(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-24
(45)【発行日】2024-05-07
(54)【発明の名称】吊荷安定システム及び方法
(51)【国際特許分類】
B66C 13/06 20060101AFI20240425BHJP
B66C 13/22 20060101ALI20240425BHJP
【FI】
B66C13/06 M
B66C13/22 M
(21)【出願番号】P 2022163882
(22)【出願日】2022-10-12
(62)【分割の表示】P 2020132265の分割
【原出願日】2019-01-15
【審査請求日】2022-11-11
(32)【優先日】2018-11-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-02-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】523245229
【氏名又は名称】ビタ インクリナータ アイピー ホールディングス エルエルシー
【氏名又は名称原語表記】Vita Inclinata IP Holdings LLC
【住所又は居所原語表記】295 Interlocken Blvd, Suite 100, Broomfield, CO 80021 United States of America
(74)【代理人】
【識別番号】110002295
【氏名又は名称】弁理士法人M&Partners
(72)【発明者】
【氏名】シコラ デリック
(72)【発明者】
【氏名】カー カレブ ビー.
(72)【発明者】
【氏名】グッドリッチ ローガン
【審査官】太田 義典
(56)【参考文献】
【文献】特開平07-179288(JP,A)
【文献】特表2017-500257(JP,A)
【文献】米国特許第09881506(US,B1)
【文献】特開2013-184824(JP,A)
【文献】特開2012-132713(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B66C 13/00-15/06
B66C 19/00-23/94
(57)【特許請求の範囲】
【請求項1】
上方からケーブルを介して吊り下げられた吊荷を安定化するための吊荷安定システム装置であって、前記吊荷安定システム装置が、センターモジュールと、センサアレイと、
推進器装着構造体と、電源と、推進器コントローラと、2つ以上の推進器と、プロセッサとを含み、
前記センターモジュールは、
ケーブル取り付け点、吊荷取り付け点
とを含み、
前記推進器装着構造体は前記センターモジュールに接続され、
前記センサアレイは、
慣性測定システム、配向測定システム、及び絶対位置測定システム
を有し、
前記推進器は前記推進器装着構造体に接続され、前記推進器コントローラによって制御さ
れ、
前記プロセッサ
は、
前記センサアレイと無線送受信機と前記推進器コントローラとに動作可能に接続され、
前記吊荷安定システム装置の状態の表現を含むデータ融合を決定するために、センサアレイからのセンサデータを非線形フィルタで融合させるように構成され、
前記データ融合とユーザーが選択した機能モードやコマンドの状態、配向マッピングに基づいて、近い将来の運動を投影するように構成され、
前記ユーザーが選択した機能モード又はコマンド状態において、前記吊荷安定システム装置がどのように動くべきか、又は力を発揮すべきかを決定するように構成され、
前記推進器を制御することによって、それに応じた推力を与えるように構成され
た、
吊荷安定システム装置。
【請求項2】
前記非線形フィルタは、非線形カルマンフィルタである請求項1記載の吊荷安定システム装置。
【請求項3】
前記ユーザが選択した機能モード又はコマンド状態は、アイドル、相対位置の維持、目標への移動、位置の保持、又はユーザによる直接制御のうちの少なくとも1つからなる、請求項1記載の吊荷安定システム装置。
【請求項4】
前記センサアレイにおける前記慣性測定システムが少なくとも1つの加速度計又はジャイロスコープからなり、前記センサアレイにおける前記配向測定システムが少なくとも1つの磁力計又はコンパスからなり、前記センサアレイにおける前記絶対位置測定システムがグローバルポジショニングシステム(GPS)センサからなる、請求項1記載の吊荷安定システム装置。
【請求項5】
前記ケーブルが吊り下げられる対象点又は対象場所に対して固定された位置に位置する、前記吊荷安定システム装置の外部の遠隔位置ユニットをさらに含み、前記遠隔位置ユニットは、前記無線送受信機と通信して前記吊荷安定システム装置に位置基準を提供するように構成された位置送受信機を含む、請求項1記載の吊荷安定システム装置。
【請求項6】
無線送受信機と、ディスプレイプロセッサと、スクリーンと、入力デバイスと、前記無線送受信機と通信するように構成されたディスプレイ送受信機とを含む対話型ディスプレイとをさらに含み、
前記対話型ディスプレイが、
前記ディスプレイ送受信機を介して前記吊荷安定システム装置からデータを無線で受信する手段と、
前記スクリーンを介して、前記吊荷安定システム装置の位置、配向、障害物からの距離、地上からの高さ、前記無線送受信機の信号品質、前記プロセッサの機能モード又はコマンド状態、前記吊荷の慣性挙動、前記電源のエネルギー容量又は利用可能電力、前記2つ以上の推進器の仕事又は電力消費、各推進器からの推力、前記吊荷安定システム装置の推力の運動又は方向、及びオペレータが前記吊荷を吊り下げるプラットフォームを操作するための推奨される方向のうちの1つ以上を示すように構成され、
かつ前記入力デバイスを介して、前記ユーザが選択した機能モード又はコマンド状態、前記吊荷安定システム装置の目標位置、及び前記吊荷安定システム装置の緊急遮断機構のうちの1つ以上を設定するためのユーザ制御を提供する手段、
を含む、請求項1記載の吊荷安定システム装置。
【請求項7】
上方からケーブルを介して吊り下げられた吊荷を安定させるための方法であって、
前記方法は、
吊荷安定システム装置のプロセッサで、決定及び制御ルーチンを実行することであって、前記決定及び制御ルーチンは、
前記吊荷安定システム装置のセンサアレイからセンサデータを取得するステップと、
非線形フィルタで前記センサデータを融合し、それによって、前記吊荷安定システム装置の状態の表現を含むデータ融合を決定するステップと、
ユーザが選択した機能モード又はコマンド状態、或いは前記吊荷安定システム装置の推力及び配向マッピングの少なくとも1つからのフィードバックとデータ融合に基づいて、近い将来の運動を予測するステップと、
前記ユーザが選択した機能モード又はコマンド状態において、前記吊荷安定システム装置がどのように動くべきか、又は力を発揮すべきかを決定するステップと、
前記吊荷安定システム装置の複数の推進器を制御することにより、推力を与えるステップと、
を行う方法。
【請求項8】
前記非線形フィルタは、非線形カルマンフィルタである、請求項7記載の方法。
【請求項9】
前記ユーザが選択した機能モード又はコマンド状態は、アイドル、相対位置の維持、目標への移動、位置の保持、又はユーザによる直接制御のうちの少なくとも1つからなる、請求項7記載の方法。
【請求項10】
前記センサアレイは、慣性測定システム、配向測定システム、及び絶対位置測定システムから構成されることを特徴とする請求項7記載の方法。
【請求項11】
前記慣性測定システムが少なくとも1つの加速度計又はジャイロスコープからなり、前記配向測定システムが少なくとも1つの磁力計又はコンパスからなり、前記絶対位置測定システムが全地球測位システム(GPS)センサを含む、請求項10記載の方法。
【請求項12】
前記プロセッサは、前記吊荷安定システム装置の外部の遠隔位置ユニットから位置基準を受信することをさらに備え、前記位置基準は、ユーザが選択した機能モード又はコマンド状態に関連する請求項7記載の方法。
【請求項13】
前記プロセッサは、遠隔の入力デバイスを介して、前記吊荷安定システム装置の位置、前記吊荷安定システム装置の配向、障害物からの距離、地上高、無線送受信機の信号品質のうちの少なくとも1つのインジケータを表示するようにさらに構成され、さらに、
前記ユーザが選択した機能モード又はコマンド状態、前記吊荷の慣性挙動
、電源のエネルギー容量又は利用可能電力、2つ以上の推進器の仕事又は電力消費、前記複数の推進器からの推力、前記吊荷安定システム装置の運動又は推力の配向と、前記吊荷を吊り下げるプラットフォームを操縦するオペレータの推奨される方向と、を表示するように構成されている、請求項7記載の方法。
