IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジョンソン コントロールズ テクノロジー カンパニーの特許一覧

特許7478792ビルディング機器のためのモデル予測的メンテナンスシステム、同メンテナンスを実施する方法及び非一時的コンピュータ可読媒体
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-24
(45)【発行日】2024-05-07
(54)【発明の名称】ビルディング機器のためのモデル予測的メンテナンスシステム、同メンテナンスを実施する方法及び非一時的コンピュータ可読媒体
(51)【国際特許分類】
   G06Q 50/163 20240101AFI20240425BHJP
   G06Q 10/20 20230101ALI20240425BHJP
【FI】
G06Q50/163
G06Q10/20
【請求項の数】 20
【外国語出願】
(21)【出願番号】P 2022160166
(22)【出願日】2022-10-04
(62)【分割の表示】P 2020109855の分割
【原出願日】2020-06-25
(65)【公開番号】P2022188183
(43)【公開日】2022-12-20
【審査請求日】2022-10-24
(31)【優先権主張番号】16/457,314
(32)【優先日】2019-06-28
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】598147400
【氏名又は名称】ジョンソン コントロールズ テクノロジー カンパニー
【氏名又は名称原語表記】Johnson Controls Technology Company
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100095500
【弁理士】
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100111235
【弁理士】
【氏名又は名称】原 裕子
(72)【発明者】
【氏名】ターニー、 ロバート ディー.
(72)【発明者】
【氏名】シンハ、 スディ アール.
(72)【発明者】
【氏名】ウェンゼル、 マイケル ジェイ.
(72)【発明者】
【氏名】エルブサット モハマッド エヌ.
【審査官】貝塚 涼
(56)【参考文献】
【文献】国際公開第2018/217251(WO,A1)
【文献】特開2003-141178(JP,A)
【文献】特開2005-148955(JP,A)
【文献】古田均,PSOを用いた構造物のファジィ振動制御装置の配置とルールの同時最適化,知能と情報,日本,日本知能情報ファジィ学会,2008年12月15日,第20巻,第6号,第95-107頁,ISSN 1347-7986
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
ビルディング機器のためのモデル予測的メンテナンスシステムであって、
前記モデル予測的メンテナンスシステムは、
ビルディングでの可変の状態又は条件に影響を及ぼすように前記ビルディング機器を動作させることと、
最適化期間の継続期間にわたって前記ビルディング機器を動作させるコストを予測することと、
メンテナンス予算を画定する1つ以上の予算制約を生成することと、
前記ビルディング機器に関するメンテナンススケジュールを決定するために目的関数を最適化すること
行うべく構成される処理回路を含み、
前記目的関数は、
前記ビルディング機器のメンテナンスコストと
前記ビルディング機器を動作させる前記予測されたコストと
前記メンテナンス予算に対する前記ビルディング機器のメンテナンスコストに基づくペナルティコスト項と
を含む、モデル予測的メンテナンスシステム。
【請求項2】
前記メンテナンス予算は、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予算を含み、
前記メンテナンススケジュールは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対するスケジュールを含み、
前記メンテナンスコストは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予測コストを含む、請求項1のモデル予測的メンテナンスシステム。
【請求項3】
記1つ以上の予算制約は、前記ペナルティコストが、
(1)前記メンテナンス予算を超える支出に関連する第1のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること、又は
(1)前記メンテナンス予算未満の支出に関連する第2のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること
の少なくとも一方であることを必要とする、請求項1のモデル予測的メンテナンスシステム。
【請求項4】
前記処理回路はさらに、前記ビルディング機器からの閉ループフィードバックに基づいてリアルタイムで前記目的関数を動的に更新するべく構成され、請求項1のモデル予測的メンテナンスシステム。
【請求項5】
前記1つ以上の予算制約は、
1つ以上の予算期間と、
前記1つ以上の予算期間に関連する1つ以上のメンテナンス予算のそれぞれと
に基づいて生成される、請求項1のモデル予測的メンテナンスシステム。
【請求項6】
前記1つ以上の予算制約は、前記1つ以上の予算期間のそれぞれにわたる前記メンテナンスコストが、前記1つ以上の予算期間のそれぞれに関連するメンテナンス予算を超えることができないことを示す、請求項5のモデル予測的メンテナンスシステム。
【請求項7】
前記処理回路は、
前記1つ以上の予算期間の1つ以上が部分的に前記最適化期間の外で生じるか否かを決定することと、
前記1つ以上の予算期間の1つ以上が部分的に前記最適化期間の外で生じるとの決定に応答して、部分的に前記最適化期間の外で生じる前記1つ以上の予算期間の前記1つ以上のそれぞれに関して、1つ以上の低減されたメンテナンス予算を決定することと
を行うべく構成される、請求項5のモデル予測的メンテナンスシステム。
【請求項8】
ビルディング機器のモデル予測的メンテナンスを実施する方法であって、
1つ以上の処理回路が、ビルディングでの可変の状態又は条件に影響を及ぼすように前記ビルディング機器を動作させるステップと、
前記1つ以上の処理回路が、最適化期間の継続期間にわたって前記ビルディング機器を動作させるコストを予測するステップと、
前記1つ以上の処理回路が、メンテナンス予算を画定する1つ以上の予算制約を生成するステップと、
前記1つ以上の処理回路が、前記ビルディング機器に関するメンテナンススケジュールを決定するために目的関数を最適化するステップと
を含み、
前記目的関数は、
前記ビルディング機器のメンテナンスコストと、
前記ビルディング機器を動作させる前記予測されたコストと、
前記メンテナンス予算に対する前記ビルディング機器のメンテナンスコストに基づくペナルティコスト項と
を含む、方法。
【請求項9】
前記メンテナンス予算は、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予算を含み、
前記メンテナンススケジュールは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対するスケジュールを含み、
前記メンテナンスコストは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予測コストを含む、請求項の方法。
【請求項10】
記1つ以上の予算制約は、前記ペナルティコストが、
(1)前記メンテナンス予算を超える支出に関連する第1のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること、又は
(1)前記メンテナンス予算未満の支出に関連する第2のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること
の少なくとも一方であることを必要とする、請求項の方法。
【請求項11】
前記1つ以上の処理回路が、前記ビルディング機器からの閉ループフィードバックに基づいてリアルタイムで前記目的関数を動的に更新するステップをさらに含む、請求項8の方法。
【請求項12】
前記1つ以上の予算制約は、
1つ以上の予算期間と、
前記1つ以上の予算期間に関連する1つ以上のメンテナンス予算のれぞれと
に基づいて生成される、請求項の方法。
【請求項13】
前記1つ以上の予算制約は、前記1つ以上の予算期間のそれぞれにわたる前記メンテナンスコストが、前記1つ以上の予算期間のそれぞれに関連するメンテナンス予算を超えることができないことを示す、請求項12の方法。
【請求項14】
コンピュータ実行可能命令が記憶された1つ以上の非一時的コンピュータ可読媒体であって、
前記コンピュータ実行可能命令は、モデル予測的メンテナンスシステムの1つ以上のプロセッサによって実行されると、前記モデル予測的メンテナンスシステムに、
ビルディングでの可変の状態又は条件に影響を及ぼすようにビルディング機器を動作させることと、
最適化期間の継続期間にわたって前記ビルディング機器を動作させるコストを予測することと、
メンテナンス予算を画定する1つ以上の予算制約を生成することと、
前記ビルディング機器に関するメンテナンススケジュールを決定するために目的関数を最適化することと
を含む動作を行わせ、
前記目的関数は、
前記ビルディング機器のメンテナンスコストと、
前記ビルディング機器を動作させる前記予測されたコストと、
前記メンテナンス予算に対する前記ビルディング機器のメンテナンスコストに基づくペナルティコスト項と
を含む、非一時的コンピュータ可読媒体。
【請求項15】
前記メンテナンス予算は、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予算を含み、
前記メンテナンススケジュールは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対するスケジュールを含み、
前記メンテナンスコストは、前記ビルディング機器を整備することと、前記ビルディング機器を修理することと、前記ビルディング機器を交換することとのうち少なくとも一つに対する予測コストを含む、請求項14の非一時的コンピュータ可読媒体。
【請求項16】
前記1つ以上の予算制約は、前記ペナルティコスト項が、
(1)前記メンテナンス予算を超える支出に関連する第1のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること、又は
(1)前記メンテナンス予算未満の支出に関連する第2のペナルティレートと、
(2)前記ビルディング機器を保守することに費やされた額と前記メンテナンス予算との差と
の積以上であること
の少なくとも一方であることを必要とする、請求項14の非一時的コンピュータ可読媒体。
【請求項17】
前記動作はさらに、前記ビルディング機器からの閉ループフィードバックに基づいてリアルタイムで前記目的関数を動的に更新することを含む、請求項14の非一時的コンピュータ可読媒体。
【請求項18】
前記1つ以上の予算制約は、
1つ以上の予算期間と、
前記1つ以上の予算期間に関連する1つ以上のメンテナンス予算のそれぞれと
に基づいて生成される、請求項14の非一時的コンピュータ可読媒体。
【請求項19】
前記1つ以上の予算制約は、前記1つ以上の予算期間のそれぞれにわたる前記メンテナンスコストが、前記1つ以上の予算期間のそれぞれに関連するメンテナンス予算を超えることができないことを示す、請求項18の非一時的コンピュータ可読媒体。
【請求項20】
前記動作はさらに、前記1つ以上の予算期間の1つ以上が部分的に前記最適化期間の外で生じるか否かを決定することと、
前記1つ以上の予算期間の1つ以上が部分的に前記最適化期間の外で生じるとの決定に応答して、部分的に前記最適化期間の外で生じる前記1つ以上の予算期間の前記1つ以上のそれぞれに関して、1つ以上の低減されたメンテナンス予算を決定することと
を含む、請求項18の非一時的コンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2019年6月28日出願の米国特許出願第16/457,314号の利益
及び優先権を主張する。米国特許出願第16/449,198号は、2018年2月13
日出願の米国特許出願第15/895,836号の一部継続出願であり、米国特許出願第
15/895,836号は、2017年5月25日出願の米国仮特許出願第62/511
,113号の利益及び優先権を主張する。これらすべての特許出願の内容全体が参照によ
り本明細書に組み入れられる。
【0002】
本開示は、概して、ビルディング機器のためのメンテナンスシステムに関し、詳細には
、予測最適化技法を使用してビルディング機器のための最適なメンテナンス戦略を決定す
るメンテナンスシステムに関する。
【背景技術】
【0003】
ビルディング機器は通常、ビルディング機器のためのメンテナンス戦略に従ってメンテ
ナンスされる。メンテナンス戦略の1つのタイプは、ランツーフェール(run-to-
fail)である。ランツーフェール戦略は、故障が発生するまでビルディング機器が稼
働できるようにする。この稼働期間中、ビルディング機器をメンテナンスするために、簡
単な動作メンテナンスタスク(例えば、オイル交換)のみが実施される。
【0004】
別のタイプのメンテナンス戦略は、予防的メンテナンスである。通常、予防的メンテナ
ンス戦略は、製造された機器によって推奨される予防的メンテナンスタスクの組の実施を
含む。予防的メンテナンスタスクは、通常、定期的な間隔(例えば、毎月、毎年など)で
実施され、間隔は、動作の経過時間及び/又はビルディング機器の稼働時間に応じ得る。
【発明の概要】
【0005】
本開示の一実装形態は、いくつかの実施形態によれば、ビルディング機器のためのモデ
ル予測的メンテナンス(MPM)システムである。MPMシステムは、いくつかの実施形
態によれば、ビルディングでの可変の状態又は条件に影響を及ぼすようにビルディング機
器を動作させるように構成された機器コントローラを含む。MPMシステムは、いくつか
の実施形態によれば、最適化期間の継続期間にわたってビルディング機器を動作させるコ
ストを予測するように構成された動作コスト予測器を含む。MPMシステムは、いくつか
の実施形態によれば、1つ又は複数の予算制約を生成するように構成された予算マネージ
ャを含む。MPMシステムは、いくつかの実施形態によれば、ビルディング機器に関する
メンテナンス及び交換スケジュールを決定するために、1つ又は複数の予算制約を受ける
目的関数を最適化するように構成された目的関数オプティマイザを含む。目的関数は、い
くつかの実施形態によれば、ビルディング機器のメンテナンス及び交換コストと、ビルデ
ィング機器を動作させる予測されたコストとを含む。
【0006】
いくつかの実施形態では、予算マネージャは、ペナルティコスト項を生成するように構
成される。目的関数は、いくつかの実施形態によれば、ペナルティコスト項を含む。
【0007】
いくつかの実施形態では、目的関数は、ペナルティコストを含む。1つ又は複数の予算
制約は、いくつかの実施形態によれば、ペナルティコストが、(1)メンテナンス及び交
換予算を超える支出に関連する第1のペナルティレートと、(2)ビルディング機器を保
守及び交換することに費やされた額とメンテナンス及び交換予算との間の差との積以上で
あること、又は(1)メンテナンス及び交換予算未満の支出に関連する第2のペナルティ
レートと、(2)ビルディング機器を保守及び交換することに費やされた額とメンテナン
ス及び交換予算との間の差との積以上であることの少なくとも一方であることを必要とす
る。
【0008】
いくつかの実施形態では、MPMシステムは、ビルディング機器からの閉ループフィー
ドバックに基づいてリアルタイムで目的関数を動的に更新するように構成された目的関数
生成器を含む。
【0009】
いくつかの実施形態では、1つ又は複数の予算制約は、1つ又は複数の予算期間と、1
つ又は複数の予算期間に関連するそれぞれの1つ又は複数のメンテナンス及び交換予算と
に基づいて生成される。
【0010】
いくつかの実施形態では、1つ又は複数の予算制約は、1つ又は複数の予算期間のそれ
ぞれにわたるメンテナンス及び交換コストが、1つ又は複数の予算期間のそれぞれに関連
するメンテナンス及び交換予算を超えることができないことを示す。
【0011】
いくつかの実施形態では、予算マネージャは、1つ又は複数の予算期間の1つ又は複数
が部分的に最適化期間外で生じるか否かを判断するように構成される。予算マネージャは
、いくつかの実施形態によれば、1つ又は複数の予算期間の1つ又は複数が部分的に最適
化期間外で生じるという判断に応答して、部分的に最適化期間外で生じる1つ又は複数の
予算期間の1つ又は複数のそれぞれに関して、1つ又は複数の低減されたメンテナンス及
び交換予算を決定するように構成される。
【0012】
本開示の別の実装形態は、いくつかの実施形態によるビルディング機器のためのモデル
予測的メンテナンス(MPM)システムである。MPMは、いくつかの実施形態によれば
、1つ又は複数のプロセッサを含む。MPMシステムは、いくつかの実施形態によれば、
1つ又は複数のプロセッサによって実行されると、1つ又は複数のプロセッサに動作を実
施させる命令を記憶する1つ又は複数の非一時的コンピュータ可読媒体を含む。動作は、
いくつかの実施形態によれば、最適化期間にわたる利用可能な予算を受信することを含む
。動作は、いくつかの実施形態によれば、最適化期間の継続期間にわたってビルディング
機器を動作させるコストを予測することを含む。動作は、いくつかの実施形態によれば、
ビルディング機器の1つ又は複数の劣化モデルに基づいて、最適化期間にわたるビルディ
ング機器の劣化の量を推定することを含む。動作は、いくつかの実施形態によれば、ビル
ディング機器を動作させる予測されたコストと、ビルディング機器の劣化の量とに基づい
て、利用可能な予算の一部をビルディング機器のメンテナンス及び交換に割り振ることを
含む。動作は、いくつかの実施形態によれば、ビルディング機器のメンテナンス及び交換
に割り振られた利用可能な予算の一部に基づく制御決定に従い、最適化期間の継続期間に
わたってビルディング機器を動作させることを含む。
【0013】
いくつかの実施形態では、動作は、ビルディング機器からのフィードバックとして受信
された機器性能情報を使用して、最適化期間の各時間ステップでのビルディング機器の信
頼性を決定することをさらに含む。ビルディング機器の劣化の量を推定することは、いく
つかの実施形態によれば、ビルディング機器の信頼性にさらに基づく。
【0014】
いくつかの実施形態では、動作は、利用可能な予算の割り振られた一部に基づいて目的
関数を最適化して、ビルディング機器に関するメンテナンス及び交換スケジュールを決定
することを含む。
【0015】
いくつかの実施形態では、動作は、最適化期間の各時間ステップでのビルディング機器
の動作効率を決定することを含む。ビルディング機器の劣化の量を推定することは、いく
つかの実施形態によれば、ビルディング機器の動作効率にさらに基づく。
【0016】
いくつかの実施形態では、動作は、オフラインで実施される。
【0017】
いくつかの実施形態では、動作は、利用可能な予算の割り振られた一部と等しくない合
計支出に関連するペナルティコストを決定することを含む。
【0018】
いくつかの実施形態では、動作は、ペナルティコストが、(1)利用可能な予算を超え
る支出に関連する第1のペナルティレートと、(2)ビルディング機器を保守及び交換す
ることに費やされた額と利用可能な予算との間の差との積以上であること、又は(1)利
用可能な予算未満の支出に関連する第2のペナルティレートと、(2)ビルディング機器
を保守及び交換することに費やされた額と利用可能な予算との間の差との積以上であるこ
との少なくとも一方であることを必要とする1つ又は複数の予算制約を生成することを含
む。
【0019】
本開示の別の実装形態は、いくつかの実施形態によれば、ビルディング機器のモデル予
測的メンテナンスを実施するための方法である。方法は、いくつかの実施形態によれば、
ビルディングでの可変の状態又は条件に影響を及ぼすようにビルディング機器を動作させ
るステップを含む。方法は、いくつかの実施形態によれば、最適化期間の継続期間にわた
ってビルディング機器を動作させるコストを予測するステップを含む。方法は、いくつか
の実施形態によれば、1つ又は複数の予算制約を生成するステップを含む。方法は、ビル
ディング機器に関するメンテナンス及び交換スケジュールを決定するために、1つ又は複
数の予算制約を受ける目的関数を最適化するステップを含む。目的関数は、いくつかの実
施形態によれば、ビルディング機器のメンテナンス及び交換コストと、ビルディング機器
を動作させる予測されたコストとを含む。
【0020】
いくつかの実施形態では、方法は、ペナルティコスト項を生成するステップを含む。目
的関数は、いくつかの実施形態によれば、ペナルティコスト項を含む。
【0021】
いくつかの実施形態では、目的関数は、ペナルティコストを含み、及び1つ又は複数の
予算制約は、ペナルティコストが、(1)利用可能な予算を超える支出に関連する第1の
ペナルティレートと、(2)ビルディング機器を保守及び交換することに費やされた額と
利用可能な予算との間の差との積以上であること、又は(1)利用可能な予算未満の支出
に関連する第2のペナルティレートと、(2)ビルディング機器を保守及び交換すること
に費やされた額と利用可能な予算との間の差との積以上であることの少なくとも一方であ
ることを必要とする。
【0022】
いくつかの実施形態では、方法は、ビルディング機器からの閉ループフィードバックに
基づいてリアルタイムで目的関数を動的に更新するステップを含む。
【0023】
いくつかの実施形態では、1つ又は複数の予算制約は、1つ又は複数の予算期間と、1
つ又は複数の予算期間に関連するそれぞれの1つ又は複数のメンテナンス及び交換予算と
に基づいて生成される。
【0024】
いくつかの実施形態では、1つ又は複数の予算制約は、1つ又は複数の予算期間のそれ
ぞれにわたるメンテナンス及び交換コストが、1つ又は複数の予算期間のそれぞれに関連
するメンテナンス及び交換予算を超えることができないことを示す。
【0025】
上記の概要は、単に例示にすぎず、何ら限定を意図するものではないことを当業者は理
解するであろう。特許請求の範囲によってのみ定義される、本明細書で述べるデバイス及
び/又はプロセスの他の態様、進歩性のある特徴及び利点は、本明細書で述べる詳細な説
明を添付図面と併せて読むことで明らかになるであろう。
【図面の簡単な説明】
【0026】
図1】いくつかの実施形態による、HVACシステムを備えたビルディングを示す図である。
図2】いくつかの実施形態による、図1のビルディングの加熱又は冷却負荷をサービス提供するために使用することができるウォーターサイドシステムのブロック図である。
図3】いくつかの実施形態による、図1のビルディングの加熱又は冷却負荷をサービス提供するために使用することができるエアサイドシステムのブロック図である。
図4】いくつかの実施形態による、図1のビルディングを監視及び制御するために使用することができるビルディング管理システム(BMS)のブロック図である。
図5】いくつかの実施形態による、図1のビルディングを監視及び制御するために使用することができる別のBMSのブロック図である。
図6】いくつかの実施形態による、ビルディングに設置された接続された機器からの機器性能情報を監視するモデル予測的メンテナンス(MPM)システムを含むビルディングシステムのブロック図である。
図7】いくつかの実施形態による、図6のMPMシステムに機器性能情報を提供する1タイプの接続された機器であり得る冷却器の概略図である。
図8】いくつかの実施形態による、図6のMPMシステムをより詳細に示すブロック図である。
図9】いくつかの実施形態による、図6のMPMシステムの高レベルオプティマイザをより詳細に示すブロック図である。
図10】いくつかの実施形態による、図6のMPMシステムを動作させるプロセスのフローチャートである。
図11】いくつかの実施形態による、最大予算のハード予算制約によって制約された状態で活動支出の増加による複合コストを最適化することを示すグラフである。
図12】いくつかの実施形態による、ペナルティコストのソフト予算制約によって制約された状態で活動支出の増加による複合コストを最適化することを示すグラフである。
図13】いくつかの実施形態による、ユーザインターフェースに接続された図8のMPMシステムを例示するブロック図である。
図14A】いくつかの実施形態による、追加の制約マネージャを備える図9の高レベルオプティマイザを例示するブロック図である。
図14B】いくつかの実施形態による、故障リスク予測器を含む図9の高レベルオプティマイザを例示するブロック図である。
図15】いくつかの実施形態による、ハード予算制約下での最適化期間にわたる累積メンテナンス支出を例示するグラフである。
図16】いくつかの実施形態による、ソフト予算制約下での最適化期間にわたる累積メンテナンス支出を例示するグラフである。
図17】いくつかの実施形態による、複数の予算期間を有する最適化期間にわたる累積メンテナンスコストを例示するグラフである。
図18】いくつかの実施形態による、部分的に最適化期間外に及ぶメンテナンス予算期間を伴う最適化期間にわたる累積メンテナンスコストを例示するグラフである。
図19A】いくつかの実施形態による、メンテナンス予算と推定メンテナンス支出との間の差に基づく関数としてペナルティコストを例示するグラフである。
図19B】いくつかの実施形態による、ビルディング機器の劣化に基づくビルディング機器の故障確率分布を例示するグラフである。
図19C】いくつかの実施形態による、ビルディング機器の劣化を低減するために実施されたメンテナンスに基づいて合計コストがどのように影響を及ぼされるかを例示するグラフである。
図20】いくつかの実施形態による、1つ又は複数のハード予算制約を受ける図13のMPMシステムを動作させるためのプロセスのフローチャートである。
図21】いくつかの実施形態による、ソフト予算制約を受ける図13のMPMシステムを動作させるためのプロセスのフローチャートである。
図22】いくつかの実施形態による、ビルディング機器の故障リスクを受ける図13のMPMシステムを動作させるためのプロセスのフローチャートである。
図23A-23B】いくつかの実施形態による、1つ又は複数の屋外VRFユニット及び複数の屋内VRFユニットを有する可変冷媒流量(VRF)システムの図である。
【発明を実施するための形態】
【0027】
概要
【0028】
図面を全体として参照すると、様々な例示的実施形態によるモデル予測的メンテナンス
(MPM)システム及びその構成要素が示されている。MPMシステムは、ビルディング
機器に関する最適なメンテナンス戦略を決定するように構成することができる。いくつか
の実施形態では、最適なメンテナンス戦略は、最適化期間(例えば、30週、52週、1
0年、30年など)の継続期間にわたるビルディング機器の購入、メンテナンス及び動作
に関連する総コストを最適化する決定事項の組である。これらの決定事項は、例えば、機
器の購入の決定、機器のメンテナンスの決定及び機器の動作の決定を含むことができる。
MPMシステムは、モデル予測制御技法を使用して、これらの決定事項の関数として総コ
ストを表す目的関数を定式化することができる。決定事項は、決定変数として目的関数に
含めることができる。MPMシステムは、様々な最適化技法のいずれかを使用して目的関
数を最適化(例えば、最小化)して、各決定変数に関する最適値を識別することができる
【0029】
MPMシステムによって最適化することができる目的関数の一例は、次式で示される。
【数1】
ここで、Cop,iは、最適化期間の時間ステップiにおいてビルディング機器が消費す
る単位エネルギーあたりのコスト(例えば、ドル/kWh)であり、Pop,iは、時間
ステップiにおけるビルディング機器の電力消費量(例えば、kW)であり、Δtは、各
時間ステップiの継続時間であり、Cmain,iは、時間ステップiにおいてビルディ
ング機器に対して実施されるメンテナンスのコストであり、Bmain,iは、メンテナ
ンスが実施されるか否かを示すバイナリ変数であり、Ccap,iは、時間ステップiに
おいてビルディング機器の新たなデバイスを購入する資本コストであり、Bcap,i
、新たなデバイスが購入されるか否かを示すバイナリ変数であり、hは、最適化が実施さ
れるホライズン又は最適化期間の継続時間である。
【0030】
目的関数Jの第1項は、最適化期間の継続期間にわたるビルディング機器の動作コスト
を表す。いくつかの実施形態では、単位エネルギーあたりのコストCop,iは、エネル
ギー価格データとして公益企業から受信される。コストCop,iは、時刻、曜日(例え
ば、平日か週末か)、現在の季節(例えば、夏か冬か)又は他の時間ベースの因子に依存
する時変コストであり得る。例えば、コストCop,iは、ピークエネルギー消費期間中
にはより高く、オフピーク又は部分ピークエネルギー消費期間中にはより低いことがある
【0031】
いくつかの実施形態では、電力消費量Pop,iは、ビルディングの加熱又は冷却負荷
に基づく。加熱又は冷却負荷は、ビルディング占有、時刻、曜日、現在の季節又は加熱若
しくは冷却負荷に影響を与え得る他の因子に応じて、MPMシステムによって予測するこ
とができる。いくつかの実施形態では、MPMシステムは、気象サービスからの天気予報
を使用して加熱又は冷却負荷を予測する。電力消費量Pop,iは、ビルディング機器の
効率ηにも依存する。例えば、高い効率で動作するビルディング機器は、低い効率で動
作するビルディング機器に比べて、同じ加熱又は冷却負荷を満たすために消費する電力P
op,iが少ないことがある。
【0032】
有利には、MPMシステムは、メンテナンス決定Bmain,i及び機器購入決定B
ap,iの関数として、各時間ステップiにおけるビルディング機器の効率ηをモデル
化することができる。例えば、特定のデバイスに関する効率ηは、デバイスが購入され
たときに初期値ηで始まることがあり、時間と共に低下し、連続する各時間ステップi
と共に効率ηが低下することがある。デバイスに対するメンテナンスを実施することで
、メンテナンスが実施された直後に効率ηをより高い値にリセットすることができる。
同様に、新たなデバイスを購入して既存のデバイスと交換することで、新たなデバイスが
購入された直後に効率ηをより高い値にリセットすることができる。リセット後、効率
ηは、メンテナンスが実施されるか又は新たなデバイスが購入される次の時点まで、時
間と共に低下し続けることがある。
【0033】
メンテナンスの実施又は新たなデバイスの購入により、動作中の電力消費量Pop,i
が比較的低くなり、したがって、メンテナンスが実施された後又は新たなデバイスが購入
された後に各時間ステップiにおける動作コストがより低くなることがある。言い換える
と、メンテナンスの実施又は新たなデバイスの購入により、目的関数Jの第1項によって
表される動作コストを低減することができる。しかし、メンテナンスの実施により、目的
関数Jの第2項が増加することがあり、新たなデバイスの購入により、目的関数Jの第3
項が増加することがある。目的関数Jは、これらの各コストを捕捉し、MPMシステムに
よって最適化して、最適化期間の継続期間にわたるメンテナンス及び機器購入決定の最適
な組(すなわちバイナリ決定変数Bmain,i及びBcap,iに関する最適値)を決
定することができる。
【0034】
いくつかの実施形態では、MPMシステムは、ビルディング機器からのフィードバック
として受信された機器性能情報を使用して、ビルディング機器の効率及び/又は信頼性を
推定する。効率は、ビルディング機器での加熱又は冷却負荷とビルディング機器の電力消
費量との関係を示すことがある。MPMシステムは、効率を使用して、Pop,iの対応
する値を計算することができる。信頼性は、ビルディング機器がその現在の動作条件下で
障害なく動作し続ける尤度の統計的尺度であり得る。より過酷な条件下(例えば、高負荷
、高温など)での動作は、信頼性をより低くすることがあり、より過酷でない条件下(例
えば、低負荷、中程度の温度など)での動作は、信頼性をより高くすることがある。いく
つかの実施形態では、信頼性は、ビルディング機器が最後にメンテナンスを受けてから経
過した時間量及び/又はビルディング機器が購入若しくは設置されてから経過した時間量
に基づく。
【0035】
いくつかの実施形態では、MPMシステムは、機器購入及びメンテナンスの推奨を生成
及び提供する。機器購入及びメンテナンスの推奨は、目的関数Jを最適化することによっ
て決定されるバイナリ決定変数Bmain,i及びBcap,iに関する最適値に基づく
ことがある。例えば、ビルディング機器の特定のデバイスに関するBmain,25=1
の値は、最適化期間の第25の時間ステップにおいてそのデバイスに対してメンテナンス
が実施されるべきであることを示すことがあり、Bmain,25=0の値は、その時間
ステップにおいてメンテナンスを実施すべきでないことを示すことがある。同様に、B
ap,25=1の値は、最適化期間の第25の時間ステップにおいて、ビルディング機器
の新たなデバイスを購入すべきであることを示すことがあり、Bcap,25=0の値は
、その時間ステップにおいて新たなデバイスを購入すべきでないことを示すことがある。
【0036】
有利には、MPMシステムによって生成される機器購入及びメンテナンスの推奨は、ビ
ルディング機器の実際の動作条件及び実際の性能に基づく予測的な推奨である。MPMシ
ステムによって実施される最適化は、メンテナンスを実施するコスト及び新たな機器を購
入するコストを、そのようなメンテナンス又は購入の決定により生じる動作コストの低減
に対して重み付けして、総複合コストJを最小化する最適なメンテナンス戦略を決定する
。このようにして、MPMシステムによって生成される機器購入及びメンテナンスの推奨
は、各グループのビルディング機器に特有のものとなり、特定のグループのビルディング
機器に関する最適なコストJを実現することができる。機器に特有の推奨は、いくつかの
グループの接続された機器610及び/又はいくつかの動作条件に関しては最適でないこ
とがある機器製造業者によって提供される一般的な予防的メンテナンスの推奨(例えば、
毎年の機器の整備)に比べ、全体的なコストJを低くすることができる。
【0037】
いくつかの実施形態では、MPMシステムは、目的関数Jの最適化に対して様々な予算
制約を課す。予算制約は、最適化中に決定された決定事項が、存在する任意の経済的制限
又は他の制限を遵守することを保証することができる。特に、MPMシステムは、ハード
予算制約、ソフト予算制約及び/又はそれらの何らかの組合せを目的関数Jに課すことが
ある。ハード予算制約は、遵守しなければならない制約を表すことがある。例えば、ハー
ド予算制約は、最適化期間にわたるメンテナンス/交換のための最大許容予算であり得、
すべてのメンテナンス/交換の合計コストが最大許容予算を超過することはできない。ハ
ード予算制約と異なり、ソフト予算制約は、超過され得るか又は遵守されなくてもよいが
、追加のペナルティが課せられる。例えば、ソフト予算制約が予算の上限を示している場
合、メンテナンス/交換の合計コストは、上限を超え得るが、(例えば、超過量のパーセ
ンテージとして)追加のペナルティコストが生じる。ソフト予算制約は、ソフト予算制約
を遵守する決定変数を決定するために最適化を奨励することができるが、最適な解がソフ
ト予算制約を遵守しない場合には柔軟性を与える。
【0038】
いくつかの実施形態では、ペナルティコストは、予算制約を上回る又は下回る場合の両
方に適用される。最適化期間にわたるメンテナンス/交換の合計コストが予算制約にでき
るだけ近いことは、価値があり得る。例えば、会計期間中にビルディングに関する予算の
