】
例えば、睡眠呼吸イベント検出部223は、下記数学式12を利用して複数の睡眠項目に関するイベント発生情報を導出しても良い。
【0097】
【数12】
【0098】
例えば、数学式12において、Yは、イベント発生情報に当たるイベントの総発生回数であっても良く、b乃至bは、イベント発生関連パラメータであって、最小自乗法を利用して算出されても良い。N11乃至N22は、上述した方法により検出された第1の睡眠呼吸イベント、第2の睡眠呼吸イベント、第1の睡眠動きイベント及び第2の睡眠動きイベント、それぞれに当たるイベント発生回数であり、eは、誤差項であっても良い。
【0099】
例えば、睡眠呼吸イベント検出部223は、無呼吸に関し、中枢性項目に対して予め設定された信号処理パラメータ(F、L、T)に基づき、中枢性項目に関する第1の睡眠呼吸イベント、第2の睡眠呼吸イベント、第1の睡眠動きイベント、及び第2の睡眠動きイベントを検出しても良く、予め設定されたイベント発生関連パラメータと中枢性項目に対して検出された第1の睡眠呼吸イベントが発生した総回数、第2の睡眠イベントが発生した総回数、第1の睡眠動きイベントが発生した総回数、及び第2の睡眠動きイベントが発生した総回数を数学式12に代入し、無呼吸での中枢性項目に関するイベント発生情報を導出しても良い。
【0100】
指数導出部230は、睡眠時間情報及び複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出しても良い。例えば、睡眠時間情報は、検査対象者の総睡眠時間に当たる。
【0101】
指数導出部230は、複数の睡眠項目に対して導出されたイベント発生情報の総回数を睡眠時間情報で分けることで、呼吸関連指数情報を導出しても良い。
【0102】
指数導出部230は、無呼吸-低呼吸指数情報及び呼吸障害指数情報を含む呼吸関連指数情報を算出しても良い。指数導出部230は、複数の睡眠項目のうち無呼吸項目に関するイベント発生情報及び低呼吸項目に関するイベント発生情報に基づいて無呼吸-低呼吸指数情報を導出しても良い。例えば、指数導出部230は、下記数学式13を利用しても良い。
【0103】
【数13】
【0104】
数学式13において、AHIは、無呼吸-低呼吸指数(Apnea-Hypopnea Index、AHI)情報であり、Σ無呼吸回数は、無呼吸と関連して検出された検出項目に関するイベント発生情報の総合であり、Σ低呼吸回数は、低呼吸と関連して検出された検出項目に関するイベント発生情報の総合であっても良い。
【0105】
例えば、数学式13を参照すると、指数導出部230は、無呼吸と関連して検出された中枢性項目に関するイベント発生情報、混合性項目に関するイベント発生情報、及び閉鎖性項目に関するイベント発生情報を合わせることで無呼吸回数を算出しても良く、低呼吸と関連して検出された中枢性項目に関するイベント発生情報、混合性項目に関するイベント発生情報、及び閉鎖性項目に関するイベント発生情報を合わせることで低呼吸回数を算出しても良い。
【0106】
例えば、指数導出部230は、対象客体から受信したレーダ信号を基に動きを分析することによって対象客体の睡眠時間を推定しても良い。指数導出部230は、無呼吸回数と低呼吸回数を対象客体の総睡眠時間で分けることで無呼吸-低呼吸指数情報を算出しても良い。
【0107】
指数導出部230は、複数の睡眠項目のうち無呼吸項目に関するイベント発生情報、低呼吸項目に関するイベント発生情報、及び呼吸努力関連項目に関するイベント発生情報に基づいて呼吸障害指数情報を導出しても良い。例えば、指数導出部230は、下記数学式14を利用しても良い。
【0108】
【数14】
【0109】
数学式14において、RDIは、呼吸障害指数(Respiration Disturbance Index、RDI)情報であり、Σ無呼吸回数、Σ低呼吸回数及びΣ呼吸努力関連覚醒は、無呼吸、低呼吸及び呼吸努力関連覚醒と関連して各検出された検出項目に関するイベント発生情報の総合であっても良い。