【請求項14】
前記プロセッサは、前記入力デバイスを介して、前記ユーザが選択した機能モード又はコマンド状態を設定するためのユーザ制御を提供するようにさらに構成される、請求項13記載の方法。
【請求項15】
吊荷安定システム装置のプロセッサによって実行されると、前記吊荷安定システム装置の決定及び制御ルーチンに以下の命令を実行させるためのプログラムをその上に記憶した非一過性のコンピュータ読み取り可能な記憶媒体であって、
前記命令は、
前記吊荷安定システム装置のセンサアレイからセンサデータを取得するステップと、
非線形フィルタでセンサデータを融合させ、前記吊荷安定システム装置の状態の表現を含むデータ融合を決定するステップと、
ユーザが選択した機能モード又はコマンド状態、或いは前記吊荷安定システム装置の推力及び姿勢マッピングの少なくとも1つからのフィードバックとデータ融合に基づいて、近い将来の運動を予測するステップと、
前記ユーザが選択した機能モード又はコマンド状態において、前記吊荷安定システム装置がどのように動くべきか、又は力を発揮すべきかを決定するステップ、及び、
前記吊荷安定システム装置の複数の推進器を制御することにより、対応する推力を加えるステップである、コンピュータ読み取り可能な記憶媒体。
【請求項16】
前記非線形フィルタは、非線形カルマンフィルタである、請求項15記載の非一過性のコンピュータ読み取り可能な記憶媒体。
【請求項17】
前記ユーザが選択した機能モード又はコマンド状態は、アイドル、相対位置の維持、目標への移動、位置の保持、又はユーザによる直接制御の少なくとも1つからなる、請求項15に記載の非一過性のコンピュータ読み取り可能な記憶媒体。
【請求項18】
前記センサアレイは、慣性測定システム、配向測定システム、及び絶対位置測定システムからなる、請求項15記載の非一過性のコンピュータ読み取り可能な記憶媒体。
【請求項19】
前記慣性測定システムは、少なくとも1つの加速度計又はジャイロスコープからなり、 前記配向測定システムは、少なくとも1つの磁力計又はコンパスからなり、
前記絶対位置測定システムは、グローバルポジショニングシステム(GPS)センサからなる、
請求項18記載の非一過性のコンピュータ読み取り可能な記憶媒体。
【請求項20】
前記命令は、さらに、遠隔の入力デバイスを介して、前記吊荷安定システム装置の位置、前記吊荷安定システム装置の配向、障害物からの距離、地上高、無線送受信機の信号品質、ユーザが選択した機能モード又はコマンド状態、吊荷の慣性挙動、電源のエネルギー容量又は利用可能電力、2つ以上の推進器の仕事又は電力消費、複数の推進器からの推力、装置の動作又は推力の配向、及びオペレータが前記吊荷を吊り下げるプラットフォームを操作するための推奨される方向の少なくとも1つを表示させるように構成されている、
請求項15記載の非一過性のコンピュータ読み取り可能な記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は吊荷を制御するための改善されたシステム及び方法に関する。
【0002】
この出願は、2018年2月8日に出願され、Derek Sikora及びJonathan Chungを発明者とする「SUSPENDED LOAD STABILITY SYSTEM THROUGH SELF POWERED AUTOMATED ELECTRIC DUCT FAN CONTROL」と題する、米国特許仮出願第62/627,920号、及び2018年11月8日に出願され、Caleb Carr、Derek Sikora、及びLogan Goodrichを発明者とする「LOAD STABILITY SYSTEM FOR SUSPENDED LOAD CHAOTIC MOTION」と題する、米国特許仮出願第62/757,414号、の優先権を主張する。上記の出願は、全ての目的のために、参照によりその全体が本明細書に組み込まれる。本出願の一部を形成する本明細書に出願されたアプリケーションデータシート、及び参照する全ての優先文書は、参照によりその全体が本明細書に組み込まれる。
【背景技術】
【0003】
救助ヘリコプタは、海上又は陸上の負傷又は隔離された患者への迅速なアクセスを可能にする。多くの場合、患者は負傷しているか、又は地元若しくは連邦当局が高価なヘリコプタの巻き上げ動作の使用を許可することを保証する医療緊急性を有している。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、これらの動作中に、巻き上げ機は風やその他の外的要因の影響を受け、救助用巻き上げ機がスピンしたり前後に揺動したりする。この揺動はミッションを複雑にし、医療ケアの遅延を引き起こし、救助者及び被救助者の両方の死亡をもたらす。
【0005】
現代のヘリコプタの巻き上げ、救助、及びスリング積荷動作では、手元の動作、更に重要なことには関係者を危険にさらす、吊り下げられた人又は機器の不安定で危険な運動が存在することが多い。観察された運動は、ヒンジ旋回点を中心とした回転による、横方向又は円錐形の振り子と同等である。巻き上げシステムの操作性の重要な問題、すなわち吊りケーブル運動の信頼性の高い安定性は、未解決のままである。制御されていないケーブルの運動は、生命の危険があり、ミッションの成功を危険なものとし、環境要素によってはミッションの機会を犠牲にし、動作コストを大幅に増加させる。
【課題を解決するための手段】
【0006】
本発明に係る吊荷安定システム装置は、上方からケーブルを介して吊り下げられた吊荷を安定化するための吊荷安定システム装置であって、前記吊荷安定システム装置が、ケーブル取り付け点、吊荷取り付け点、前記ケーブル取り付け点と前記吊荷取り付け点との間の引張構造要素、及び前記引張構造要素に接続された推進器装着構造体を含む、センターモジュールと、電源と、慣性測定システム、配向測定システム、及び絶対位置測定システムを含む、センサアレイと、無線送受信機と、推進器コントローラと、前記推進器装着構造体に接続され、かつ前記推進器コントローラによって制御される、2つ以上の推進器と、前記センサアレイ、前記無線送受信機、及び前記推進器コントローラに動作可能に接続されたプロセッサと、を備え、
前記プロセッサが、
前記センサアレイに基づいて、前記吊荷の運動を判定し、
前記推進器を制御することによって、前記吊荷安定システム装置をある方向に配向するために推力を適用し、前記方向に沿って推力を適用して、前記吊荷の前記運動を相殺するように構成されていることを特徴とする。
【0007】
本発明に係る方法は、前記積荷安定システム装置の下の吊荷の揺動を相殺するために、ケーブルによって吊り下げられた自律積荷安定システム装置によって実行される方法であって、前記積荷安定システム装置が、電源と、センサアレイと、無線送受信機と、プロセッサと、2つ以上の推進器と、を含み、前記方法が、
起動信号を受信することと、
前記センサアレイにより、前記積荷安定システム装置の位置、配向、及び移動を説明する情報を取得することと、
前記積荷安定システム装置の標的場所を特定することと、
前記プロセッサによって、前記積荷安定システム装置の位置、配向、及び移動を説明する情報に基づいて、前記積荷安定システム装置を特定された前記標的場所に移動させる推力適用ベクトルを判定することと、
前記2つ以上の推進器のうちの少なくとも1つを回転させて、前記推力適用ベクトルと位置合わせすることと、
前記推力適用ベクトルと位置合わせされた前記2つ以上の推進器のうちの前記少なくとも1つにより、推力を適用して、前記積荷の前記揺動を相殺することと、を含むことを特徴とする。
【図面の簡単な説明】
【0008】
【
図1】ヘリコプタから吊り下げられ、吊荷安定システム(load stability system、「LSS」)によって安定化された揺動積荷を概略的に示す。
【
図2A】一実施形態に係る、ボックス様ハウジングを有する吊荷安定システムの等角図を示す。
【
図2B】一実施形態に係る、六角形のセンターモジュール及び2つの推進アームを含む吊荷安定システムの正面図を示す。
【
図3】一実施形態に係る構造的特徴を示す、吊荷安定システムの切欠き斜視図を示す。
【
図4A】一実施形態に係る、空気力学的ハウジングを含む吊荷安定システムの斜視図、正面図、及び側面図を示す。
【
図4B】一実施形態に係る、空気力学的ハウジングを含む吊荷安定システムの斜視図、正面図、及び側面図を示す。
【