特定の額(例えば、ドル)がメンテナンス/交換に割り振られている場合、割り振られて
いたが、費やされなかったいかなる額も予算の異なる部分に移され、メンテナンス/交換
の観点から未使用の額を実質的になくすことができる。したがって、目的関数Jの最適化
中にペナルティコストを課して、最適化期間中に費やされる合計額ができるだけ予算制約
に近づくようにする決定変数の値を決定することができる。具体的には、予算制約と推定
される合計コストとの間の差の大きさが増加するにつれて、最適化中に追加されるペナル
ティコストも増加する。
【0039】
いくつかの実施形態では、目的関数Jは、ビルディング機器の故障に関連するリスクコ
ストを組み込む。ビルディング機器のビルディングデバイスが故障した場合、ビルディン
グデバイスのメンテナンス/交換コストを超えるコストが生じることがある。特に、ビル
ディング機器の故障は、ビルディング機器のメンテナンス/交換に関連するコストと、未
対処の負荷又は失われた生産量などの様々な機会コストに関連するコストとの両方を生じ
る。リスクコストを目的関数Jに組み込むために、機器の故障が最適化期間中の全体的な
コストにどのように影響を及ぼし得るかを考慮に入れるリスクコスト項を含むように目的
関数Jを拡張することができる。リスクコスト項を含む目的関数Jは、以下の式で示され
る。
【数2】
ここで、Cfail,iは、最適化期間の時間ステップiにおけるビルディング機器の故
障のコストであり、Pfail,i(δ)は、時間ステップiにおけるビルディングデ
バイスの劣化状態δに基づく、時間ステップiにおけるビルディング機器のビルディン
グデバイスの故障の確率である。特に、リスクコスト項
【数3】
は、各ビルディングデバイスの故障の確率を考慮に入れることにより、最適化期間にわた
るメンテナンス/交換の全体的なコストに影響を及ぼす。一般に、ビルディングデバイス
の故障の確率が上昇するにつれて、リスクコスト項が目的関数Jに影響を及ぼす量が増加
する。
【0040】
リスクコスト項に基づいて、目的関数Jの最適化は、リスクコスト項が目的関数Jに含
まれていない場合と異なる時点において、特定のビルディングデバイスがメンテナンスを
実施され且つ/又は交換されるべきであると決定することがある。特に、リスクコスト項
により、最適化プロセスは、特定のビルディングデバイスの故障確率を低く保つためにメ
ンテナンス/交換を頻繁に実施すべき特定のビルディングデバイスを識別することが可能
になり得る。例えば、可変冷媒流量(VRF)システムの特定の屋内ユニット(IDU)
は、その特定のIDUが故障した場合に居住者の安全性のためにビルディングのスペース
を一時的に閉鎖する必要があるとき、故障に関連する大きい機会コストを伴うことがある
。高い機会コストにより、最適化は、その特定のIDUのメンテナンス/交換を、故障に
関連するコストが最小である他のビルディングデバイスよりも優先することがある。
【0041】
いくつかの実施形態では、目的関数Jは、メンテナンス/交換に関連する雑費を考慮に
入れるために雑費項を組み込む。雑費は、動作コスト項、メンテナンスコスト項及び/又
は資本コスト項において計上されない様々な出費を表すことができる。いくつかの実施形
態では、雑費は、ビルディング機器の信頼性に影響を及ぼすが、ビルディング機器の効率
に影響を及ぼさない。例えば、雑費には、HVACシステムの通気孔のねじを新しいねじ
に交換することが含まれ得る。上記の雑費を考慮に入れることは、最適化期間にわたる合
計コストを正確に決定するのに有用であり得る。また、リスクコスト項が目的関数Jに組
み込まれる場合、目的関数Jに雑費項を追加することが有用であり得る。リスクコスト項
が組み込まれる場合、雑費項は、ビルディング機器の信頼性を高めるために実施すること
ができる雑多なメンテナンス活動を提供し、それにより上記ビルディング機器の故障確率
を低減することができる。さらに、予算制約が最適化に課せられる場合、予算制約が確実
に遵守されるように雑費を考慮に入れることが重要であり得る。
【0042】
最適化中、目的関数Jは、追加の因子として雑費を考慮に入れることができる。例えば
、目的関数Jは、以下の形式を有することがある。
【数4】
ここで、Costmisc,iは、時間ステップiに関する雑多な活動のコストであり、
misc,iは、時間ステップiにおいて雑多な活動が行われるか否かを示すバイナリ
変数である。いくつかの実施形態では、雑費は、目的関数Jの他の項(例えば、メンテナ
ンスコスト項、資本コスト項、リスクコスト項など)に計上される。Cmisc,iの値
を決定するために、雑費は、雑費のユーザ入力、雑費を示す請求書の追跡、最適化期間の
時間ステップに関して予想される何らかの平均雑費の推定などによって収集することがで
きる。MPMシステムのこれら及び他の特徴を以下で詳細に述べる。
【0043】
ビルディングHVACシステム及びビルディング管理システム
【0044】
ここで、図1図5を参照すると、いくつかの実施形態による、本開示のシステム及び
方法を実施することができるいくつかのビルディング管理システム(BMS)及びHVA
Cシステムが示されている。簡単な概要として、図1は、HVACシステム100を備え
たビルディング10を示す。図2は、ビルディング10にサービス提供するために使用す
ることができるウォーターサイドシステム200のブロック図である。図3は、ビルディ
ング10にサービス提供するために使用することができるエアサイドシステム300のブ
ロック図である。図4は、ビルディング10を監視及び制御するために使用することがで
きるBMSのブロック図である。図5は、ビルディング10を監視及び制御するために使
用することができる別のBMSのブロック図である。
【0045】
ビルディング及びHVACシステム
【0046】
特に図1を参照すると、ビルディング10の斜視図が示されている。ビルディング10
は、BMSによってサービス提供される。BMSは、一般に、ビルディング又はビルディ
ングエリアの内部又は周辺の機器を制御、監視及び管理するように構成されたデバイスの
システムである。BMSは、例えば、HVACシステム、セキュリティシステム、照明シ
ステム、火災警報システム、ビルディングの機能若しくはデバイスを管理することが可能
な任意の他のシステム又はそれらの任意の組合せを含むことができる。
【0047】
ビルディング10にサービス提供するBMSは、HVACシステム100を含む。HV
ACシステム100は、ビルディング10のための暖房、冷房、換気又は他のサービスを
提供するように構成された複数のHVACデバイス(例えば、加熱器、冷却器、エアハン
ドリングユニット、ポンプ、ファン、熱エネルギー貯蔵装置など)を含み得る。例えば、
HVACシステム100は、ウォーターサイドシステム120及びエアサイドシステム1
30を含むものとして示されている。ウォーターサイドシステム120は、加熱又は冷却
された流体をエアサイドシステム130のエアハンドリングユニットに提供し得る。エア
サイドシステム130は、加熱又は冷却された流体を使用して、ビルディング10に提供
される気流を加熱又は冷却し得る。HVACシステム100で使用され得る例示的なウォ
ーターサイドシステム及びエアサイドシステムについては、図2~3を参照してより詳細
に述べる。
【0048】
HVACシステム100は、冷却器102、ボイラ104及び屋上エアハンドリングユ
ニット(AHU)106を含むものとして示されている。ウォーターサイドシステム12
0は、ボイラ104及び冷却器102を使用して、作動流体(例えば、水やグリコールな
ど)を加熱又は冷却することができ、作動流体をAHU106に循環させ得る。様々な実
施形態において、ウォーターサイドシステム120のHVACデバイスは、(図1に示さ
れるように)ビルディング10内若しくは周囲に位置するか、又は中央プラント(例えば
、冷却器プラント、蒸気プラント、熱プラントなど)など場外の位置に位置し得る。作動
流体は、ビルディング10に暖房が必要とされているか冷房が必要とされているかに応じ
て、ボイラ104で加熱されるか、又は冷却器102で冷却され得る。ボイラ104は、
例えば、可燃性材料(例えば、天然ガス)を燃焼することにより、又は電気加熱要素を使
用することにより、循環される流体に熱を加え得る。冷却器102は、循環される流体を
、熱交換器(例えば、蒸発器)内の別の流体(例えば、冷媒)との熱交換関係にして、循
環される流体から熱を吸収し得る。冷却器102及び/又はボイラ104からの作動流体
は、配管108を通してAHU106に輸送され得る。
【0049】
AHU106は、(例えば、冷却コイル及び/又は加熱コイルの1つ又は複数のステー
ジを通って)AHU106を通過する気流と作動流体を熱交換関係にすることができる。
気流は、例えば、外気、ビルディング10内からの還気又はそれら両方の組合せであり得
る。AHU106は、気流と作動流体との間で熱を伝達して、気流を加熱又は冷却し得る
。例えば、AHU106は、1つ又は複数のファン又は送風機を含み得、ファン又は送風
機は、作動流体を含む熱交換器の上に又は熱交換器を通して空気を流すように構成される
。次いで、作動流体は、配管110を通って冷却器102又はボイラ104に戻り得る。
【0050】
エアサイドシステム130は、AHU106によって供給される気流(すなわち給気流
)を、給気ダクト112を通してビルディング10に送給し、還気を、ビルディング10
から還気ダクト114を通してAHU106に提供し得る。いくつかの実施形態では、エ
アサイドシステム130は、複数の可変空気体積(VAV)ユニット116を含む。例え
ば、エアサイドシステム130は、ビルディング10の各フロア又は区域に別個のVAV
ユニット116を含むものとして示されている。VAVユニット116は、ビルディング
10の個々の区域に提供される給気流の量を制御するように動作させることができるダン
パ又は他の流量制御要素を含み得る。他の実施形態では、エアサイドシステム130は、
中間VAVユニット116又は他の流量制御要素を使用せずに、(例えば、供給ダクト1
12を通して)ビルディング10の1つ又は複数の区域に給気流を送給する。AHU10
6は、給気流の属性を測定するように構成された様々なセンサ(例えば、温度センサや圧
力センサなど)を含み得る。AHU106は、AHU106内及び/又はビルディング区
域内に位置するセンサからの入力を受信することができ、AHU106を通る給気流の流
量、温度又は他の属性を調節して、ビルディング区域に関する設定値条件を実現し得る。
【0051】
ウォーターサイドシステム
【0052】
次に、図2を参照すると、いくつかの実施形態によるウォーターサイドシステム200
のブロック図が示されている。様々な実施形態において、ウォーターサイドシステム20
0は、HVACシステム100内のウォーターサイドシステム120を補助するか若しく
はそれに置き代わり得るか、又はHVACシステム100とは別個に実装され得る。HV
ACシステム100に実装されるとき、ウォーターサイドシステム200は、HVACシ
ステム100内のHVACデバイスのサブセット(例えば、ボイラ104、冷却器102
、ポンプ、弁など)を含み得、加熱又は冷却された流体をAHU106に供給するように
動作し得る。ウォーターサイドシステム200のHVACデバイスは、ビルディング10
内に(例えば、ウォーターサイドシステム120の構成要素として)位置しても、中央プ
ラントなど場外の位置に位置し得る。
【0053】
図2で、ウォーターサイドシステム200は、複数のサブプラント202~212を有
する中央プラントとして示されている。サブプラント202~212は、加熱器サブプラ
ント202、熱回収冷却器サブプラント204、冷却器サブプラント206、冷却塔サブ
プラント208、高温熱エネルギー貯蔵(TES)サブプラント210及び冷熱エネルギ
ー貯蔵(TES)サブプラント212を含むものとして示されている。サブプラント20
2~212は、公益事業からの資源(例えば、水、天然ガス、電気など)を消費して、ビ
ルディング又はキャンパスの熱エネルギー負荷(例えば、温水、冷水、暖房、冷房など)
を提供する。例えば、加熱器サブプラント202は、加熱器サブプラント202とビルデ
ィング10との間で温水を循環させる温水ループ214内の水を加熱するように構成され
得る。冷却器サブプラント206は、冷却器サブプラント206とビルディング10との
間で冷水を循環させる冷水ループ216内の水を冷却するように構成され得る。熱回収冷
却器サブプラント204は、冷水ループ216から温水ループ214に熱を伝達して、温
水のための追加加熱及び冷水のための追加冷却を可能にするように構成され得る。凝縮器
水ループ218が、冷却器サブプラント206内の冷水から熱を吸収し、吸収された熱を
冷却塔サブプラント208内に排除するか、又は吸収された熱を温水ループ214に伝達
し得る。高温TESサブプラント210及び低温TESサブプラント212は、その後の
使用のために、それぞれ高熱及び低熱エネルギーを貯蔵し得る。
【0054】
温水ループ214及び冷水ループ216は、ビルディング10の屋上に位置するエアハ
ンドラ(例えば、AHU106)に又はビルディング10の個々のフロア若しくは区域(
例えば、VAVユニット116)に、加熱及び/又は冷却された水を送給し得る。エアハ
ンドラは、水が流れる熱交換器(例えば、加熱コイル又は冷却コイル)に空気を押し通し
て、空気を加熱又は冷却する。加熱又は冷却された空気は、ビルディング10の個々の区
域に送給されて、ビルディング10の熱エネルギー負荷を提供し得る。次いで、水はサブ
プラント202~212に戻り、さらなる加熱又は冷却を受ける。
【0055】
サブプラント202~212は、ビルディングへの循環のための水を加熱及び冷却する
ものとして図示されて述べられているが、熱エネルギー負荷を供給するために水の代わり
に又は水に加えて、任意の他のタイプの作動流体(例えば、グリコールやCO2など)が
使用され得ることを理解されたい。他の実施形態では、サブプラント202~212は、
中間伝熱流体を必要とせずに、ビルディング又はキャンパスに加熱及び/又は冷却を直接
提供し得る。ウォーターサイドシステム200に対するこれら及び他の変形形態も本開示
の教示の範囲内にある。
【0056】
サブプラント202~212は、サブプラントの機能を実現しやすくするように構成さ
れた様々な機器をそれぞれ含み得る。例えば、加熱器サブプラント202は、温水ループ
214内の温水に熱を加えるように構成された複数の加熱要素220(例えば、ボイラや
電気加熱器など)を含むものとして示されている。また、加熱器サブプラント202は、
いくつかのポンプ222及び224を含むものとして示されており、これらのポンプ22
2及び224は、温水ループ214内で温水を循環させ、個々の加熱要素220を通る温
水の流量を制御するように構成される。冷却器サブプラント206は、冷水ループ216
内の冷水から熱を除去するように構成された複数の冷却器232を含むものとして示され
ている。また、冷却器サブプラント206は、いくつかのポンプ234及び236を含む
ものとして示されており、ポンプ234及び236は、冷水ループ216内で冷水を循環
させ、個々の冷却器232を通る冷水の流量を制御するように構成される。
【0057】
熱回収冷却器サブプラント204は、冷水ループ216から温水ループ214に熱を伝
達するように構成された複数の熱回収熱交換器226(例えば、冷蔵回路)を含むものと
して示されている。また、熱回収冷却器サブプラント204は、いくつかのポンプ228
及び230を含むものとして示されており、ポンプ228及び230は、熱回収熱交換器
226を通して温水及び/又は冷水を循環させ、個々の熱回収熱交換器226を通る水の
流量を制御するように構成される。冷却塔サブプラント208は、凝縮器水ループ218
内の凝縮器水から熱を除去するように構成された複数の冷却塔238を含むものとして示
されている。また、冷却塔サブプラント208は、いくつかのポンプ240を含むものと
して示されており、ポンプ240は、凝縮器水ループ218内で凝縮器水を循環させ、個
々の冷却塔238を通る凝縮器水の流量を制御するように構成される。
【0058】
高温TESサブプラント210は、後の使用のために温水を貯蔵するように構成された
高温TESタンク242を含むものとして示されている。また、高温TESサブプラント
210は、1つ又は複数のポンプ又は弁を含み得、これらのポンプ又は弁は、高温TES
タンク242の内外への温水の流量を制御するように構成される。低温TESサブプラン
ト212は、後の使用のために冷水を貯蔵するように構成された低温TESタンク244
を含むものとして示されている。また、低温TESサブプラント212は、1つ又は複数
のポンプ又は弁を含むこともあり、これらのポンプ又は弁は、低温TESタンク244の
内外への冷水の流量を制御するように構成される。
【0059】
いくつかの実施形態では、ウォーターサイドシステム200内のポンプ(例えば、ポン
プ222、224、228、230、234、236及び/又は240)又はウォーター
サイドシステム200内のパイプラインの1つ又は複数が、それらに関連付けられた隔離
弁を含む。隔離弁は、ウォーターサイドシステム200内の流体の流れを制御するために
、ポンプと一体化されても、ポンプの上流又は下流に位置決めされ得る。様々な実施形態
において、ウォーターサイドシステム200は、ウォーターサイドシステム200の特定
の構成と、ウォーターサイドシステム200によって提供される負荷のタイプとに基づい
て、より多数、より少数又は異なるタイプのデバイス及び/又はサブプラントを含むこと
もある。
【0060】
エアサイドシステム
【0061】
次に、図3を参照すると、いくつかの実施形態によるエアサイドシステム300のブロ
ック図が示されている。様々な実施形態において、エアサイドシステム300は、HVA
Cシステム100内のエアサイドシステム130を補助するか若しくはそれに置き代わり
得るか、又はHVACシステム100とは別個に実装され得る。HVACシステム100
に実装されるとき、エアサイドシステム300は、HVACシステム100内のHVAC
デバイスのサブセット(例えば、AHU106、VAVユニット116、ダクト112~
114、ファン、ダンパなど)を含み得、ビルディング10内又は周辺に位置し得る。エ
アサイドシステム300は、ウォーターサイドシステム200によって提供される加熱又
は冷却された流体を使用して、ビルディング10に提供される気流を加熱又は冷却するよ
うに動作し得る。
【0062】
図3に、エアサイドシステム300が、エコノマイザ型エアハンドリングユニット(A
HU)302を含むものとして示されている。エコノマイザ型AHUは、加熱又は冷却の
ためにエアハンドリングユニットによって使用される外気及び還気の量を変える。例えば
、AHU302は、ビルディング区域306から還気ダクト308を通して還気304を
受け取り得、給気ダクト312を通してビルディング区域306に給気310を送給し得
る。いくつかの実施形態では、AHU302は、ビルディング10の屋根に位置する屋上
ユニット(例えば、図1に示されるAHU106)又は還気304と外気314との両方
を受け取るように他の場所に位置決めされた屋上ユニットである。AHU302は、混ざ
り合って給気310を生成する外気314と還気304との量を制御するために、排気ダ
ンパ316、混合ダンパ318及び外気ダンパ320を動作させるように構成され得る。
混合ダンパ318を通過しない還気304は、AHU302から排気ダンパ316を通し
て排気322として排出され得る。
【0063】
各ダンパ316~320は、アクチュエータによって動作することができる。例えば、
排気ダンパ316はアクチュエータ324によって動作することができ、混合ダンパ31
8はアクチュエータ326によって動作することができ、外気ダンパ320はアクチュエ
ータ328によって動作することができる。アクチュエータ324~328は、通信リン
ク332を介してAHU制御装置330と通信し得る。アクチュエータ324~328は
、AHU制御装置330から制御信号を受信することができ、AHU制御装置330にフ
ィードバック信号を提供し得る。フィードバック信号は、例えば、現在のアクチュエータ
又はダンパ位置の標示、アクチュエータによって及ぼされるトルク又は力の量、診断情報
(例えば、アクチュエータ324~328によって実施された診断テストの結果)、ステ
ータス情報、試運転情報、構成設定、較正データ及び/又はアクチュエータ324~32
8によって収集、記憶若しくは使用され得る他のタイプの情報若しくはデータを含み得る
。AHU制御装置330は、1つ又は複数の制御アルゴリズム(例えば、状態ベースアル
ゴリズム、極値探索制御(ESC)アルゴリズム、比例積分(PI)制御アルゴリズム、
比例積分微分(PID)制御アルゴリズム、モデル予測制御(MPC)アルゴリズム、フ
ィードバック制御アルゴリズムなど)を使用してアクチュエータ324~328を制御す
るように構成されたエコノマイザ制御装置であり得る。
【0064】
引き続き図3を参照すると、AHU302は、給気ダクト312内に位置決めされた冷
却コイル334、加熱コイル336及びファン338を含むものとして示されている。フ
ァン338は、給気310を冷却コイル334及び/又は加熱コイル336に通し、さら
に給気310をビルディング区域306に提供するように構成され得る。AHU制御装置
330は、通信リンク340を介してファン338と通信して、給気310の流量を制御
し得る。いくつかの実施形態では、AHU制御装置330は、ファン338の速度を調整
することにより、給気310に加えられる加熱又は冷却の量を制御する。
【0065】
冷却コイル334は、冷却された流体を、配管342を通してウォーターサイドシステ
ム200から(例えば、冷水ループ216から)受け取ることができ、また、冷却された
流体を、配管344を通してウォーターサイドシステム200に戻すことができる。冷却
コイル334を通る冷却流体の流量を制御するために、配管342又は配管344に沿っ
て弁346が位置決めされ得る。いくつかの実施形態では、冷却コイル334は、給気3
10に加えられる冷却量を調整するために、(例えば、AHU制御装置330やBMS制
御装置366などによって)独立して作動及び作動停止され得る複数ステージの冷却コイ
ルを含む。
【0066】
加熱コイル336は、加熱された流体を、配管348を通してウォーターサイドシステ
ム200から(例えば、温水ループ214から)受け取ることができ、また、加熱された
流体を、配管350を通してウォーターサイドシステム200に戻すことができる。加熱
コイル336を通る加熱流体の流量を制御するために、配管348又は配管350に沿っ
て弁352が位置決めされ得る。いくつかの実施形態では、加熱コイル336は、給気3
10に加えられる加熱量を調整するために、(例えば、AHU制御装置330やBMS制
御装置366などによって)独立して作動及び作動停止され得る複数ステージの加熱コイ
ルを含む。
【0067】
弁346及び352は、アクチュエータによって制御され得る。例えば、弁346はア
クチュエータ354によってそれぞれ制御され得、弁352は、アクチュエータ356に
よって制御され得る。アクチュエータ354~356は、通信リンク358~360を介
してAHU制御装置330と通信し得る。アクチュエータ354~356は、AHU制御
装置330から制御信号を受信することができ、制御装置330にフィードバック信号を
提供し得る。いくつかの実施形態では、AHU制御装置330は、給気ダクト312内(
例えば、冷却コイル334及び/又は加熱コイル336の下流)に位置決めされた温度セ
ンサ362から給気温度の測定値を受信する。また、AHU制御装置330は、ビルディ
ング区域306内に位置する温度センサ364からビルディング区域306の温度の測定
値を受信することもある。
【0068】
いくつかの実施形態では、AHU制御装置330は、アクチュエータ354~356に
よって弁346及び352を操作して、(例えば、給気310の設定値温度を実現するた
め又は設定値温度範囲内で給気310の温度を維持するために)給気310に提供される
加熱又は冷却の量を調整する。弁346及び352の位置は、冷却コイル334又は加熱
コイル336によって給気310に提供される加熱又は冷却の量に影響を及ぼし、所望の
給気温度を実現するために消費されるエネルギーの量と相関し得る。AHU330は、コ
イル334~336を作動若しくは作動停止させること、ファン338の速度を調節する
こと又はそれら両方の組合せにより、給気310及び/又はビルディング区域306の温
度を制御し得る。
【0069】
引き続き図3を参照すると、エアサイドシステム300は、ビルディング管理システム
(BMS)制御装置366及びクライアントデバイス368を含むものとして示されてい
る。BMS制御装置366は、システムレベル制御装置としての役割を果たす1つ又は複
数のコンピュータシステム(例えば、サーバ、監視制御装置、サブシステム制御装置など
)、アプリケーション若しくはデータサーバ、ヘッドノード又はエアサイドシステム30
0のためのマスタ制御装置、ウォーターサイドシステム200、HVACシステム100
及び/又はビルディング10にサービス提供する他の制御可能なシステムを含み得る。B
MS制御装置366は、複数の下流のビルディングシステム又はサブシステム(例えば、
HVACシステム100、セキュリティシステム、照明システム、ウォーターサイドシス
テム200など)と、同様の又は異なるプロトコル(例えば、LON(登録商標)やBA
Cnet(登録商標)など)に従って通信リンク370を介して通信し得る。様々な実施
形態において、AHU制御装置330とBMS制御装置366は、(図3に示されるよう
に)別々であるか又は一体化され得る。一体化された実装では、AHU制御装置330は
、BMS制御装置366のプロセッサによって実行されるように構成されたソフトウェア
モジュールであり得る。
【0070】
いくつかの実施形態では、AHU制御装置330は、BMS制御装置366から情報(
例えば、コマンド、設定値、動作境界など)を受信し、BMS制御装置366に情報(例
えば、温度測定値、弁又はアクチュエータ位置、動作ステータス、診断など)を提供する
。例えば、AHU制御装置330は、温度センサ362~364からの温度測定値、機器
のオン/オフ状態、機器の動作能力及び/又は任意の他の情報をBMS制御装置366に
提供することができ、これらの情報をBMS制御装置366が使用して、ビルディング区
域306内の変動する状態又は条件を監視又は制御することができる。
【0071】
クライアントデバイス368は、HVACシステム100、そのサブシステム及び/又
はデバイスを制御、閲覧又は他の方法でそれらと対話するための1つ又は複数の人間-機
械インターフェース又はクライアントインターフェース(例えば、グラフィカルユーザイ
ンターフェース、報告インターフェース、テキストベースのコンピュータインターフェー
ス、クライアントフェーシングウェブサービス、ウェブクライアントにページを提供する
ウェブサーバなど)を含み得る。クライアントデバイス368は、コンピュータワークス
テーション、クライアント端末、遠隔若しくはローカルインターフェース又は任意の他の
タイプのユーザインターフェースデバイスであり得る。クライアントデバイス368は、
固定端末でもモバイルデバイスであり得る。例えば、クライアントデバイス368は、デ
スクトップコンピュータ、ユーザインターフェースを備えるコンピュータサーバ、ラップ
トップコンピュータ、タブレット、スマートフォン、PDA又は任意の他のタイプのモバ
イルデバイス若しくは非モバイルデバイスであり得る。クライアントデバイス368は、
通信リンク372を介してBMS制御装置366及び/又はAHU制御装置330と通信
し得る。
【0072】
ビルディング管理システム
【0073】
次に、図4を参照すると、いくつかの実施形態によるビルディング管理システム(BM
S)400のブロック図が示されている。BMS400は、様々なビルディング機能を自
動的に監視及び制御するためにビルディング10に実装され得る。BMS400は、BM
S制御装置366及び複数のビルディングサブシステム428を含むものとして示されて
いる。ビルディングサブシステム428は、ビルディング電気サブシステム434、情報
通信技術(ICT)サブシステム436、セキュリティサブシステム438、HVACサ
ブシステム440、照明サブシステム442、エレベータ/エスカレータサブシステム4
32及び火災安全サブシステム430を含むものとして示されている。様々な実施形態に
おいて、ビルディングサブシステム428は、より少数の、追加の又は代替のサブシステ
ムを含むことができる。例えば、追加又は代替として、ビルディングサブシステム428
は、冷蔵サブシステム、広告若しくは標識サブシステム、調理サブシステム、販売サブシ
ステム、プリンタ若しくはコピーサービスサブシステム又はビルディング10を監視若し
くは制御するために制御可能な機器及び/又はセンサを使用する任意の他のタイプのビル
ディングサブシステムを含み得る。いくつかの実施形態では、ビルディングサブシステム
428は、図2~3を参照して述べたように、ウォーターサイドシステム200及び/又
はエアサイドシステム300を含む。
【0074】
各ビルディングサブシステム428は、その個々の機能及び制御活動を完遂するための
多数のデバイス、制御装置及び接続を含み得る。HVACサブシステム440は、図1
3を参照して述べたようなHVACシステム100と同じ構成要素の多くを含み得る。例
えば、HVACサブシステム440は、冷却器、ボイラ、多数のエアハンドリングユニッ
ト、エコノマイザ、フィールド制御装置、監視制御装置、アクチュエータ、温度センサ及
びビルディング10内の温度、湿度、気流又は他の可変条件を制御するための他のデバイ
スを含み得る。照明サブシステム442は、多数の照明器具、安定器、照明センサ、調光
器又はビルディング空間に提供される光の量を制御可能に調節するように構成された他の
デバイスを含み得る。セキュリティサブシステム438は、人感センサ、ビデオ監視カメ
ラ、デジタルビデオレコーダ、ビデオ処理サーバ、侵入検出デバイス、アクセス制御デバ
イス及びサーバ又は他のセキュリティ関連デバイスを含み得る。
【0075】
引き続き図4を参照すると、BMS制御装置366は、通信インターフェース407及
びBMSインターフェース409を含むものとして示されている。インターフェース40
7は、BMS制御装置366と外部アプリケーション(例えば、監視及び報告アプリケー
ション422、企業管理アプリケーション426、遠隔システム及びアプリケーション4
44、クライアントデバイス448に常駐するアプリケーションなど)との間の通信を容
易にして、BMS制御装置366及び/又はサブシステム428に対するユーザ制御、監
視及び調節を可能にし得る。また、インターフェース407は、BMS制御装置366と
クライアントデバイス448との間の通信を容易にし得る。BMSインターフェース40
9は、BMS制御装置366とビルディングサブシステム428(例えば、HVAC、照
明セキュリティ、エレベータ、配電、ビジネスなど)との間の通信を容易にし得る。
【0076】
インターフェース407、409は、ビルディングサブシステム428又は他の外部シ
ステム若しくはデバイスとのデータ通信を行うための有線若しくは無線通信インターフェ
ース(例えば、ジャック、アンテナ、送信機、受信機、送受信機、有線端末など)であり
得るか又はそれを含み得る。様々な実施形態において、インターフェース407、409
を介する通信は、直接的なもの(例えば、ローカル有線又は無線通信)でも、通信ネット
ワーク446(例えば、WAN、インターネット、セルラネットワークなど)を介するも
のであり得る。例えば、インターフェース407、409は、Ethernet(登録商
標)ベースの通信リンク又はネットワークを介してデータを送受信するためのEther
netカード及びポートを含むことができる。別の例では、インターフェース407、4
09は、無線通信ネットワークを介して通信するためのWi-Fi送受信機を含むことが
できる。別の例では、インターフェース407、409の一方又は両方は、セルラ又は携
帯電話通信送受信機を含み得る。一実施形態では、通信インターフェース407は電力線
通信インターフェースであり、BMSインターフェース409はEthernetインタ
ーフェースである。他の実施形態では、通信インターフェース407とBMSインターフ
ェース409がいずれもEthernetインターフェースであるか、又は同一のEth
ernetインターフェースである。
【0077】
引き続き図4を参照すると、BMS制御装置366は、プロセッサ406及びメモリ4
08を含む処理回路404を含むものとして示されている。処理回路404は、処理回路
404及びその様々な構成要素がインターフェース407、409を介してデータを送受
信できるように、BMSインターフェース409及び/又は通信インターフェース407
に通信可能に接続され得る。プロセッサ406は、汎用プロセッサ、特定用途向け集積回
路(ASIC)、1つ若しくは複数のフィールドプログラマブルゲートアレイ(FPGA
)、1群の処理コンポーネント又は他の適切な電子処理コンポーネントとして実装するこ
とができる。
【0078】
メモリ408(例えば、メモリ、メモリユニット、記憶デバイスなど)は、本出願で述
べる様々なプロセス、層及びモジュールを完遂又は容易化するためのデータ及び/又はコ
ンピュータコードを記憶するための1つ又は複数のデバイス(例えば、RAM、ROM、
フラッシュメモリ、ハードディスク記憶装置など)を含み得る。メモリ408は、揮発性
メモリ若しくは不揮発性メモリであり得るか又はそれを含み得る。メモリ408は、デー
タベースコンポーネント、オブジェクトコードコンポーネント、スクリプトコンポーネン
ト又は本出願で述べる様々な活動及び情報構造をサポートするための任意の他のタイプの
情報構造を含み得る。いくつかの実施形態によれば、メモリ408は、処理回路404を
介してプロセッサ406に通信可能に接続され、(例えば、処理回路404及び/又はプ
ロセッサ406によって)本明細書で述べる1つ又は複数のプロセスを実行するためのコ
ンピュータコードを含む。
【0079】
いくつかの実施形態では、BMS制御装置366は、単一のコンピュータ(例えば、1
つのサーバや1つのハウジングなど)内に実装される。様々な他の実施形態では、BMS
制御装置366は、(例えば、分散された場所に存在することができる)複数のサーバ又
はコンピュータにわたって分散されることもある。さらに、図4は、BMS制御装置36
6の外部に存在するものとしてアプリケーション422及び426を示しているが、いく
つかの実施形態では、アプリケーション422及び426は、BMS制御装置366内(
例えば、メモリ408内)でホストされることもある。
【0080】
引き続き図4を参照すると、メモリ408は、企業統合層410、自動測定及び検証(
AM&V)層412、要求応答(DR)層414、故障検出及び診断(FDD)層416
、統合制御層418並びにビルディングサブシステム統合層420を含むものとして示さ
れている。層410~420は、ビルディングサブシステム428及び他のデータ源から
入力を受信し、入力に基づいてビルディングサブシステム428のための最適な制御アク
ションを決定し、最適な制御アクションに基づいて制御信号を生成し、生成された制御信
号をビルディングサブシステム428に提供するように構成され得る。以下の段落では、
BMS400での各層410~420によって実施される全般的な機能のいくつかを述べ
る。
【0081】
企業統合層410は、様々な企業レベルのアプリケーションをサポートするための情報