【0110】
例えば、数学式14を参照すると、指数導出部230は、対象客体から受信したレーダ信号から検出された無呼吸回数、低呼吸回数及び呼吸努力関連覚醒回数を対象客体の総睡眠時間で分けることで、呼吸障害指数情報を算出しても良い。
【0111】
病症判断部240は、呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断しても良い。病症判断部240は、睡眠関連病症に関する疾病群分布情報及び対照群分布情報と呼吸関連指数情報を比較することで睡眠関連病症に当たるか否かを判断しても良い。一例において、病症判断部240は、ディープラーニングモデルを利用して呼吸関連指数情報と睡眠関連病症に関する疾病群分布情報又は対照群分布情報を比較しても良い。この場合、本発明の疾病群及び対照群は、アルツハイマー型認知症に対する疾病群及び対照群を含んでいても良い。
【0112】
例えば、病症判断部240は、睡眠関連病症に対する疾病群の睡眠要素の分布値及び対照群の睡眠要素の分布値を活用しても良い。一例において、病症判断部240は、疾病群及び対照群の睡眠要素の分布値として平均及び標準偏差を利用しても良い。病症判断部240は、無呼吸-低呼吸指数情報を関連病症に対する疾病群の平均及び標準偏差と比較しても良く、無呼吸-低呼吸指数情報を対照群の平均及び標準偏差と比較しても良い。
【0113】
例えば、病症判断部240は、比較結果に基づいて対象客体が睡眠関連病症に当たるか否かを判断しても良い。病症判断部240は、対象客体に対する無呼吸-低呼吸指数情報を無呼吸の疾病群の分布情報又は無呼吸の対照群の分布情報とそれぞれ比較しても良く、比較結果に基づいて対象客体が睡眠時無呼吸症であるか否かを判断しても良い。図7aは、本発明の一実施例に係る複数の睡眠項目に対する最適なパラメータを説明するための例示的な図であり、図7bは、睡眠ポリグラフ検査に関するデータセットの例示的な図である。
【0114】
図7a及び図7bを参照すると、睡眠呼吸分析装置100は、レーダを利用して検出できる複数の睡眠項目710を設定しても良く、各項目に対する最適なパラメータを設定しても良い。睡眠呼吸分析装置100は、複数の睡眠項目710に対して設定された最適なパラメータに基づいてイベント発生情報を導出しても良い。
【0115】
先ず、図7aに示された例示のように、睡眠呼吸分析装置100は、無呼吸711、低呼吸712、及び一時的な覚醒713などと関連した複数の睡眠項目のそれぞれに対する検出項目710を設定しても良い。睡眠呼吸分析装置100は、無呼吸711に関し、無呼吸711の原因となる中枢性項目711a、混合性項目711b、及び閉鎖性項目711cを検出項目710として設定しても良く、低呼吸712に関し、低呼吸712の原因となる中枢性項目、混合性項目、及び閉鎖性項目を検出項目710として設定しても良く、一時的な覚醒713に関し、一時的な覚醒713の原因となる四肢の動きによる覚醒項目、呼吸努力関連覚醒項目、無呼吸/低呼吸覚醒項目、いびきによる覚醒項目、及び自発的な覚醒項目を検出項目710として設定しても良い。
【0116】
例えば、睡眠呼吸分析装置100は、複数の睡眠項目のそれぞれに設定された検出項目710に対して信号処理パラメータ720及びイベント発生関連パラメータ730を含む最適なパラメータを設定しても良い。
【0117】
図7aに示された例示のように、睡眠呼吸分析装置100は、特定連続区間の時間長さを意味する時間感度因子、L721と、特定連続区間の振幅に反応する振幅感度因子、F722と、特定臨界時間、T723とを含む信号処理パラメータ720を設定しても良い。
【0118】
睡眠呼吸分析装置100は、対象客体から反射されるレーダ信号から検出された第1の睡眠呼吸イベントに対する回帰係数、b732と、第2の睡眠呼吸イベントに対する回帰係数、b733と、第1の睡眠動きイベントに対する回帰係数、b734と、第2の睡眠動きイベントに対する回帰係数、b735と、その他の回帰係数、b731とを含むイベント発生関連パラメータ730を設定しても良い。