図4C】一実施形態に係る、空気力学的ハウジングを含む吊荷安定システムの斜視図、正面図、及び側面図を示す。
【
図5】一実施形態に係る、吊荷安定システムの中央構造部材を示す。
【
図6】一実施形態に係る、積荷を取り付けるために中央構造部材に接続する、2つの代替スリーブを示す。
【
図7】一実施形態に係る、積荷を取り付けるための2つの代替スリーブのそれぞれに取り付けられた中央構造部材を示す。
【
図8】一実施形態に係る、吊荷安定システムの構造フレームワークの斜視図を示す。
【
図9】一実施形態に係る、吊荷安定システムの構造フレームワークに装着された構成要素の斜視図を示す。
【
図10】一実施形態に係る、構造フレームワークに装着された吊荷安定システムの構成要素の斜視図を示す。
【
図11A】一実施形態に係る、吊荷安定システムの代替のセンターモジュール設計の斜視図を示す。
【
図11B】一実施形態に係る、吊荷安定システムの別の代替的なセンターモジュール設計の正面図を示す。
【
図12A】一実施形態に係る、吊荷安定システムで使用するように構成された推進器の斜視図を示す。
【
図12B】一実施形態に係る、吊荷安定システムの2推進器推進アームの斜視図を示す。
【
図12C】一実施形態に係る、吊荷安定システムの2推進器推進アームの支持部材の斜視図を示す。
【
図12D】一実施形態に係る、吊荷安定システムの別の2推進器推進アームの等角図を示す。
【
図13A】一実施形態に係る、吊荷安定システムの構造フレームワークに装着された推進器の斜視図を示す。
【
図13B】一実施形態に係る、吊荷安定システムの構造フレームワークに装着された推進器の正面図を示す。
【
図13C】一実施形態に係る、吊荷安定システムの構造フレームワークに装着された推進器の側面図を示す。
【
図14】一実施形態に係る、空気力学的ハウジング上に装着されたセンサを含む吊荷安定システムの斜視図を示す。
【
図15】一実施形態に係る、遠隔インターフェースを含む吊荷安定システムの動作構成要素を概略的に示す。
【
図16】一実施形態に係る、吊荷安定システムの遠隔位置ユニット又は標的ノードの斜視図を示す。
【
図17】一実施形態に係る、吊荷安定システムの充電ステーションの斜視図を示す。
【
図18】一実施形態に係る、複数のモード又はコマンド状態を含む吊荷安定システムの動作ルーチンを示す。
【
図19】一実施形態に係る、吊荷安定システムの決定及び制御ルーチンを示す。
【
図20A】一実施形態に係る、吊荷安定システムの外部状態インジケータライトを有する頂部ケーブルリングの斜視図を示す。
【
図20B】一実施形態に係る、吊荷安定システムの状態インジケータライトの上面図を示す。
【
図21】一実施形態に係る、吊荷安定システムのための制御インターフェースのスクリーンショットを示す。
【
図22】揺動積荷の運動及び吊荷安定システムによって安定化された積荷の運動をプロットしたグラフを示す。
【発明を実施するための形態】
【0009】
揺動積荷の挙動を制御するための一般的なアプローチは、エアフレームに対策物を設置するか、又はエアフレーム自体を操作することである。スカイクレーン(Sky Crane)などのいくつかのエアフレームは、積荷の揺れを軽減するために、キャビンの下に設置されたレールシステムを有する。最も提案されているアプローチは、航空機の安定性増強システム上に自動化された対策アルゴリズムを設置することを伴う。実際に、引き抜き中にヘリコプタ内に残っている乗務員は、ケーブルをキャビンから押したり引いたりしてケーブルを操作しようとするが、その効果は限定的である。これらの対策は全て不十分であることが証明されている。
【0010】
様々な実施形態では、本明細書で更に説明されるように、自律的な無人吊荷安定性制御システムによりこの問題に対処する。本開示の積荷安定システム(「LSS」)は、積荷の場所又はその付近で高性能電気ダクト付きファン(electric ducted fan、「EDF」)などの推進器からの反力を及ぼすことによって、吊荷運動を相殺する。この結果、LSSは、吊荷安定性の責任から操縦士と乗組員を完全に解放することにより、ミッションの安全性を高める。更に、このような動作の性能エンベロープは、LSSの能力を統合して、航空機の運動とは別の積荷場所を動的に制御することによって増大される。
【0011】
積荷安定システムは、吊荷の運動を、自己動力式の自動化された取り外し可能なシステムを介して、巻き上げシステム(すなわち、ヘリコプタ)と外部積荷の間のケーブル自体を制御する。システムは、積荷が吊り下げられるプラットフォーム(例えば、ヘリコプタ「自船」の特性)に依存せず(agnostic)、積荷を安定化させるのに必要な飛行力学を独立して決定することになる。これにより、航空機の種類にかかわらず、システムの広範な採用が可能になり、コストを低下させ、ソリューションリスクを軽減することが可能となる。
【0012】
積荷安定システムは、ヘリコプタ探索及び救助(search and rescue、「SAR」)及びスリング積荷動作、森林火災ヘリコプタ、石油リグのクレーン動作、海軍支援船、建設ベースのスリング積荷動作、深海掘削アプリケーション、宇宙船制御、及び民間消防に利益をもたらし得る。
【0013】
ここで、図に示すような実施形態の説明を詳細に参照する。実施形態は図面及び関連する説明に関連して説明されているが、本明細書に開示される実施形態に範囲を限定する意図はない。逆に、その意図は、全ての代替物、修正、及び等価物を網羅することである。代替実施形態では、本明細書に開示される実施形態に範囲を限定することなく、追加のデバイス、又は例示されるデバイスの組み合わせを追加するか、又は組み合わせてもよい。例えば、以下に記載される実施形態は、主に、ヘリコプタのスリング積荷又は探索及び救助動作の文脈において主に説明されている。しかしながら、これらの実施形態は例示的な実施例であり、開示された技術を任意の特定のアプリケーション又はプラットフォームに限定するものではない。
【0014】
「一実施形態では」、「様々な実施形態では」、「いくつかの実施形態では」などの語句は繰り返し使用される。このような語句は、必ずしも同じ実施形態を指すものではない。用語「備える(comprising)」、「有する(having)」、及び「含む(including)」という用語は同義である。本明細書及び添付の特許請求の範囲で使用される場合、単数形「a」、「an」、及び「the」は、内容がそうでない旨を明確に指示しない限り、複数の指示対象を含む。用語「又は」は、内容がそうでないことを明確に指示しない限り、「及び/又は」を含む意味で使用されることにも留意されたい。
【0015】
図1は、ヘリコプタ140から吊り下げられ、吊荷安定システム(「LSS」)110によって安定化された揺動積荷を概略的に示す。ヘリコプタ「自船」プラットフォーム140は、ポイント130からケーブル120上の人を吊り下げる。LSS110を伴わずに、ケーブル及び吊り下げられた人は、横方向及び/又は円錐運動で揺動150しやすい。LSS110の激しい揺動は相殺され、排除され、その結果、その人は所望の対象点又は対象場所160に送達され得る。
【0016】
LSSは、様々なフォームファクタをとることができる。
図1、
図2A~
図2B、
図3、及び
図4A~
図4Cは、いくつかの異なる配置及びハウジング設計を示す。図示されたシステムはそれぞれ、2対の一方向推進器を採用する。他の実施形態では、積荷安定システムは、異なる数又は構成で双方向推進器を使用することができる。しかしながら、例示的な実施形態を説明するために、そのような実施態様を示す必要はない。
【0017】
図2Aは、一実施形態に係る、ボックス様ハウジング210を有する吊荷安定システムの等角
図200を示す。システム210は、箱状のエンクロージャ内に完全に囲まれており、推進器、ケーブル、及び積荷アタッチメント、並びに充電ノードのみの開放アクセスを可能にする。システム210の矩形ハウジングは、特に空気力学的ではないが、他の設計よりも大きい立方容積を収容し保護することができる。より大きく有用な内部容積は、より大きなエネルギー容量(例えば、より多くの電池又は他の電源手段)を可能にし、システム210が、再充電又は燃料補給の前に、より強力な推進器及び/又はより長い動作能力を提供することを可能にする。
【0018】
図2Bは、一実施形態に係る、六角形のセンターモジュール及び2つの推進アームを含む吊荷安定システム260の正面
図250を示す。システム260は、