及びサービスをクライアント又はローカルアプリケーションに提供するように構成され得
る。例えば、企業管理アプリケーション426は、グラフィカルユーザインターフェース
(GUI)又は多数の企業レベルのビジネスアプリケーション(例えば、会計システムや
ユーザ識別システムなど)にサブシステムスパニング制御を提供するように構成され得る
。企業管理アプリケーション426は、追加又は代替として、BMS制御装置366を構
成するための構成GUIを提供するように構成されることもある。さらに他の実施形態で
は、企業管理アプリケーション426は、層410~420と協働して、インターフェー
ス407及び/又はBMSインターフェース409で受信された入力に基づいてビルディ
ングパフォーマンス(例えば、効率、エネルギー使用量、快適性又は安全性)を最適化す
ることができる。
【0082】
ビルディングサブシステム統合層420は、BMS制御装置366とビルディングサブ
システム428との間の通信を管理するように構成され得る。例えば、ビルディングサブ
システム統合層420は、ビルディングサブシステム428からセンサデータ及び入力信
号を受信し、ビルディングサブシステム428に出力データ及び制御信号を提供し得る。
ビルディングサブシステム統合層420は、ビルディングサブシステム428間の通信を
管理するように構成されることもある。ビルディングサブシステム統合層420は、複数
のマルチベンダ/マルチプロトコルシステムにわたって通信(例えば、センサデータ、入
力信号、出力信号など)を変換する。
【0083】
要求応答層414は、ビルディング10の要求が満たされたことに応答して、資源使用
量(例えば、電気使用量、天然ガス使用量、水使用量など)及び/又はそのような資源使
用量の金銭的コストを最適化するように構成され得る。最適化は、時間帯別の価格、削減
信号、エネルギー利用可能性又は公益事業者、分散型エネルギー生成システム424、エ
ネルギー貯蔵装置427(例えば、高温TES242や低温TES244など)若しくは
他の提供源から受信される他のデータに基づき得る。要求応答層414は、BMS制御装
置366の他の層(例えば、ビルディングサブシステム統合層420や統合制御層418
など)からの入力を受信することもある。他の層から受信される入力は、温度、二酸化炭
素レベル、相対湿度レベル、空気質センサ出力、人感センサ出力、部屋スケジュールなど
の環境入力又はセンサ入力を含み得る。また、入力は、公益事業からの電気使用量(例え
ば、単位kWhで表される)、熱負荷測定値、価格情報、予測価格、平滑化価格、削減信
号などの入力を含むこともある。
【0084】
いくつかの実施形態によれば、要求応答層414は、受信したデータ及び信号に応答す
るための制御論理を含む。これらの応答は、統合制御層418内の制御アルゴリズムと通
信すること、制御戦略を変更すること、設定値を変更すること又は制御下でビルディング
機器若しくはサブシステムを作動/作動停止することを含むことができる。また、要求応
答層414は、貯蔵されているエネルギーを利用すべきときを決定するように構成された
制御論理を含むこともある。例えば、要求応答層414は、ピーク使用時間の開始直前に
エネルギー貯蔵装置427からのエネルギーの使用を開始することを決定し得る。
【0085】
いくつかの実施形態では、要求応答層414は、要求(例えば、価格、削減信号、要求
レベルなど)を表す1つ又は複数の入力に基づいて又は要求に基づいて、エネルギーコス
トを最小にする(例えば、自動的に設定値を変更する)制御アクションを能動的に開始す
るように構成された制御モジュールを含む。いくつかの実施形態では、要求応答層414
は、機器モデルを使用して、最適な制御アクションの組を決定する。機器モデルは、例え
ば、様々な組のビルディング機器によって実施される入力、出力及び/又は機能を記述す
る熱力学モデルを含むことができる。機器モデルは、ビルディング機器の集合体(例えば
、サブプラント、冷却器アレイなど)又は個々のデバイス(例えば、個々の冷却器、ヒー
タ、ポンプなど)を表すことがある。
【0086】
さらに、要求応答層414は、1つ又は複数の要求応答ポリシー定義(例えば、データ
ベースやXMLファイルなど)を含むか又はそれを利用し得る。ポリシー定義は、(例え
ば、グラフィカルユーザインターフェースを介して)ユーザによって編集又は調節するこ
とができ、それにより、要求入力に応答して開始される制御アクションは、ユーザの用途
に合わせて、所望の快適性レベルに合わせて、特定のビルディング機器に合わせて又は他
の事項に基づいて調整され得る。例えば、要求応答ポリシー定義は、特定の要求入力に応
答してどの機器がオン又はオフにされ得るか、システム又は機器をどの程度長くオフにす
べきか、どの設定値を変更できるか、許容できる設定値調節範囲はどの程度か、通常通り
予定された設定値に戻るまでに高い要求設定値をどの程度長く保つか、能力の限界にどの
程度近付くか、どの機器モードを利用するか、エネルギー貯蔵デバイス(例えば、熱貯蔵
タンクやバッテリバンクなど)の内外へのエネルギー伝達速度(例えば、最高速度、アラ
ーム速度、他の速度限度情報など)及び(例えば、燃料電池や電動発電機セットなどを介
して)現場でのエネルギー発生を送出するときを指定することができる。
【0087】
統合制御層418は、ビルディングサブシステム統合層420及び/又は要求応答層4
14のデータ入力又は出力を使用して制御決定を行うように構成され得る。ビルディング
サブシステム統合層420によって実現されるサブシステムの統合により、統合制御層4
18は、サブシステム428の制御活動を統合することができ、それにより、サブシステ
ム428が単一の統合型スーパーシステムとして挙動する。いくつかの実施形態では、統
合制御層418は、複数のビルディングサブシステムからの入力及び出力を使用する制御
論理を含み、個々のサブシステムが単独で提供することができる快適性及びエネルギー節
約よりも大きい快適性及びエネルギー節約を提供する。例えば、統合制御層418は、第
1のサブシステムからの入力を使用して、第2のサブシステムに関するエネルギー節約制
御決定を行うように構成され得る。これらの決定の結果は、ビルディングサブシステム統
合層420に通信し返すことができる。
【0088】
統合制御層418は、論理的に要求応答層414の下位にあるものとして示されている
。統合制御層418は、ビルディングサブシステム428及びそれらそれぞれの制御ルー
プを要求応答層414と共同で制御できるようにすることにより、要求応答層414の有
効性を高めるように構成され得る。この構成は、有利には、従来のシステムに比べて、破
壊的な要求応答挙動を減少し得る。例えば、統合制御層418は、冷却される水の温度の
設定値(又は温度に直接若しくは間接的に影響を及ぼす別の成分)に対する要求応答に基
づく上方修正が、ファンエネルギー(又は空間を冷却するために使用される他のエネルギ
ー)の増加をもたらさないことを保証するように構成され得る。そのようなファンエネル
ギーの増加は、ビルディング総エネルギー使用量を、冷却器で保存されているエネルギー
よりも大きくしてしまう。
【0089】
統合制御層418は、要求応答層414にフィードバックを提供するように構成され得
、それにより、要求応答層414は、要求された部分的送電停止が行われている間であっ
ても制約(例えば、温度や照明レベルなど)が適切に維持されていることをチェックする
。制約には、安全性、機器動作限界及びパフォーマンス、快適性、火災コード、電気コー
ド、エネルギーコードなどに関係する設定値又は検知境界が含まれることもある。また、
統合制御層418は、論理的に、故障検出及び診断層416並びに自動測定及び検証層4
12の下位にある。統合制御層418は、複数のビルディングサブシステムからの出力に
基づいて、計算された入力(例えば、集約)をこれらのより高いレベルの層に提供するよ
うに構成され得る。
【0090】
自動測定及び検証(AM&V)層412は、(例えば、AM&V層412、統合制御層
418、ビルディングサブシステム統合層420、FDD層416又は他の層によって集
約されたデータを使用して)統合制御層418又は要求応答層414によって指令された
制御戦略が適切に機能していることを検証するように構成され得る。AM&V層412に
よって行われる計算は、個々のBMSデバイス又はサブシステムに関するビルディングシ
ステムエネルギーモデル及び/又は機器モデルに基づき得る。例えば、AM&V層412
は、モデルに基づいて予測された出力をビルディングサブシステム428からの実際の出
力と比較して、モデルの精度を決定し得る。
【0091】
故障検出及び診断(FDD)層416は、ビルディングサブシステム428及びビルデ
ィングサブシステムデバイス(すなわちビルディング機器)に関する継続的な故障検出機
能を提供し、要求応答層414及び統合制御層418によって使用されるアルゴリズムを
制御するように構成され得る。FDD層416は、統合制御層418から、直接的に1つ
若しくは複数のビルディングサブシステム若しくはデバイスから又は別のデータ源からデ
ータ入力を受信し得る。FDD層416は、検出された故障を自動的に診断して応答し得
る。検出又は診断された故障に対する応答は、ユーザ、メンテナンススケジューリングシ
ステム又は故障を修理する若しくは故障に対処することを試みるように構成された制御ア
ルゴリズムに警報メッセージを提供することを含み得る。
【0092】
FDD層416は、ビルディングサブシステム統合層420で利用可能な詳細なサブシ
ステム入力を使用して、故障している構成要素又は故障の原因(例えば、緩いダンパ連係
)の具体的な識別を出力するように構成され得る。他の例示的実施形態では、FDD層4
16は、「故障」イベントを統合制御層418に提供するように構成され、統合制御層4
18は、受信された故障イベントに応答して制御戦略及びポリシーを実行する。いくつか
の実施形態によれば、FDD層416(又は統合制御エンジン若しくはビジネスルールエ
ンジンによって実行されるポリシー)は、システムをシャットダウンするか、又は故障し
ているデバイス若しくはシステムの周囲での制御活動を指示して、エネルギー浪費を減少
させ、機器寿命を延ばすか、又は適切な制御応答を保証し得る。
【0093】
FDD層416は、様々な異なるシステムデータストア(又はライブデータに関するデ
ータポイント)を記憶するか又はそこにアクセスするように構成され得る。FDD層41
6は、データストアのうち、あるコンテンツを、機器レベル(例えば、特定の冷却器、特
定のAHU、特定の端末ユニットなど)での故障を識別するために使用し、他のコンテン
ツを、構成要素又はサブシステムレベルでの故障を識別するために使用し得る。例えば、
ビルディングサブシステム428は、BMS400及びその様々な構成要素のパフォーマ
ンスを示す時間的(すなわち時系列)データを生成し得る。ビルディングサブシステム4
28によって生成されるデータは、測定値又は計算値を含むことがあり、それらの測定値
又は計算値は、統計的特性を示し、対応するシステム又はプロセス(例えば、温度制御プ
ロセスや流量制御プロセスなど)がその設定値からの誤差に対してどのように挙動してい
るかに関する情報を提供する。これらのプロセスは、FDD層416によって検査するこ
とができ、システムのパフォーマンスが低下し始めたときを明らかにし、より深刻になる
前に故障を修理するようにユーザに警報する。
【0094】
次に、図5を参照すると、いくつかの実施形態による、別のビルディング管理システム
(BMS)500のブロック図が示されている。BMS500を使用して、HVACシス
テム100、ウォーターサイドシステム200、エアサイドシステム300、ビルディン
グサブシステム428のデバイス並びに他のタイプのBMSデバイス(例えば、照明機器
、セキュリティ機器など)及び/又はHVAC機器を監視及び制御することができる。
【0095】
BMS500は、自動機器発見及び機器モデル分配を容易にするシステムアーキテクチ
ャを提供する。機器発見は、複数の異なる通信バス(例えば、システムバス554、ゾー
ンバス556~560及び564、センサ/アクチュエータバス566など)にわたって
及び複数の異なる通信プロトコルにわたって、BMS500の複数のレベルで行うことが
できる。いくつかの実施形態では、機器発見は、アクティブノードテーブルを使用して達
成され、アクティブノードテーブルは、各通信バスに接続されたデバイスに関するステー
タス情報を提供する。例えば、新たなノードに関する対応するアクティブノードテーブル
を監視することにより、新たなデバイスについて各通信バスを監視することができる。新
たなデバイスが検出されると、BMS500は、ユーザ対話なしで、新たなデバイスとの
対話(例えば、制御信号の送信、デバイスからのデータの使用)を開始することができる
【0096】
BMS500でのいくつかのデバイスは、機器モデルを使用してネットワークにそれら
自体の存在を知らせる。機器モデルは、他のシステムとの統合のために使用される機器オ
ブジェクト属性、ビュー定義、スケジュール、トレンド及び関連のBACnet値オブジ
ェクト(例えば、アナログ値、バイナリ値、マルチステート値など)を定義する。BMS
500でのいくつかのデバイスは、それら独自の機器モデルを記憶している。BMS50
0での他のデバイスは、機器モデルが外部に(例えば、他のデバイス内に)記憶されてい
る。例えば、ゾーンコーディネータ508が、バイパスダンパ528に関する機器モデル
を記憶することができる。いくつかの実施形態において、ゾーンコーディネータ508は
、バイパスダンパ528又はゾーンバス558上の他のデバイスに関する機器モデルを自
動的に作成する。他のゾーンコーディネータも、それらのゾーンバスに接続されたデバイ
スに関する機器モデルを作成することができる。デバイスに関する機器モデルは、ゾーン
バス上のデバイスによって提示されるデータポイントのタイプ、デバイスタイプ及び/又
は他のデバイス属性に基づいて自動的に作成することができる。自動の機器発見及び機器
モデル分配のいくつかの例を以下でより詳細に論じる。
【0097】
図5をさらに参照すると、BMS500は、システムマネージャ502と、いくつかの
ゾーンコーディネータ506、508、510及び518と、いくつかのゾーンコントロ
ーラ524、530、532、536、548及び550とを含むものとして示されてい
る。システムマネージャ502は、BMS500内のデータポイントを監視し、監視され
る変数を様々な監視及び/又は制御アプリケーションに報告することができる。システム
マネージャ502は、データ通信リンク574(例えば、BACnet(登録商標)IP
、イーサネット(登録商標)、有線又は無線通信など)を介してクライアントデバイス5
04(例えば、ユーザデバイス、デスクトップコンピュータ、ラップトップコンピュータ
、モバイルデバイスなど)と通信することができる。システムマネージャ502は、デー
タ通信リンク574を介してクライアントデバイス504へのユーザインターフェースを
提供することができる。ユーザインターフェースは、ユーザがクライアントデバイス50
4を介してBMS500を監視及び/又は制御できるようにし得る。
【0098】
いくつかの実施形態では、システムマネージャ502は、システムバス554を介して
ゾーンコーディネータ506~510及び518と接続される。システムマネージャ50
2は、マスタ・スレーブトークンパッシング(MSTP)プロトコル又は任意の他の通信
プロトコルを使用して、システムバス554を介してゾーンコーディネータ506~51
0及び518と通信するように構成することができる。また、システムバス554は、シ
ステムマネージャ502を、定容積(CV)ルーフトップユニット(RTU)512、入
出力モジュール(IOM)514、サーモスタットコントローラ516(例えば、TEC
5000系列のサーモスタットコントローラ)及びネットワーク自動化エンジン(NAE
)又はサードパーティのコントローラ520など他のデバイスと接続することもできる。
RTU512は、システムマネージャ502と直接通信するように構成することができ、
システムバス554に直接接続することができる。他のRTUは、中間デバイスを介して
システムマネージャ502と通信することができる。例えば、有線入力562は、サード
パーティのRTU542をサーモスタットコントローラ516に接続することができ、サ
ーモスタットコントローラ516は、システムバス554に接続する。
【0099】
システムマネージャ502は、機器モデルを含む任意のデバイスのためのユーザインタ
ーフェースを提供することができる。ゾーンコーディネータ506~510及び518並
びにサーモスタットコントローラ516などのデバイスは、システムバス554を介して
それらの機器モデルをシステムマネージャ502に提供することができる。いくつかの実
施形態では、システムマネージャ502は、機器モデルを含まない接続されたデバイス(
例えば、IOM514、サードパーティのコントローラ520など)に関して、機器モデ
ルを自動的に作成する。例えば、システムマネージャ502は、デバイスツリーリクエス
トに応答する任意のデバイスに関する機器モデルを作成することができる。システムマネ
ージャ502によって作成された機器モデルは、システムマネージャ502に記憶するこ
とができる。次いで、システムマネージャ502は、システムマネージャ502によって
作成された機器モデルを使用して、自機の機器モデルを含まないデバイスのためのユーザ
インターフェースを提供することができる。いくつかの実施形態では、システムマネージ
ャ502は、システムバス554を介して接続された各タイプの機器に関するビュー定義
を記憶し、記憶されているビュー定義を使用してその機器のためのユーザインターフェー
スを生成する。
【0100】
各ゾーンコーディネータ506~510及び518は、ゾーンバス556、558、5
60及び564を介してゾーンコントローラ524、530~532、536及び548
~550の1つ又は複数と接続することができる。ゾーンコーディネータ506~510
及び518は、MSTPプロトコル又は任意の他の通信プロトコルを使用して、ゾーンバ
ス556~560及び564を介してゾーンコントローラ524、530~532、53
6及び548~550と通信することができる。また、ゾーンバス556~560及び5
64は、ゾーンコーディネータ506~510及び518を、可変風量(VAV)RTU
522及び540、切替えバイパス(COBP)RTU526及び552、バイパスダン
パ528及び546並びにPEAKコントローラ534及び544など他のタイプのデバ
イスと接続することもできる。
【0101】
ゾーンコーディネータ506~510及び518は、様々なゾーニングシステムを監視
及び命令するように構成することができる。いくつかの実施形態では、各ゾーンコーディ
ネータ506~510及び518は、別個のゾーニングシステムを監視及び命令し、別個
のゾーンバスを介してゾーニングシステムに接続される。例えば、ゾーンコーディネータ
506は、ゾーンバス556を介してVAV RTU522及びゾーンコントローラ52
4に接続することができる。ゾーンコーディネータ508は、ゾーンバス558を介して
COBP RTU526、バイパスダンパ528、COBPゾーンコントローラ530及
びVAVゾーンコントローラ532に接続することができる。ゾーンコーディネータ51
0は、ゾーンバス560を介してPEAKコントローラ534及びVAVゾーンコントロ
ーラ536に接続することができる。ゾーンコーディネータ518は、ゾーンバス564
を介して、PEAKコントローラ544、バイパスダンパ546、COBPゾーンコント
ローラ548及びVAVゾーンコントローラ550に接続することができる。
【0102】
ゾーンコーディネータ506~510及び518の単一のモデルは、複数の異なるタイ
プのゾーニングシステム(例えば、VAVゾーニングシステム、COBPゾーニングシス
テムなど)を取り扱うように構成することができる。各ゾーニングシステムは、RTU、
1つ又は複数のゾーンコントローラ及び/又はバイパスダンパを含むことができる。例え
ば、ゾーンコーディネータ506及び510は、それぞれVAV RTU522及び54
0に接続されたVerasys VAVエンジン(VVE)として示されている。ゾーン
コーディネータ506は、ゾーンバス556を介してVAV RTU522に直接接続さ
れ、ゾーンコーディネータ510は、PEAKコントローラ534に提供された有線入力
568を介してサードパーティのVAV RTU540に接続される。ゾーンコーディネ
ータ508及び518は、それぞれCOBP RTU526及び552に接続されたVe
rasys COBPエンジン(VCE)として示されている。ゾーンコーディネータ5
08は、ゾーンバス558を介してCOBP RTU526に直接接続され、ゾーンコー
ディネータ518は、PEAKコントローラ544に提供された有線入力570を介して
サードパーティのCOBP RTU552に接続される。
【0103】
ゾーンコントローラ524、530~532、536及び548~550は、センサ/
アクチュエータ(SA)バスを介して個々のBMSデバイス(例えば、センサ、アクチュ
エータなど)と通信することができる。例えば、VAVゾーンコントローラ536は、S
Aバス566を介して、ネットワーク化されたセンサ538に接続されて示されている。
ゾーンコントローラ536は、MSTPプロトコル又は任意の他の通信プロトコルを使用
して、ネットワーク化されたセンサ538と通信することができる。図5にはSAバス5
66が1つのみ示されているが、各ゾーンコントローラ524、530~532、536
及び548~550を異なるSAバスに接続できることを理解されたい。各SAバスは、
ゾーンコントローラを様々なセンサ(例えば、温度センサ、湿度センサ、圧力センサ、光
センサ、人感センサなど)、アクチュエータ(例えば、ダンパアクチュエータ、バルブア
クチュエータなど)及び/又は他のタイプの制御可能な機器(例えば、冷却器、ヒータ、
ファン、ポンプなど)と接続することができる。
【0104】
各ゾーンコントローラ524、530~532、536及び548~550は、異なる
ビルディング区域を監視及び制御するように構成することができる。ゾーンコントローラ
524、530~532、536及び548~550は、それらのSAバスを介して提供
される入力及び出力を使用して、様々なビルディング区域を監視及び制御することができ
る。例えば、ゾーンコントローラ536は、温度制御アルゴリズムでのフィードバックと
して、ネットワーク化されたセンサ538からSAバス566を介して受信された温度入
力(例えば、ビルディング区域の測定された温度)を使用することができる。ゾーンコン
トローラ524、530~532、536及び548~550は、様々なタイプの制御ア
ルゴリズム(例えば、状態ベースのアルゴリズム、極値探索制御(ESC)アルゴリズム
、比例積分(PI)制御アルゴリズム、比例積分微分(PID)制御アルゴリズム、モデ
ル予測制御(MPC)アルゴリズム、フィードバック制御アルゴリズムなど)を使用して
、ビルディング10内又は周囲の可変状態又は状況(例えば、温度、湿度、気流、照明な
ど)を制御することができる。
【0105】
モデル予測的メンテナンスシステム
【0106】
次に、図6を参照すると、例示的実施形態によるビルディングシステム600のブロッ
ク図が示されている。システム600は、図4~5を参照して述べたBMS400及びB
MS500と同じ構成要素の多くを含むことができる。例えば、システム600は、ビル
ディング10、ネットワーク446及びクライアントデバイス448を含むものとして示
されている。ビルディング10は、接続された機器610を含むものとして示されており
、機器610は、ビルディング10を監視及び/又は制御するために使用される任意のタ
イプの機器を含むことができる。接続された機器610は、接続された冷却器612、接
続されたAHU614、接続されたボイラ616、接続されたバッテリ618又はビルデ
ィングシステム内の任意の他のタイプの機器(例えば、ヒータ、エコノマイザ、バルブ、
アクチュエータ、ダンパ、冷却塔、ファン、ポンプなど)若しくはビルディング管理シス
テム内の任意の他のタイプの機器(例えば、照明機器、セキュリティ機器、冷凍機器など
)を含むことができる。接続された機器610は、図1~5を参照して述べたHVACシ
ステム100、ウォーターサイドシステム200、エアサイドシステム300、BMS4
00及び/又はBMS500の機器のいずれを含むこともできる。
【0107】
接続された機器610には、接続された機器610の様々な状態(例えば、電力消費量
、オン/オフ状態、動作効率など)を監視するためのセンサを装備することができる。例
えば、冷却器612は、冷凍回路内の様々な位置での冷却水温度、凝縮水温度及び冷媒特
性(例えば、冷媒圧力、冷媒温度など)などの冷却器変数を監視するように構成されたセ
ンサを含むことができる。冷却器612の1つとして使用することができる冷却器700
の一例が図7に示されている。冷却器700は、凝縮器702、膨張弁704、蒸発器7
06、圧縮機708及び制御パネル710を有する冷凍回路を含むものとして示されてい
る。いくつかの実施形態では、冷却器700は、冷凍回路に沿った様々な位置での監視さ
れる変数の組を測定するセンサを含む。同様に、AHU614には、給気温度及び湿度、
外気温度及び湿度、還気温度及び湿度、冷却された流体の温度、加熱された流体の温度、
ダンパ位置などのAHU変数を監視するためのセンサを装備することができる。一般に、
接続された機器610は、接続された機器610の性能を特徴付ける変数を監視及び報告
することができる。監視された各変数は、ポイントID及びポイント値を含むデータポイ
ントとしてビルディング管理システム606に転送することができる。
【0108】
監視される変数は、接続された機器610及び/又はその構成要素の性能を示す任意の
測定された値又は計算された値を含むことができる。例えば、監視される変数は、1つ又
は複数の測定又は計算された温度(例えば、冷媒温度、冷水供給温度、温水供給温度、給
気温度、ゾーン温度など)、圧力(例えば、蒸発器圧力、凝縮器圧力、供給空気圧力など
)、流量(例えば、冷水流量、温水流量、冷媒流量、供給空気流量など)、バルブ位置、
資源消費(例えば、電力消費量、水消費量、電気消費量など)、制御設定点、モデルパラ
メータ(例えば、回帰モデル係数)又は対応するシステム、デバイス若しくはプロセスが
どのように動作しているかに関する情報を提供する任意の他の時系列値を含むことができ
る。監視される変数は、接続された機器610及び/又はその様々な構成要素から受信す
ることができる。例えば、監視される変数は、1つ又は複数のコントローラ(例えば、B
MSコントローラ、サブシステムコントローラ、HVACコントローラ、サブプラントコ
ントローラ、AHUコントローラ、デバイスコントローラなど)、BMSデバイス(例え
ば、冷却器、冷却塔、ポンプ、加熱素子など)又はBMSデバイスの集合体から受信する
ことができる。
【0109】
接続された機器610は、機器ステータス情報を報告することもできる。機器ステータ
ス情報は、例えば、機器の動作ステータス、動作モード(例えば、低負荷、中負荷、高負
荷など)、機器が正常な状態で稼働しているか異常な状態で稼働しているかの標示、機器
が稼働している時間、安全障害コード又は接続された機器610の現在のステータスを示
す任意の他の情報を含むことができる。いくつかの実施形態において、接続された機器6
10の各デバイスは、制御パネル(例えば、図7に示される制御パネル710)を含む。
制御パネル710は、接続された機器610から監視される変数及び機器ステータス情報
を収集し、収集されたデータをBMS606に提供するように構成することができる。例
えば、制御パネル710は、センサデータ(又はセンサデータから導出された値)を所定
の閾値と比較することができる。センサデータ又は計算された値が安全閾値を超える場合
、制御パネル710は、デバイスをシャットダウンすることができる。制御パネル710
は、安全シャットダウンが起きたときにデータポイントを生成することができる。データ
ポイントは、シャットダウンをトリガした理由又は状態を示す安全障害コードを含むこと
ができる。
【0110】
接続された機器610は、監視される変数及び機器ステータス情報をBMS606に提
供することができる。BMS606は、ビルディングコントローラ(例えば、BMSコン
トローラ366)、システムマネージャ(例えば、システムマネージャ503)、ネット
ワーク自動化エンジン(例えば、NAE520)又は接続された機器610と通信するよ
うに構成されたビルディング10の任意の他のシステム若しくはデバイスを含むことがで
きる。BMS606は、図4~5を参照して述べたBMS400又はBMS500の構成
要素のいくつか又はすべてを含むことがある。いくつかの実施形態では、監視される変数
及び機器ステータス情報は、データポイントとしてBMS606に提供される。各データ
ポイントは、ポイントID及びポイント値を含むことができる。ポイントIDは、データ
ポイントのタイプ又はデータポイントによって測定される変数(例えば、凝縮器圧力、冷
媒温度、電力消費量など)を識別することができる。監視される変数は、名前又は英数字
コード(例えば、Chilled_Water_Temp、7694など)によって識別
することができる。ポイント値は、データポイントの現在の値を示す英数字値を含むこと
ができる。
【0111】
BMS606は、監視される変数及び機器ステータス情報をモデル予測的メンテナンス
システム602にブロードキャストすることができる。いくつかの実施形態では、モデル
予測的メンテナンスシステム602は、BMS606の構成要素である。例えば、モデル
予測的メンテナンスシステム602は、Johnson Controls Inc.が
販売しているMETASYS(登録商標)ブランドのビルディング自動化システムの一部
として実装することができる。他の実施形態では、モデル予測的メンテナンスシステム6
02は、ネットワーク446を介して1つ又は複数のビルディング管理システムからのデ
ータを受信及び処理するように構成された遠隔コンピューティングシステム又はクラウド
ベースのコンピューティングシステムの構成要素であり得る。例えば、モデル予測的メン
テナンスシステム602は、Johnson Controls Inc.が販売してい
るPANOPTIX(登録商標)ブランドのビルディング効率プラットフォームの一部と
して実装することができる。他の実施形態では、モデル予測的メンテナンスシステム60
2は、サブシステムレベルコントローラ(例えば、HVACコントローラ)、サブプラン
トコントローラ、デバイスコントローラ(例えば、AHUコントローラ330、冷却器コ
ントローラなど)、フィールドコントローラ、コンピュータワークステーション、クライ
アントデバイス又は接続された機器610から監視される変数を受信して処理する任意の
他のシステム若しくはデバイスの構成要素であり得る。
【0112】
モデル予測的メンテナンス(MPM)システム602は、監視される変数及び/又は機
器ステータス情報を使用して、接続された機器610の現在の動作条件を識別することが
できる。MPMシステム602によって現在の動作条件を検査して、接続された機器61
0の性能が低下し始めるときを明らかにし、且つ/又は障害が発生するときを予測するこ
とができる。いくつかの実施形態では、MPMシステム602は、接続された機器610
から収集された情報を使用して、接続された機器610の信頼性を推定する。例えば、M
PMシステム602は、接続された機器610の現在の動作条件と、接続された機器61
0が設置されてから及び/又はメンテナンスが最後に実施されてから経過した時間量とに
基づいて、発生する可能性があり得る様々なタイプの故障の尤度を推定することができる
。いくつかの実施形態では、MPMシステム602は、各故障が発生すると予測されるま
での時間量を推定し、各故障に関連する経済的コスト(例えば、メンテナンスコスト、増
加される動作コスト、交換コストなど)を識別する。MPMシステム602は、信頼性情
報及び潜在的な故障の尤度を使用して、メンテナンスが必要とされるときを予測し、所定
の期間にわたってそのようなメンテナンスを実施するコストを推定することができる。
【0113】
MPMシステム602は、接続された機器610に関する最適なメンテナンス戦略を決
定するように構成することができる。いくつかの実施形態では、最適なメンテナンス戦略
は、最適化期間(例えば、30週、52週、10年、30年など)の継続期間にわたる接
続された機器610の購入、メンテナンス及び動作に関連する総コストを最適化する決定
事項の組である。これらの決定事項は、例えば、機器の購入の決定、機器のメンテナンス
の決定及び機器の動作の決定を含むことができる。MPMシステム602は、モデル予測
制御技法を使用して、これらの決定事項の関数として総コストを表す目的関数を定式化す
ることができる。決定事項は、決定変数として目的関数に含めることができる。MPMシ
ステム602は、様々な最適化技法のいずれかを使用して目的関数を最適化(例えば、最
小化)して、各決定変数に関する最適値を識別することができる。
【0114】
MPMシステム602によって最適化することができる目的関数の一例は、次式で示さ
れる。
【数5】
ここで、Cop,iは、最適化期間の時間ステップiにおいて接続された機器610が消
費する単位エネルギーあたりのコスト(例えば、ドル/kWh)であり、Pop,iは、
時間ステップiにおける接続された機器610の電力消費量(例えば、kW)であり、Δ
tは、各時間ステップiの継続時間であり、Cmain,iは、時間ステップiにおいて
接続された機器610に対して実施されるメンテナンスのコストであり、Bmain,i
は、メンテナンスが実施されるか否かを示すバイナリ変数であり、Ccap,iは、時間
ステップiにおいて接続された機器610の新たなデバイスを購入する資本コストであり
、Bcap,iは、新たなデバイスが購入されるか否かを示すバイナリ変数であり、hは
、最適化が実施されるホライズン又は最適化期間の継続時間である。
【0115】
目的関数Jの第1項は、最適化期間の継続期間にわたる接続された機器610の動作コ
ストを表す。いくつかの実施形態では、単位エネルギーあたりのコストCop,iは、エ
ネルギー価格データとして公益企業608から受信される。コストCop,iは、時刻、
曜日(例えば、平日か週末か)、現在の季節(例えば、夏か冬か)又は他の時間ベースの
因子に依存する時変コストであり得る。例えば、コストCop,iは、ピークエネルギー
消費期間中にはより高く、オフピーク又は部分ピークエネルギー消費期間中にはより低い
ことがある。
【0116】
いくつかの実施形態では、電力消費量Pop,iは、ビルディング10の加熱又は冷却
負荷に基づく。加熱又は冷却負荷は、ビルディング占有、時刻、曜日、現在の季節又は加
熱若しくは冷却負荷に影響を与え得る他の因子に応じて、MPMシステム602によって
予測することができる。いくつかの実施形態では、MPMシステム602は、気象サービ
ス604からの天気予報を使用して加熱又は冷却負荷を予測する。電力消費量Pop,i
は、接続された機器610の効率ηにも依存する。例えば、高い効率で動作する接続さ
れた機器610は、低い効率で動作する接続された機器610に比べて、同じ加熱又は冷
却負荷を満たすために消費する電力Pop,iが少ないことがある。一般に、接続された
機器610の特定のデバイスの電力消費量Pop,iは、次式を使用してモデル化するこ
とができる。
【数6】
ここで、Loadは、時間ステップiにおけるデバイスに対する加熱又は冷却負荷(例
えば、トン単位での冷却負荷、kW単位での加熱負荷など)であり、Pideal,i
、対応する負荷点Loadでのデバイスに関する機器性能曲線の値(例えば、トン単位