【0119】
例えば、睡眠呼吸分析装置100は、複数の睡眠項目に対して信号処理パラメータ720を変化させながらイベント発生情報を算出し、回帰分析により各睡眠項目に対する最適な因子と回帰係数を導出しても良い。一例において、信号処理パラメータ720の変化のために、L721は、10s、20s、30s、40s、50s、及び60sのうち1つであっても良く、F722は、0.5、0.75、1、1.25、1.5、1.75、及び2のうち1つであっても良く、T723は、5s、7.5s、10s、12.5s、15s、17.5s、及び20sのうち1つであっても良い。
【0120】
図7bを参照すると、睡眠呼吸分析装置100は、睡眠ポリグラフ検査に関するデータセット740に基づいて複数の睡眠項目に対する最適なパラメータを設定しても良い。
【0121】
例えば、睡眠呼吸分析装置100は、図7bに例示されたデータセット740に基づき、図7aに例示された無呼吸711において中枢性項目711aに対する信号処理パラメータ720及びイベント発生関連パラメータ730を含む最適なパラメータを設定しても良い。
【0122】
例えば、図7a及び図7bを参照すると、睡眠呼吸分析装置100は、データセット740において、睡眠ポリグラフ検査により測定された睡眠時無呼吸症750の原因となる中枢性項目751に関する情報を基に無呼吸711の中枢性項目711aに対する信号パラメータ720及びイベント発生関連パラメータ730を設定しても良く、睡眠ポリグラフ検査により測定された睡眠時無呼吸症750の原因となる混合性項目752に関する情報を基に無呼吸711の混合性項目711bに対する信号パラメータ720及びイベント発生関連パラメータ730を設定しても良い。
【0123】
また、睡眠呼吸分析装置100は、睡眠ポリグラフ検査により測定された睡眠時無呼吸症754に関する情報を基に無呼吸711に対する信号パラメータ720及びイベント発生関連パラメータ730を設定しても良い。
【0124】
例えば、図7a及び図7bを参照すると、睡眠呼吸分析装置100は、データセット740を参照して睡眠ポリグラフ検査で測定された正解値と相関係数が最も高い因子を最適因子に決定することにより、無呼吸711の検出項目710、中枢性項目711aに対して、時間感度因子、L721は「30s」、振幅感度因子、F722は「1.5」、及び特定臨界時間、T723は「17.5s」を含む信号処理パラメータ720を最適なパラメータに設定しても良く、回帰係数、b731は「-3.21」、b732は「1.28」、b733は「-1.38」、b734は「0.05」、b735は「-0.05」を含むイベント発生関連パラメータ730を設定しても良い。
【0125】
例えば、睡眠呼吸分析装置100は、複数の睡眠項目に対して設定された最適なパラメータに基づき、複数の睡眠項目に関するイベント発生情報を導出しても良い(上述した数学式12を参照)。具体的に、睡眠呼吸分析装置100は、無呼吸711の中枢性711aと関連して検出された情報、第1の睡眠呼吸イベント、第2の睡眠呼吸イベント、第1の睡眠動きイベント、及び第2の睡眠動きイベントと、無呼吸711の中枢性項目711aに対して設定された最適なパラメータ720、730を利用して対象客体の無呼吸症の中枢性項目に関するイベント発生情報を導出しても良い。
【0126】
図8は、本発明の一実施例に係る睡眠関連病症の分布情報に関する例示的な図である。図8の(a)は、アルツハイマー疾病群及び対照群の総睡眠時間(Total Sleep Time、TST)に関する分布情報であり、(b)は、アルツハイマー疾病群及び対照群の無呼吸-低呼吸に関する分布情報であり、(c)は、アルツハイマー疾病群及び対照群の呼吸障害に関する分布情報である。図8の(a)~(c)に例示された分布情報は、アルツハイマーに対する総睡眠時間、無呼吸-低呼吸指数及び呼吸障害指数に関するデータを加工し、図式化した分布情報であっても良く、平均値及び標準偏差を含んでいても良い。