図2Aのシステム210と比較して、改善された空気力学的プロファイルを提供する。システム260はまた、2つの推進アームが取り外し可能とすることができ、それによって、よりコンパクトな格納又は収納、及びより容易なメンテナンスを提供する。以下の
図11Bは、その推進アームが取り外されたシステム260を示し、
図12B~
図12Cは、取り外し可能な推進アームを示す。
【0019】
図3は、一実施形態に係る構造的特徴を示す、吊荷安定システム310の切欠き斜視
図300を示す。システム310は、内部骨格及び外部シェルから構成される。外部シェルは、内部骨格を取り囲む炭素繊維のような軽量材料である。骨格は、軽量の機械加工合金で構成される。
図300の切欠き又は透明なハウジングは、様々な内部構成要素及び構造要素を示す。構造要素は、水平構造ボックス梁の上方及び下方の電気ダクト付きファン推進器を支持するC字形アームに接続する水平構造ボックス梁を含む。C字形アームの頂部は、
図14を参照して以下で論じられるものと同様の円形センサである。また、目立って見えるのは、電気ダクト付きファン推進器に電力を供給する電源ケーブルが取り付けられた暗い矩形形状の電池である。
【0020】
様々な実施形態では、LSSは、オンボードと遠隔電力との組み合わせによって電力供給されてもよい。多くの環境において、LSSの全ての電力は、ボード上に収容され、外部電源又は送達手段の利用可能性に依存せずに完全に自律的な動作を可能にする。状況によっては、ヘリコプタやクレーンなど、LSSが吊り下げられているプラットフォームは、吊りケーブルをLSSまで延在するラインを通ってLSSに電力を供給することができる。いくつかの他の状況では、プラットフォームはLSSに電力を提供することができ、この電力は、断続的に使用するために、ボード上のより小さい電力又は予備電力を運ぶ。
【0021】
【0022】
ハウジング420は、金属、プラスチック、ガラス繊維強化プラスチック、又は炭素繊維などの任意の好適な材料で形成されてもよい。図示したハウジング420のスリムかつ及び空気力学的プロファイルは、最小の耐風性、短い中央梁長、推進器の改善された効率、障害物から保護又は迂回するのに十分な突起、及びLSSのメンテナンスのための容易なアクセスを提供する。ハウジングは、封止されたハッチ又は1つ以上の取り外し可能なパネルを介してLSSの内部空間へのアクセスを可能にし、メンテナンス及び検査を可能にする。
【0023】
LSS410の更なる特徴及び構成は、以下の図に記載されている。
【0024】
図5の
図500は、一実施形態に係る吊荷安定システム410の中央構造部材510を示す。構造部材510は、積荷を支える主な引張梁として機能する。したがって、LSSによって安定化される積荷を支えるのに十分なケーブルが接続されているケーブルと同程度の強度で構築する必要がある。様々な実施形態において、主梁構造部材510は、必要とされる強度及び遭遇すると予想される積荷の種類に応じて、アルミニウム、鋼、又は炭素繊維強化プラスチックで構築されてもよい。例えば、炭素繊維は非等方性材料であり、引張積荷の上にあるため、スリング積荷は、軸外にあり得る急速な強力な衝撃を生成する場合があり、アルミニウム又は鋼は、その用途にとってより適切であろう。
【0025】
構造部材510の頂部は、巻き上げリング520である。巻き上げリング520は、構造部材510の一部として完全な単一ユニットに機械加工することができ、又は構造部材510の頂部にボルト止めすることもできる。巻き上げリング520は、LSSの構造部材510が、積荷を吊り下げるための物体、例えばケーブル、ワイヤ、又はロープに取り付けられることを可能にする。例えば、巻き上げリング520は、クレーン、ブーム、ヘリコプタ、又は他の持ち上げ装置からの巻き上げストラップ又はケーブルの端部に引っ掛けられてもよい。いくつかの実施形態では、巻き上げリングは、フック又は他の取り付け機構であることが適切である。
【0026】
回転軸受530は、巻き上げリング520が積荷下で自由にスピンすることを可能にする。軸受530は、例えば、玉軸受インターフェースを含んでもよい。巻き上げリング520上の回転軸受530は、LSS及び外部積荷からの巻き上げケーブルの捻れ又は巻き上げから回転エネルギーを切り離す。これにより、LSSは、ケーブル内の任意の捻れによって影響を受けることなく、持ち上げ用ケーブルの下を回転させることが可能になり、その結果、LSSは、積荷を安定させるために必要な任意の方向に配向(例えば、配向を維持又は変更)することができる。これにより、ケーブルからの捻れモーメントが積荷に適用されることを低減する。
【0027】
図示した実施形態では、構造部材510の底部には、
図6A~
図6B及び
図7A~
図7Bを参照して以下に示すように、1つ以上の異なるスリーブオプションを取り付けるためのボルト穴などの取り付け手段540が設けられている。
【0028】
いくつかの実施形態では、ケーブルが引っ掛かる中央構造部材の代わりに、積荷安定システムは、ケーブルに又はケーブルの周りをラッチングするためのケーブル取り付け機構を提供する。例えば、積荷安定システムは、ケーブルを位置決めするための溝又はスロット、及びケーブルを保持又は締結するためのレバー機構を含むことができる。ケーブルの対向する側に力を加えることによって、積荷安定システムは、積荷の上のケーブルにしっかりと装着されることができる。いくつかの実施形態では、このようなクランプオンシステムは、硬質表面と反対側の圧力を提供し、圧力クランプを可能にするホイールを含む。いくつかの実施形態では、ホイールは、クランプされたときに回転することができ、システムがケーブルを上昇又は下降させることを可能にする。
【0029】
ケーブルに沿った位置に積荷安定システムを取り付けるためのケーブル取り付け機構を有する実施形態では、ケーブルは積荷を直接支持し、LSSはケーブルの端部と積荷の頂部との間に装着されない。次いで、LSSは、LSSが積荷の重量を支えないように、ケーブル上で支持される。したがって、このようなケーブル取り付け機構を用いる実施形態は、積荷安定システム装置の中心を通る引張梁を必要としない。追加の回転可能な要素は、ケーブルに取り付けられた機構の周囲を回転させることなどによって、積荷安定システムがケーブルの周りを自由に回転することを可能にし得る。
【0030】
クランプオンケーブル取り付け機構は、既存の動作巻き上げシステム及び外部積荷システムとの単純なインターフェースを提供し、積荷を吊り下げるために使用されるケーブルとの直接的な干渉を必要としない。
【0031】
このようなケーブル取り付け機構の実施態様の詳細は、2018年2月8日に出願された「SUSPENDED LOAD STABILITY SYSTEM THROUGH SELF POWERED AUTOMATED ELECTRIC DUCT FAN CONTROL」という名称の米国特許仮出願第62/627,920号に更に記載されており、これらは参照により本明細書に組み込まれる。
【0032】
図に戻ると、
図6A~
図6Bは、一実施形態に係る、積荷を取り付けるために中央構造部材510に接続する、2つの代替の主梁スリーブを示す。
図6Aは、積荷フック630及び4つの弓又はDリング棚640を含む主梁スリーブ610の斜視
図600を示す。棚640はそれぞれ、主梁スリーブ610に固定された棚マウント645に装着されている。積荷フック630は、アダプタプレート635によって主梁スリーブ610に取り付けられる。積荷フック630は、自動(例えば、電子的に)制御された解放フック、又はボタン押しを伴う航空機又はクレーンケーブルのコクピットから遠隔制御可能な1つ以上の遠隔作動フックなどの自動フックであってもよい。1つ又は複数のフックは、枢動点を中心とした回転を可能にするか、又は吊り下げられた物体の回転を制限し得る。
【0033】
図6Bは、積荷フック630及び4つの弓又はDリング棚640を含む主梁スリーブ660の斜視
図650を示す。主梁スリーブ660はまた、スリーブ660に溶接されるか、そうでなければ固定され、かつ棚マウント645が装着される4つの突出するI状梁670を含む。
【0034】
図7A~
図7Bは、一実施形態に係る積荷を取り付けるための、2つの代替の主梁スリーブ610及び660のそれぞれに取り付けられた中央構造部材510の側面
図700及び750をそれぞれ示す。
図7A及び
図7Bは、構造部材510の頂部にある回転軸受530に装着された巻き上げリング520、及び構造部材510の底部の積荷フック630を示す。図示した実施形態では、LSS主梁は、積荷フック630によって積荷に接続される。様々な実施形態では、底部接続は、例えば現在の飛行動作で使用される底部巻き上げリング又は別の取り付け機構であってもよい。