での冷却負荷、kW単位での加熱負荷など)であり、ηは、時間ステップiにおけるデ
バイスの動作効率である(例えば、0≦η≦1)。関数f(Load)は、性能曲線
によって表されるデバイス又はデバイスのセットの機器性能曲線によって定義することが
できる。
【0117】
いくつかの実施形態では、機器性能曲線は、理想的な動作条件下でのデバイスに関する
製造業者仕様に基づいている。例えば、機器性能曲線は、接続された機器610の各デバ
イスに関する電力消費量と加熱/冷却負荷との関係を定義することがある。しかし、デバ
イスの実際の性能は、実際の動作条件に応じて異なることがある。MPMシステム602
は、接続された機器610によって提供される機器性能情報を分析して、接続された機器
610の各デバイスに関する動作効率ηを決定することができる。いくつかの実施形態
では、MPMシステム602は、接続された機器610からの機器性能情報を使用して、
接続された機器610の各デバイスに関する実際の動作効率ηを決定する。MPMシス
テム602は、動作効率ηを目的関数Jへの入力として使用すること及び/又は対応す
るPop,i値を計算することができる。
【0118】
有利には、MPMシステム602は、各時間ステップiにおける接続された機器610
の効率ηを、メンテナンス決定Bmain,i及び機器購入決定Bcap,iの関数と
してモデル化することができる。例えば、特定のデバイスに関する効率ηは、デバイス
が購入されたときに初期値ηで始まることがあり、時間と共に低下し、連続する各時間
ステップiと共に効率ηが低下することがある。デバイスに対するメンテナンスを実施
することで、メンテナンスが実施された直後に効率ηをより高い値にリセットすること
ができる。同様に、新たなデバイスを購入して既存のデバイスと交換することで、新たな
デバイスが購入された直後に効率ηをより高い値にリセットすることができる。リセッ
ト後、効率ηは、メンテナンスが実施されるか又は新たなデバイスが購入される次の時
点まで、時間と共に低下し続けることがある。
【0119】
メンテナンスの実施又は新たなデバイスの購入により、動作中の電力消費量Pop,i
が比較的低くなり、したがって、メンテナンスが実施された後又は新たなデバイスが購入
された後に各時間ステップiにおける動作コストがより低くなることがある。言い換える
と、メンテナンスの実施又は新たなデバイスの購入により、目的関数Jの第1項によって
表される動作コストを低減することができる。しかし、メンテナンスの実施により、目的
関数Jの第2項が増加することがあり、新たなデバイスの購入により、目的関数Jの第3
項が増加することがある。目的関数Jは、これらの各コストを捕捉し、MPMシステム6
02によって最適化して、最適化期間の継続期間にわたるメンテナンス及び機器購入決定
の最適な組(すなわちバイナリ決定変数Bmain,i及びBcap,iに関する最適値
)を決定することができる。
【0120】
いくつかの実施形態では、MPMシステム602は、接続された機器610からの機器
性能情報を使用して、接続された機器610の信頼性を推定する。信頼性は、接続された
機器610がその現在の動作条件下で障害なく動作し続ける尤度の統計的尺度であり得る
。より過酷な条件下(例えば、高負荷、高温など)での動作は、信頼性をより低くするこ
とがあり、より過酷でない条件下(例えば、低負荷、中程度の温度など)での動作は、信
頼性をより高くすることがある。いくつかの実施形態では、信頼性は、接続された機器6
10が最後にメンテナンスを受けてから経過した時間量に基づく。
【0121】
MPMシステム602は、複数のビルディングに分散された接続された機器610の複
数のデバイスから動作データを受信することがあり、動作データのセット(例えば、動作
条件、障害標示、故障時間など)を使用して、各タイプの機器に関する信頼性モデルを生
成することができる。MPMシステム602が信頼性モデルを使用して、接続された機器
610の任意の所与のデバイスの信頼性を、その現在の動作条件及び/又は他の外的要因
(例えば、メンテナンスが最後に実施されてからの時間、地理的位置、水質など)に応じ
て推定することができる。いくつかの実施形態では、MPMシステム602は、接続され
た機器610の各デバイスの推定された信頼性を使用して、最適化期間の各時間ステップ
においてデバイスがメンテナンス及び/又は交換を必要とする確率を決定する。MPMシ
ステム602は、これらの確率を使用して、最適化期間の継続期間にわたるメンテナンス
及び機器購入決定の最適な組(すなわちバイナリ決定変数Bmain,i及びBcap,
に関する最適値)を決定することができる。
【0122】
いくつかの実施形態では、MPMシステム602は、機器購入及びメンテナンスの推奨
を生成及び提供する。機器購入及びメンテナンスの推奨は、目的関数Jを最適化すること
によって決定されるバイナリ決定変数Bmain,i及びBcap,iに関する最適値に
基づくことがある。例えば、接続された機器610の特定のデバイスに関するBmain
,25=1の値は、最適化期間の第25の時間ステップにおいてそのデバイスに対してメ
ンテナンスが実施されるべきであることを示すことがあり、Bmain,25=0の値は
、その時間ステップにおいてメンテナンスを実施すべきでないことを示すことがある。同
様に、Bcap,25=1の値は、最適化期間の第25の時間ステップにおいて、接続さ
れた機器610の新たなデバイスを購入すべきであることを示すことがあり、Bcap,
25=0の値は、その時間ステップにおいて新たなデバイスを購入すべきでないことを示
すことがある。
【0123】
有利には、MPMシステム602によって生成される機器購入及びメンテナンスの推奨
は、接続された機器610の実際の動作条件及び実際の性能に基づく予測的な推奨である
。MPMシステム602によって実施される最適化は、メンテナンスを実施するコスト及
び新たな機器を購入するコストを、そのようなメンテナンス又は購入の決定により生じる
動作コストの低減に対して重み付けして、総複合コストJを最小化する最適なメンテナン
ス戦略を決定する。このようにして、MPMシステム602によって生成される機器購入
及びメンテナンスの推奨は、各グループの接続された機器610に特有のものとなり、特
定のグループの接続された機器610に関する最適なコストJを実現することができる。
機器に特有の推奨は、いくつかのグループの接続された機器610及び/又はいくつかの
動作条件に関しては最適でないことがある機器製造業者によって提供される一般的な予防
的メンテナンスの推奨(例えば、毎年の機器の整備)に比べ、全体的なコストJを低くす
ることができる。
【0124】
いくつかの実施形態では、機器購入及びメンテナンスの推奨は、ビルディング10(例
えば、BMS606)及び/又はクライアントデバイス448に提供される。操作者又は
ビルディングの所有者は、機器購入及びメンテナンスの推奨を使用して、メンテナンスの
実施及び新たなデバイスの購入のコスト及び利益を評価することができる。いくつかの実
施形態では、機器購入及びメンテナンスの推奨が整備士620に提供される。整備士62
0は、機器購入及びメンテナンスの推奨を使用して、整備の実施又は機器の交換のために
顧客に連絡すべきときを決定することができる。
【0125】
いくつかの実施形態では、MPMシステム602は、データ分析及び視覚化プラットフ
ォームを含む。MPMシステム602は、整備士620、クライアントデバイス448及
び他のシステム又はデバイスがアクセスすることができるウェブインターフェースを提供
することがある。ウェブインターフェースを使用して、機器性能情報にアクセスし、最適
化の結果を閲覧し、メンテナンスが必要な機器を識別し、さもなければMPMシステム6
02と対話することができる。整備士620は、ウェブインターフェースにアクセスして
、MPMシステム602によってメンテナンスが推奨される機器のリストを閲覧すること
ができる。整備士620は、機器購入及びメンテナンスの推奨を使用して、接続された機
器610を早期に修理又は交換し、目的関数Jによって予測される最適なコストを実現す
ることができる。MPMシステム602のこれら及び他の特徴は、以下でより詳細に述べ
る。
【0126】
次に、図8を参照すると、例示的実施形態に従って、MPMシステム602をより詳細
に例示するブロック図が示されている。MPMシステム602は、最適化結果をビルディ
ング管理システム(BMS)606に提供するものとして示されている。BMS606は
図4~5を参照して述べたBMS400及び/又はBMS500の特徴のいくつか又は
すべてを含むことがある。BMS606に提供される最適化結果は、最適化期間内の時間
ステップiごとに目的関数Jの決定変数の最適値を含むことがある。いくつかの実施形態
では、最適化結果は、接続された機器610のデバイスごとの機器購入及びメンテナンス
の推奨を含む。
【0127】
BMS606は、接続された機器610の動作及び性能を監視するように構成されるこ
とがある。BMS606は、接続された機器610から監視される変数を受信することが
できる。監視される変数は、接続された機器610及び/又はその構成要素の性能を示す
任意の測定された値又は計算された値を含むことができる。例えば、監視される変数は、
1つ又は複数の測定又は計算された温度、圧力、流量、バルブ位置、資源消費(例えば、
電力消費量、水消費量、電気消費量など)、制御設定点、モデルパラメータ(例えば、機
器モデル係数)又は対応するシステム、デバイス若しくはプロセスがどのように動作して
いるかに関する情報を提供する任意の他の変数を含むことができる。
【0128】
いくつかの実施形態では、監視される変数が、接続された機器610の各デバイスの動
作効率ηを示すか、又は監視される変数を使用して動作効率ηを計算することができ
る。例えば、冷却器によって出力される冷却された水の温度及び流量を使用して、冷却器
によってサービス提供される冷却負荷(例えば、トン単位での冷却負荷)を計算すること
ができる。冷却負荷を冷却器の電力消費量と組み合わせて使用して、動作効率η(例え
ば、消費される電気1kWあたりのトン単位での冷却負荷)を計算することができる。B
MS606は、接続された機器610の各デバイスの動作効率ηを計算する際に使用す
るために、監視される変数をMPMシステム602に報告することができる。
【0129】
いくつかの実施形態では、BMS606は、接続された機器610の稼働時間を監視す
る。稼働時間は、接続された機器610の各デバイスがアクティブである所与の期間内の
時間を示し得る。例えば、冷却器に関する稼働時間は、冷却器が1日に約8時間アクティ
ブであることを示すことがある。稼働時間を、アクティブ時の冷却器の平均電力消費量と
組み合わせて使用して、各時間ステップiにおける接続された機器610の総電力消費量
op,iを推定することができる。
【0130】
いくつかの実施形態では、BMS606は、接続された機器610によって報告される
機器故障及び障害標示を監視する。BMS606は、各故障又は障害が発生する時間及び
障害又は故障が発生した際の接続された機器610の動作条件を記録することができる。
BMS606及び/又はMPMシステム602が、接続された機器610から収集された
動作データを使用して、接続された機器610のデバイスごとの信頼性モデルを作成する
ことができる。BMS606は、監視される変数、機器稼働時間、動作条件並びに機器故
障及び障害標示を機器性能情報としてMPMシステム602に提供することができる。
【0131】
BMS606は、制御されているビルディング又はビルディング区域内部の状態を監視
するように構成することができる。例えば、BMS606は、ビルディング全体にわたっ
て分散された様々なセンサ(例えば、温度センサ、湿度センサ、気流センサ、電圧センサ
など)からの入力を受信することがあり、ビルディングの状態をMPMシステム602に
報告することがある。ビルディングの状態は、例えば、ビルディング又はビルディングの
ゾーンの温度、ビルディングの電力消費量(例えば、電気負荷)、ビルディング内部の制
御されている状態に影響を与えるように構成された1つ又は複数のアクチュエータの状態
又は制御されているビルディングに関係する他のタイプの情報を含むことがある。BMS
606は、接続された機器610を動作させて、ビルディング内部の監視されている状態
に影響を与え、ビルディングの熱エネルギー負荷を提供することができる。
【0132】
BMS606は、接続された機器610に制御信号を提供し、接続された機器610に
関するオン/オフ状態、充電/放電速度及び/又は設定点を指定することができる。BM
S606は、制御信号に従って(例えば、アクチュエータ、継電器などを介して)機器を
制御して、接続された機器610の様々なビルディング区域及び/又はデバイスに関する
設定点を実現することができる。様々な実施形態において、BMS606は、MPMシス
テム602と組み合わされ得るか、又は別個のビルディング管理システムの一部であり得
る。例示的実施形態によれば、BMS606は、Johnson Controls,I
nc.が販売しているMETASYS(登録商標)ブランドのビルディング管理システム
である。
【0133】
MPMシステム602は、BMS606から受信された情報を使用して、接続された機
器610の性能を監視することができる。MPMシステム602は、(例えば、気象サー
ビス604からの天気予報を使用して)最適化期間内の複数の時間ステップに関してビル
ディングの熱エネルギー負荷(例えば、加熱負荷、冷却負荷など)を予測するように構成
されることがある。MPMシステム602は、公益企業608から受信された価格データ
を使用して、電気又は他の資源(例えば、水、天然ガスなど)のコストを予測することも
ある。MPMシステム602は、最適化プロセスに対する制約(例えば、負荷制約、決定
変数制約など)を受ける最適化期間の継続期間にわたって、接続された機器610の動作
、メンテナンス及び購入の経済的価値を最適化する最適化結果を生成することができる。
MPMシステム602によって実施される最適化プロセスを以下でより詳細に述べる。
【0134】
例示的実施形態によれば、MPMシステム602は、単一のコンピュータ(例えば、1
つのサーバ、1つのハウジングなど)の内部に統合することができる。様々な他の例示的
実施形態では、MPMシステム602を複数のサーバ又はコンピュータ(例えば、分散さ
れた場所に存在し得る)にわたって分散させることができる。別の例示的実施形態では、
MPMシステム602は、複数のビルディングシステムを管理するスマートビルディング
マネージャと統合し、且つ/又はBMS606と組み合わせることができる。
【0135】
MPMシステム602は、通信インターフェース804及び処理回路806を含むもの
として示されている。通信インターフェース804は、様々なシステム、デバイス又はネ
ットワークとのデータ通信を行うための有線又は無線インターフェース(例えば、ジャッ
ク、アンテナ、送信機、受信機、送受信機、有線端末など)を含むことがある。例えば、
通信インターフェース804は、イーサネットベースの通信ネットワークを介してデータ
を送受信するためのイーサネットカード及びポート及び/又は無線通信ネットワークを介
して通信するためのWiFi送受信機を含むことがある。通信インターフェース804は
、ローカルエリアネットワーク又はワイドエリアネットワーク(例えば、インターネット
、ビルディングWANなど)を介して通信するように構成されることがあり、様々な通信
プロトコル(例えば、BACnet、IP、LONなど)を使用し得る。
【0136】
通信インターフェース804は、MPMシステム602と様々な外部システム又はデバ
イス(例えば、BMS606、接続された機器610、公益企業510など)との間の電
子データ通信を容易にするように構成されたネットワークインターフェースであり得る。
例えば、MPMシステム602は、BMS606から、制御されているビルディングの1
つ又は複数の測定された状態(例えば、温度、湿度、電気負荷など)及び接続された機器
610に関する機器性能情報(例えば、稼働時間、電力消費量、動作効率など)を示す情
報を受信することがある。通信インターフェース804は、BMS606及び/又は接続
された機器610から入力を受信することができ、BMS606及び/又は他の外部シス
テム若しくはデバイスに最適化結果を提供することができる。最適化結果により、BMS
606は、接続された機器610に関する設定点をアクティブ化、非アクティブ化又は調
整して、最適化結果で指定された決定変数の最適値を実現することができる。
【0137】
引き続き図8を参照すると、処理回路806は、プロセッサ808及びメモリ810を
含むものとして示されている。プロセッサ808は、汎用若しくは特定用途向けプロセッ
サ、特定用途向け集積回路(ASIC)、1つ若しくは複数のフィールドプログラマブル
ゲートアレイ(FPGA)、処理構成要素のグループ又は他の適切な処理構成要素であり
得る。プロセッサ808は、メモリ810に記憶されたか又は他のコンピュータ可読媒体
(例えば、CDROM、ネットワークストレージ、リモートサーバなど)から受信された
コンピュータコード又は命令を実行するように構成され得る。
【0138】
メモリ810は、本開示で述べる様々なプロセスを完遂及び/又は容易化するためのデ
ータ及び/又はコンピュータコードを記憶するための1つ又は複数のデバイス(例えば、
メモリユニット、メモリデバイス、記憶デバイスなど)を含み得る。メモリ810は、ラ
ンダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードドライブ記憶
装置、一時記憶装置、不揮発性メモリ、フラッシュメモリ、光学メモリ又はソフトウェア
オブジェクト及び/又はコンピュータ命令を記憶するための任意の他の適切なメモリを含
み得る。メモリ810は、データベースコンポーネント、オブジェクトコードコンポーネ
ント、スクリプトコンポーネント又は本開示で述べる様々な活動及び情報構造をサポート
するための任意の他のタイプの情報構造を含み得る。メモリ810は、処理回路806を
介してプロセッサ808に通信可能に接続され得、本明細書で述べる1つ又は複数のプロ
セスを(例えば、プロセッサ808によって)実行するためのコンピュータコードを含み
得る。
【0139】
MPMシステム602は、機器性能モニタ824を含むものとして示されている。機器
性能モニタ824は、BMS606及び/又は接続された機器610から機器性能情報を
受信することができる。機器性能情報は、監視される変数のサンプル(例えば、測定され
た温度、測定された圧力、測定された流量、電力消費量など)、現在の動作条件(例えば
、加熱又は冷却負荷、現在の動作条件など)、障害標示又は接続された機器610の性能
を特徴付ける他のタイプの情報を含むことができる。いくつかの実施形態では、機器性能
モニタ824は、機器性能情報を使用して、接続された機器610の各デバイスの現在の
効率η及び信頼性を計算する。機器性能モニタ824は、目的関数Jの最適化に使用す
るために、効率η及び信頼性値をモデル予測オプティマイザ830に提供することがで
きる。
【0140】
引き続き図8を参照すると、MPMシステム602は、負荷/料金予測器822を含む
ものとして示されている。負荷/料金予測器822は、最適化期間の時間ステップiごと
に、ビルディング又は構内のエネルギー負荷(Load)(例えば、加熱負荷、冷却負
荷、電気負荷など)を予測するように構成されることがある。負荷/料金予測器822は
、気象サービス604から天気予報を受信するものとして示されている。いくつかの実施
形態では、負荷/料金予測器822は、天気予報に応じてエネルギー負荷Loadを予
測する。いくつかの実施形態では、負荷/料金予測器822は、BMS606からのフィ
ードバックを使用して、負荷Loadを予測する。BMS606からのフィードバック
は、様々なタイプの感覚入力(例えば、温度、流量、湿度、エンタルピーなど)又は制御
されているビルディングに関係する他のデータ(例えば、HVACシステム、照明制御シ
ステム、セキュリティシステム、給水システムなどからの入力)を含むことがある。
【0141】
いくつかの実施形態では、負荷/料金予測器822は、測定された電気負荷及び/又は
以前に測定された負荷データをBMS606から(例えば、機器性能モニタ824を介し
て)受信する。負荷/料金予測器822は、所与の天気予報
【数7】
、日付け(日)、時刻(t)及び以前に測定された負荷データ(Yi-1)に応じて負荷
Loadを予測することがある。そのような関係は、次式で表される。
【数8】
【0142】
いくつかの実施形態では、負荷/料金予測器822は、履歴負荷データから訓練された
決定論的+確率モデルを使用して負荷Loadを予測する。負荷/料金予測器822は
、様々な予測法の任意のものを使用して負荷Loadを予測することができる(例えば
、決定論的部分に関しては線形回帰及び確率的部分に関してはARモデル)。負荷/料金
予測器822は、ビルディング又は構内に関する1つ又は複数の異なるタイプの負荷を予
測することがある。例えば、負荷/料金予測器822は、最適化期間内の時間ステップi
ごとに、温水負荷LoadHot,i、冷水負荷LoadCold,i及び電気負荷Lo
adElec,iを予測することがある。予測される負荷値Loadは、これらのタイ
プの負荷のいくつか又はすべてを含むことができる。いくつかの実施形態では、負荷/料
金予測器822は、米国特許出願第14/717,593号に記載されている技法を使用
して負荷/料金予測を行う。
【0143】
負荷/料金予測器822は、公益企業608から公共料金を受信するものとして示され
ている。公共料金は、最適化期間内の各時間ステップiにおいて公益企業608によって
提供される資源(例えば、電気、天然ガス、水など)の単位あたりのコスト又は価格を示
すことがある。いくつかの実施形態では、公共料金は時変料金である。例えば、電気の価
格は、特定の時間帯又は曜日(例えば、高需要の期間中)にはより高く、他の時間帯又は
曜日(例えば、低需要の期間中)にはより低くなることがある。公共料金は、様々な期間
と、各期間中の資源の1単位あたりのコストとを定義することがある。公共料金は、公益
企業608から受信された実際の料金又は負荷/料金予測器822によって推定された予
測公共料金であり得る。
【0144】
いくつかの実施形態では、公共料金は、公益企業608によって提供される1つ又は複
数の資源に関する需要料金を含む。需要料金は、需要料金期間中の特定の資源の最大使用
量(例えば、最大エネルギー消費)に基づいて、公益企業608によって課される個別の
コストを定義することがある。公共料金は、様々な需要料金期間と、各需要料金期間に関
連付けられた1つ又は複数の需要料金とを定義することがある。いくつかの場合、需要料
金期間は、互いに及び/又は予測窓と部分的又は完全に重なることがある。モデル予測オ
プティマイザ830は、高レベルオプティマイザ832によって実施される高レベル最適
化プロセスにおける需要料金を考慮に入れるように構成されることがある。公益企業60
8は、時変(例えば、1時間ごと)の価格、最大サービスレベル(例えば、物理的インフ
ラストラクチャによって又は契約によって許可される最大消費レート)及び電気の場合、
需要料金又は特定の期間内の消費量のピークレートに関する料金によって定義されること
がある。負荷/料金予測器822は、予測される負荷Load及び公共料金をメモリ8
10に記憶することができ、且つ/又は予測された負荷Load及び公共料金をモデル
予測オプティマイザ830に提供することができる。
【0145】
引き続き図8を参照すると、MPMシステム602は、モデル予測オプティマイザ83
0を含むものとして示されている。モデル予測オプティマイザ830は、マルチレベル最
適化プロセスを実施して、接続された機器610の購入、メンテナンス及び動作に関連付
けられた総コストを最適化するように構成することができる。いくつかの実施形態では、
モデル予測オプティマイザ830は、高レベルオプティマイザ832及び低レベルオプテ
ィマイザ834を含む。高レベルオプティマイザ832は、接続された機器610のセッ
ト全体(例えば、ビルディング内部のすべてのデバイス)又は接続された機器610のサ
ブセット(例えば、単一のデバイス、サブプラント又はビルディングサブシステムのすべ
てのデバイスなど)に関して目的関数Jを最適化して、目的関数Jでの各決定変数(例え
ば、Pop,i、Bmain,i及びBcap,i)に関する最適値を決定することがで
きる。高レベルオプティマイザ832によって実施される最適化を、図9を参照してより
詳細に述べる。
【0146】
いくつかの実施形態では、低レベルオプティマイザ834は、高レベルオプティマイザ
832から最適化結果を受信する。最適化結果は、最適化期間内の各時間ステップiにお
ける接続された機器の各デバイス又はデバイスのセットに関する最適な電力消費量値P
p,i及び/又は負荷値Loadを含むことがある。低レベルオプティマイザ834は
、高レベルオプティマイザ832によって決定された負荷値で各デバイス又はデバイスの
セットを最適に稼働する方法を決定することがある。例えば、低レベルオプティマイザ8
34は、接続された機器610の電力消費量を最適化(例えば、最小化)して対応する負
荷値Loadを満たすために、接続された機器610の様々なデバイスに関するオン/
オフ状態及び/又は動作設定点を決定することがある。
【0147】
低レベルオプティマイザ834は、接続された機器610の各デバイス又はデバイスの
セットに関する機器性能曲線を生成するように構成されることがある。各性能曲線は、接
続された機器610の特定のデバイス又はデバイスのセットによる資源消費量(例えば、
kW単位で測定される電気使用量、L/sで測定される水使用量など)を、デバイス又は
デバイスのセットに対する負荷の関数として示すことがある。いくつかの実施形態におい
て、低レベルオプティマイザ834は、負荷点(例えば、Loadの様々な値)及び気
象条件の様々な組合せで低レベル最適化プロセスを実施して複数のデータポイントを生成
することによって性能曲線を生成する。低レベル最適化を使用して、対応する加熱又は冷
却負荷を満たすために必要とされる最小の資源消費量を決定することができる。低レベル
オプティマイザ834によって実施することができる低レベル最適化プロセスの例は、2
015年2月27日出願の「Low Level Central Plant Opt
imization」という名称の米国特許出願第14/634,615号に詳細に述べ
られており、その特許出願の開示全体が参照により本明細書に組み入れられる。低レベル
オプティマイザ834は、データポイントに曲線を当てはめて、性能曲線を生成すること
がある。
【0148】
いくつかの実施形態では、低レベルオプティマイザ834は、接続された機器610の
個々のデバイスの効率曲線を組み合わせることにより、接続された機器610のセット(
例えば、冷却器サブプラント、ヒータサブプラントなど)に関する機器性能曲線を生成す
る。デバイス効率曲線は、負荷の関数としてデバイスによる資源消費量を示すことがある
。デバイス効率曲線は、デバイス製造業者によって提供されることがあるか、又は実験デ
ータを使用して生成されることもある。いくつかの実施形態において、デバイス効率曲線
は、デバイス製造業者によって提供され、実験データを使用して更新された初期効率曲線
に基づく。デバイス効率曲線は、機器モデル818に記憶され得る。いくつかのデバイス
では、デバイス効率曲線は、資源消費が負荷のU字関数であることを示すことがある。し
たがって、複数のデバイス効率曲線が組み合わされて複数のデバイスに関する性能曲線に
なるとき、得られる性能曲線は波状の曲線になり得る。これらの波は、単一のデバイスが
負荷を上げることによって引き起こされ、その後、サブプラント負荷を満たすための別の
デバイスの起動がより効率的になる。低レベルオプティマイザ834は、高レベル最適化
プロセスで使用するために機器性能曲線を高レベルオプティマイザ832に提供すること
がある。
【0149】
引き続き図8を参照すると、MPMシステム602が、機器コントローラ828を含む
ものとして示されている。機器コントローラ828は、接続された機器610を制御して
、ビルディング10での可変状態又は状況(例えば、温度、湿度など)に影響を与えるよ
うに構成することができる。いくつかの実施形態では、機器コントローラ828は、モデ
ル予測オプティマイザ830によって実施された最適化の結果に基づいて、接続された機
器610を制御する。いくつかの実施形態では、機器コントローラ828は、接続された
機器610に通信インターフェース804及び/又はBMS606を介して提供すること
ができる制御信号を生成する。制御信号は、目的関数Jでの決定変数の最適値に基づくこ
とがある。例えば、機器コントローラ828は、接続された機器610に、最適化期間内
の時間ステップiごとの最適な電力消費量値Pop,iを実現させる制御信号を生成する
ことがある。
【0150】
モデル予測オプティマイザ830、機器コントローラ828又はMPMシステム602
の他のモジュールからのデータ及び処理結果は、監視及び報告アプリケーション826に
よってアクセス(又は監視及び報告アプリケーション826にプッシュ)されることがあ
る。監視及び報告アプリケーション826は、ユーザ(例えば、システムエンジニア)が
閲覧及びナビゲートすることができるリアルタイム「システムヘルス」ダッシュボードを
生成するように構成されることがある。例えば、監視及び報告アプリケーション826は
、GUIのユーザに重要業績評価指標(KPI)又は他の情報を表示するためのいくつか
のグラフィカルユーザインターフェース(GUI)要素(例えば、ウィジェット、ダッシ
ュボードコントロール、ウィンドウなど)を有するウェブベースの監視アプリケーション
を含むことがある。さらに、GUI要素は、(実際の又はモデル化された)異なるビルデ
ィングや異なる構内などでのビルディング管理システムにわたる相対的なエネルギー使用
量及び強度を要約することができる。他のGUI要素又はレポートは、利用可能なデータ
に基づいて生成されて示されることがあり、ユーザが、1つ又は複数のエネルギー貯蔵シ
ステムにわたる性能を1つの画面から評価できるようにする。ユーザインターフェース又
はレポート(又は元のデータエンジン)は、ビルディング、ビルディングのタイプ、機器
のタイプなどによって動作条件を集計及び分類するように構成されることがある。GUI
要素は、ビルディングシステムのデバイスに関する動作パラメータ及び電力消費量をユー
ザが視覚的に分析できるようにするチャート又はヒストグラムを含むことがある。
【0151】
引き続き図8を参照すると、MPMシステム602は、監視及び報告アプリケーション
826をサポートするために、1つ又は複数のGUIサーバ、ウェブサービス812又は
GUIエンジン814を含むことがある。様々な実施形態において、アプリケーション8
26、ウェブサービス812及びGUIエンジン814は、MPMシステム602の外部
の別個の構成要素として(例えば、スマートビルディングマネージャの一部として)提供
され得る。MPMシステム602は、関連データの詳細な履歴データベース(例えば、リ
レーショナルデータベース、XMLデータベースなど)を維持するように構成されること
があり、詳細なデータベースに維持されているデータに対して継続的に、頻繁に又は低頻
度でクエリ、集約、変換、検索又は他の処理を行うコンピュータコードモジュールを含む
。MPMシステム602は、任意のそのような処理の結果を、例えば外部監視及び報告ア
プリケーションによるさらなるクエリ、計算若しくはアクセスのために、他のデータベー
ス、テーブル、XMLファイル又は他のデータ構造に提供するように構成されることがあ
る。
【0152】
MPMシステム602は、構成ツール816を含むものとして示されている。構成ツー
ル816により、MPMシステム602がBMS606及び/又は接続された機器610
での変化する条件にどのように応答するかをユーザが(例えば、グラフィカルユーザイン
ターフェースを介して、プロンプト方式の「ウィザード」を介してなど)定義できるよう
にし得る。例示的実施形態では、構成ツール816により、接続された機器610の複数
のデバイス、複数のビルディングシステム及び複数のエンタープライズ制御アプリケーシ
ョン(例えば、作業指示管理システムアプリケーション、エンティティ資源プランニング
アプリケーションなど)に及び得る条件応答シナリオをユーザが構築して記憶することが
できるようにする。例えば、構成ツール816は、様々な条件論理を使用して(例えば、
サブシステムからの、イベント履歴からの)データを組み合わせる機能をユーザに提供す
ることができる。様々な例示的実施形態では、条件論理は、条件間の単純な論理演算子(
例えば、AND、OR、XORなど)から、擬似コード構造又は複雑なプログラミング言
語関数(より複雑な対話、条件文、ループなどを可能にする)まで含むことができる。構
成ツール816は、そのような条件論理を構築するためのユーザインターフェースを提示
することができる。ユーザインターフェースは、ユーザがグラフィックでポリシー及び応
答を定義できるようにすることがある。いくつかの実施形態では、ユーザインターフェー
スは、ユーザが、予め記憶又は予め構成されたポリシーを選択し、そのポリシーを適合さ
せるか、又はそのユーザのシステムと共に使用できるようにし得る。
【0153】
高レベルオプティマイザ
【0154】
次に、図9を参照すると、例示的実施形態に従って、高レベルオプティマイザ832を
より詳細に示すブロック図が示されている。高レベルオプティマイザ832は、接続され
た機器610に関する最適なメンテナンス戦略を決定するように構成することができる。
いくつかの実施形態では、最適なメンテナンス戦略は、最適化期間(例えば、30週、5
2週、10年、30年など)の継続期間にわたる接続された機器610の購入、メンテナ
ンス及び動作に関連する総コストを最適化する決定事項の組である。これらの決定事項は
、例えば、機器の購入の決定、機器のメンテナンスの決定及び機器の動作の決定を含むこ
とができる。
【0155】
高レベルオプティマイザ832は、動作コスト予測器910、メンテナンスコスト予測
器920、資本コスト予測器930、目的関数生成器935及び目的関数オプティマイザ
940を含むものとして示されている。コスト予測器910、920及び930は、モデ
ル予測制御技法を使用して、いくつかの決定変数(例えば、メンテナンス決定、機器購入
決定など)及び入力パラメータ(例えば、エネルギーコスト、デバイス効率、デバイス信
頼性)の関数として総コストを表す目的関数を定式化することができる。動作コスト予測
器910は、目的関数での動作コスト項を定式化するように構成することができる。同様
に、メンテナンスコスト予測器920は、目的関数でのメンテナンスコスト項を定式化す
るように構成することができ、資本コスト予測器930は、目的関数での資本コスト項を
定式化するように構成することができる。目的関数オプティマイザ940は、様々な最適
化技法のいずれかを使用して目的関数を最適化(例えば、最小化)して、各決定変数に関
する最適値を識別することができる。
【0156】
高レベルオプティマイザ832によって生成することができる目的関数の一例は、次式
で示される。
【数9】
ここで、Cop,iは、最適化期間の時間ステップiにおいて接続された機器610が消
費する単位エネルギーあたりのコスト(例えば、ドル/kWh)であり、Pop,iは、
時間ステップiにおける接続された機器610の電力消費量(例えば、kW)であり、Δ
tは、各時間ステップiの継続時間であり、Cmain,iは、時間ステップiにおいて
接続された機器610に対して実施されるメンテナンスのコストであり、Bmain,i