【0127】
例えば、睡眠呼吸分析装置100は、対象客体の呼吸関連指数情報と睡眠関連病症の分布情報とを比較することで対象客体が当該睡眠関連病症の疾病群に含まれるか否かを判断しても良い。
【0128】
例えば、図8の(a)を参照すると、睡眠呼吸分析装置100は、対象客体の総睡眠時間とアルツハイマー疾病群の総睡眠時間との分布情報810を比較しても良く、対象客体の総睡眠時間と対照群の総睡眠時間との分布情報820を比較しても良い。睡眠呼吸分析装置100は、比較結果に基づいて対象客体の総睡眠時間分布情報がアルツハイマー疾病群に当たるか否かを判断しても良い。
【0129】
例えば、図8の(b)を参照すると、睡眠呼吸分析装置100は、対象客体から導出された無呼吸-低呼吸指数情報とアルツハイマー疾病群の無呼吸-低呼吸に関する分布情報830とを比較しても良く、対象客体の無呼吸-低呼吸指数情報と対照群の無呼吸-低呼吸に関する分布情報840とを比較しても良い。睡眠呼吸分析装置100は、比較結果に基づいて対象客体の無呼吸-低呼吸指数情報がアルツハイマー疾病群に当たるか否かを判断しても良い。
【0130】
例えば、図8の(c)を参照すると、睡眠呼吸分析装置100は、対象客体から導出された呼吸障害指数情報とアルツハイマー疾病群の呼吸障害に対する分布情報850とを比較しても良く、対象客体の呼吸障害指数情報と対照群の呼吸障害に関する分布情報860とを比較しても良い。睡眠呼吸分析装置100は、比較結果に基づいて対象客体の呼吸障害指数情報がアルツハイマー疾病群に当たるか否かを判断しても良い。
【0131】
図9は、本発明の一実施例に係る対象客体が睡眠関連病症に当たるか否かを判断する過程を説明するための例示的な図である。図9を参照すると、睡眠呼吸分析装置100は、複数の呼吸関連指数項目910に関して対象客体から導出された呼吸関連指数情報920を睡眠関連病症に関する疾病群の分布情報及び対照群の分布情報とそれぞれ比較しても良く、比較結果に基づき、対象客体が確率分布上で睡眠関連病症に当たるか否かを判断した予測情報950を生成しても良い。
【0132】
例えば、睡眠呼吸分析装置100は、複数の呼吸関連指数項目910に関する対象客体の指数情報920を睡眠関連病症に関する疾病群分布情報と比較することで対象客体が疾病群に属する確率情報930を導出しても良く、複数の呼吸関連指数項目910に関する対象客体の指数情報920を睡眠関連病症に関する対照群分布情報と比較することで対象客体が正常群に属する確率情報940を導出しても良い。睡眠呼吸分析装置100は、導出された確率情報930、940に基づき、対象客体が睡眠関連病症の疾病群に当たるか否かを判断した予測情報950を生成しても良い。
【0133】
図9に示された例示を参照すると、睡眠呼吸分析装置100は、対象客体の総睡眠時間911に関する指数情報「183(921)」と疾病群の総睡眠時間の分布情報及び対照群の総睡眠時間の分布情報とを比較した結果に基づき、疾病群に属する確率情報「0.8692(931)」及び対照群に属する確率情報「0.1308(941)」を導出しても良い。これにより、睡眠呼吸分析装置100は、対象客体の総睡眠時間から対象客体が確率分布上で睡眠関連病症の疾病群に当たると判断した予測情報「AD(951)」を生成しても良い。
【0134】
睡眠呼吸分析装置100は、対象客体の無呼吸-低呼吸指数912に関する指数情報「10.49(922)」と疾病群の無呼吸-低呼吸に関する分布情報及び対照群の無呼吸-低呼吸に関する分布情報とを比較した結果に基づき、疾病群に属する確率情報「0.2179(932)」及び対照群に属する確率情報「0.7821(942)」を導出しても良い。これにより、睡眠呼吸分析装置100は、対象客体の無呼吸-低呼吸指数情報から対象客体が確率分布上で正常群に当たると判断した予測情報「Control(952)」を生成しても良い。
【0135】