【0035】
いくつかの実施形態では、LSSは、LSSの運動と吊荷とを結合する吊荷のためのインターフェースを提供する。すなわち、図示した実施形態では、積荷フック630は、主梁構造部材510とは独立して回転又はスピンしないように構成されている。積荷は、LSSに回転可能にロックされる。いくつかの実施形態では、LSS積荷フックインターフェースは、主梁構造部材510の反対端にある巻き上げリング520の回転軸受530と同様の回転可能なフィッティングを含み、その結果、LSSは、LSSの下で積荷を回転させる必要なく回転することができる。
【0036】
図8は、一実施形態に係る、吊荷安定システム410の構造フレームワーク810の斜視
図800を示す。前述の図と同様に、
図8は、頂部に巻き上げリング520及び回転軸受530を有する主梁構造部材510を示し、主梁スリーブ610は、底部に棚640及びフックアダプタプレート635を含む。構造部材510に接続されたフレームワーク810は、水平桁825を支持する一対の楕円形のリブ820を含む。水平桁825は、中空管で形成され、例えば炭素繊維であってもよい。
【0037】
水平桁825は次に、リブ820と平行に設定された、推進器装着リブ830に接続される。推進器装着リブ830は、それらの上端及び下端において、推進器をフレームワーク810に取り付けるための、推進器取り付け機構点840を含む。加えて、推進器装着リブ830は、電池トレイ850内の電池などの電源を収容するための中央開口部を備えて構成される。
【0038】
図9は、一実施形態に係る、吊荷安定システム410の構造フレームワーク810に装着された構成要素の斜視
図900を示す。図示した実施形態では、
図8の電池トレイ850は、電池910などの電源で充填される。電源は、直列及び/又は並列に配線された、リチウム-ポリマー(lithium-polymer、LiPo)セルなどの、単一の電力ブリック又は電池セルのアレイであってもよい。電池910は、容易に検査するために電池トレイ850から取り外すことができる。電池は、充電ドックに接続するLSS410上のノードを介して、LSSに設置されている間に(すなわち、それらを取り外す必要なく)充電することができる。データリンクは、マイクロコントローラユニット又はプロセッサが、電池電圧及びリアルタイム電力分散又は消費を含む(ただしこれらに限定されない)電力情報を監視することを可能にする。
【0039】
また、補助電池920は、主梁に取り付けられている。補助電池920は、例えば、推進器が主電池910から過剰量の電力を引き出す場合でも、プロセッサへの電力の定常供給を可能にする。
【0040】
推進器コントローラ930は、プロセッサが、推進器の速度、動力引き込み、及び推力を制御することを可能にする。推進器コントローラ930は、例えば、電気ダクト付きファン(「EDF」)用の電子速度コントローラ(electronic speed controller、「ESC」)であってもよい。ESCには通常、少なくとも3つの接続部があり、電源、推進器、及びプロセッサ若しくはマイクロコントローラ、あるいはその両方である。ESCは、電源から電力を引き出し、それを推進器に割り当てることにより、推進器にプッシュするべき電力の量を制御する。
【0041】
図10は、一実施形態に係る、構造フレームワーク810に装着された吊荷安定システム410の構成要素の斜視
図1000を示す。図示した実施形態では、プロセッサ1010又は中央処理装置(central processing unit、CPU)は、フレームワーク810内に中央に装着される。
【0042】
プロセッサ1010は、信号ボードコンピュータ及び1つ以上のマイクロコントローラユニット(microcontroller units、「MCU」)を含む埋め込みシステムであってもよい。CPU及びMCUは、例えば、全てのデータリンク接続が行われる文字どおりのブラックボックス内に含まれる。ブラックボックスは、耐擦プラスチック又はポリマーであり、天候及び他の動作条件などの環境及び動作要因からシステムを保護する。いくつかの実施形態では、CPU及びMCUは、同じプリント回路基板(printed circuit board、PCB)に装着される。
【0043】
フレームワーク810内にはまた、無線送受信機1020が装着され、無線送受信機1020は、別個の送信機及び受信機、並びに無線通信用のアンテナを形成することができる。送受信機1020及び/又は無線アンテナはまた、プロセッサ1010と同じプリント回路基板に装着されるか、又はプリントされてもよい。
【0044】
図10に示す実施形態では、ベクトルナビゲーションユニット1030は、慣性測定ユニット(inertial measurement unit、「IMU」)を含む。IMUは、プロセッサ1010に慣性ナビゲーションデータを提供し、プロセッサ1010の隣のフレームワーク810内に中央に装着される。
【0045】
積荷安定システムのいくつかの実施形態は、モジュール式である。例えば、LSSは、センターモジュール及び推進器又は推進器アームアセンブリに分割されてもよい。
図11Aは、一実施形態に係る、吊荷安定システムの代替的なセンターモジュール設計1100の斜視
図1100を示す。LSSセンターモジュール1110は、最小2つの推進器アーム(以下の
図12Dに例示される推進器アームなど)、及び所望のベクトル推力を達成するための最大4つを有するように構成されてもよい。他のLSSの実施形態と同様に、システム1110は、自己動力化され、Bluetooth(登録商標)、Wi-Fi、及び/又は無線周波数(radio frequency、RF)送信及び受信のための通信アクセスポイントと完全に無線である。
【0046】
図11Bは、一実施形態に係る、吊荷安定システム1160の別の代替的なセンターモジュール設計の正面
図1150を示す。LSSセンターモジュール1160は、緊急遮断ピン1170を含む緊急遮断機構を含む。ピン1170は、ラインに接続されてもよい。次いで、ピン1170を引っ張って、LSSの緊急遮断を引き起こすことができる。センターモジュール内部では、遮断ピン存在センサがピン1170の位置を感知して、それが存在するか否かを決定する。システム1160は、ピン1170が存在するときにのみ動作することができる。ピン1170が存在しない場合、システム1160は起動しない。ピン1170は、ピン穴に戻るように配置することによって、再設置することができる。
【0047】
図12Aは、一実施形態に係る吊荷安定システムで使用するように構成された、推進器1210の斜視
図1200を示す。LSSは、センターモジュールに接続された推進器1210を含む。これらの推進器1210は、空気、水、又は気体などの流体を、移動を可能にする方向に押し出す。例えば、推進器1210は、回転子ブレードを回転させる電気モータを含むダクト付きファンを含むことができる。回転子ブレードは、流体が押し出される空気力学的シュラウド又はダクト内に収容される。ファンの場合、流体は、回転子ブレードを通過して空気が押し出され、推力を引き起こす。
【0048】
空気は、システムの前の入口を通って捕捉される。いくつかの実施形態では、推進器1210のブレードは、両方の方法をスピンすることができ、推進器を双方向にすることができる。流体を推進する他の手段と同様に、双方向推進器は、前方及び後方の両方向に空気を押すことができる。様々な実施形態において、推進器のケーシング内に成形されたフィンは、ブレード断面に直交する、すなわち、推進器1210の前後方向に最適なベクトル空気流を生成するのに役立つ。
【0049】
図12Bは、一実施形態に係る吊荷安定システムの2推進器推進アーム1230の斜視
図1225を示す。推進アーム1230は、例えば、上の
図11BのLSSセンターモジュール1160又は上の
図2Bの積荷安定システム260と互換性がある。いくつかの推進器は、後方よりも前方方向に推力を発生させるのに効率的である。したがって、ファンは、推進アーム1230に例示されるように、対向する一次推力ベクトルと共に配向され得る。
【0050】
図示した実施形態では、LSSは、モジュール式ユニットに分解される能力を有する。推進器1210は、容易に格納するためにアーム1230から切断することができ、アーム1230は、センターモジュール1160から切断することができる。例えば、プッシュボタン解放ピン及び電気インターフェースにより、推進器及びアームの各組み合わせを解放し、センターモジュール1160から切断することができる。