は、メンテナンスが実施されるか否かを示すバイナリ変数であり、Ccap,iは、時間
ステップiにおいて接続された機器610の新たなデバイスを購入する資本コストであり
、Bcap,iは、新たなデバイスが購入されるか否かを示すバイナリ変数であり、hは
、最適化が実施されるホライズン又は最適化期間の継続時間である。
【0157】
動作コスト予測器
動作コスト予測器910は、目的関数Jでの第1項を定式化するように構成することが
できる。目的関数Jの第1項は、最適化期間の継続期間にわたる接続された機器610の
動作コストを表し、3つの変数又はパラメータ(すなわちCop,i、Pop,i及びΔ
t)を含むものとして示されている。いくつかの実施形態では、単位エネルギーあたりの
コストCop,iは、エネルギーコストモジュール915によって決定される。エネルギ
ーコストモジュール915は、エネルギー価格データとして、公益企業608からエネル
ギー価格のセットを受信することができる。いくつかの実施形態では、エネルギー価格は
、時刻、曜日(例えば、平日か週末か)、現在の季節(例えば、夏か冬か)又は他の時間
ベースの因子に依存する時変コストであり得る。例えば、電気のコストは、ピークエネル
ギー消費期間中にはより高く、オフピーク又は部分ピークエネルギー消費期間中にはより
低いことがある。
【0158】
エネルギーコストモジュール915は、エネルギーコストを使用して、最適化期間内の
時間ステップiごとにCop,iの値を定義することができる。いくつかの実施形態にお
いて、エネルギーコストモジュール915は、最適化期間内のh個の時間ステップそれぞ
れに関するコスト要素を含むアレイCopとしてエネルギーコストを記憶する。例えば、
エネルギーコストモジュール915は、以下のアレイを生成することができる。
op=[Cop,1op,2 … Cop,h
ここで、アレイCopは、1×hのサイズを有し、アレイCopの各要素は、最適化期間
の特定の時間ステップi=1...hに関するエネルギーコスト値Cop,iを含む。
【0159】
さらに図9を参照すると、動作コスト予測器910は、理想性能計算機912を含むも
のとして示されている。理想性能計算機912は、負荷/料金予測器822から負荷予測
Loadを受信することがあり、低レベルオプティマイザ834から性能曲線を受信す
ることがある。上で論じたように、性能曲線は、接続された機器610のデバイス又はデ
バイスのセットの理想的な電力消費量Pidealを、デバイス又はデバイスのセットに
対する加熱又は冷却負荷の関数として定義することがある。例えば、接続された機器61
0の1つ又は複数のデバイスの性能曲線は、次式によって定義することができる。
ideal,i=f(Load
ここで、Pideal,iは、時間ステップiにおける接続された機器610の理想的な
電力消費量(例えば、kW)であり、Loadは、時間ステップにおける接続された機
器610に対する負荷(例えば、トン単位での冷却負荷、kW単位での加熱負荷など)で
ある。理想的な電力消費量Pideal,iは、接続された機器610の1つ又は複数の
デバイスが完璧な効率で動作すると仮定したそれらの電力消費量を表すことがある。
【0160】
理想性能計算機912は、接続された機器610のデバイス又はデバイスのセットに関
する性能曲線を使用して、Pideal,iの値を識別することができ、この値は、最適
化期間の各時間ステップにおけるデバイス又はデバイスのセットに関する負荷点Load
に対応する。いくつかの実施形態では、理想性能計算機912は、最適化期間内のh個
の時間ステップそれぞれに関する要素を含むアレイPidealとして、理想的な負荷値
を記憶する。例えば、理想性能計算機912は、以下のアレイを生成することができる。
ideal=[Pideal,1ideal,2 … Pideal,

ここで、アレイPidealは、h×1のサイズを有し、アレイPidealの各要素は
、最適化期間の特定の時間ステップi=1...hに関する理想的な電力消費量値Pid
eal,iを含む。
【0161】
引き続き図9を参照すると、動作コスト予測器910が、効率アップデータ911及び
効率デグレーダ913を含むものとして示されている。効率アップデータ911は、実際
の動作条件下での接続された機器610の効率ηを決定するように構成することができる
。いくつかの実施形態では、効率ηは、次式で示されるように、接続された機器の理想
的な電力消費量Pidealと、接続された機器610の実際の電力消費量Pactua
との比を表す。
【数10】
ここで、Pidealは、接続された機器610に関する性能曲線によって定義される接
続された機器610の理想的な電力消費量であり、Pactualは、接続された機器6
10の実際の電力消費量である。いくつかの実施形態では、効率アップデータ911は、
接続された機器610から収集された機器性能情報を使用して、実際の電力消費量値P
ctualを識別する。効率アップデータ911は、実際の電力消費量Pactual
理想的な電力消費量Pidealと組み合わせて使用して、効率ηを計算することができ
る。
【0162】
効率アップデータ911は、接続された機器610の現在の動作効率を反映するために
効率ηを定期的に更新するように構成することができる。例えば、効率アップデータ91
1は、接続された機器610の効率ηを、1日に1回、1週間に1回、1年に1回又は時
間と共に効率ηの変化を捕捉するのに適切であり得る任意の他の間隔で計算することがで
きる。効率ηの各値は、効率ηが計算される時点でのPideal及びPactual
対応する値に基づき得る。いくつかの実施形態では、効率アップデータ911は、高レベ
ル最適化プロセスが実施されるたびに(すなわち目的関数Jが最適化されるたびに)効率
ηを更新する。効率アップデータ911によって計算された効率値は、初期効率値η
してメモリ810に記憶されることがあり、ここで、下付き数字0は、最適化期間の開始
時又は開始前(例えば、時間ステップ0で)の効率ηの値を表す。
【0163】
いくつかの実施形態では、効率アップデータ911は、接続された機器610に対する
メンテナンスの実施又は接続された機器610の1つ若しくは複数のデバイスを交換若し
くは補完するための新たな機器の購入により生じる接続された機器610の効率ηの上昇
を考慮に入れるために、最適化期間中の1つ又は複数の時間ステップに関する効率η
更新する。効率ηが更新される時間ステップiは、メンテナンスが実施されることにな
るか、又は機器が交換されることになる予測時間ステップに対応することがある。接続さ
れた機器610に対してメンテナンスが実施されることになる予測時間ステップは、目的
関数Jでのバイナリ決定変数Bmain,iの値によって定義することができる。同様に
、機器が交換されることになる予測時間ステップは、目的関数Jでのバイナリ決定変数B
cap,iの値によって定義することができる。
【0164】
効率アップデータ911は、その時間ステップにおいてメンテナンスが実施されること
及び/又はその時間ステップにおいて新たな機器が購入されることをバイナリ決定変数B
main,i及びBcap,iが示す場合(すなわちBmain,i=1及び/又はB
ap,i=1)、所与の時間ステップiに関する効率ηをリセットするように構成する
ことができる。例えば、Bmain,i=1の場合、効率アップデータ911は、η
値をηmainにリセットするように構成することができ、ここで、ηmainは、時間
ステップiにおいて実施されるメンテナンスにより得られると期待される効率値である。
同様に、Bcap,i=1の場合、効率アップデータ911は、ηの値をηcapにリ
セットするように構成することができ、ここで、ηcapは、時間ステップiにおいて実
施される接続された機器610の1つ又は複数のデバイスを補完又は交換するために新た
なデバイスを購入することにより得られると期待される効率値である。効率アップデータ
911は、1つ又は複数の時間ステップに関して効率ηを動的にリセットすることがで
き、(例えば、最適化の各反復によって)バイナリ決定変数Bmain,i及びBcap
,iの値に基づいて最適化が実施される。
【0165】
効率デグレーダ913は、最適化期間の各時間ステップiにおける接続された機器61
0の効率ηを予測するように構成することができる。最適化期間の開始時の初期効率η
は、接続された機器610の性能が低下するにつれて、時間と共に低下することがある
。例えば、冷却器の効率は、冷却水管が汚れて冷却器の熱伝達率が低下した結果、時間と
共に低下することがある。同様に、バッテリの物理的又は化学的構成要素の劣化により、
バッテリの効率は、時間と共に低下することがある。効率デグレーダ913は、そのよう
な低下を、最適化期間の継続時間にわたって効率ηを段階的に低下させることによって
考慮に入れるように構成することができる。
【0166】
いくつかの実施形態では、初期効率値ηは、各最適化期間の開始時に更新される。し
かし、効率ηは、最適化期間中に低下することがあり、初期効率値ηは、最適化期間の
継続期間にわたって次第に不正確になる。最適化期間中の効率低下を考慮に入れるために
、効率デグレーダ913は、連続する各時間ステップにおいて効率ηを所定量だけ低下さ
せることができる。例えば、効率デグレーダ913は、各時間ステップi=1...hで
の効率を以下のように定義することができる。
η=ηi-1-Δη
ここで、ηは、時間ステップiにおける効率であり、ηi-1は、時間ステップi-1
での効率であり、Δηは、連続する時間ステップ間での効率の低下である。いくつかの実
施形態では、ηのこの定義は、Bmain,i=0及びBcap,i=0である各時間
ステップに適用される。しかし、Bmain,i=1又はBcap,i=1である場合、
ηの値は、前述したようにηmain又はηcapにリセットされ得る。
【0167】
いくつかの実施形態では、Δηの値は、効率アップデータ911によって計算された効
率値の時系列に基づいている。例えば、効率デグレーダ913は、効率アップデータ91
1によって計算された初期効率値ηの時系列を記録することがあり、ここで、各初期効
率値ηは、特定の時点における接続された機器610の経験的に計算された効率を表す
。効率デグレーダ913は、初期効率値ηの時系列を検査して、効率が低下する率を決
定することができる。例えば、時点tでの初期効率ηがη0,1であり、時点t
の初期効率がη0,2である場合、効率デグレーダ913は、効率低下率を以下のように
計算することができる。
【数11】
ここで、
【数12】
は、効率低下率である。効率デグレーダ913は、
【数13】
に、各時間ステップの継続時間Δtを乗算して、Δηの値を計算することができる(すな
わち、
【数14】
)。
【0168】
いくつかの実施形態では、効率デグレーダ913は、最適化期間内のh個の時間ステッ
プそれぞれに関する要素を含むアレイηに、最適化期間の継続期間にわたる効率値を記憶
する。例えば、効率デグレーダ913は、以下のアレイを生成することができる。
η=[η η … η
ここで、アレイηは、h×1のサイズを有し、アレイηの各要素は、最適化期間の特定の
時間ステップi=1...hに関する効率値ηを含む。アレイηの各要素iは、前の要
素の値とΔηの値とに基づいて計算されることがある(例えば、Bmain,i=0及び
cap,i=0の場合)か、又はηmain又はηcapに動的にリセットされること
がある(例えば、Bmain,i=1又はBcap,i=1の場合)。
【0169】
効率アップデータ911及び効率デグレーダ913によって実施される効率更新及びリ
セット動作を特徴付ける論理は、次式で要約することができる。
main,i=1の場合 → η=ηmain
cap,i=1の場合 → η=ηcap
main,i=0及びBcap,i=0の場合 → η=ηi-1-Δη
これは、目的関数オプティマイザ940によって実施される高レベル最適化に対する制約
として適用することができる。
【0170】
有利には、効率アップデータ911及び効率デグレーダ913は、各時間ステップiに
おける接続された機器610の効率ηを、メンテナンス決定Bmain,i及び機器購
入決定Bcap,iの関数としてモデル化することができる。例えば、特定のデバイスに
関する効率ηは、最適化期間の開始時に初期値ηで始まることがあり、時間と共に低
下し、連続する各時間ステップiと共に効率ηが低下することがある。デバイスに対す
るメンテナンスを実施することで、メンテナンスが実施された直後に効率ηをより高い
値にリセットすることができる。同様に、新たなデバイスを購入して既存のデバイスと交
換することで、新たなデバイスが購入された直後に効率ηをより高い値にリセットする
ことができる。リセット後、効率ηは、メンテナンスが実施されるか又は新たなデバイ
スが購入される次の時点まで、時間と共に低下し続けることがある。
【0171】
引き続き図9を参照すると、動作コスト予測器910は、電力消費量推定器914及び
動作コスト計算機916を含むものとして示されている。電力消費量推定器914は、最
適化期間の各時間ステップiにおける接続された機器610の電力消費量Pop,iを推
定するように構成することができる。いくつかの実施形態では、電力消費量推定器914
は、理想性能計算機912によって計算された理想電力消費量Pideal,iと、効率
デグレーダ913及び/又は効率アップデータ911によって決定された効率ηとの関
数として、電力消費量Pop,iを推定する。例えば、電力消費量推定器914は、次式
を使用して電力消費量Pop,iを計算することができる。
【数15】
ここで、Pideal,iは、対応する負荷点Loadでのデバイスに関する機器性能
曲線に基づいて理想性能計算機912によって計算された電力消費量であり、ηは、時
間ステップiにおけるデバイスの動作効率である。
【0172】
いくつかの実施形態では、電力消費量推定器914は、最適化期間内のh個の時間ステ
ップそれぞれに関する要素を含むアレイPopとして電力消費量値を記憶する。例えば、
電力消費量推定器914は、以下のアレイを生成することができる。
op=[Pop,1op,2 … Pop,h
ここで、アレイPopは、h×1のサイズを有し、アレイPopの各要素は、最適化期間
の特定の時間ステップi=1...hに関する理想的な電力消費量値Pop,iを含む。
【0173】
動作コスト計算機916は、最適化期間の継続期間にわたる接続された機器610の動
作コストを推定するように構成することができる。いくつかの実施形態では、動作コスト
計算機916は、次式を使用して各時間ステップi中の動作コストを計算する。
Costop,i=Cop,iop,iΔt
ここで、Pop,iは、電力消費量推定器914によって決定される時間ステップiにお
ける予測電力消費量であり、Cop,iは、エネルギーコストモジュール915によって
決定される時間ステップiにおける単位エネルギーあたりのコストであり、Δtは、各時
間ステップの継続期間である。動作コスト計算機916は、以下のように、最適化期間の
継続期間にわたる動作コストを合計することができる。
【数16】
ここで、Costopは、目的関数Jの動作コスト項である。
【0174】
他の実施形態では、動作コスト計算機916は、次式で示されるように、コストアレイ
opに電力消費量アレイPop及び各時間ステップの継続時間Δtを乗算することによ
り、動作コストCostopを推定する。
Costop=CopopΔt
Costop=[Cop,1op,2 … Cop,h][Pop,1
op,2 … Pop,hΔt
【0175】
メンテナンスコスト予測器
【0176】
メンテナンスコスト予測器920は、目的関数Jでの第2項を定式化するように構成す
ることができる。目的関数Jでの第2項は、最適化期間の継続期間にわたる、接続された
機器610に対するメンテナンスを実施するコストを表し、2つの変数又はパラメータ(
すなわちCmain,i及びBmain,i)を含むものとして示されている。メンテナ
ンスコスト予測器920は、メンテナンス推定器922、信頼性推定器924、メンテナ
ンスコスト計算機926及びメンテナンスコストモジュール928を含むものとして示さ
れている。
【0177】
信頼性推定器924は、接続された機器610から受信された機器性能情報に基づいて
、接続された機器610の信頼性を推定するように構成することができる。信頼性は、接
続された機器610がその現在の動作条件下で障害なく動作し続ける尤度の統計的尺度で
あり得る。より過酷な条件下(例えば、高負荷、高温など)での動作は、信頼性をより低
くすることがあり、より過酷でない条件下(例えば、低負荷、中程度の温度など)での動
作は、信頼性をより高くすることがある。いくつかの実施形態では、信頼性は、接続され
た機器610が最後にメンテナンスを受けてから経過した時間量及び/又は接続された機
器610が購入若しくは設置されてから経過した時間量に基づく。
【0178】
いくつかの実施形態では、信頼性推定器924は、機器性能情報を使用して、接続され
た機器610の現在の動作条件を識別する。信頼性推定器924によって現在の動作条件
を検査して、接続された機器610の性能が低下し始めるときを明らかにし、及び/又は
障害が発生するときを予測することができる。いくつかの実施形態では、信頼性推定器9
24は、接続された機器610で潜在的に発生し得る様々なタイプの故障の尤度を推定す
る。各故障の尤度は、接続された機器610の現在の動作条件、接続された機器610が
設置されてから経過した時間量及び/又はメンテナンスが最後に実施されてから経過した
時間量に基づくことがある。いくつかの実施形態では、信頼性推定器924は、2016
年6月21日出願の「Building Management System Wit
h Predictive Diagnostics」という名称の米国特許出願第15
/188,824号に記載のシステム及び方法を使用して、動作条件を識別し、様々な故
障の尤度を予測する。上記特許出願の開示全体が参照により本明細書に組み入れられる。
【0179】
いくつかの実施形態では、信頼性推定器924は、複数のビルディングにわたって分散
された接続された機器610の複数のデバイスから動作データを受信する。動作データは
、例えば、現在の動作条件、障害標示、故障時間又は接続された機器610の動作及び性
能を特徴付ける他のデータを含むことができる。信頼性推定器924は、動作データのセ
ットを使用して、各タイプの機器に関する信頼性モデルを作成することができる。信頼性
推定器924が信頼性モデルを使用して、接続された機器610の任意の所与のデバイス
の信頼性を、その現在の動作条件及び/又は他の外的要因(例えば、メンテナンスが最後
に実施されてからの時間、設置又は購入からの時間、地理的位置、水質など)に応じて推
定することができる。
【0180】
信頼性推定器924が使用することができる信頼性モデルの一例は、次式で示される。
Reliability=f(OpCond,Δtmain,i,Δt
ap,i
ここで、Reliabilityは、時間ステップiにおける接続された機器610の
信頼性であり、OpCondは、時間ステップiにおける動作条件であり、Δtmai
n,iは、メンテナンスが最後に行われた時点と時間ステップiとの間で経過した時間量
であり、Δtcap,iは、接続された機器610が購入又は設置された時点と時間ステ
ップiとの間で経過した時間量である。信頼性推定器924は、接続された機器610か
らフィードバックとして受信された機器性能情報に基づいて現在の動作条件OpCond
を識別するように構成することができる。より過酷な条件下(例えば、高負荷、極端な
温度など)での動作は、信頼性をより低くすることがあり、より過酷でない条件下(例え
ば、低負荷、中程度の温度など)での動作は、信頼性をより高くすることがある。
【0181】
信頼性推定器924は、バイナリ決定変数Bmain,iの値に基づいて、接続された
機器610に対してメンテナンスが最後に実施されてから経過した時間量Δtmain,
を決定することがある。各時間ステップiに関して、信頼性推定器924は、時間ステ
ップi及び前の各時間ステップ(例えば、時間ステップi-1、i-2、...、1)に
おけるBmainの対応する値を検査することができる。信頼性推定器924は、メンテ
ナンスが最後に実施された時点(すなわちBmain,i=1である直近の時点)を、時
間ステップiに関連する時点から引くことにより、Δtmain,iの値を計算すること
ができる。メンテナンスが最後に実施されてからの時間量Δtmain,iが長いと、信
頼性がより低くなることがあり、メンテナンスが最後に実施されてからの時間量が短いと
、信頼性がより高くなることがある。
【0182】
同様に、信頼性推定器924は、バイナリ決定変数Bcap,iの値に基づいて、接続
された機器610が購入又は設置されてから経過した時間量Δtcap,iを決定するこ
とがある。各時間ステップiに関して、信頼性推定器924は、時間ステップi及び前の
各時間ステップ(例えば、時間ステップi-1、i-2、...、1)におけるBcap
の対応する値を検査することができる。信頼性推定器924は、接続された機器610が
購入又は設置された時点(すなわちBcap,i=1である直近の時点)を、時間ステッ
プiに関連する時点から引くことにより、Δtcap,iの値を計算することができる。
接続された機器610が購入又は設置されてからの時間量Δtcap,iが長いと、信頼
性がより低くなることがあり、接続された機器610が購入又は設置されてからの時間量
が短いと、信頼性がより高くなることがある。
【0183】
信頼性推定器924は、その時間ステップにおいてメンテナンスが実施されること及び
/又はその時間ステップにおいて新たな機器が購入されることをバイナリ決定変数Bma
in,i及びBcap,iが示す場合(すなわちBmain,i=1及び/又はBcap
,i=1)、所与の時間ステップiに関する信頼性をリセットするように構成することが
できる。例えば、Bmain,i=1の場合、信頼性推定器924は、Reliabil
ityの値をReliabilitymainにリセットするように構成することがで
き、ここで、Reliabilitymainは、時間ステップiにおいて実施されるメ
ンテナンスにより得られると期待される信頼性値である。同様に、Bcap,i=1の場
合、信頼性推定器924は、Reliabilityの値をReliability
apにリセットするように構成することができ、ここで、Reliabilitycap
は、時間ステップiにおいて実施される接続された機器610の1つ又は複数のデバイス
を補完又は交換するために新たなデバイスを購入することにより得られると期待される信
頼性値である。信頼性推定器924は、1つ又は複数の時間ステップに関して信頼性を動
的にリセットすることができ、(例えば、最適化の各反復によって)バイナリ決定変数B
main,i及びBcap,iの値に基づいて最適化が実施される。
【0184】
メンテナンス推定器922は、最適化期間の継続期間にわたる接続された機器610の
推定された信頼性を使用して、最適化期間の各時間ステップにおいて接続された機器61
0がメンテナンス及び/又は交換を必要とする確率を決定するように構成することができ
る。いくつかの実施形態では、メンテナンス推定器922は、接続された機器610が所
与の時間ステップにおいてメンテナンスを必要とする確率を臨界値と比較するように構成
される。メンテナンス推定器922は、時間ステップiにおいて接続された機器610が
メンテナンスを必要とする確率が臨界値を超えるという決定に応答して、Bmain,i
=1の値を設定するように構成することができる。同様に、メンテナンス推定器922は
、接続された機器610が所与の時間ステップにおいて交換を必要とする確率を臨界値と
比較するように構成することができる。メンテナンス推定器922は、時間ステップiに
おいて接続された機器610が交換を必要とする確率が臨界値を超えるという決定に応答
して、Bcap,i=1の値を設定するように構成することができる。
【0185】
いくつかの実施形態では、接続された機器610の信頼性とバイナリ決定変数Bmai
n,i及びBcap,iの値とに相互関係がある。言い換えると、接続された機器610
の信頼性は、最適化で選択されるバイナリ決定変数Bmain,i及びBcap,iの値
に影響を与えることができ、バイナリ決定変数Bmain,i及びBcap,iの値は、
接続された機器610の信頼性に影響を与えることができる。有利には、目的関数オプテ
ィマイザ940によって実施される最適化は、バイナリ決定変数Bmain,i及びB
ap,iと接続された機器610の信頼性との相互関係を考慮に入れながら、バイナリ決
定変数Bmain,i及びBcap,iの最適値を識別することができる。
【0186】
いくつかの実施形態では、メンテナンス推定器922は、バイナリメンテナンス決定変
数の行列Bmainを生成する。行列Bmainは、最適化期間の各時間ステップにおい
て実施することができる様々なメンテナンス活動それぞれに関するバイナリ決定変数を含
むことがある。例えば、メンテナンス推定器922は、以下の行列を生成することができ
る。
【数17】
ここで、行列Bmainは、サイズがm×hであり、行列Bmainの各要素は、最適化
期間の特定の時間ステップにおける特定のメンテナンス活動に関するバイナリ決定変数を
含む。例えば、バイナリ決定変数Bmain,j,iの値は、第jのメンテナンス活動が
最適化期間の第iの時間ステップ中に実施されるか否かを示す。
【0187】
引き続き図9を参照すると、メンテナンスコスト予測器920は、メンテナンスコスト
モジュール928及びメンテナンスコスト計算機926を含むものとして示されている。
メンテナンスコストモジュール928は、接続された機器610の様々なタイプのメンテ
ナンスの実施に関連するコストCmain,iを決定するように構成することができる。
メンテナンスコストモジュール928は、外部システム又はデバイス(例えば、データベ
ース、ユーザデバイスなど)からメンテナンスコストのセットを受信することができる。
いくつかの実施形態では、メンテナンスコストは、様々なタイプのメンテナンスを実施す
る経済的コスト(例えば、ドル)を定義する。各タイプのメンテナンス活動は、それに関
連する異なる経済的コストを有することがある。例えば、冷却器圧縮機内のオイルを交換
するメンテナンス活動にかかる経済的コストは、比較的小さいことがあり、冷却器を完全
に分解してすべての冷却水管を洗浄するメンテナンス活動にかかる経済的コストは、かな
り大きいことがある。
【0188】
メンテナンスコストモジュール928は、メンテナンスコストを使用して、目的関数J
でのCmain,iの値を定義することができる。いくつかの実施形態では、メンテナン
スコストモジュール928は、実施することができるメンテナンス活動それぞれに関する
コスト要素を含むアレイCmainとしてメンテナンスコストを記憶する。例えば、メン
テナンスコストモジュール928は、以下のアレイを生成することができる。
main=[Cmain,1main,2 … Cmain,m
ここで、アレイCmainは、サイズが1×mであり、アレイCmainの各要素は、特
定のメンテナンス活動j=1...mに関するメンテナンスコスト値Cmain,jを含
む。
【0189】
いくつかのメンテナンス活動は、他よりもコストがかかることがある。しかし、異なる
タイプのメンテナンス活動が、接続された機器610の効率η及び/又は信頼性に対する
異なるレベルの改良をもたらすことがある。例えば、冷却器内のオイルの単なる交換は、
効率ηのわずかな改良及び/又は信頼性のわずかな改良をもたらすことがあり、冷却器の
完全な分解及びすべての冷却水管の洗浄は、接続された機器610の効率η及び/又は信
頼性のかなり大きい改良をもたらすことがある。したがって、複数の異なるレベルのメン
テナンス後の効率(すなわちηmain)及びメンテナンス後の信頼性(すなわちRel
iabilitymain)が存在し得る。ηmain及びReliabilityma
inの各レベルは、異なるタイプのメンテナンス活動に対応することがある。
【0190】
いくつかの実施形態では、メンテナンス推定器922は、異なるレベルのηmain
びReliabilitymainそれぞれを、対応するアレイに記憶する。例えば、パ
ラメータηmainは、m個の異なるタイプのメンテナンス活動それぞれに関する要素を
有するアレイηmainとして定義することができる。同様に、パラメータReliab
ilitymainは、m個の異なるタイプのメンテナンス活動それぞれに関する要素を
有するアレイReliabilitymainとして定義することができる。これらのア
レイの例は、次式で示される。
ηmain=[ηmain,1 ηmain,2 … ηmain,m
Reliabilitymain=[Reliabilitymain,1
Reliabilitymain,2 … Reliabilitymain,m
ここで、アレイηmainは、サイズが1×mであり、アレイηmainの各要素は、特
定のメンテナンス活動に関するメンテナンス後の効率値ηmain,jを含む。同様に、
アレイReliabilitymainは、サイズが1×mであり、アレイReliab
ilitymainの各要素は、特定のメンテナンス活動に関するメンテナンス後の信頼
性値Reliabilitymain,jを含む。
【0191】
いくつかの実施形態では、効率アップデータ911は、各バイナリ決定変数Bmain
,j,iに関連するメンテナンス活動を識別し、Bmain,j,i=1の場合、効率η
を、対応するメンテナンス後の効率レベルηmain,jにリセットする。同様に、信頼
性推定器924は、各バイナリ決定変数Bmain,j,iに関連するメンテナンス活動
を識別することができ、Bmain,j,i=1の場合、信頼性を、対応するメンテナン
ス後の信頼性レベルReliabilitymain,jにリセットすることができる。
【0192】
メンテナンスコスト計算機926は、最適化期間の継続期間にわたる接続された機器6
10のメンテナンスコストを推定するように構成することができる。いくつかの実施形態
では、メンテナンスコスト計算機926は、次式を使用して各時間ステップi中のメンテ
ナンスコストを計算する。
Costmain,i=Cmain,imain,i
ここで、Cmain,iは、時間ステップiにおいて実施することができるm個の異なる
タイプのメンテナンス活動それぞれに関する要素を含むメンテナンスコストのアレイであ
り、Bmain,iは、m個のメンテナンス活動それぞれが時間ステップiにおいて実施
されるか否かを示すバイナリ決定変数のアレイである。メンテナンスコスト計算機926
は、以下のように、最適化期間の継続期間にわたってメンテナンスコストを合計すること
ができる。
【数18】
ここで、Costmainは、目的関数Jのメンテナンスコスト項である。
【0193】
他の実施形態では、メンテナンスコスト計算機926は、次式に示されるように、メン
テナンスコストアレイCmainにバイナリ決定変数の行列Bmainを乗算することに
よってメンテナンスコストCostmainを推定する。
【数19】
【0194】
資本コスト予測器
資本コスト予測器930は、目的関数Jでの第3項を定式化するように構成することが
できる。目的関数Jでの第3項は、最適化期間の継続期間にわたる接続された機器610
の新しいデバイスを購入するコストを表し、2つの変数又はパラメータ(すなわちCca
p,i及びBcap,i)を含むものとして示されている。資本コスト予測器930は、
購入推定器932、信頼性推定器934、資本コスト計算機936及び資本コストモジュ
ール938を含むものとして示されている。
【0195】
信頼性推定器934は、メンテナンスコスト予測器920を参照して述べたように、信
頼性推定器924の特徴のいくつか又はすべてを含むことができる。例えば、信頼性推定
器934は、接続された機器610から受信された機器性能情報に基づいて、接続された
機器610の信頼性を推定するように構成することができる。信頼性は、接続された機器
610がその現在の動作条件下で障害なく動作し続ける尤度の統計的尺度であり得る。よ
り過酷な条件下(例えば、高負荷、高温など)での動作は、信頼性をより低くすることが
あり、より過酷でない条件下(例えば、低負荷、中程度の温度など)での動作は、信頼性
をより高くすることがある。いくつかの実施形態では、信頼性は、接続された機器610
が最後にメンテナンスを受けてから経過した時間量及び/又は接続された機器610が購
入若しくは設置されてから経過した時間量に基づく。信頼性推定器934は、前述したよ
うに、信頼性推定器924の特徴及び/又は機能のいくつか又はすべてを含むことができ
る。
【0196】
購入推定器932は、最適化期間の継続期間にわたる接続された機器610の推定され
た信頼性を使用して、最適化期間の各時間ステップにおいて接続された機器610の新た
なデバイスが購入される確率を決定するように構成することができる。いくつかの実施形
態では、購入推定器932は、所与の時間ステップにおいて接続された機器610の新た
なデバイスが購入される確率を臨界値と比較するように構成される。購入推定器932は
、時間ステップiにおいて接続された機器610が購入される確率が臨界値を超えるとい
う決定に応答して、Bcap,i=1の値を設定するように構成することができる。
【0197】
いくつかの実施形態では、購入推定器932は、バイナリ資本決定変数の行列Bcap
を生成する。行列Bcapは、最適化期間の各時間ステップにおいて行うことができる様
々な資本購入それぞれに関するバイナリ決定変数を含むことができる。例えば、購入推定
器932は、以下の行列を生成することができる。
【数20】
ここで、行列Bcapは、サイズがp×hであり、行列Bcapの各要素は、最適化期間
の特定の時間ステップにおける特定の資本購入に関するバイナリ決定変数を含む。例えば
、バイナリ決定変数Bcap,k,iの値は、最適化期間の第iの時間ステップ中に第k
の資本購入が行われるか否かを示す。
【0198】
引き続き図9を参照すると、資本コスト予測器930は、資本コストモジュール938
及び資本コスト計算機936を含むものとして示されている。資本コストモジュール93
8は、様々な資本購入(すなわち接続された機器610の1つ又は複数の新たなデバイス
の購入)に関連するコストCcap,iを決定するように構成することができる。資本コ
ストモジュール938は、外部システム又はデバイス(例えば、データベース、ユーザデ
バイスなど)から資本コストのセットを受信することができる。いくつかの実施形態では
、資本コストは、様々な資本購入を行う経済的コスト(例えば、ドル)を定義する。各タ
イプの資本購入は、それに関連する異なる経済的コストを有することがある。例えば、新
たな温度センサの購入にかかる経済的コストは比較的小さいことがあり、新たな冷却器の
購入にかかる経済的コストはかなり大きいことがある。
【0199】
資本コストモジュール938は、購入コストを使用して、目的関数JでのCcap,i
の値を定義することができる。いくつかの実施形態では、資本コストモジュール938は
、行うことができる資本購入それぞれに関するコスト要素を含むアレイCcapとして資
本コストを記憶する。例えば、資本コストモジュール938は、以下のアレイを生成する
ことができる。
cap=[Ccap,1cap,2 … Ccap,p
ここで、アレイCcapは、サイズが1×pであり、アレイCcapの各要素は、特定の
資本購入k=1...pに関するコスト値Ccap,kを含む。
【0200】
いくつかの資本購入は、他のものよりも高価であり得る。しかし、異なるタイプの資本
購入が、接続された機器610の効率η及び/又は信頼性に対する異なるレベルの改良を
もたらすことがある。例えば、既存のセンサの交換のために新たなセンサを購入すること
で、効率ηがわずかに向上し、且つ/又は信頼性がわずかに向上することがあり、新たな