睡眠呼吸分析装置100は、対象客体の呼吸障害指数913に関する指数情報「14.43(923)」と疾病群の呼吸障害に関する分布情報及び対照群の呼吸障害に関する分布情報とを比較した結果に基づき、疾病群に属する確率情報「0.9801(933)」及び対照群に属する確率情報「0.0199(943)」を導出しても良い。これにより、睡眠呼吸分析装置100は、対象客体の呼吸障害指数情報から対象客体が確率分布上で疾病群に当たると判断した予測情報「AD(953)」を生成しても良い。
【0136】
この場合、各項目毎に疾病群/正常群に対する最終判断結果を投票(Votting)により決定しても良い。例えば、対象客体の総睡眠時間911及び呼吸障害指数913は疾病群と判断され、無呼吸-低呼吸指数912では正常群と判断されたので、対象客体は各項目別に疾病群という判定が優勢であり、最終的に疾病群と判定することで病症を判断することができる。
【0137】
このように、本発明は、対象客体に対する睡眠中レーダ信号分析結果を利用して病症判断を行っても良く、このような病症判断に関する情報を提供する病症判断サービスを対象客体に提供しても良い。
【0138】
その他に、病症判断の後に判断の根拠となった情報を収合しても良い。収合された情報は、サービスの時点でユーザに病症判断の根拠を共に提供しても良い。単に検査に使用された項目と項目別の病症判断の尺度を製錬し、特定のドメイン情報上において対象客体の位置と確率を表現しても良い。
【0139】
また、より詳しい情報を派生させて対象客体に提供することもできる。当該検査者(対象客体)の場合、AHI(無呼吸-低呼吸指数912)は正常群であったものの、RERA(呼吸努力による覚醒)に関する平均回数が加えられたRDI(呼吸障害指数913)は非常に高い確率で疾病群と算出された。つまり、RERAの回数がRDIの増加に大いに寄与しており、RERAは一般的に中枢性無呼吸と深い関係がある。よって、複数の睡眠検査項目のうち「中枢性項目」と関連した項目の結果を共に対象客体に提供することができる。
【0140】
このような情報と共に後日様々な事例データが蓄積されれば、類似した年齢群;家庭環境群;基底疾病群などにおける疾病の位置のような統計的情報を共に提供することができる。
【0141】
図10は、本発明の一実施例に係る睡眠呼吸分析方法のフローチャートである。図10に示されたレーダを利用して睡眠呼吸を分析する方法は、図1乃至図9に示された実施例により時系列的に処理されるステップを含む。よって、以下、省略された内容であるとしても、図1乃至図9に示された実施例に係る睡眠呼吸分析装置において睡眠呼吸を分析する方法にも適用される。
【0142】
ステップS1010において、睡眠呼吸分析装置は、対象客体に向けてレーダ信号を送信しても良い。
【0143】
ステップS1020において、睡眠呼吸分析装置は、対象客体から反射されるレーダ信号を受信しても良い。
【0144】
ステップS1030において、睡眠呼吸分析装置は、レーダ信号に基づいて対象客体に対する平均呼吸信号を導出しても良い。
【0145】
ステップS1040において、睡眠呼吸分析装置は、平均呼吸信号とレーダ信号とを比較することで対象客体に対する睡眠呼吸パターン情報を生成しても良い。
【0146】
ステップS1050において、睡眠呼吸分析装置は、睡眠呼吸パターン情報に基づいて睡眠呼吸イベントを検出しても良い。
【0147】
上述した説明において、ステップS1010乃至S1050は、本発明の具現例によって追加のステップにさらに分割されたり、より少ないステップに組み合わせられても良い。また、一部のステップは必要に応じて省略されても良く、ステップ間の順番が変更されても良い。
【0148】
図1乃至図10を通じて説明された睡眠呼吸分析装置においてレーダを利用して睡眠呼吸を分析する方法は、コンピュータにより実行されるコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラム又はコンピュータにより実行可能な命令語を含む記録媒体の形態に具現されても良い。また、図1乃至図10を通じて説明された睡眠呼吸分析装置においてレーダを利用して睡眠呼吸を分析する方法は、コンピュータにより実行されるコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラムの形態に具現されても良い。