【0051】
図12Cは、一実施形態に係る、吊荷安定システムの2推進器推進アーム1260用の支持部材の斜視
図1250を示す。図示された支持部材は、推進器1210の周りを接続し、推進器1210がセンターモジュール1260に接続することを可能にする。推進器1210の周囲に巻き付く類似の支持部材が、上の
図3に示されている。
【0052】
図12Dは、一実施形態に係る、吊荷安定システムの別の2推進器推進アーム1280の等角
図1275を示す。推進アーム1280は、例えば、上の
図11AのLSSセンターモジュール1110と互換性がある。推進アーム1280は、格納及び展開を簡素化するように折り畳むように構成されている。展開状態では、推進アーム1280は、LSSセンターモジュール1110の水平面と平行である。アームは、0-90度から、例えば手動、バネ式、又は電動式インターフェースを通じて展開することができる。
【0053】
図13A~
図13Cは、一実施形態に係る、吊荷安定システムの構造フレームワークに装着された推進器の斜視図、正面図、及び側面図を示す。
図13Aは斜視
図1300を示し、
図13Bは正面
図1350を示し、
図13Cは側面
図1375を示す。様々な実施形態において、推進器1210は、リブ830上の推進器取り付け機構点840に接続するための機構1320を含む。いくつかの実施形態では、推進器1210は、ツールなしで取り付け、かつ取り外すことができる。いくつかの実施形態では、推進器1210の外側に、推進アームが推進器1210に確実にボルト締めされ得る、ファンシュラウドの重心と対称な対向場所にねじ穴が存在する。
【0054】
推進器は、単一のケーブルに束ねられた一連のワイヤによって接続することができる。ワイヤは、限定するものではないが、EC5などの多極高耐久性コネクタなどのコネクタで終端する。雌型接続側は、LSSセンターモジュール上、例えば、リブ830の推進器取り付け機構点840にあり、一方、雄型は、推進器1210側にあり、例えば、機構1320に関連付けられているか、LSS推進アームの端部近くにある。
【0055】
図14は、一実施形態に係る、空気力学的ハウジング420上に装着されたセンサを含む吊荷安定システム410の斜視
図1400を示す。LSSセンサアレイは、慣性測定システム、配向測定システム、及び絶対位置測定システムを含んでもよい。慣性測定システム(inertial measurement system、「IMS」)は、3自由度(3 degrees of freedom、3DOF)加速度計、ジャイロスコープ、及び微小電気機械システム(microelectromechanical system、MEMS)センサであり得る重力センサを含んでもよい。配向測定システムは、コンパス、傾斜計、方向エンコーダ、及び無線周波数相対軸受システムなどのマグノメータ又は磁力計を含んでもよい。絶対位置測定システムは、全地球測位システム(global positioning system、GPS)センサ1430を含んでもよい。
【0056】
センサアレイは、近接センサ又は光検出及び測距(light detection and ranging、LIDAR)システム1410(例えば、回転又は線形)、及び/又は1つ以上のカメラ若しくは赤外線(infrared、IR)センサなどの光学センサ1420を更に含んでもよい。近接センサは、地上高センサを含んでもよい。光センサは、全ての方向に面するシェルの全ての側面上に配置することができる。光学センサはまた、ユーザに視覚情報を提供することができる。この情報は、データリンクケーブル及び/又は無線送受信機を介して、LSSプロセッサによって通信される。近接センサ及び光センサは、障害物(例えば、木の庇の一部)を検出し、障害物を回避するためにLSSのコースを変更することによって、システムが360度の認識及び衝突回避を可能にする。このシステムはまた、地上(又は水中)位置データを航空機の操縦士及び乗組員に供給することもできる。
【0057】
追加のLSSセンサは、中央構造部材510上の積荷を測定するためのひずみセンサと、増分的又は絶対的であり得る回転エンコーダ又はス推進器1210速度センサ、及び遮断ピン1170存在センサを含んでもよい。
【0058】
LSSは、遠隔位置センサ又はビーコン、遠隔計算ユニット、又は標的ノード送受信デバイスを使用して、吊り下げプラットフォーム(例えば、ヘリコプタ自船)の運動、LSS及び吊荷、及び救助又は積荷目的などの対象の標的場所を特徴付けるのを支援することができる。
【0059】
LSSプロセッサ1010は、受信したセンサシステムデータにアルゴリズムを適用して、所望のシステム応答を得る。例えば、GPSセンサは、絶対位置を再調整するためのリアルタイム運動(real-time kinetic、RTK)アルゴリズムを通じて精密化することができる。測定値を、カルマンフィルタ法などの非線形データ融合法によって一緒に融合させて、測地空間におけるシステムの場所及び運動を正確に特徴付けるために、全ての自由度で最適な状態推定をもたらす。
【0060】
図15は、一実施形態に係る、遠隔インターフェース1550を含む吊荷安定システム410の動作構成要素を概略的に示す。LSSシステム410内にはセンサスイート1505があり、これは位置センサ1506、配向センサ1507、慣性センサ1508、近接センサ1509、基準場所センサ1510、及び推力センサ1511を含むことができる。LSS処理能力1520は、プロセッサ1010及びマイクロコントローラを含む。LSSメモリ1525は、一般に、ソリッドステートドライブなどのランダムアクセスメモリ(random access memory、「RAM」)及び非一時的大容量記憶デバイスを含み、ナビゲーションシステム1526、標的データ1527、及びモード又はコマンド状態情報1528を含む。通信システム1530は、無線送受信機1020などの無線システム1531、及び有線システム1532を含む。LSS出力1515は、推進器コントローラ930を介して推力制御1516を含む。電力管理システム1540は、例えば電池910から電源を調節及び分配する。データバスは、LSSの様々な内部システム及び論理構成要素を接続する。
【0061】
対話型ディスプレイ又は遠隔インターフェース1550は、エアフレームへの自己動力式又は配線式が可能な計算ユニットである。対話型ディスプレイ1550は、例えば無線で、LSSからデータを受信する。LSSからのデータは対話型ディスプレイ1550上に表示される。計算データは、解析され、視覚的なキューに変換される。対話型ディスプレイはまた、以下で説明するように、オペレータの所望のコマンド状態をLSSに伝達する。
【0062】
対話型ディスプレイ又は遠隔インターフェース1550は、無線1571又は有線1572であり得る通信システム1570を介してLSS410と通信している。遠隔インターフェース1550からの出力1560は、画面1561及びオーディオキュー1562に表示される情報を含んでもよい。LSSを制御するための遠隔インターフェース1550への入力1565は、タッチスクリーン1566又はジョイスティック1567を通じたコマンドを含んでもよい。様々な実施形態では、遠隔インターフェース1550は、本明細書で説明される機能を集合的に提供する1つ以上の物理的及び/又は論理的デバイスを含んでもよい。
【0063】
システムの態様は、本明細書で詳細に説明されるコンピュータ実行可能命令のうちの1つ以上を実行するように具体的にプログラム、構成、又は構築された専用又は特別目的のコンピューティングデバイス又はデータプロセッサ内に具現化することができる。システムの態様はまた、ローカルエリアネットワーク(local area network、LAN)、広域ネットワーク(wide area network、WAN)、又はインターネットなどの通信ネットワークを通じてリンクされる遠隔処理デバイスによってタスク又はモジュールが実行される分散コンピューティング環境においても実施することができる。分散コンピューティング環境では、モジュールは、ローカル及び遠隔メモリ記憶デバイスの両方に位置してもよい。
図15に概略的に示されるように、積荷安定システム410及び遠隔ディスプレイインターフェース1550は、有線又は無線ネットワークによって接続される。
【0064】