冷却器及び制御システムを購入することで、接続された機器610の効率η及び/又は信
頼性がかなり大きく向上することがある。したがって、複数の異なるレベルの購入後の効
率(すなわちηcap)及び購入後の信頼性(すなわちReliabilitycap
があり得る。ηcap及びReliabilitycapの各レベルは、異なるタイプの
資本購入に対応することがある。
【0201】
いくつかの実施形態では、購入推定器932は、異なるレベルのηcap及びReli
abilitycapそれぞれを、対応するアレイに記憶する。例えば、パラメータη
apは、行うことができるp個の異なるタイプの資本購入それぞれに関する要素を有する
アレイηcapとして定義することができる。同様に、パラメータReliabilit
capは、行うことができるp個の異なるタイプの資本購入それぞれに関する要素を有
するアレイReliabilitycapとして定義することができる。これらのアレイ
の例は、次式で示される。
ηcap=[ηcap,1 ηcap,2 … ηcap,p
Reliabilitycap=[Reliabilitycap,1 Re
liabilitycap,2 … Reliabilitycap,p
ここで、アレイηcapは、サイズが1×pであり、アレイηcapの各要素は、特定の
資本購入kに関する購入後効率値ηcap,kを含む。同様に、アレイReliabil
itycapは、サイズが1×pであり、アレイReliabilitycapの各要素
は、特定の資本購入kに関する購入後信頼性値Reliabilitycap,kを含む
【0202】
いくつかの実施形態では、効率アップデータ911は、各バイナリ決定変数Bmain
,k,iに関連する資本購入を識別し、Bcap,k,i=1の場合、効率ηを、対応す
る購入後効率レベルηcap,kにリセットする。同様に、信頼性推定器924は、各バ
イナリ決定変数Bcap,k,iに関連する資本購入を識別することができ、Bmain
,k,i=1の場合、信頼性を、対応する購入後信頼性レベルReliability
ap,kにリセットすることができる。
【0203】
資本コスト計算機936は、最適化期間の継続期間にわたる接続された機器610の資
本コストを推定するように構成することができる。いくつかの実施形態では、資本コスト
計算機936は、次式を使用して各時間ステップi中の資本コストを計算する。
Costcap,i=Ccap,icap,i
ここで、Ccap,iは、時間ステップiにおいて行うことができるp個の異なる資本購
入それぞれに関する要素を含む資本購入コストのアレイであり、Bcap,iは、p個の
資本購入それぞれが時間ステップiにおいて行われるか否かを示すバイナリ決定変数のア
レイである。資本コスト計算機936は、以下のように、最適化期間中の継続期間にわた
って資本コストを合計することができる。
【数21】
ここで、Costcapは、目的関数Jの資本コスト項である。
【0204】
他の実施形態では、資本コスト計算機936は、次式に示されるように、資本コストア
レイCcapにバイナリ決定変数の行列Bcapを乗算することによって資本コストCo
stcapを推定する。
【数22】
【0205】
目的関数オプティマイザ
【0206】
引き続き図9を参照すると、高レベルオプティマイザ832は、目的関数生成器935
及び目的関数オプティマイザ940を含むものとして示されている。目的関数生成器93
5は、コスト予測器910、920及び930によって定式化された動作コスト項、メン
テナンスコスト項及び資本コスト項を合計することによって目的関数Jを生成するように
構成することができる。目的関数生成器935によって生成することができる目的関数の
一例は、次式で示される。
【数23】
ここで、Cop,iは、最適化期間の時間ステップiにおいて接続された機器610が消
費する単位エネルギーあたりのコスト(例えば、ドル/kWh)であり、Pop,iは、
時間ステップiにおける接続された機器610の電力消費量(例えば、kW)であり、Δ
tは、各時間ステップiの継続時間であり、Cmain,iは、時間ステップiにおいて
接続された機器610に対して実施されるメンテナンスのコストであり、Bmain,i
は、メンテナンスが実施されるか否かを示すバイナリ変数であり、Ccap,iは、時間
ステップiにおいて接続された機器610の新たなデバイスを購入する資本コストであり
、Bcap,iは、新たなデバイスが購入されるか否かを示すバイナリ変数であり、hは
、最適化が実施されるホライズン又は最適化期間の継続時間である。
【0207】
目的関数生成器935によって生成することができる目的関数の別の例は、次式で示さ
れる。
【数24】
ここで、アレイCopは、最適化期間の特定の時間ステップi=1...hに関するエネ
ルギーコスト値Cop,iを含み、アレイPopは、最適化期間の特定の時間ステップi
=1...hに関する電力消費量値Pop,iを含み、アレイCmainの各要素は、特
定のメンテナンス活動j=1...mに関するメンテナンスコスト値Cmain,jを含
み、行列Bmainの各要素は、最適化期間の特定の時間ステップi=1...hにおけ
る特定のメンテナンス活動j=1...mに関するバイナリ決定変数を含み、アレイC
apの各要素は、特定の資本購入k=1...pに関する資本コスト値Ccap,kを含
み、行列Bcapの各要素は、最適化期間の特定の時間ステップi=1...hにおける
特定の資本購入k=1...pに関するバイナリ決定変数を含む。
【0208】
目的関数生成器935は、目的関数Jでの1つ又は複数の変数又はパラメータに制約を
課すように構成することができる。制約は、動作コスト予測器910、メンテナンスコス
ト予測器920及び資本コスト予測器930を参照して述べた式又は関係のいずれを含む
こともできる。例えば、目的関数生成器935は、接続された機器610の1つ又は複数
のデバイスに関する電力消費量値Pop,iを、理想電力消費量Pideal,i及び効
率ηの関数として定義する制約を課すことができる(例えば、Pop,i=Pidea
l,i/η)。目的関数生成器935は、効率アップデータ911及び効率デグレーダ
913を参照して述べたのと同様に、効率ηをバイナリ決定変数Bmain,i及びB
cap,iの関数として定義する制約を課すことができる。目的関数生成器935は、メ
ンテナンス推定器922及び購入推定器932を参照して述べたのと同様に、バイナリ決
定変数Bmain,i及びBcap,iを0又は1のいずれかの値に制約し、バイナリ決
定変数Bmain,i及びBcap,iを、接続された機器610の信頼性Reliab
ilityの関数として定義する制約を課すことができる。目的関数生成器935は、
信頼性推定器924及び934を参照して述べたのと同様に、接続された機器610の信
頼性Reliabilityを機器性能情報(例えば、動作条件、稼働時間など)の関
数として定義する制約を課すことができる。
【0209】
目的関数オプティマイザ940は、目的関数Jを最適化して、最適化期間の継続時間に
わたるバイナリ決定変数Bmain,i及びBcap,iの最適値を決定することができ
る。目的関数オプティマイザ940は、様々な最適化技法の任意のものを使用して、目的
関数Jを定式化及び最適化することができる。例えば、目的関数オプティマイザ940は
、整数計画法、混合整数線形計画法、確率的最適化、凸最適化、動的計画法又は任意の他
の最適化技法を使用して、目的関数Jを定式化し、制約を定義し、最適化を実施すること
ができる。これら及び他の最適化技法は当技術分野で知られており、本明細書で詳細には
述べない。
【0210】
いくつかの実施形態では、目的関数オプティマイザ940は、混合整数確率的最適化を
使用して目的関数Jを最適化する。混合整数確率的最適化では、目的関数Jでの変数のい
くつかを、ランダム変数又は確率変数の関数として定義することができる。例えば、決定
変数Bmain,i及びBcap,iは、接続された機器610の信頼性に基づいた確率
値を有するバイナリ変数として定義することができる。低い信頼性値は、バイナリ決定変
数Bmain,i及びBcap,iが値1を有する確率を高めることがあり(例えば、B
main,i=1及びBcap,i=1)、高い信頼性値は、バイナリ決定変数Bmai
n,i及びBcap,iが値0を有する確率を高めることがある(例えば、Bmain,
=0及びBcap,i=0)。いくつかの実施形態では、メンテナンス推定器922及
び購入推定器932は、混合整数確率的技法を使用して、接続された機器610の信頼性
の確率関数としてバイナリ決定変数Bmain,i及びBcap,iの値を定義する。
【0211】
上で論じたように、目的関数Jは、最適化期間の継続期間にわたって接続された機器6
10の1つ又は複数のデバイスを動作、メンテナンス及び購入する予測コストを表すこと
もある。いくつかの実施形態では、目的関数オプティマイザ940は、これらのコストを
特定の時点(例えば、現時点)に投影し、特定の時点での接続された機器610の1つ又
は複数のデバイスの正味現在価値(NPV)を決定するように構成される。例えば、目的
関数オプティマイザ940は、次式を使用して、目的関数Jでの各コストを現時点に投影
することができる。
【数25】
ここで、rは利率であり、Costは、最適化期間の時間ステップi中にかかったコス
トであり、NPVcostは、最適化期間の継続期間にわたってかかった総コストの正味
現在価値(すなわち現在のコスト)である。いくつかの実施形態では、目的関数オプティ
マイザ940は、正味現在価値NPVcostを最適化して、特定の時点における接続さ
れた機器610の1つ又は複数のデバイスのNPVを決定する。
【0212】
上で論じたように、目的関数Jでの1つ又は複数の変数又はパラメータは、接続された
機器610からの閉ループフィードバックに基づいて動的に更新することができる。例え
ば、接続された機器610から受信された機器性能情報を使用して、接続された機器61
0の信頼性及び/又は効率を更新することができる。目的関数オプティマイザ940は、
目的関数Jを定期的に(例えば、1日に1回、1週間に1回、1か月に1回など)最適化
して、接続された機器610からの閉ループフィードバックに基づいて予測コスト及び/
又は正味現在価値NPVcostを動的に更新するように構成することができる。
【0213】
いくつかの実施形態では、目的関数オプティマイザ940は、最適化結果を生成する。
最適化結果は、最適化期間内の時間ステップiごとに目的関数Jの決定変数の最適値を含
むことがある。最適化結果は、接続された機器610の各デバイスに関する動作決定、機
器メンテナンス決定及び/又は機器購入決定を含む。いくつかの実施形態では、最適化結
果は、最適化期間の継続期間にわたって接続された機器610を動作、メンテナンス及び
購入する経済的価値を最適化する。いくつかの実施形態では、最適化結果は、特定の時点
における接続された機器610の1つ又は複数のデバイスの正味現在価値を最適化する。
最適化結果により、BMS606は、接続された機器610に関する設定点をアクティブ
化、非アクティブ化又は調整して、最適化結果で指定された決定変数の最適値を実現する
ことができる。
【0214】
いくつかの実施形態では、MPMシステム602は、最適化結果を使用して、機器購入
及びメンテナンスの推奨を生成する。機器購入及びメンテナンスの推奨は、目的関数Jを
最適化することによって決定されるバイナリ決定変数Bmain,i及びBcap,i
関する最適値に基づくことがある。例えば、接続された機器610の特定のデバイスに関
するBmain,25=1の値は、最適化期間の第25の時間ステップにおいてそのデバ
イスに対してメンテナンスが実施されるべきであることを示すことがあり、Bmain,
25=0の値は、その時間ステップにおいてメンテナンスを実施すべきでないことを示す
ことがある。同様に、Bcap,25=1の値は、最適化期間の第25の時間ステップに
おいて、接続された機器610の新たなデバイスを購入すべきであることを示すことがあ
り、Bcap,25=0の値は、その時間ステップにおいて新たなデバイスを購入すべき
でないことを示すことがある。
【0215】
いくつかの実施形態では、機器購入及びメンテナンスの推奨は、ビルディング10(例
えば、BMS606)及び/又はクライアントデバイス448に提供される。操作者又は
ビルディングの所有者は、機器購入及びメンテナンスの推奨を使用して、メンテナンスの
実施及び新たなデバイスの購入のコスト及び利益を評価することができる。いくつかの実
施形態では、機器購入及びメンテナンスの推奨が整備士620に提供される。整備士62
0は、機器購入及びメンテナンスの推奨を使用して、整備の実施又は機器の交換のために
顧客に連絡すべきときを決定することができる。
【0216】
モデル予測的メンテナンスプロセス
【0217】
次に、図10を参照すると、例示的実施形態に従って、モデル予測的メンテナンスプロ
セス1000のフローチャートが示されている。プロセス1000は、ビルディングシス
テム600の1つ又は複数の構成要素によって実施することができる。いくつかの実施形
態において、プロセス1000は、図6~9を参照して述べたようにMPMシステム60
2によって実施される。
【0218】
プロセス1000は、ビルディングの可変状態又は状況に影響を与えるためにビルディ
ング機器を動作させること(ステップ1002)及びビルディング機器からのフィードバ
ックとして機器性能情報を受信すること(ステップ1004)を含むものとして示されて
いる。ビルディング機器は、ビルディングを監視及び/又は制御するために使用すること
ができる機器のタイプを含むことができる(例えば、接続された機器610)。例えば、
ビルディング機器は、冷却器、AHU、ボイラ、バッテリ、ヒータ、エコノマイザ、バル
ブ、アクチュエータ、ダンパ、冷却塔、ファン、ポンプ、照明機器、セキュリティ機器、
冷凍機器又はビルディングシステム若しくはビルディング管理システム内の任意の他のタ
イプの機器を含むことができる。ビルディング機器は、図1~5を参照して述べたHVA
Cシステム100、ウォーターサイドシステム200、エアサイドシステム300、BM
S400及び/又はBMS500の機器のいずれを含むこともできる。機器性能情報は、
監視される変数のサンプル(例えば、測定された温度、測定された圧力、測定された流量
、電力消費量など)、現在の動作条件(例えば、加熱又は冷却負荷、現在の動作条件など
)、障害標示又はビルディング機器の性能を特徴付ける他のタイプの情報を含むことがで
きる。
【0219】
プロセス1000は、機器性能情報に応じてビルディング機器の効率及び信頼性を推定
すること(ステップ1006)を含むものとして示されている。いくつかの実施形態では
、ステップ1006は、図9を参照して述べた効率アップデータ911及び信頼性推定器
924、926によって実施される。ステップ1006は、機器性能情報を使用して、実
際の動作条件下でのビルディング機器の効率ηを決定することを含むことができる。いく
つかの実施形態では、効率ηは、次式で示されるように、ビルディング機器の理想的な
電力消費量Pidealと、ビルディング機器の実際の電力消費量Pactualとの比
を表す。
【数26】
ここで、Pidealは、ビルディング機器に関する性能曲線によって定義されるビルデ
ィング機器の理想的な電力消費量であり、Pactualは、ビルディング機器の実際の
電力消費量である。いくつかの実施形態では、ステップ1006は、ステップ1002で
収集された機器性能情報を使用して、実際の電力消費量値Pactualを識別すること
を含む。ステップ1006は、実際の電力消費量Pactualを理想的な電力消費量P
idealと組み合わせて使用して効率ηを計算することを含むことができる。
【0220】
ステップ1006は、効率ηを定期的に更新して、ビルディング機器の現在の動作効率
を反映することを含むことができる。例えば、ステップ1006は、ビルディング機器の
効率ηを、1日に1回、1週間に1回、1年に1回又は時間と共に効率ηの変化を捕捉す
るのに適切であり得る任意の他の間隔で計算することを含むことができる。効率ηの各値
は、効率ηが計算される時点でのPideal及びPactualの対応する値に基づき
得る。いくつかの実施形態では、ステップ1006は、高レベル最適化プロセスが実施さ
れるたびに(すなわち目的関数Jが最適化されるたびに)効率ηを更新することを含む。
ステップ1006で計算された効率値は、初期効率値ηとしてメモリ810に記憶され
ることがあり、ここで、下付き数字0は、最適化期間の開始時又は開始前(例えば、時間
ステップ0で)の効率ηの値を表す。
【0221】
ステップ1006は、最適化期間の各時間ステップiにおけるビルディング機器の効率
ηを予測することを含むことができる。最適化期間の開始時の初期効率ηは、ビルデ
ィング機器の性能が低下するにつれて、時間と共に低下することがある。例えば、冷却器
の効率は、冷却水管が汚れて冷却器の熱伝達率が低下した結果、時間と共に低下すること
がある。同様に、バッテリの物理的又は化学的構成要素の劣化により、バッテリの効率は
、時間と共に低下することがある。ステップ1006は、そのような低下を、最適化期間
の継続時間にわたって効率ηを増分的に低下させることによって考慮に入れることがで
きる。
【0222】
いくつかの実施形態では、初期効率値ηは、各最適化期間の開始時に更新される。し
かし、効率ηは、最適化期間中に低下することがあり、初期効率値ηは、最適化期間の
継続期間にわたって次第に不正確になる。最適化期間中の効率低下を考慮に入れるために
、ステップ1006は、連続する各時間ステップにおいて効率ηを所定量だけ低下させる
ことを含むことができる。例えば、ステップ1006は、各時間ステップi=1...h
での効率を以下のように定義することを含むことができる。
η=ηi-1-Δη
ここで、ηは、時間ステップiにおける効率であり、ηi-1は、時間ステップi-1
における効率であり、Δηは、連続する時間ステップ間の効率の低下である。いくつかの
実施形態では、ηのこの定義は、Bmain,i=0及びBcap,i=0である各時
間ステップに適用される。しかし、Bmain,i=1又はBcap,i=1の場合、ス
テップ1018で、ηの値をηmain又はηcapにリセットすることができる。
【0223】
いくつかの実施形態では、Δηの値は、効率値の時系列に基づいている。例えば、ステ
ップ1006は、初期効率値ηの時系列を記録することを含むことがあり、各初期効率
値ηは、特定の時点におけるビルディング機器の経験的に計算された効率を表す。ステ
ップ1006は、初期効率値ηの時系列を検査して、効率が低下する率を決定すること
を含むことができる。例えば、時刻tでの初期効率ηがη0,1であり、時刻t
の初期効率がη0,2である場合、効率低下率は、以下のように計算することができる。
【数27】
ここで、
【数28】
は、効率低下率である。ステップ1006は、
【数29】
に各時間ステップの継続時間Δtを乗算して、Δηの値を計算することを含むことができ
る(すなわち、
【数30】
)。
【0224】
ステップ1006は、ステップ1004で受信された機器性能情報に基づいてビルディ
ング機器の信頼性を推定することを含むことができる。信頼性は、ビルディング機器がそ
の現在の動作条件下で障害なく動作し続ける尤度の統計的尺度であり得る。より過酷な条
件下(例えば、高負荷、高温など)での動作は、信頼性をより低くすることがあり、より
過酷でない条件下(例えば、低負荷、中程度の温度など)での動作は、信頼性をより高く
することがある。いくつかの実施形態では、信頼性は、ビルディング機器が最後にメンテ
ナンスを受けてから経過した時間量及び/又はビルディング機器が購入若しくは設置され
てから経過した時間量に基づく。
【0225】
いくつかの実施形態では、ステップ1006は、機器性能情報を使用して、ビルディン
グ機器の現在の動作条件を識別することを含む。現在の動作条件を検査して、ビルディン
グ機器の性能が低下し始めるときを明らかにし、且つ/又は障害が発生するときを予測す
ることができる。いくつかの実施形態では、ステップ1006は、ビルディング機器で潜
在的に発生し得る様々なタイプの故障の尤度を推定することを含む。各故障の尤度は、ビ
ルディング機器の現在の動作条件、ビルディング機器が設置されてから経過した時間量及
び/又はメンテナンスが最後に実施されてから経過した時間量に基づくことがある。いく
つかの実施形態では、ステップ1006は、2016年6月21日出願の「Buildi
ng Management System With Predictive Dia
gnostics」という名称の(特許文献3)に記載のシステム及び方法を使用して、
動作条件を識別し、様々な故障の尤度を予測することを含む。上記特許出願の開示全体が
参照により本明細書に組み入れられる。
【0226】
いくつかの実施形態では、ステップ1006は、複数のビルディングにわたって分散さ
れたビルディング機器から動作データを受信することを含む。動作データは、例えば、現
在の動作条件、障害標示、故障時間又はビルディング機器の動作及び性能を特徴付ける他
のデータを含むことができる。ステップ1006は、動作データのセットを使用して、各
タイプの機器の信頼性モデルを作成することを含むことができる。ステップ1006で信
頼性モデルを使用して、ビルディング機器の任意の所与のデバイスの信頼性を、その現在
の動作条件及び/又は他の外的要因(例えば、メンテナンスが最後に実施されてからの時
間、設置又は購入からの時間、地理的位置、水質など)に応じて推定することができる。
【0227】
ステップ1006で使用することができる信頼性モデルの一例は、次式で示される。
Reliability=f(OpCond,Δtmain,i,Δt
ap,i
ここで、Reliabilityは、時間ステップiにおけるビルディング機器の信頼
性であり、OpCondは、時間ステップiにおける動作条件であり、Δtmain,
は、メンテナンスが最後に行われた時点と時間ステップiとの間で経過した時間量であ
り、Δtcap,iは、ビルディング機器が購入又は設置された時点と時間ステップiと
の間で経過した時間量である。ステップ1006は、ビルディング機器からフィードバッ
クとして受信された機器性能情報に基づいて現在の動作条件OpCondを識別するこ
とを含むことができる。より過酷な条件下(例えば、高負荷、極端な温度など)での動作
は、信頼性をより低くすることがあり、より過酷でない条件下(例えば、低負荷、中程度
の温度など)での動作は、信頼性をより高くすることがある。
【0228】
引き続き図10を参照すると、プロセス1000は、推定された効率の関数として最適
化期間にわたるビルディング機器のエネルギー消費を予測すること(ステップ1008)
を含むものとして示されている。いくつかの実施形態では、ステップ1008は、図9
参照して述べたように理想性能計算機912及び/又は電力消費量推定器によって実施さ
れる。ステップ1008は、負荷/料金予測器822から負荷予測Loadを受信し、
低レベルオプティマイザ834から性能曲線を受信することを含むことができる。上で論
じたように、性能曲線は、ビルディング機器の理想的な電力消費量Pidealを、デバ
イス又はデバイスのセットに対する加熱又は冷却負荷の関数として定義することができる
。例えば、ビルディング機器に関する性能曲線は、次式によって定義することができる。
ideal,i=f(Load
ここで、Pideal,iは、時間ステップiにおけるビルディング機器の理想的な電力
消費量(例えば、kW)であり、Loadは、時間ステップiにおけるビルディング機
器に対する負荷(例えば、トン単位での冷却負荷、kW単位での加熱負荷など)である。
理想的な電力消費量Pideal,iは、ビルディング機器が完璧な効率で動作すると仮
定したそれらの電力消費量を表すことがある。ステップ1008は、ビルディング機器に
関する性能曲線を使用して、最適化期間の各時間ステップにおけるビルディング機器に関
する負荷点Loadに対応するPideal,iの値を識別することを含むことができ
る。
【0229】
いくつかの実施形態では、ステップ1008は、理想的な電力消費量Pideal,i
及びビルディング機器の効率ηの関数として電力消費量Pop,iを推定することを含
む。例えば、ステップ1008は、次式を使用して電力消費量Pop,iを計算すること
を含むことができる。
【数31】
ここで、Pideal,iは、対応する負荷点Loadでのビルディング機器に関する
機器性能曲線に基づく電力消費量であり、ηは、時間ステップiにおけるビルディング
機器の動作効率である。
【0230】
引き続き図10を参照すると、プロセス1000は、予測されたエネルギー消費量の関
数として、最適化期間にわたってビルディング機器を動作させるコストCostopを定
義すること(ステップ1010)を含むものとして示されている。いくつかの実施形態に
おいて、ステップ1010は、図9を参照して述べたように動作コスト計算機916によ
って実施される。ステップ1010は、次式を使用して各時間ステップi中の動作コスト
を計算することを含むことができる。
Costop,i=Cop,iop,iΔt
ここで、Pop,iは、ステップ1008で決定される時間ステップiにおける予測電力
消費量であり、Cop,iは、時間ステップiにおける単位エネルギーあたりのコストで
あり、Δtは、各時間ステップの継続期間である。ステップ1010は、以下のように、
最適化期間の継続期間にわたって動作コストを合計することを含むことができる。
【数32】
ここで、Costopは、目的関数Jの動作コスト項である。
【0231】
他の実施形態では、ステップ1010は、次式で示されるように、コストアレイCop
に電力消費量アレイPop及び各時間ステップの継続時間Δtを乗算することにより、動
作コストCostopを計算することを含むことができる。
Costop=CopopΔt
Costop=[Cop,1op,2 … Cop,h][Pop,1
op,2 … Pop,hΔt
ここで、アレイCopは、最適化期間の特定の時間ステップi=1...hに関するエネ
ルギーコスト値Cop,iを含み、アレイPopは、最適化期間の特定の時間ステップi
=1...hに関する電力消費量値Pop,iを含む。
【0232】
引き続き図10を参照すると、プロセス1000は、推定された信頼性の関数として、
最適化期間にわたってビルディング機器に対してメンテナンスを実施するコストを定義す
ること(ステップ1012)を含むものとして示されている。ステップ1012は、図9
を参照して述べたようにメンテナンスコスト予測器920によって実施することができる
。ステップ1012は、最適化期間の継続時間にわたるビルディング機器の推定された信
頼性を使用して、最適化期間の各時間ステップにおいてビルディング機器がメンテナンス
及び/又は交換を必要とする確率を決定することを含むことができる。いくつかの実施形
態では、ステップ1012は、ビルディング機器が所定の時間ステップにおいてメンテナ
ンスを必要とする確率を臨界値と比較することを含む。ステップ1012は、時間ステッ
プiにおいてビルディング機器がメンテナンスを必要とする確率が臨界値を超えるという
決定に応答して、Bmain,i=1の値を設定することを含むことができる。同様に、
ステップ1012は、所与の時間ステップにおいてビルディング機器が交換を必要とする
確率を臨界値と比較することを含むことができる。ステップ1012は、時間ステップi
においてビルディング機器が交換を必要とする確率が臨界値を超えるという決定に応答し
て、Bcap,i=1の値を設定することを含むことができる。
【0233】
ステップ1012は、ビルディング機器に対する様々なタイプのメンテナンスの実施に
関連するコストCmain,iを決定することを含むことができる。ステップ1012は
、外部システム又はデバイス(例えば、データベース、ユーザデバイスなど)からメンテ
ナンスコストのセットを受信することを含むことができる。いくつかの実施形態では、メ
ンテナンスコストは、様々なタイプのメンテナンスを実施する経済的コスト(例えば、ド
ル)を定義する。各タイプのメンテナンス活動は、それに関連する異なる経済的コストを
有することがある。例えば、冷却器圧縮機内のオイルを交換するメンテナンス活動にかか
る経済的コストは、比較的小さいことがあり、冷却器を完全に分解してすべての冷却水管
を洗浄するメンテナンス活動にかかる経済的コストは、かなり大きいことがある。ステッ
プ1012は、メンテナンスコストを使用して目的関数JでのCmain,iの値を定義
することを含むことができる。
【0234】
ステップ1012は、最適化期間の継続期間にわたるビルディング機器のメンテナンス
コストを推定することを含むことができる。いくつかの実施形態では、ステップ1012
は、次式を使用して各時間ステップi中のメンテナンスコストを計算することを含む。
Costmain,i=Cmain,imain,i
ここで、Cmain,iは、時間ステップiにおいて実施することができるm個の異なる
タイプのメンテナンス活動それぞれに関する要素を含むメンテナンスコストのアレイであ
り、Bmain,iは、m個のメンテナンス活動それぞれが時間ステップiにおいて実施
されるか否かを示すバイナリ決定変数のアレイである。ステップ1012は、以下のよう
に、最適化期間の継続期間にわたってメンテナンスコストを合計することを含むことがで
きる。
【数33】
ここで、Costmainは、目的関数Jのメンテナンスコスト項である。
【0235】
他の実施形態では、ステップ1012は、次式に示されるように、メンテナンスコスト
アレイCmainにバイナリ決定変数の行列Bmainを乗算することによってメンテナ
ンスコストCostmainを推定することを含む。
【数34】
ここで、アレイCmainの各要素は、特定のメンテナンス活動j=1...mに関する
メンテナンスコスト値Cmain,jを含み、行列Bmainの各要素は、最適化期間の
特定の時間ステップi=1...hにおける特定のメンテナンス活動j=1...mに関
するバイナリ決定変数を含む。
【0236】
引き続き図10を参照すると、プロセス1000は、推定された信頼性の関数として、
最適化期間にわたってビルディング機器を購入又は交換するコストCostcapを定義
すること(ステップ1014)を含むものとして示されている。ステップ1014は、図
9を参照して述べたように資本コスト予測器930によって実施することができる。いく
つかの実施形態では、ステップ1014は、最適化期間の継続時間にわたるビルディング
機器の推定された信頼性を使用して、最適化期間の各時間ステップにおいてビルディング
機器の新たなデバイスが購入される確率を決定することを含む。いくつかの実施形態では
、ステップ1014は、所与の時間ステップにおいてビルディング機器の新たなデバイス
が購入される確率を臨界値と比較することを含む。ステップ1014は、時間ステップi
においてビルディング機器が購入される確率が臨界値を超えるという決定に応答して、B
cap,i=1の値を設定することを含むことができる。
【0237】
ステップ1014は、様々な資本購入(すなわちビルディング機器の1つ又は複数の新
たなデバイスを購入すること)に関連するコストCcap,iを決定することを含むこと
ができる。ステップ1014は、外部システム又はデバイス(例えば、データベース、ユ
ーザデバイスなど)から資本コストのセットを受信することを含むことができる。いくつ
かの実施形態では、資本コストは、様々な資本購入を行う経済的コスト(例えば、ドル)
を定義する。各タイプの資本購入は、それに関連する異なる経済的コストを有することが
ある。例えば、新たな温度センサの購入にかかる経済的コストは比較的小さいことがあり
、新たな冷却器の購入にかかる経済的コストはかなり大きいことがある。ステップ101
4は、購入コストを使用して、目的関数JでのCcap,iの値を定義することを含むこ
とができる。
【0238】
いくつかの資本購入は、他のものよりも高価であり得る。しかし、異なるタイプの資本
購入は、効率η及び/又はビルディング機器の信頼性に対して異なるレベルでの向上をも
たらすことがある。例えば、既存のセンサの交換のために新たなセンサを購入することで
、効率ηがわずかに向上し、且つ/又は信頼性がわずかに向上することがあり、新たな冷
却器及び制御システムを購入することで、ビルディング機器の効率η及び/又は信頼性が
かなり大きく向上することがある。したがって、複数の異なるレベルの購入後の効率(す
なわちηcap)及び購入後の信頼性(すなわちReliabilitycap)があり
得る。ηcap及びReliabilitycapの各レベルは、異なるタイプの資本購
入に対応することがある。
【0239】
ステップ1014は、最適化期間の継続期間にわたるビルディング機器の資本コストを
推定することを含むことができる。いくつかの実施形態では、ステップ1014は、次式
を使用して各時間ステップi中の資本コストを計算することを含む。
Costcap,i=Ccap,icap,i
ここで、Ccap,iは、時間ステップiにおいて行うことができるp個の異なる資本購
入それぞれに関する要素を含む資本購入コストのアレイであり、Bcap,iは、p個の
資本購入それぞれが時間ステップiにおいて行われるか否かを示すバイナリ決定変数のア
レイである。ステップ1014は、以下のように、最適化期間中の継続期間にわたって資
本コストを合計することを含むことができる。
【数35】
ここで、Costcapは、目的関数Jの資本コスト項である。
【0240】
他の実施形態では、ステップ1014は、次式に示されるように、資本コストアレイC
capにバイナリ決定変数の行列Bcapを乗算することによって資本コストCost
apを推定することを含む。
【数36】
ここで、アレイCcapの各要素は、特定の資本購入k=1...pに関する資本コスト
値Ccap,kを含み、行列Bcapの各要素は、最適化期間の特定の時間ステップi=
1...hにおける特定の資本購入k=1...pに関するバイナリ決定変数を含む。
【0241】
引き続き図10を参照すると、プロセス1000は、コストCostop、Cost
ain及びCostcapを含む目的関数を最適化して、ビルディング機器に関する最適
なメンテナンス戦略を決定すること(ステップ1016)を含むものとして示されている
。ステップ1016は、ステップ1010~1014で定式化された動作コスト項、メン
テナンスコスト項及び資本コスト項を合計することによって目的関数Jを生成することを
含むことができる。ステップ1016で生成することができる目的関数の一例は、次式で
示される。
【数37】
ここで、Cop,iは、最適化期間の時間ステップiにおいて接続された機器610が消
費する単位エネルギーあたりのコスト(例えば、ドル/kWh)であり、Pop,iは、
時間ステップiにおける接続された機器610の電力消費量(例えば、kW)であり、Δ
tは、各時間ステップiの継続時間であり、Cmain,iは、時間ステップiにおいて
接続された機器610に対して実施されるメンテナンスのコストであり、Bmain,i
は、メンテナンスが実施されるか否かを示すバイナリ変数であり、Ccap,iは、時間
ステップiにおいて接続された機器610の新たなデバイスを購入する資本コストであり
、Bcap,iは、新たなデバイスが購入されるか否かを示すバイナリ変数であり、hは
、最適化が実施されるホライズン又は最適化期間の継続時間である。
【0242】
ステップ1016で生成することができる目的関数の別の例は、次式で示される。
【数38】
ここで、アレイCopは、最適化期間の特定の時間ステップi=1...hに関するエネ
ルギーコスト値Cop,iを含み、アレイPopは、最適化期間の特定の時間ステップi
=1...hに関する電力消費量値Pop,iを含み、アレイCmainの各要素は、特