【0149】
図11は、本発明の一実施例に係る病症判断方法のフローチャートである。図11に示されたレーダを利用して病症を判断する方法は、図1乃至図9に示された実施例により時系列的に処理されるステップを含む。よって、以下、省略された内容であるとしても、図1乃至図9に示された実施例に係る睡眠呼吸分析装置において病症を判断する方法にも適用される。
【0150】
ステップS1110において、睡眠呼吸分析装置は、対象客体に向けてレーダ信号を送信しても良い。
【0151】
ステップS1120において、睡眠呼吸分析装置は、対象客体から反射されるレーダ信号を受信しても良い。
【0152】
ステップS1130において、睡眠呼吸分析装置は、レーダ信号に基づいて対象客体に対する睡眠時間情報及び複数の睡眠項目に関するイベント発生情報を導出しても良い。
【0153】
ステップS1140において、睡眠呼吸分析装置は、睡眠時間情報及び複数の睡眠項目に関するイベント発生情報に基づいて呼吸関連指数情報を導出しても良い。
【0154】
ステップS1150において、睡眠呼吸分析装置は、呼吸関連指数情報に基づいて睡眠関連病症に当たるか否かを判断しても良い。
【0155】
上述した説明において、ステップS1110乃至S1150は、本発明の具現例によって追加のステップにさらに分割されたり、より少ないステップに組み合わせられても良い。また、一部のステップは必要に応じて省略されても良く、ステップ間の順番が変更されても良い。
【0156】
図1乃至図11を通じて説明された睡眠呼吸分析装置においてレーダを利用して病症を判断する方法は、コンピュータにより実行されるコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラム又はコンピュータにより実行可能な命令語を含む記録媒体の形態に具現されても良い。また、図1乃至図11を通じて説明された睡眠呼吸分析装置においてレーダを利用して病症を判断する方法は、コンピュータにより実行されるコンピュータ読み取り可能な記録媒体に格納されたコンピュータプログラムの形態に具現されても良い。
【0157】
コンピュータ読み取り可能な媒体は、コンピュータによってアクセスできる任意の可用媒体であっても良く、揮発性及び不揮発性の媒体、分離型及び非分離型の媒体を全て含む。また、コンピュータ読み取り可能な媒体は、コンピュータ格納媒体を含んでいても良い。コンピュータ格納媒体は、コンピュータ読み取り可能な命令語、データ構造、プログラムモジュール、又はその他のデータのような情報格納のための任意の方法又は技術に具現された揮発性及び不揮発性、分離型及び非分離型の媒体を全て含む。
【0158】
上述した本発明の説明は例示のためのものであり、本発明の属する技術分野において通常の知識を有する者であれば、本発明の技術的思想や必須の特徴を変更せずに他の具体的な形態に容易に変形可能であるということを理解できるはずである。それゆえ、上記した実施例は全ての面において例示的なものであり、限定的なものではないと理解すべきである。例えば、単一型で説明されている各構成要素は分散して実施されても良く、同様に、分散したものと説明されている構成要素も結合された形態で実施されても良い。
【0159】
本発明の範囲は、上記詳細な説明よりは後述する特許請求の範囲によって示され、特許請求の範囲の意味及び範囲、並びにその均等概念から導出される全ての変更又は変形された形態が本発明の範囲に含まれると解釈されなければならない。
【符号の説明】
【0160】
100: 睡眠呼吸分析装置
210: 送受信部
220: 情報導出部
230: 指数導出部
240: 病症判断部
図1
図2
図3
図4
図5
図6
図7a
図7b
図8
図9
図10
図11