図16は、一実施形態に係る吊荷安定システムの遠隔位置ユニット又は標的ノードの斜視
図1600を示す。遠隔位置ユニット又は標的ノードは、位置基準としてLSSと無線通信するように構成された外部センサスイート又はビーコンを含む。LSSが一次センサスイートと見なされる場合、二次センサスイート場所は、ケーブルがそこから吊り下げられるプラットフォームであり得、三次センサスイート場所は、積荷に対する対象場所(例えば、積荷を取得又は送達するための位置決め用)であり得る。
【0065】
遠隔位置ユニットは、その無線送受信機1020を介してLSSと通信し、位置基準を提供するように構成された位置送受信機を含むことができる。例えば、遠隔位置ユニットは、積荷が吊り下げられるヘリコプタ自船又はクレーンに取り付けることができる。
【0066】
いくつかの実施形態では、遠隔位置ユニット又は標的ノードは、手に嵌合するのに十分な大きさの耐久性ポリマー又はプラスチックで作製されたブラックボックス1610である。ボックス1610は、ボックスの側部又は頂部に外部アンテナ1620を有する。遠隔位置ユニットは、例えば、磁石、ボルト、又は任意の他の取り付け機構によって、例えば、ヘリコプタに取り付けられてもよい。標的ノードは、地面上の場所に落とされてもよく、又は、例えば、生命保存装置若しくは他の浮動式デバイス、救助者、ピックアップされる積荷、送達される積荷の場所、又は動作特定場所に取り付けられてもよい。
【0067】
図17は、一実施形態に係る、吊荷安定システムのための充電ステーションの斜視
図1700を示す。いくつかの実施形態では、LSSは、容易性かつ利便性のために、固定場所又はボード上の充電ステーション内に格納及び充電することができる。充電ステーション1710は、ヘリコプタのような機械に搭載された電力や発電機の電力などの利用可能な電源をオフにすることができる。
【0068】
充電ステーション1710は、ドッキング可能なステーションであり、LSSは、充電ステーション1710自体を接続し、充電ステーション1710自体の内部に配置され得る。いくつかの実施形態では、ドッキングステーションは、システムの両側に1つずつ2つのアーム1720を有する。カチッという音が聞こえるまでLSSをアームの間に配置すると、LSSが所定の位置にロックされまる。適切に配置すると、システムのフレーム上に配置されたLSS電気接点は、充電ステーション内の電気接点と接触することになり、LSSの充電を自動的に開始する。LSSは、充電ステーション1740の側のボタンを押すことによって解放することができる。
【0069】
充電の状態1730をユーザに示すために、充電システムは、充電のステータスを示す光を有する。充電ステーションの頂部に、ステーションは、動作的に必要とされる場合に電力スイッチ1750を有する。一方、オペレータはまた、充電ステーションをオン/オフにし、ポータブル対話型ディスプレイ1550を介して充電状態を見ることもできる。
【0070】
図18は、一実施形態に係る、複数のモード又はコマンド状態を含む吊荷安定システムの動作ルーチン1800を示す。
【0071】
ブロック1805では、積荷が吊り下げられるケーブルに積荷安定システム装置が設置される。システムは、設置のために給電される必要はない。
【0072】
ブロック1810では、LSSが起動される。いくつかの実施形態では、システムは、LSSのセンターモジュールの面上に位置するボタンを押すことによって初期化することができる。システムを初期化し得る容易にアクセス可能な外部ボタンの近くに、別のボタンがあり、押すと即座にシステムを遮断することを可能にする。センターモジュール上の初期化インターフェースに加えて、システムはまた、システムのすぐ隣にはいないオペレータによっても初期化することができる。ケーブルの端部上の救助を含むがこれらに限定されない1人以上の外部オペレータは、LSSに無線でリンクされた1つ以上の対話型ディスプレイ1550上のボタンを押すことによって、システムを初期化することができる。
【0073】
ブロック1815では、LSSが起動され、オペレータによって選択されたLSS機能モード又はコマンド状態のうちの1つで動作1820に進む。システムの機能モード又はコマンド状態は、
アイドルモード1821では、LSSの全ての内部システムが動作している(例えば、LSSはその運動を観察し、修正アクションを計算する)が、積荷の運動に影響を及ぼすアクションなしで、推進器が停止されるか、又はアイドル速度のみを維持する。
【0074】
相対位置vs自船モードの維持1822では、LSSは、吊り下げられた原点に対して安定化される。例えば、LSSがヘリコプタよりも低い積荷で吊り下げられると、LSSは、ヘリコプタの直下に留まる。LSSは、自船運動を局所化し、任意の他の吊荷運動を大きく減衰させるのに必要な修正アクションを実行する。自船が低速で移動している場合、LSSは、2つのエンティティが協調して移動するように速度を結合する。
【0075】
積荷への外乱が生じると、LSSは外乱の方向に推力を与えて外乱を相殺し、揺動を排除する。
【0076】
位置への移動/位置での停止モード1823では、LSSは固定位置に安定化し、ヘリコプタ又は他の吊り下げプラットフォームの天候又は小さな移動の影響を相殺する。このモードは、全ての運動を停止させる効果を有する。オペレータは、遠隔インターフェース1550を介して所望の標的位置をLSSに送信することができる。これは、少なくとも2つの方法で達成することができる。
【0077】
標的ノード位置1824では、オペレータは、LSS遠隔位置ユニット又は標的ノード1610を所望の下降場所(例えば、
図1の場所160)に置くことができる。標的ノード1610は、所望の位置を示すためにLSSと無線通信し、LSSは所望の場所への操作によって応答する。遠隔インターフェース1550UIは、両方のエンティティの場所情報を受信し、表示する。
【0078】
ユーザ指定位置1825では、オペレータは、遠隔インターフェース1550UIを使用して、指定位置(例えば、緯度及び経度座標)をLSSに命令された場所として送信することができる。次いで、システムは、吊荷を所望の位置に着実に方向付ける。システムは、位置情報及び距離情報に関するフィードバックを遠隔インターフェース1550に同時に送信する。
【0079】
保持位置モード1826では、LSSは、全ての運動に抵抗し、自船の運動とは無関係にその現在位置を維持する。このモードは、全ての運動を停止させる効果を有する。このモードは、それぞれ、自船速度、安全要因、及び物理的制約に対する条件付き応答を有する。
【0080】
直接制御モード1827は、3自由度のLSSのジョイスティック動作である。オペレータは、位置決め、回転、及び推進器の出力レベルを直接制御することができる。LSSは完全に閉ループであり、動作中に外部制御を必要としないが、ユーザ制御の選択肢が存在する。
【0081】
ブロック1830において、オペレータは動作を完了し、LSSを取得する。
【0082】
ブロック1835では、システムは、対話型ディスプレイ上のボタンを押すことによって、又はセンターモジュール自体のボタンを押すことによって、遮断することができる。LSSが圧潰可能な推進アームを含む場合、それらは折り畳まれてもよい。積荷は積荷フック630から取り外され、次いで、吊り下げられたケーブルは、LSSの頂部で、巻き上げリング520から取り外される。次いで、LSSは、その充電器又は任意の便利な場所に収納されてもよい。
【0083】
図19は、一実施形態に係る吊荷安定システムの決定及び制御ルーチン1900を示す。LSSは、ほぼリアルタイムでその位置及び運動を理解するために閉ループで動作し、一連の計算を実行して、最も所望のシステム応答を決定し、次いで、動作中にケーブルの揺動を軽減するために、空気推進システム推進器アレイに所望の応答を送信する。このプロセスは、システムが電力供給される限り、連続的である。
【0084】
LSS上位レベル制御フロー
図1900は、加速度計、ジャイロスコープ、磁力計、GPS、ライダー/レーダー、マシンビジョン、及び/又は距離探知機を含む(ただしこれらに限定されない)大量のセンサからのデータ取得を用いてブロック1905で開始する。
【0085】
ブロック1910では、LSSはセンサからのデータを組み合わせて、その位置、配向、運動、及び環境を説明するデータ融合を取得する。
【0086】