定のメンテナンス活動j=1...mに関するメンテナンスコスト値Cmain,jを含
み、行列Bmainの各要素は、最適化期間の特定の時間ステップi=1...hにおけ
る特定のメンテナンス活動j=1...mに関するバイナリ決定変数を含み、アレイC
apの各要素は、特定の資本購入k=1...pに関する資本コスト値Ccap,kを含
み、行列Bcapの各要素は、最適化期間の特定の時間ステップi=1...hにおける
特定の資本購入k=1...pに関するバイナリ決定変数を含む。
【0243】
ステップ1016は、目的関数Jでの1つ又は複数の変数又はパラメータに制約を課す
ことを含むことができる。制約は、動作コスト予測器910、メンテナンスコスト予測器
920及び資本コスト予測器930を参照して述べた式又は関係のいずれを含むこともで
きる。例えば、ステップ1016は、ビルディング機器の1つ又は複数のデバイスに関す
る電力消費量値Pop,iを、理想電力消費量Pideal,i及び効率ηの関数とし
て定義する制約を課すことを含むことができる(例えば、Pop,i=Pideal,i
/η)。ステップ1016は、効率アップデータ911及び効率デグレーダ913を参
照して述べたのと同様に、効率ηをバイナリ決定変数Bmain,i及びBcap,i
の関数として定義する制約を課すことを含むことができる。ステップ1016は、メンテ
ナンス推定器922及び購入推定器932を参照して述べたのと同様に、バイナリ決定変
数Bmain,i及びBcap,iを0又は1のいずれかの値に制約し、バイナリ決定変
数Bmain,i及びBcap,iを、接続された機器610の信頼性Reliabil
ityの関数として定義する制約を課すことを含むことができる。ステップ1016は
、信頼性推定器924及び934を参照して述べたのと同様に、接続された機器610の
信頼性Reliabilityを機器性能情報(例えば、動作条件、稼働時間など)の
関数として定義する制約を課すことを含むことができる。
【0244】
ステップ1016は、目的関数Jを最適化して、最適化期間の継続時間にわたるバイナ
リ決定変数Bmain,i及びBcap,iの最適値を決定することを含むことができる
。ステップ1016は、様々な最適化技法の任意のものを使用して目的関数Jを定式化及
び最適化することを含むことができる。例えば、ステップ1016は、整数計画法、混合
整数線形計画法、確率的最適化、凸最適化、動的計画法又は任意の他の最適化技法を使用
して、目的関数Jを定式化し、制約を定義し、最適化を実施することを含むことができる
。これら及び他の最適化技法は当技術分野で知られており、本明細書で詳細には述べない
【0245】
いくつかの実施形態では、ステップ1016は、混合整数確率的最適化を使用して目的
関数Jを最適化することを含む。混合整数確率的最適化では、目的関数Jでの変数のいく
つかを、ランダム変数又は確率変数の関数として定義することができる。例えば、決定変
数Bmain,i及びBcap,iは、ビルディング機器の信頼性に基づいた確率値を有
するバイナリ変数として定義することができる。低い信頼性値は、バイナリ決定変数B
ain,i及びBcap,iが値1を有する確率を高めることがあり(例えば、Bmai
n,i=1及びBcap,i=1)、高い信頼性値は、バイナリ決定変数Bmain,i
及びBcap,iが値0を有する確率を高めることがある(例えば、Bmain,i=0
及びBcap,i=0)。いくつかの実施形態では、ステップ1016は、混合整数確率
的技法を使用して、バイナリ決定変数Bmain,i及びBcap,iの値をビルディン
グ機器の信頼性の確率関数として定義することを含む。
【0246】
上で論じたように、目的関数Jは、最適化期間の継続期間にわたってビルディング機器
の1つ又は複数のデバイスを動作、メンテナンス及び購入する予測コストを表すこともあ
る。いくつかの実施形態では、ステップ1016は、これらのコストを特定の時点(例え
ば、現時点)に投影し、特定の時点でのビルディング機器の1つ又は複数のデバイスの正
味現在価値(NPV)を決定することを含む。例えば、ステップ1016は、次式を使用
して、目的関数Jでの各コストを現時点に投影することを含むことができる。
【数39】
ここで、rは利率であり、Costは、最適化期間の時間ステップi中にかかったコス
トであり、NPVcostは、最適化期間の継続期間にわたってかかった総コストの正味
現在価値(すなわち現在のコスト)である。いくつかの実施形態では、ステップ1016
は、正味現在価値NPVcostを最適化して、特定の時点でのビルディング機器のNP
Vを決定することを含む。
【0247】
上で論じたように、目的関数Jでの1つ又は複数の変数又はパラメータは、ビルディン
グ機器からの閉ループフィードバックに基づいて動的に更新することができる。例えば、
ビルディング機器から受信された機器性能情報を使用して、ビルディング機器の信頼性及
び/又は効率を更新することができる。ステップ1016は、目的関数Jを定期的に(例
えば、1日に1回、1週間に1回、1か月に1回など)最適化して、ビルディング機器か
らの閉ループフィードバックに基づいて予測コスト及び/又は正味現在価値NPVcos
を動的に更新することを含むことができる。
【0248】
いくつかの実施形態では、ステップ1016は、最適化結果を生成することを含む。最
適化結果は、最適化期間内の時間ステップiごとに目的関数Jの決定変数の最適値を含む
ことがある。最適化結果は、ビルディング機器の各デバイスに関する動作決定、機器メン
テナンス決定及び/又は機器購入決定を含む。いくつかの実施形態では、最適化結果は、
最適化期間の継続期間にわたってビルディング機器を動作、メンテナンス及び購入する経
済的価値を最適化する。いくつかの実施形態では、最適化結果は、特定の時点におけるビ
ルディング機器の1つ又は複数のデバイスの正味現在価値を最適化する。最適化結果によ
り、BMS606は、ビルディング機器に関する設定点をアクティブ化、非アクティブ化
又は調整して、最適化結果で指定された決定変数の最適値を実現することができる。
【0249】
いくつかの実施形態では、プロセス1000は、最適化結果を使用して、機器購入及び
メンテナンスの推奨を生成することを含む。機器購入及びメンテナンスの推奨は、目的関
数Jを最適化することによって決定されるバイナリ決定変数Bmain,i及びBcap
,iに関する最適値に基づくことがある。例えば、ビルディング機器の特定のデバイスに
関するBmain,25=1の値は、最適化期間の第25の時間ステップにおいてそのデ
バイスに対してメンテナンスが実施されるべきであることを示すことがあり、Bmain
,25=0の値は、その時間ステップにおいてメンテナンスを実施すべきでないことを示
すことがある。同様に、Bcap,25=1の値は、最適化期間の第25の時間ステップ
において、ビルディング機器の新たなデバイスを購入すべきであることを示すことがあり
、Bcap,25=0の値は、その時間ステップにおいて新たなデバイスを購入すべきで
ないことを示すことがある。
【0250】
いくつかの実施形態では、機器購入及びメンテナンスの推奨は、ビルディング10(例
えば、BMS606)及び/又はクライアントデバイス448に提供される。操作者又は
ビルディングの所有者は、機器購入及びメンテナンスの推奨を使用して、メンテナンスの
実施及び新たなデバイスの購入のコスト及び利益を評価することができる。いくつかの実
施形態では、機器購入及びメンテナンスの推奨が整備士620に提供される。整備士62
0は、機器購入及びメンテナンスの推奨を使用して、整備の実施又は機器の交換のために
顧客に連絡すべきときを決定することができる。
【0251】
引き続き図10を参照すると、プロセス1000は、最適なメンテナンス戦略に基づい
てビルディング機器の効率及び信頼性を更新すること(ステップ1018)を含むものと
して示されている。いくつかの実施形態では、ステップ1018は、ビルディング機器に
対するメンテナンスの実施又はビルディング機器の1つ若しくは複数のデバイスを交換若
しくは補完するための新たな機器の購入により生じるビルディング機器の効率ηの上昇を
考慮に入れるために、最適化期間中の1つ又は複数の時間ステップに関する効率ηを更
新することを含む。効率ηが更新される時間ステップiは、メンテナンスが実施される
ことになるか、又は機器が交換されることになる予測時間ステップに対応することがある
。ビルディング機器に対してメンテナンスが実施されることになる予測時間ステップは、
目的関数Jでのバイナリ決定変数Bmain,iの値によって定義することができる。同
様に、ビルディング機器が交換されることになる予測時間ステップは、目的関数Jでのバ
イナリ決定変数Bcap,iの値によって定義することができる。
【0252】
ステップ1018は、その時間ステップにおいてメンテナンスが実施されること及び/
又はその時間ステップにおいて新たな機器が購入されることをバイナリ決定変数Bmai
n,i及びBcap,iが示す場合(すなわちBmain,i=1及び/又はBcap,
=1)、所与の時間ステップiに関する効率ηをリセットすることを含むことができ
る。例えば、Bmain,i=1の場合、ステップ1018は、ηの値をηmain
リセットすることを含むことができ、ここで、ηmainは、時間ステップiにおいて実
施されるメンテナンスにより得られると期待される効率値である。同様に、Bcap,i
=1の場合、ステップ1018は、ηの値をηcapにリセットすることを含むことが
でき、ここで、ηcapは、時間ステップiにおいて実施されるビルディング機器の1つ
又は複数のデバイスを補完又は交換するために新たなデバイスを購入することにより得ら
れると期待される効率値である。ステップ1018は、1つ又は複数の時間ステップに関
して効率ηをリセットすることを含むことができ、(例えば、最適化の各反復によって
)バイナリ決定変数Bmain,i及びBcap,iの値に基づいて最適化が実施される
【0253】
ステップ1018は、バイナリ決定変数Bmain,iの値に基づいて、ビルディング
機器に対してメンテナンスが最後に実施されてから経過した時間量Δtmain,iを決
定することを含むことがある。各時間ステップiに関して、ステップ1018は、時間ス
テップi及び前の各時間ステップ(例えば、時間ステップi-1、i-2、...、1)
におけるBmainの対応する値を検査することができる。ステップ1018は、メンテ
ナンスが最後に実施された時点(すなわちBmain,i=1である直近の時点)を、時
間ステップiに関連する時点から引くことにより、Δtmain,iの値を計算すること
を含むことができる。メンテナンスが最後に実施されてからの時間量Δtmain,i
長いと、信頼性がより低くなることがあり、メンテナンスが最後に実施されてからの時間
量が短いと、信頼性がより高くなることがある。
【0254】
同様に、ステップ1018は、バイナリ決定変数Bcap,iの値に基づいて、ビルデ
ィング機器が購入又は設置されてから経過した時間量Δtcap,iを決定することを含
むことがある。各時間ステップiに関して、ステップ1018は、時間ステップi及び前
の各時間ステップ(例えば、時間ステップi-1、i-2、...、1)におけるBca
の対応する値を検査することができる。ステップ1018は、ビルディング機器が購入
又は設置された時点(すなわちBcap,i=1である直近の時点)を、時間ステップi
に関連する時点から引くことにより、Δtcap,iの値を計算することを含むことがで
きる。ビルディング機器が購入又は設置されてからの時間量Δtcap,iが長いと、信
頼性がより低くなることがあり、ビルディング機器が購入又は設置されてからの時間量が
短いと、信頼性がより高くなることがある。
【0255】
いくつかのメンテナンス活動は、他よりもコストがかかることがある。しかし、異なる
タイプのメンテナンス活動が、ビルディング機器の効率η及び/又は信頼性に対する異な
るレベルの改良をもたらすことがある。例えば、冷却器内のオイルの単なる交換は、効率
ηのわずかな改良及び/又は信頼性のわずかな改良をもたらすことがあり、冷却器の完全
な分解及びすべての冷却水管の洗浄は、ビルディング機器の効率η及び/又は信頼性のか
なり大きい改良をもたらすことがある。したがって、複数の異なるレベルのメンテナンス
後の効率(すなわちηmain)及びメンテナンス後の信頼性(すなわちReliabi
litymain)が存在し得る。ηmain及びReliabilitymainの各
レベルは、異なるタイプのメンテナンス活動に対応することがある。
【0256】
いくつかの実施形態では、ステップ1018は、各バイナリ決定変数Bmain,j,
に関連するメンテナンス活動を識別することを含み、Bmain,j,i=1の場合、
効率ηを、対応するメンテナンス後の効率レベルηmain,jにリセットする。同様に
、ステップ1018は、各バイナリ決定変数Bmain,j,iに関連するメンテナンス
活動を識別することを含むことができ、Bmain,j,i=1の場合、信頼性を、対応
するメンテナンス後の信頼性レベルReliabilitymain,jにリセットする
ことができる。
【0257】
いくつかの資本購入は、他のものよりも高価であり得る。しかし、異なるタイプの資本
購入は、効率η及び/又はビルディング機器の信頼性に対して異なるレベルでの向上をも
たらすことがある。例えば、既存のセンサの交換のために新たなセンサを購入することで
、効率ηがわずかに向上し、且つ/又は信頼性がわずかに向上することがあり、新たな冷
却器及び制御システムを購入することで、ビルディング機器の効率η及び/又は信頼性が
かなり大きく向上することがある。したがって、複数の異なるレベルの購入後の効率(す
なわちηcap)及び購入後の信頼性(すなわちReliabilitycap)があり
得る。ηcap及びReliabilitycapの各レベルは、異なるタイプの資本購
入に対応することがある。
【0258】
いくつかの実施形態では、ステップ1018は、各バイナリ決定変数Bmain,k,
に関連する資本購入を識別し、Bcap,k,i=1の場合、効率ηを、対応する購入
後効率レベルηcap,kにリセットすることを含む。同様に、ステップ1018は、各
バイナリ決定変数Bcap,k,iに関連する資本購入を識別することを含むことがあり
、Bmain,k,i=1の場合、信頼性を、対応する購入後信頼性レベルReliab
ilitycap,kにリセットすることができる。
【0259】
予算制約及び故障リスクを伴うモデル予測的メンテナンス
【0260】
概要
【0261】
全体として図11~22を参照すると、いくつかの実施形態による、予算制約、リスク
コスト及び/又は雑費を考慮に入れるモデル予測的メンテナンス(MPM)システムに関
するシステム及び方法が示されている。いくつかの実施形態では、図11~22を参照し
て以下でより詳細に述べるシステム及び方法のいずれかは、図6~10を参照して上でよ
り詳細に述べたMPMシステム602に組み込まれる。例えば、図8~9を参照して上で
より詳細に述べたモデル予測的メンテナンスシステム602の高レベルオプティマイザ8
32は、本明細書で以下に述べるシステム及び方法(例えば、ハード予算制約)のいずれ
かを含むことができる。
【0262】
いくつかの実施形態では、MPMシステム602は、1つ又は複数の予算制約を生成し
、1つ又は複数の予算制約を受ける目的関数Jを最適化して、1つ又は複数の最適化制約
を遵守しながらコストを最小化する決定変数の最適値を決定するように構成される。いく
つかの実施形態では、図11~23Bを参照して述べるメンテナンス活動に関連する任意
の記載は、資本購入活動と同様及び/又は同一に適用することができる。いくつかの実施
形態では、MPMシステム602は、図11~23Bを参照して以下に述べるメンテナン
ス活動を説明するために、MPM602が述べられるのと同様及び/又は同一に予算制約
下で資本購入活動を説明することができる。図10を参照して上でより詳細に述べた資本
購入は、ビルディング管理システム(BMS)における1つ又は複数の構成要素の交換(
例えば、可変冷媒流量(VRF)システムの屋外凝縮ユニットの交換、BMSでの換気ユ
ニットの交換)を含むことができる。
【0263】
いくつかの実施形態では、MPMシステム602は、ビルディング機器に関連するリス
クコストを組み込む。リスクコストは、ビルディング機器の故障に関連するコストを定義
することができる。ビルディング機器の故障は、ある閾値を超えたビルディング機器の劣
化状態、ビルディング機器の作動不能などに基づいて決定することができる。ビルディン
グ機器が故障した場合、複数のコストが生じる可能性がある。いくつかの実施形態では、
ビルディング機器の故障により、ビルディング機器を補修するための様々な修理(例えば
、メンテナンス及び/又は交換)コストが生じる。故障によりさらなる複雑な問題が生じ
ることがあるため、ビルディング機器が故障した後、故障前に修理が実施される場合に比
べて修理コストが高くなる可能性がある。例えば、電気デバイスでの配線が故障すると、
電気デバイスの他の構成要素が配線の故障により電気的損傷を受けることがある。いくつ
かの実施形態では、ビルディング機器の故障により、様々な機会コストが生じる。機会コ
ストには、一般的な修理コスト以外の、ビルディング機器の故障により生じる様々なコス
トが含まれることがある。例えば、冬にビルディングのスペースでヒータが故障した場合
、そのスペースは、居住者が使用できないほど冷えることがある。したがって、居住者の
移転に関連するコスト、スペースの閉鎖によるビジネスチャンスの喪失などが機会コスト
の形態で生じ得る。いくつかの実施形態では、ユーザは、ビルディング機器の故障に関連
する機会コストを定義する。いくつかの実施形態では、機会コストは、ビルディング機器
が関連のビルディングにどのように影響を及ぼすかに関する知識に基づいて、MPMシス
テム602によって推定される。
【0264】
いくつかの実施形態では、MPMシステム602は、雑費を組み込む。雑費は、ビルデ
ィング機器の信頼性に影響を及ぼすが、ビルディング機器の効率に影響を及ぼさないこと
がある雑多な活動(例えば、メンテナンス及び/又は交換活動)から生じ得る。いくつか
の実施形態では、雑費は、MPMシステム602によって解が与えられるコスト関数(例
えば、目的関数J)にメンテナンスコストと共に組み込まれる。いくつかの実施形態では
、雑費は、コスト関数でのメンテナンスコストとは別である。雑費の例として、雑多な活
動は、錆びによる配管の亀裂の可能性を低減するための換気システムの配管の交換を含む
ことがある。配管を交換しても換気システムの効率に影響を及ぼさないことがあるが、新
しい配管に亀裂が生じにくくなり得るため、換気システムの信頼性を高めることができる
。いくつかの実施形態では、雑多な活動がビルディング機器の故障の可能性を低減し、そ
れによりリスクコスト項を減少させることができるため、リスクコスト項が組み込まれて
いる場合、雑多な活動を組み込むことが有益である。
【0265】
最適な複合コスト曲線
【0266】
ここで、図11を参照すると、いくつかの実施形態による、メンテナンス支出の関数と
して複合コストを示すグラフ1100が示されている。いくつかの実施形態では、複合コ
ストは、目的関数Jに関連する3つのコスト、すなわち図10を参照して上述したメンテ
ナンスコスト、資本コスト及び動作コストを含むことができる。いくつかの実施形態では
、メンテナンス支出の増加により、複合コストを低減することができる。例えば、VRF
システムの屋外凝縮ユニットが通常動作に関して大量の電力を使用していることがある。
屋外凝縮ユニットに対するメンテナンスを実施することにより、メンテナンスコストが生
じることがあるが、動作コストに関して節約される額(例えば、電力消費に関連するコス
ト)を大幅に削減することができる。いくつかの実施形態では、ハード予算制約は、メン
テナンス予算期間にわたる最大許容メンテナンス支出を示す最大メンテナンス予算110
4である。ハード予算制約は、目的関数Jにおいてペナルティコストとして実装すること
ができるソフト予算制約(図12を参照してより詳細に述べる)とは区別される。
【0267】
グラフ1100は、いくつかの実施形態によれば、メンテナンス支出(X軸)に対する
最適な複合コスト(Y軸)を例示する曲線1102を含むものとして示されている。曲線
1102は、様々なメンテナンス支出を仮定して、最適な複合コストがどのように変動し
得るかを例示する。ビルディング管理システム(BMS)では、機器をある効率レベルで
動作させ続けるために、機器に対してメンテナンスを実施する必要があり得る。機器のメ
ンテナンスは、請負業者の手数料、交換部品に関するコスト又は機器がメンテナンスのた
めに一時的にオフラインになることにより生じるコストなど、追加コストを生じることが
ある。しかし、機器のメンテナンスは、機器の動作効率を高め、例えば電気消費又は燃料
消費などの動作コストを削減することができる。
【0268】
最適点1108が曲線1102上に示されている。最適点1108は、合計の複合コス
トを最小化するメンテナンス支出の額を示す。最適点1108の左側の曲線1102の区
間は、メンテナンスに十分な額が費やされておらず、複合の出費が最適よりも高い場合を
表す。最適点1108の右側の曲線1102の区間は、最適な額よりも多くメンテナンス
に費やされている場合を表す。
【0269】
グラフ1100は、いくつかの実施形態によれば、予算限度点1106として示される
曲線1102上の最大メンテナンス予算点も含むものとして示されている。予算限度点1
106は、いくつかの実施形態によれば、最大メンテナンス予算1104と曲線1102
との交点によって定義される。いくつかの実施形態では、最大メンテナンス予算1104
は、メンテナンス予算期間にわたってメンテナンスに費やすことができる最大額である。
例えば、ビルディングは、10,000ドルのメンテナンス予算を有することがある。1
0,000ドルのメンテナンス予算は、メンテナンス予算期間にわたってより多くの額を
メンテナンスに費やすことによって合計の複合コストを下げることができたとしても、メ
ンテナンス予算期間にわたって10,000ドル以下をメンテナンスに費やすべきである
ことを示す。いくつかの実施形態では、予算限度点1106は、最大メンテナンス予算1
104により、最適点1108よりも低いメンテナンス支出になり得る。これは、最適な
複合コストを実現するためにメンテナンスに十分な額が費やされていないことを示すこと
がある。他の実施形態では、最大メンテナンス予算1104が最適メンテナンス支出11
12以上である場合、最適点1108を実現することができる。最大メンテナンス予算1
104が最適なメンテナンス支出1112の右側にあることは、メンテナンス予算により
、複合コストに関して費やされる額をビルディングが完全に最適化(すなわち最小化)す
ることができることを示すことがある。
【0270】
グラフ1100は、コスト差1110も含むものとして示されている。いくつかの実施
形態では、コスト差1110は、最大メンテナンス予算1104が最適メンテナンス支出
1112未満であるときに(最適な複合コスト値を超えて)生じる追加コストを表す。例
えば、予算限度点1106のX値(すなわちメンテナンス支出値)が最適点1108のX
値以上である場合、コスト差1110は、0になることがあり、複合コストを完全に最適
化するためにメンテナンス支出に十分な額を費やすことができることを示す。別の例とし
て、最大メンテナンス予算1104が最適メンテナンス支出1112未満である場合、コ
スト差1110は、0よりも大きくなることがあり、複合コストを完全に最適化するため
にメンテナンスに十分な額を費やすことができないことを示す。いくつかの実施形態では
、コスト差1110は、より低い複合コストを生じるためにユーザがメンテナンス予算を
増加することによってお金を節約できるというユーザへの指標としての役割を果たす。
【0271】
いくつかの実施形態では、資本支出は、複合コストに対して、メンテナンス支出と同様
及び/又は同一の結果を有することがある。いくつかの実施形態では、予算制約をメンテ
ナンス支出と共に資本支出に適用することができる。予算制約が資本支出に適用される場
合、目的関数Jは、予算制約を遵守しながら合計コストを最小化するように最適化するこ
とができる。
【0272】
ここで、図12を参照すると、いくつかの実施形態による、ソフト予算制約を受けた状
態での目的関数Jの最適化に起因するメンテナンス支出の増加による複合コストの最適化
を示すグラフ1200が示されている。いくつかの実施形態では、複合コストは、目的関
数Jに関連する3つのコスト、すなわち図10を参照して上で述べたメンテナンスコスト
、資本コスト及び動作コストを含むことができる。図12において、ソフト予算制約は、
複合コストに含まれていない。いくつかの実施形態によれば、ソフト予算制約が複合コス
トに含まれる場合、グラフ1200は、グラフ1100と非常に異なる可能性がある。い
くつかの実施形態では、ソフト予算制約は、図19Aを参照して以下でより詳細に述べる
ように、ペナルティコストであり得る。いくつかの実施形態では、ペナルティコストは、
メンテナンスに費やされる合計額が目標メンテナンスコスト1216から逸脱することを
可能にするように生じる追加コストである。いくつかの実施形態では、ペナルティコスト
は、目標メンテナンスコスト1216とメンテナンスに費やされた合計額との間の差に基
づく。いくつかの実施形態では、ペナルティコストは、無駄な予算を最小限に抑えるため
に、目標メンテナンスコスト1216に近い額をメンテナンスに費やすことを奨励する。
いくつかの実施形態では、企業は、毎年のメンテナンス予算を割り振るためのフレームワ
ークを実践することができる。いくつかの実施形態では、企業は、「それを使用するか又
はそれを失うか」のポリシーを実践して、翌年のためのメンテナンス予算を前年の未使用
額分だけ減らすことがある。例えば、目標メンテナンスコスト1216は、メンテナンス
予算期間に関して決定されることがある。メンテナンス予算期間中に費やされなかった目
標メンテナンスコスト1216の額は、その後、メンテナンス以外の別の予算に割り振る
ことができ、メンテナンスの観点から目標メンテナンスコスト1216の未使用部分をな
くす。したがって、ペナルティコストは、目標メンテナンスコスト1216の未使用部分
を最小限に抑えるように目的関数Jの最適化を奨励することができる。
【0273】
グラフ1200は、グラフ1100に示されているのと同じ項目の多くを含むものとし
て示されている。図12に示される項目のいくつか又はすべては、図11での同じ参照番
号を有する項目と同様及び/又は同一であり得る。図12は、不感帯1214も含むもの
として示されている。いくつかの実施形態では、不感帯1214は、ペナルティコストを
生じることなくメンテナンスに費やすことができる目標メンテナンスコスト1216より
も上及び/又は下の範囲であり得る。いくつかの実施形態では、目標メンテナンスコスト
1216に正確に等しい額を費やすことが非常に難しいことがあるため、不感帯1214
は、メンテナンスに費やされる額を決定するときにある程度の柔軟性を与えられるように
実装することができる。例えば、目標メンテナンスコスト1216をわずかに超えると、
通常、非常に高いペナルティコストが生じることがあるため、目的関数オプティマイザ9
40は、すべてのメンテナンス支出の合計コストが目標メンテナンスコスト1216を超
える目的関数Jの解を決定しない。しかし、不感帯1214の右側境界により、ペナルテ
ィコストを生じることなく目的関数オプティマイザ940が目標メンテナンスコスト12
16をわずかに超えることが可能になり得る。同様に、目標メンテナンスコスト1216
をわずかに下回ると、通常、比較的小さいペナルティコストが生じることがあるが、目的
関数オプティマイザ940が不感帯1214の左側境界よりも大きい目的関数Jの解を決
定することができる場合、不感帯1214の左側境界は、比較的小さいペナルティコスト
をなくすことがある。ペナルティコストについては、いくつかの実施形態に従って図19
Aを参照して以下でより詳細に述べる。
【0274】
予算制約を伴うモデル予測的メンテナンス
【0275】
ここで、図13を参照すると、いくつかの実施形態による、ユーザインターフェース8
36に接続された(図6~9を参照して上でより詳細に述べた)モデル予測的メンテナン
ス(MPM)システム602を例示するブロック図が示されている。いくつかの実施形態
では、ユーザインターフェース836は、メンテナンス予算及び/又はメンテナンス予算
に関連するメンテナンス予算期間を高レベルオプティマイザ832に通信することができ
る。いくつかの実施形態では、高レベルオプティマイザ832は、メンテナンス予算及び
/又はメンテナンス予算期間を使用して、メンテナンス予算制約及び/又はペナルティコ
ストを決定することができる。
【0276】
ユーザインターフェース836は、いくつかの実施形態によれば、ユーザからメンテナ
ンス予算及び/又はメンテナンス予算期間を受信し、MPMシステム602と通信するよ
うに構成された任意のインターフェースであり得る。いくつかの実施形態では、ユーザイ
ンターフェース836は、ユーザから資本予算及び/又は資本購入期間を受信し、それを
MPMシステム602に通信するように構成することができる。例えば、ユーザインター
フェース836は、モバイルデバイスアプリケーション、ビルディングでのコマンドライ
ン端末、ウェブサイトアプリケーション、ディスプレイデバイス、タッチスクリーン、サ
ーモスタットなどとして実装することができる。いくつかの実施形態では、ユーザインタ
ーフェース836は、直接接続(例えば、ローカル有線又は無線通信)を介して、通信イ
ンターフェース804を介して又は通信ネットワーク446(例えば、WAN、インター
ネット、セルラネットワークなど)を介して高レベルオプティマイザ832と通信するよ
うに構成される。
【0277】
いくつかの実施形態では、ユーザインターフェース836は、1つ又は複数のメンテナ
ンス予算及び/又はメンテナンス予算期間を高レベルオプティマイザ832に通信するよ
うに構成される。いくつかの実施形態では、ユーザインターフェース836は、資本予算
及び/又は資本購入期間を高レベルオプティマイザ832に通信するように構成される。
メンテナンス予算は、いくつかの実施形態によれば、メンテナンス予算期間及び/又は最
適化期間にわたってメンテナンスに費やすことができる最大額を示すことがある。同様に
、資本予算は、いくつかの実施形態によれば、資本購入期間及び/又は最適化期間にわた
って資本購入に費やすことができる最大額を示すことがある。いくつかの実施形態では、
予算(すなわちメンテナンス予算及び/又は資本予算)及び/又は期間(すなわちメンテ
ナンス予算期間及び/又は資本購入期間)の受信に応答して、高レベルオプティマイザ8
32は、目的関数Jに含めることができる制約を決定することができる。
【0278】
例えば、目的関数Jは、対称的な制約又は非対称的な制約のいずれかとして実装された
ソフト予算制約を含むことがある。いくつかの実施形態では、対称的なソフト制約に関し
て、補助変数δは、修理(例えば、メンテナンス、交換など)活動に費やされた額と、修
理活動に費やす目標額(例えば、予算)との間の差の大きさ以上であるものとして制約さ
れる。コスト関数(例えば、目的関数J)では、δにペナルティレートを乗算してコスト
関数に追加することができる。例えば、混合整数線形計画法(MILP)の実装では、対
称的なソフト制約は、以下の形式を有することができる。
|Cact-Budact|≦δ
ここで、Cactは、修理活動(例えば、メンテナンス、交換など)に費やされた合計額
であり、Budactは、修理活動に費やす予算であり、δは、修理活動に関するペナル
ティコストを決定するためのレートを乗算される補助変数である。いくつかの実施形態で
は、対称的なソフト制約は、複数の修理活動に関して決定される。δが0に近づくとき、
目的関数Jに課される追加のペナルティコストが減少することがある。目的関数Jでは、
対称的なソフト制約による追加のペナルティコストを以下のように含むことができる。
【数40】
ここで、rは、目的関数Jに対する対称的なソフト予算制約の影響を低減/増加するよう
に調整することができるペナルティレートである。したがって、rが増加するにつれて、
目的関数オプティマイザ940は、全体的なコストを最適化(例えば、低減)するために
δの値を減少することを試みることができる。
【0279】
いくつかの実施形態では、ソフト制約は、非対称的なソフト制約として実装される。非
対称的なソフト制約は、合計コストが目標予算を下回る場合と合計コストが目標予算を上
回る場合とで異なるペナルティレートを有することを可能にすることができる。例えば、
目的関数Jが非対称的なソフト制約を受けて最適化される場合、修理活動に関するペナル
ティコストpを目的関数Jに追加することができ、ここで、pは、以下の制約を受ける。
p≧rover(Cact-Budact
p≧-runder(Cact-Budact
ここで、Cactは、修理活動(例えば、メンテナンス、交換など)からの合計コストで
あり、Budactは、修理活動に関する予算であり、roverは、予算を上回るコス
トに関するペナルティレートであり、runderは、予算を下回るコストに関するペナ
ルティレートである。目的関数Jには、非対称的なソフト制約による追加のペナルティコ
ストを以下のように含むことができる。
【数41】
ここで、pは、上記の制約を受ける。ソフト制約については、図19Aを参照して以下で
より詳細に述べる。
【0280】
いくつかの実施形態では、目的関数オプティマイザ940は、これらの制約を使用して
、最適化期間にわたって目的関数Jを最適化する。例えば、ユーザは、次のメンテナンス
予算期間にわたってメンテナンスに費やすことができるのが10,000ドル以下である
ことを示すメンテナンス予算を高レベルオプティマイザ832に通信することができる。
メンテナンス予算の受信に応答して、高レベルオプティマイザ832は、目的関数Jに制
約を生成し、次のメンテナンス予算期間にわたってメンテナンスに10,000ドル以下
を割り振ることができるようにする。したがって、目的関数オプティマイザ940は、最
適化期間中のすべてのメンテナンスに関する合計メンテナンス支出が10,000ドル以
下になるように目的関数Jの最適解を決定することができる。別の例として、ユーザは、
ユーザインターフェース836を介して高レベルオプティマイザ832に第1のメンテナ
ンス予算期間を通信することができ、第1のメンテナンス予算期間が生じる時間間隔を示
す。例えば、メンテナンス予算期間は、開始時(例えば、月、日、年)及び終了時(例え
ば、月、日、年)を含むことがある。いくつかの実施形態では、第1のメンテナンス予算
期間は、最適化期間内に完全に入ることがある。いくつかの実施形態では、第1のメンテ
ナンス予算期間は、部分的にのみ最適化期間内に入ることがある。第1のメンテナンス予
算期間の受信に応答して、高レベルオプティマイザ832は、最適化問題に追加の制約を
生成することができる。追加の制約は、合計メンテナンス及び/又は資本コストを目標予
算(例えば、期間に関する最大メンテナンス及び交換予算)未満にすべきであることを示
すことができる。いくつかの実施形態によれば、これにより、第1のメンテナンス予算を
超えないように異なる決定変数を設定することができる。
【0281】
ここで、図14Aを参照すると、いくつかの実施形態による高レベルオプティマイザ8
32をさらに例示するブロック図が示されている。いくつかの実施形態では、高レベルオ
プティマイザ832は、目的関数Jに関する制約を決定し、制約に基づいて目的関数Jを
最適化するように構成することができる。いくつかの実施形態では、高レベルオプティマ
イザ832は、予算制約を生成し、予算制約を目的関数生成器935及び/又は目的関数