センサデータを、非線形カルマンフィルタを介してLSSによって融合及びフィルタリングして、システムの状態の正確な表現を得る。ファジー調整された比例、積分、及び微分フィードバックコントローラを含む従来の閉ループ制御方法は、ディープ学習ニューラルネットワーク及び将来の伝播カルマンフィルタを含む高度な制御方法との双方向通信を有し、更なるリアルタイムシステム特定を可能にする。
【0087】
ブロック1915では、LSSは、データ融合に基づいて、及び決定エンジン及び制御エンジンから状態推定器へのフィードバックに基づいて、非線形状態推定を使用して近い将来の運動を投影する。
【0088】
ブロック1920では、LSS決定及び制御エンジンは、ユーザが選択した機能モード又はコマンド状態1820によって形成されていない状態推定1915、並びに推力及び配向マッピング1930及び出力制御1940からの追加的なフィードバックを取得し、LSSがどのように移動又は力を及ぼすかを決定する。
【0089】
システムアルゴリズム出力は、所望の推力応答が位相制御を介して電気ダクトファンに送信される運動コントローラに送信される。正味推力出力は、エンコーダ及びロードセルを通じてリアルタイムでマッピングされ、次いで、閉ループ制御のためにホスト及びコントローラに返送される。
【0090】
ブロック1930では、LSS推力及び配向マッピングは、LSSがどのように移動又は力1920を及ぼすかのLSS決定を適用して、推力を決定する推力及び方向を判定する。
【0091】
ブロック1935では、ファンマッピングは、判定された推力及び配向を適用して推力を適用して、ファンマッピングを生成して推進器1210を制御し、LSSの判定された推力及び配向を達成する。
【0092】
ブロック1940において、LSS推進器1210は、命令された制御出力を及ぼし、不要な運動を相殺する推力の形態で動的応答を実施する。
【0093】
プロセス全体は、高レベルオペレータ選択機能制御モード以外に無人で自動化される。正味出力は、吊荷を安定化するための制御力である。
【0094】
状態インジケータライトは、LSSの様々な表面上に装着されて、LSSの視認性及び動作を上下から支援することができる。例えば、LSSは、LSSの縁部及び配向を特定する、推進器付近のLEDなどの外部照明を有してもよい。これにより、悪天候などの視認しづらい状況での特定が改善できる。動作中、対話型ディスプレイ及びシステム本体自体の両方で、LEDディスプレイインジケータは、システムがアクティブであり、有用な情報を伝達することを示す。
【0095】
図20Aは、一実施形態に係る吊荷安定システムの外部状態インジケータライトを有する頂部ケーブルリングの斜視図を示し、
図20Bは、一実施形態に係る吊荷安定システムの状態インジケータライトの上面図を示す。LSSハウジングの頂部及び巻き上げリング520の周囲の点灯状態インジケータは、LSSからオペレータに有用な様々な種類の情報を表すことができる。
【0096】
いくつかの実施形態では、状態インジケータライトディスプレイは、LSS信号受信の完全性を示すことができる。LSSプロセッサ1010は、信号強度を測定し、所定の閾値に基づいて、光の色を変化させて、そのような強度を示す。
【0097】
別の状態インジケータは、システムが示す推力の方向及び量を示すことができる。いくつかの実施形態では、矢印2010は、外側を指す最も内側の矢印が緑色である色LEDであり、次の矢印は黄色であり、第3の矢印は橙色であり、外側矢印は赤色である。LSSは、システムが積荷を移動しようとしている方向を示すために矢印インジケータ2010を照らし、システム出力を示すために矢印色階層を使用することができる。例えば、緑色インジケータ2010は、5%~25%システム出力レベルを示してもよく、黄色は、25%~50%、オレンジは50%~75%、及び赤色は75%~100%を示してもよい。高出力レベルはまた、システム出力を低減し、所望の積荷位置決めを維持するために、矢印2010によって示される方向に移動するための、クレーンオペレータ又は航空機操縦士などのプラットフォームオペレータに指示を提供する。
【0098】
同心中心リングLED2020はまた、緑色の内側リング、橙色の中間リング、及び赤色の外側リングなどの色を含んでもよい。円形LEDリング2020は、地上積荷の高さを示すことができる。例えば、緑色リングは、地上25フィート超の高さを示してもよく、橙色リングは、地上25フィート~10フィートの高さを示してもよく、赤色リングは、地上10フィート未満の高さを示してもよい。
【0099】
様々な実施形態では、外部LSS状態インジケータライトは、LSSの位置、LSSの配向、障害物からの距離、地上の高さ、無線送受信機の信号品質、LSSプロセッサのモード又はコマンド状態、積荷の慣性挙動、電源のエネルギー容量又は利用可能な電力、推進器の仕事積荷又は電力消費、各推進器からの推力、LSSの推力の運動又は方向、及びオペレータが積荷を吊り下げるプラットフォームを操作するための推奨方向のうちの1つ以上を示すように構成することができる。
【0100】
図21は、一実施形態に係る吊荷安定システムのための制御インターフェースのスクリーンショット2100を示す。対話型ディスプレイ1550は、システムの現在の状態のインジケータ及びシステムの制御を表示する画面を備えたLSSと無線通信する計算デバイスである。例えば、図示された表示画面は、各推進器1210に対する推力のグラフ2110と、電流ファン推力2130のエネルギー容量2120及びゲージの読み出しと、を含む。様々な実施形態では、対話型ディスプレイ1550はまた、吊り下げプラットフォーム及び/又は標的ノードの場所に対するLSSシステムの位置を示す。対話型ディスプレイ1550はまた、積荷の慣性挙動、推奨される対策、及びシステムの仕事積荷をリアルタイムで説明する視覚的(及び、適切な場合には可聴)インジケータの形態の積荷状態フィードバックも提供する。
【0101】
様々な実施形態では、対話型ディスプレイ1550は、
図18を参照して上述したように、システムの異なる機能モード又はコマンド状態を示す及び選択する異なるボタンを含む。オペレータがLSSに到達していない場合、オペレータはまた、対話型ディスプレイ1550を介してLSSを初期化することができる。制御インターフェース2100はまた、明るく赤色の「オフ」スイッチの形態の緊急遮断機構2140を含む。
【0102】
図22は、吊荷安定システムによる揺動積荷2230の運動及び積荷安定化2240の運動をプロットするグラフ2200を示す。Y軸上で、グラフは、この場合の積荷2210の角度位置(度)をプロットし、ヘリコプタの下で揺動する救助泳者を表す。X軸上では、グラフは、最初の30度の揺動からの経過時間(秒単位)2220であり、乱流による例外的に大きな外乱で、一方で、体重100kgの完全ギア付きの救助泳者をボート上に降ろす。垂直軸からのこのような大きな揺動は、泳者、自船乗組員、及びボートを必要としている人々にとって非常に危険な状況である。
【0103】
LSSがなければ、操縦士は、吊り下げられた泳者2230の制御を徐々に回復させるが、長時間にわたって揺れ続け、最終的にボートのレールを捕捉又はヒットして、デッキに落下することになる。対照的に、LSSでは、泳者は、自船の下の静かな垂直位置に素早く戻される。LSSは、30度の振動運動を10秒下で1度未満まで減衰させる。LSSをこのような動作に組み込むことにより、ヘリコプタのホバリング時間が短縮され、乗組員が泳者をボート上に安全に乗せることを可能にし、最終的に動作の危険性及び持続時間を減少させる。
【0104】
本明細書に記載される積荷安定システムは、横方向の揺れ及び回転揺動を排除するために、動的空気推進システムを介してケーブルに取り付けられた外部積荷の振り子状運動を制御する。LSSは、それが吊り下げられているプラットフォームの種類にとらわれない。それは、必要な飛行力学を特徴とし、全ての種類の吊荷で修正措置を実行することを特徴とする。吊荷の振り子揺動を相殺する内蔵型自己動力式閉ループ安定システムから恩恵を受けることができる多くの他の用途の中でも、外部積荷、スリング積荷、及び救助巻き上げ動作に適合可能である。
【0105】
本明細書に具体的な実施形態が例示及び説明されてきたが、当業者は、本開示の範囲から逸脱することなく、図示及び記載された特定の実施形態の代わりに置換されてもよいことが当業者には理解されるであろう。例えば、様々な実施形態が、ヘリコプタ自船に関して上述されているが、他の実施形態では、LSSは、建設クレーン又はガントリの下で使用されてもよい。本出願は、本明細書で論じられる実施形態の任意の適応又は変形を網羅することを意図する。