オプティマイザ940に提供するように構成された予算マネージャ942を含む。いくつ
かの実施形態では、高レベルオプティマイザ832は、ペナルティコスト項を生成し、ペ
ナルティコスト項を目的関数生成器935に提供するように構成されたペナルティコスト
マネージャ944を含む。いくつかの実施形態では、高レベルオプティマイザ832は、
予算マネージャ942及びペナルティコストマネージャ944の少なくとも一方を使用し
て、それぞれ目的関数生成器935及び/又は目的関数オプティマイザ940のための予
算制約及びペナルティコスト項を生成する。いくつかの実施形態では、高レベルオプティ
マイザ832の特定の構成要素は、単一の構成要素の一部である。しかし、説明を簡単に
するために、図14Aでは各構成要素が個別に示されている。
【0282】
いくつかの実施形態では、予算マネージャ942は、受信された最大予算及び/又は受
信された予算期間に基づいて、目的関数生成器935及び/又は目的関数オプティマイザ
940に予算制約を提供する。いくつかの実施形態では、最大予算は、対応する予算期間
に関する最大メンテナンス予算及び/又は最大資本購入予算であり得る。同様に、予算期
間は、いくつかの実施形態によれば、メンテナンス予算期間及び/又は資本購入期間であ
り得る。いくつかの実施形態では、予算制約は、予算期間を最大予算に関連付けることが
できる(すなわち予算期間に関する最大予算がある)。いくつかの実施形態では、予算制
約は、ハード予算制約としての役割を果たすことがあり、目的関数オプティマイザ940
は、メンテナンス及び/又は資本購入に費やされる額(例えば、ドル)が各予算期間に関
する最大予算以下になるように、目的関数生成器935によって生成される目的関数Jを
最適化する。
【0283】
いくつかの実施形態では、予算マネージャ942に通信される最大予算及び/又は予算
期間は、前の予算期間に基づいて決定される。いくつかの実施形態では、図6を参照して
述べたMPMシステム602は、前の予算期間からの結果を使用して、今後の予算期間を
計画するように構成することができる。例えば、前の予算期間が過剰に高い最大予算を有
していた場合、MPMシステム602は、今後の予算期間のための最大予算を下げること
がある。同様に、MPMシステム602は、いくつかの実施形態によれば、将来の予測に
基づいて、今後の予算期間のための最大予算を推定することが可能であり得る。将来の予
測は、機器の劣化モデル、ビルディングの今後の改修、将来の予算制限などに基づくこと
がある。例えば、各構成要素の劣化モデルに基づいて、MPMシステム602の多くの構
成要素の劣化状態が同じ予算期間中に臨界レベルに達すると推定される場合、MPMシス
テム602は、その予算期間に対して高い最大予算が必要とされ得ることを推定すること
がある。いくつかの実施形態では、ビルディング機器の設置中、ビルディング機器の劣化
モデルが提供される。いくつかの実施形態では、ビルディング機器の劣化モデルは、経時
的なビルディング機器の測定された性能変数に基づいてMPMシステム602によって生
成される。
【0284】
いくつかの実施形態では、メンテナンスコスト予測器920及び/又は資本コスト予測
器930は、メンテナンスコスト項又は資本コスト項を提供して、第jの予算期間に関す
る合計活動支出Costact,jと、最適化期間に関する合計活動支出Costact
とを決定することができる。一般に、第jの予算期間に関する合計活動支出は、以下の式
によって計算することができる。
【数42】
ここで、Costact,jは、第jの予算期間に関する合計活動支出(例えば、メンテ
ナンスコスト項及び/又は資本コスト項)であり、Cact,iは、それぞれ時間ステッ
プiで実施することができる様々なメンテナンス又は交換活動のコストを表すメンテナン
ス又は交換コスト(例えば、Cmain,i又はCcap,i)のアレイであり、Bac
t,iは、異なるタイプの活動(例えば、Bmain,i又はPcap,i)のそれぞれ
が時間ステップiで実施されるか否かを示すバイナリ決定変数のアレイであり、hは、最
適化が実施されるホライズン又は最適化期間(例えば、最適化期間での時間ステップiの
総数)の継続期間であり、Maskj,iは、時間ステップiが第jの予算期間中に生じ
るか否かを示すバイナリ変数(例えば、0又は1)である。
【0285】
さらに、最適化期間に関する合計活動支出は、以下の式によって計算することができる

【数43】
ここで、Costactは、最適化期間に関する合計活動支出である。いくつかの実施形
態では、Maskj,iは、時間ステップiが予算期間(例えば、メンテナンス予算期間
又は資本コスト予算期間)中に生じるか否かを示すことができる。例えば、Maskj,
=0は、第jの予算期間中に現在の時間ステップiが生じないことを示すことがあり、
したがって時間ステップiでCostact,jについて支出が生じることはない。一般
に、Maskj,iは、以下の形式を有する行列Maskの要素であり得る。
【数44】
ここで、hは、最適化期間での最後の時間ステップ(すなわちi=h)であり、nは、最
適化期間中の予算期間の総数(すなわちメンテナンス予算期間の総数及び/又は資本コス
ト予算期間の総数)であり、Maskj,iは、時間ステップiが第jの予算期間中に生
じるか否かを示すバイナリ決定変数である。
【0286】
例えば、最適化期間中に2つの予算期間及び合計3つの時間ステップがある実施形態で
は、Maskは以下の形式を有することがある。
【数45】
ここで、Mask1,1は、時間ステップ1が予算期間1中に生じるか否かを示すバイナ
リ変数であり、Mask2,1は、時間ステップ1が予算期間2中に生じるか否かを示す
バイナリ変数であるなどである。さらに、上記の例のMaskは、以下のように示すこと
もできる。
【数46】
ここで、Mask1,1=0は、時間ステップi=1が予算期間j=1中に生じないこと
を示し、Mask1,2=0は、時間ステップi=2が予算期間j=1中に生じないこと
を示し、Mask1,3=1は、時間ステップi=3が予算期間j=1中に生じることを
示し、Mask2,1=1、Mask2,2=1及びMask2,3=0は、時間ステッ
プi=1~i=2にわたって予算期間j=2が生じることを示す。いくつかの実施形態で
は、図15及び図16を参照して以下で述べるグラフ1500及びグラフ1600は、そ
れぞれ第jのメンテナンス予算期間に関する合計活動支出及び/又は最適化期間に関する
合計活動支出をどのように使用することができるかをさらに詳述することができる。
【0287】
いくつかの実施形態では、目的関数生成器935は、最適化期間中に複数の予算期間が
生じる場合に関する目的コスト関数を生成することができる。例えば、目的関数生成器9
35は、以下のような目的関数を生成することができる。
【数47】
【0288】
いくつかの実施形態では、高レベルオプティマイザ832は、最適化期間にわたる各予
算期間のための最大予算を含む最大予算ベクトルBudmaxを定義することができる。
一般に、Budmaxは、以下の形式を有することができる。
【数48】
ここで、nは、最適化期間中に生じる予算期間の数(例えば、メンテナンス予算期間の数
)であり、Budmax,jは、第jの予算期間に関する最大予算を示す。いくつかの実
施形態では、予算マネージャ942は、目的関数Jに関する制約を生成することができる

【数49】
ここで、Cact,iは、時間ステップiで実施することができる可能なメンテナンス/
交換活動のそれぞれに関する要素を有するコストのアレイであり、Bact,iは、可能
なメンテナンス/交換活動のそれぞれが時間ステップiで実施されるか否かを示すバイナ
リ決定変数の列ベクトルであり、Maskは、列ベクトル(すなわち時間ステップiに
対応するMask行列の列)であり、各予算期間jに関する要素を有し、Maskベク
トルの各要素が、時間ステップiが対応する予算期間j内にあるか否かを示し、Bud
axは、Budmaxの各要素が対応する予算期間jに関するメンテナンス/交換活動予
算を定義するように各予算期間jに関する要素を有する列ベクトルである。例えば、Bu
max,1=100である場合、目的関数オプティマイザ940は、j=1の予算期間
が100(例えば、100ドル)を超える累積メンテナンス/交換支出を有さないように
目的関数Jを最適化(例えば、最小化)する。
【0289】
いくつかの実施形態では、Budmaxの値は、各予算期間及びビルディング機器の劣
化に関するすべての出費(例えば、動作、メンテナンス、交換、従業員の給与など)を含
む利用可能な最大予算に基づいて決定される。ビルディング機器が劣化するにつれて、最
大利用可能予算のより多くがビルディング機器のメンテナンス及び交換に割り振られるこ
とが必要とされ得る。例えば、ビルディング機器のすべてのビルディングデバイスの劣化
状態が低い場合、いくつかのビルディングデバイスの劣化状態が大きい場合よりもBud
maxの値が小さいことがある。換言すると、ビルディング機器の劣化状態に基づいて、
各予算期間のためのメンテナンス/交換に関する予算を各予算期間に関する最大利用可能
予算から割り振ることができる。いくつかの実施形態では、図17及び図18を参照して
以下で述べるグラフ1700及びグラフ1800は、それぞれ最大予算ベクトルBud
axの利用をさらに例示する。
【0290】
いくつかの実施形態では、予算マネージャ942は、目的関数Jに関する制約を最適化
問題の追加の状態として生成する。その状態は、例えば、予算の残額及び/又はメンテナ
ンス/交換に既に費やされた額であり得る。状態を最適化期間全体にわたって追跡して、
目的関数Jの最適化を制約して、特定のパラメータ範囲内に状態を保つことができる。例
えば、状態が予算の残額を含む場合、状態の値は、最適化期間の開始時のメンテナンス/
交換予算と等しくなることがあり、実施される各メンテナンス/交換ごとに減少すること
がある。最適化を実施し、状態がハード制約を示している場合、最適化は、状態の値を0
以上に維持する解を決定することを必要とされることがある。最適化を実施し、状態がソ
フト制約を示している場合、最適化は、状態の値を0未満に低下させることがあるが、追
加のペナルティコストが生じる可能性がある。有利には、状態として予算制約を実装する
ことで、動的プログラミングフレームワークを使用して最適化問題を解決することが可能
になり得る。
【0291】
ここで、図14A及び18を参照すると、予算期間の一部のみが最適化期間中に生じる
場合、高レベルオプティマイザ832は、部分的にのみ最適化期間中に生じる予算期間に
割り振られるメンテナンス及び交換予算を調整すべきである。図18のグラフ1800は
、いずれも部分的に最適化期間1802中に生じる第1のメンテナンス予算期間1804
及び第3のメンテナンス予算期間1816を示す。予算期間が部分的にのみ最適化期間中
に生じる場合、予算マネージャ942は、その最適化期間のための利用可能な予算を、過
去及び/又は将来の最適化期間を妨害しないように決定することを必要とされ得る。
【0292】
例えば、図18に示されるように、第1のメンテナンス予算期間1804は、i=1で
の最適化期間1802の開始前に始まるものとして示されている。第1のメンテナンス予
算期間1804は、部分的にのみ最適化期間1802内で生じるため、予算マネージャ9
42は、最大予算ベクトルBudmaxの第1のメンテナンス予算期間1804のための
最大予算であるBudmax,1を第1のメンテナンス予算期間1804のために利用可
能な資産残額に設定することができる。特に、図18のグラフ1800に示されるように
、第1のメンテナンス予算期間1804は、最適化期間1802の開始前に(例えば、i
=1の前の3つの時間ステップで)支出を含む。予算マネージャ942は、Budmax
,1の値を第1のメンテナンス予算期間1804の資産残額に設定することにより、最適
化期間1802前に生じた支出(例えば、メンテナンス支出又は資本コスト支出)を考慮
に入れることができる。図18に示されるように、第1のメンテナンス予算期間1804
は、Budmax,1から差し引くことができる単一の出費を含む。例えば、Budma
x,1に1,000ドルが割り振られているが、最適化期間1802が始まる前に200
ドルが費やされた場合、予算マネージャ942は、最適化期間1802にBudmax,
=800ドルを設定することができる。
【0293】
いくつかの実施形態では、予算期間の一部のみが最適化期間中に生じる場合、予算マネ
ージャ942は、低減された予算値を決定する。一般に、低減された予算値は、以下の式
によってモデル化することができる。
Budreduced=P×Budmax
ここで、Budreducedは、低減された予算であり、Budmaxは、最適化期間
にわたって部分的に生じる予算期間(例えば、第1のメンテナンス予算期間1804)の
ための最大予算であり、Pは、最適化期間中に生じる予算期間の一部を示す正規化された
値(すなわち0≦P≦1)である。例えば、予算期間が最適化期間内で完全に生じる場合
(例えば、図18に示されるように、第2のメンテナンス予算期間1806が最適化期間
1802内で完全に生じる場合)、Pの値は、1となることがあり、Budreduce
=Budmaxである。予算期間が部分的にのみ最適化期間中に生じる(例えば、第1
のメンテナンス予算期間1804及び第3のメンテナンス予算期間1816が部分的に最
適化期間1802内で生じる)場合、Pは、最適化期間中に生じる予算期間の量(例えば
、1/2、1/3、1/4など)を示すことがある。例えば、予算期間の50%が最適化
期間中に生じる場合、P=0.5である。いくつかの実施形態では、低減された予算は、
最適化期間中に始まるが、最適化期間の終了後に終了する予算期間に関して計算される(
例えば、第3のメンテナンス予算期間1816は、最適化期間1802中に始まるが、最
適化期間1802の終了後に終了する)。
【0294】
第nの予算期間が部分的に最適化期間内で生じる(例えば、図18に示されるように、
第3のメンテナンス予算期間1816が部分的に最適化期間1802内で生じる)場合、
予算マネージャ942は、いくつかの実施形態によれば、第nの予算を以下のように決定
する。
Budreduced,n=P×Budmax,n
予算マネージャ942は、最大予算ベクトルBudmaxの第nの値をBudreduc
ed,nとして更新し、更新された最大予算ベクトルBudmaxを目的関数生成器93
5及び/又は目的関数オプティマイザ940に制約として提供することができる。
【0295】
再び図14を参照すると、ペナルティコストマネージャ944は、目的関数生成器93
5にペナルティコスト項を提供することができる。いくつかの実施形態では、ペナルティ
コスト項は、目的関数オプティマイザ940によって計算された、予算期間に関する最大
予算と推定支出(例えば、推定されるメンテナンス支出又は推定される資本購入支出)と
の間の差に基づくペナルティコストを定義する。いくつかの実施形態では、ペナルティコ
ストは、目的関数Jを最適化するときに目的関数オプティマイザ940によって考慮され
る追加コストである。いくつかの実施形態では、修正された目的関数Jmodは、目的関
数Jの解とペナルティコストとの両方を含む。一般に、Jmodは、以下の式によってモ
デル化することができる。
【数50】
ここで、Jは、目的関数Jであり、wは、pk,jの値を増加又は減少する重みであり
、pk,jは、第jの予算期間にわたって生じたペナルティコストである。いくつかの実
施形態では、wは、値1を有し、追加の重みがpk,jに起因しないことを示すことが
できる。いくつかの実施形態では、wは、pk,jの効果を増加させる(目的関数オプ
ティマイザ940に、予算期間に関する最大予算と推定支出とが実質的に等しくなるよう
にする解を実現させる)ように調整すること又はpk,jの効果を低減するように減少す
ることができる正規化された値である。いくつかの実施形態では、ペナルティコストは、
区分的関数によってモデル化することができる。一般に、ペナルティコストをモデル化す
る区分的関数は、以下の形式を有することができる。
【数51】
ここで、pkは、ペナルティコストであり、Aは、Budmax,j-Costest,
<0に関する勾配であり、Bは、Budmax,j-Costest,j>0に関する
勾配であり、Budmax,jは、予算期間jにわたる最大予算(例えば、最大予算ベク
トルBudmaxの第jの値)であり、Costest,jは、予算期間jにわたる推定
支出である。いくつかの実施形態では、A及び/又はBを増加又は減少させて、より大き
い重みをペナルティコストに加えることができる。例えば、Budmax,j-Cost
est,j<0であるとき、Aを増加させることにより、pk,jの値が増加することが
ある。いくつかの実施形態では、A及び/又はBの増加は、pk,jが実質的にゼロに等
しくなるように、Budmax,jとCostest,jとの間の差を低下させる目的関
数Jの解を決定することを奨励することができる。いくつかの実施形態では、A及びBは
図19Aを参照して以下でさらに詳細に述べる。いくつかの実施形態では、第jの予算
期間に関するCostest,jは、以下の式によってモデル化することができる。
Costest,j=Costmain,j+Costcap,j、又は
Costest,j=Costcap,j、又は
Costest,j=Costmain,j
ここで、Costmain,jは、第jの予算期間に関するメンテナンスコスト項であり
、Costcap,jは、第jの予算期間に関する目的関数Jの資本コスト項である。い
くつかの実施形態では、pk,jを計算するとき、Aは、Bよりも大きくなることがあり
、これは、推定支出が最大予算を超える場合、より高いペナルティコストが生じ得ること
を示すことができる。A及びBの値に基づいて、目的関数オプティマイザ940は、例え
ば、A及びBの値に対して生じるペナルティコストを最小化する決定変数の最適値を決定
することができる。いくつかの実施形態では、目的関数オプティマイザ940が、メンテ
ナンス活動と資本購入との両方を含むことができる最適なメンテナンススケジュールを決
定するとき、目的関数オプティマイザ940は、最大予算と推定支出との間の差を最小化
してペナルティコストを低減するように構成することができる。いくつかの実施形態では
、ペナルティコストの値は、最大予算と推定支出との間の差に関連し、最大予算と推定支
出との間の差の増加は、ペナルティコストのより高い値に対応する(例えば、結果として
もたらす)。いくつかの実施形態では、推定支出が最大予算を下回るときではなく、推定
支出が最大予算を上回るとき、ペナルティコストがより高い割合で増加することがある。
いくつかの実施形態では、目的関数オプティマイザ940は、ペナルティコストを最小化
するように、最大予算と推定支出との間の差を減少するように機能することができる。
【0296】
いくつかの実施形態では、高レベルオプティマイザ832は、支出の差を予算期間にわ
たる最大予算と推定支出との間の差として定義することができる。一般に、支出の差は、
次の式を使用してモデル化することができる。
gap,j=Budmax,j-Costest,j
ここで、Jgap,jは、第jの予算期間に関する支出の差であり、Budmax,j
、第jの予算期間の最大予算であり、Costest,jは、予算期間jにわたる推定支
出である。いくつかの実施形態では、支出の差を目的関数オプティマイザ940が使用し
て、ハード予算制約が遵守されるか否かを推定することができる。いくつかの実施形態で
は、Jgap,jは、正であり得、累積支出の最終値が予算期間に関する最大予算よりも
小さいと推定されることを示す。いくつかの実施形態では、Jgap,jは、0に等しい
ことがあり得、第jの予算期間にわたって正確に最大予算がコストに累積されると推定さ
れることを示す。いくつかの実施形態では、Jgap,jは、負であり得、最大予算より
も大きい額が予算期間にわたってコストに累積されると推定されることを示す。いくつか
の実施形態では、ハード予算制約により、目的関数Jを解くことができなくなることがあ
る。いくつかの実施形態では、目的関数Jを解くことができない場合、目的関数オプティ
マイザ940は、エラーを返すことができる。いくつかの実施形態では、目的関数オプテ
ィマイザ940によって支出の差を使用して、予算期間に関するペナルティコストを決定
することができる。一般に、支出の差が大きいほど、ペナルティコストも大きくなり得る
。ペナルティコストについては、図19Aを参照して以下でより詳細に述べる。
【0297】
故障リスクを伴うモデル予測的メンテナンス
【0298】
ここで、図14Bを参照すると、いくつかの実施形態による高レベルオプティマイザ8
32をさらに例示するブロック図が示されている。いくつかの実施形態では、高レベルオ
プティマイザ832は、ビルディング機器の故障リスクを目的関数Jに組み込み、故障リ
スクに基づいて目的関数Jを最適化する。いくつかの実施形態では、図14Bに示される
ような高レベルオプティマイザ832は、図14Aを参照して上述したように予算マネー
ジャ942及び/又はペナルティコストマネージャ944を組み込む。いくつかの実施形
態では、図14Bに示されるような高レベルオプティマイザ832は、別個の使用ケース
を示し、目的関数生成器935によって生成される目的関数がリスクコスト項を組み込み
、且つ予算制約/ペナルティコスト項を組み込むことも組み込まないこともある。
【0299】
いくつかの実施形態では、高レベルオプティマイザ832は、リスクコスト項を生成し
、リスクコスト項を目的関数生成器935に提供するための故障リスク予測器946を含
む。ビルディング機器は、時間と共に劣化するため、ビルディング機器が故障する確率は
、高まることがある。具体的には、ビルディング機器のメンテナンス/交換が実施されな
い場合、ビルディング機器が将来の時間ステップで故障し得る確率は、ビルディング機器
が現在の時間ステップで故障し得る確率以上であり得る。ビルディング機器の故障は、B
MS606が、未対処の負荷又は失われた生産量などの様々な機会コストと共に、ビルデ
ィング機器のメンテナンス及び/又は交換に関連するコストを生じることを必要とするこ
とがある。例えば、VRFシステムの屋内ユニット(IDU)が故障し、故障により部屋
の居住者に安全上の問題が発生した場合、IDUのメンテナンス/交換の実施に関連する
コストと、部屋の閉鎖(例えば、居住者のための新たな部屋の賃借、部屋での会議のキャ
ンセル、生産の損失など)に関連するコストとが生じることがある。
【0300】
故障リスク予測器946によって生成されるリスクコスト項は、最適化期間の時間ステ
ップに関する追跡されるビルディング機器の故障の確率を、追跡されるビルディング機器
の故障のコストと共に組み込むことができる。上述したように、追跡されるビルディング
機器は、劣化状態及び/又は他の性能情報が観察される任意のビルディング機器を含むこ
とができる。
【0301】
故障リスク予測器946によって提供されるリスクコスト項に基づいて、目的関数生成
器935は、予測器910~930によって提供されるコスト項と共にリスクコスト項を
組み込む目的関数(例えば、目的関数J)を生成することができる。例えば、目的関数生
成器935によって生成される目的関数は、以下の形式を有することができる。
【数52】
ここで、Cop,k(δ)は、劣化状態δに依存する動作コストであり、Cmain
,kは、最適化期間の時間ステップkでのメンテナンスのコストであり、Creplac
e,kは、時間ステップkでの交換のコストであり、mは、時間ステップkにおいてい
ずれのメンテナンスアクションが行われるかを表すバイナリベクトルであり、Pfail
,k(δ)は、劣化状態δに依存する追跡されるビルディング機器の各構成要素(例
えば、BMS606の各追跡される構成要素)に関する故障確率のベクトルであり、C
ail,kは、追跡されるビルディング機器の故障のコストであり、hは、最適化期間の
時間ステップの総数である。上記の目的関数では、上付きのTは、関連する行列の転置行
列を示す。Cfail,kの値は、追跡されるビルディング機器を修理/交換するための
コスト及び/又は追跡されるビルディング機器の故障に関連する任意の機会コストを含む
ことができる。メンテナンスベクトルの第1のブロックは、メンテナンスオプションを含
み、メンテナンスベクトルの第2のブロックは、交換オプションを含むことを理解すべき
である。第1のブロックと第2のブロックとは、メンテナンスと新たなビルディング機器
への交換との両方がどのように考慮されるかを示すために分けられている。いくつかの実
施形態では、それぞれメンテナンス及び交換オプションを示す第1及び第2のブロックは
、単一のブロックに組み合わされる。さらに、Cfail,k fail,k(δ
が目的関数のリスクコスト項を示していることを理解すべきである。
【0302】
いくつかの実施形態では、リスクコスト項を組み込む目的関数生成器935によって生
成された目的関数は、以下の形式を有する。
【数53】
ここで、Cfail,iは、最適化期間の時間ステップiでのビルディング機器の故障の
コストであり、Pfail,i(δ)は、時間ステップiでの劣化の状態δに基づく
時間ステップiでの故障の確率であり、すべての他の変数は、上述したものである。
【0303】
リスクコスト項を含む目的関数に基づいて、目的関数オプティマイザ940は、全体的
なコストが最適化(例えば、最小化)されるように決定変数の最適値を決定することがで
きる。リスクコスト項により、リスクコスト項が目的関数に含まれなかった場合よりも早
い/遅い時間ステップで特定のメンテナンス及び/又は交換が行われることがある。特に
、リスクコスト項は、コストが最適化されるように、ビルディング機器の任意のビルディ
ングデバイスに関する故障の確率が十分に低く保たれるように目的関数オプティマイザ9
40によって管理することができる。いくつかの実施形態では、リスクコスト項は、ビル
ディングデバイスが故障しやすい臨界レベルにビルディングデバイスの劣化状態が達しな
いように、リスクコスト項が目的関数に含まれなかった場合よりも頻繁にビルディング機
器のビルディングデバイスがメンテナンス/交換を実施されることを目的関数オプティマ
イザ940が保証することを必要とすることがある。
【0304】
いくつかの実施形態では、δの値がランダムに分散された閾値を超える場合、ビルデ
ィング機器の故障が生じたとみなされる。いくつかの実施形態では、ビルディング機器の
各ビルディングデバイスに関する故障の閾値は、特定のビルディングデバイスに応じて異
なる。例えば、設置時の信頼性と比較した信頼性のパーセンテージとして劣化が測定され
る場合、特定のIDUは、設置時の信頼性の30%を下回る場合に故障したとみなされる
ことがある一方、HVACシステムのファンは、設置時の信頼性の20%を下回る場合に
故障したとみなされることがある。いくつかの実施形態では、ビルディング機器の各ビル
ディングデバイスに関する故障の閾値は、同じである。例えば、設置時の信頼性のパーセ
ンテージに基づいて劣化が測定される場合、任意のビルディングデバイスが設置時の信頼
性の15%を下回る場合、そのビルディングデバイスが故障したとみなされることがある
。いくつかの実施形態では、例えば、ビルディング機器が始動できない場合やビルディン
グ機器が居住者にとって危険な出力(例えば、煙、有害ガス)を生成している場合など、
ビルディング機器の故障が生じたとみなされる。したがって、リスクコスト項を含む目的
関数を最適化する場合、目的関数オプティマイザ940は、ビルディングデバイスが故障
する確率を減少させる決定変数の値を決定することができる。
【0305】
いくつかの実施形態では、目的関数オプティマイザ940は、ビルディング機器のいく
つかのビルディングデバイスが高い故障確率(例えば、50%超、60%超など)を有し
て、他のビルディングデバイスのメンテナンス/交換を優先できるようにする。例えば、
コストを最適化するために、目的関数オプティマイザ940は、高い故障確率を有するフ
ァンがより早い時間ステップで換気シャフトのメンテナンス/交換を実施されるようにす
る決定変数の値を決定することができる。一時的にファンが高い故障確率を有するように
する決定は、換気シャフトが故障した場合と比較して、コストに対する(例えば、追加の
メンテナンス及び/又は機会コストによる)影響がより小さいことがある。したがって、
全体的なコストをさらに最適化(例えば、削減)するために、換気シャフトのメンテナン
ス/交換をファンのメンテナンス/交換よりも優先することができる。故障確率の分布に
より目的関数オプティマイザ940によって成される決定は、図19B及び19Cを参照
して以下でより詳細に示す。
【0306】
いくつかの実施形態では、目的関数オプティマイザ940によって実施される最適化は
、リスク回避値によって制約される。リスク回避値は、ユーザ及び/又はシステムによっ
て設定することができ、特定のビルディングデバイスに関する最大許容故障確率を示す。
例えば、ユーザは、故障コストが500ドルを超えるビルディングデバイスに関して、リ
スク回避値を45%に設定することができる。リスク回避値により、最適化は、500ド
ルを超える推定故障コストを有する任意のビルディングデバイスが最適化期間を通して4
5%未満の故障確率を有するように、最適なメンテナンス及び交換スケジュールを決定す
ることができる。実質的に、リスク回避値は、特定のビルディングデバイスの故障確率が
特定の値未満に保たれることをビルディング機器のメンテナンス及び/又は交換に関連す
る決定変数が保証するように、最適化に対して制約を課すことができる。いくつかの実施
形態では、目的関数オプティマイザ940が、特定のビルディングデバイスの故障確率を
リスク回避値未満に維持する解を決定することができない場合、特定のビルディングデバ
イスの故障確率がリスク回避値を超える可能性があることを示すアラートがユーザに提供
される。
【0307】
いくつかの実施形態では、将来の任意の週における故障確率は、週の初めから週の終わ
りまで密度関数を積分することによって見出される。故障確率に故障コストを乗算して、
コスト関数(例えば、目的関数J)に加えることができる。いくつかの実施形態では、故
障コストは、固定変数ではなく、ランダム変数である。いくつかの実施形態では、故障確
率は、デバイス(例えば、モバイルデバイス、コンピュータなど)に表示される。例えば
、故障確率の累積分布関数(CDF)を、故障確率を示す勾配としてデバイスに示すこと
ができる。勾配は、例えば、緑から黄色、さらに赤に遷移することがあり、緑は、故障確
率が低いことを示し、黄色は、故障が近づいている可能性が高いことを示し、赤は、近い
将来に故障が発生する可能性が高いことを示す。
【0308】
図14Bの高レベルオプティマイザ832は、雑費予測器948も含むものとして示さ
れている。雑費予測器948は、目的関数生成器935に提供するための雑費項を生成す
ることができる。雑費項は、メンテナンス活動、交換活動及び/又は雑費をもたらす他の
活動を含むことができる。いくつかの実施形態では、雑費予測器948によって考慮に入
れられる修理は、ビルディング機器の信頼性に影響を与えるが、効率の変化をもたらさな
い。雑多な修理活動(例えば、雑多な出費を生じるメンテナンス/交換活動)がビルディ
ング機器の効率に影響を与えない場合、雑多な修理活動は、最適化期間にわたって動作コ
ストに影響を及ぼさないことがある。例えば、雑多な修理活動は、VRFシステムの屋外
ユニット(ODU)の重要な構成要素を安定させるために、ビルディングのオペレータが
ODUのねじを交換することを含むことができる。いくつかの実施形態では、ODUのね
じを交換することは、ODUの信頼性に影響を及ぼす(すなわち重要な構成要素の安定性
を高めることによって)が、ODUの効率に影響を与えない。したがって、ねじの交換は
、ODUの信頼性を向上させることができるが、ODUの動作により生じる動作コストに
直接的にいかなる影響も及ぼさないことがある。
【0309】
いくつかの実施形態では、雑費項により、ユーザは他の雑多な出費を目的関数Jと共に
組み込んで、最適化期間にわたる合計コストのより正確な決定を提供することができる。
例えば、ユーザは、雑費項により、従業員の給与コストを目的関数Jに組み込むことがで
きる。給与コストは、メンテナンス/交換費と同じ予算から出ることがあり、ユーザは、
ユーザが入力した他の雑多な出費に従って目的関数オプティマイザ940が最適解を決定
することを望むことがある。いくつかの実施形態では、ユーザは、必須のものとして、特
定の雑多な出費にフラグを立てることができ、目的関数オプティマイザ940によって実
施される最適化が、フラグを立てられた雑多な出費の発生を回避することができないよう
にする。ユーザが目的関数Jに雑多な出費を追加できるようにすることにより、ユーザは
、最適化期間にわたる合計コストをより正確に把握することができる。
【0310】
いくつかの実施形態では、雑費予測器948によって生成された雑費項を含む目的関数
Jは、以下によって示すことができる。
【数54】
ここで、Cmisc,iは、時間ステップiでの雑多なメンテナンス出費であり、Bmi
sc,iは、時間ステップiで雑多な出費が生じるか否かを示すバイナリ変数である。
【0311】
目的関数生成器935によって生成することができる目的関数の別の例は、以下の式で
示される。
【数55】
ここで、アレイCmiscは、最適化期間の特定の雑多な出費l=1...sに関する雑
費値Cmisc,iを含み、アレイBmiscは、最適化期間の特定の時間ステップi=
1...hでの特定の雑多な出費l=1...sに関するバイナリ決定変数を含む。
【0312】
いくつかの実施形態では、ユーザは、ビルディング機器の信頼性を向上させるために目
的関数Jの最適化中に考慮すべき雑多な出費を定義する。いくつかの実施形態では、リス
クコスト項は、雑費項と併せて目的関数オプティマイザ940によって考慮される。雑費
項は、ビルディング機器の信頼性を高めるために目的関数オプティマイザ940に追加の
オプションを提供することがあるため、目的関数オプティマイザ940は、ビルディング
機器の故障確率を低減するためにより多くのオプションを有することがある。例えば、ユ
ーザは、配管の亀裂を防止するために、換気システムの配管にシーラントを塗布する雑多
な修理活動を定義することがある。シーラントは、配管の効率を高めないことがあるが、
亀裂により配管が破損しにくくなり得るため、信頼性を高めることができる。いくつかの
実施形態では、ユーザとシステムとの両方は、雑費項に含めるために雑多な修理活動を雑
費予測器948に与える。各追加の雑多な修理活動は、ビルディング機器の信頼性を高め
るために代替オプションを提供することができる。それぞれの雑多な修理活動の信頼性向
上に応じて、特定の雑多な修理活動は、ビルディング機器の信頼性と効率との両方に影響
を及ぼすことがあるビルディング機器の通常のメンテナンス及び/又は完全な交換の実施
よりも安価になり得る。したがって、雑多な修理活動により、目的関数オプティマイザ9
40は、リスクコスト項の値を低減することによって目的関数Jをさらに最適化すること
ができる。
【0313】
故障リスク予測器946によって生成されるリスクコスト項と、雑費予測器948によ
って生成される雑多なコスト項との両方が目的関数Jに組み込まれる場合、目的関数生成
器935によって生成される目的関数Jの一例は、次の式によって示される。
【数56】
上記の目的関数に基づいて、目的関数オプティマイザ940は、全体的なコストが最適化
(例えば、最小化)されるように決定変数の値を決定することができる。各ビルディング
デバイスの故障コストに応じて、目的関数オプティマイザ940は、上記ビルディングデ
バイスの故障確率を低く保つために、高い故障コストを有するビルディングデバイスに対
して追加のメンテナンス、交換及び/又は雑多な修理活動を実施すべきであると判断する
ことがある。
【0314】
いくつかの実施形態では、目的関数Jは、雑費項、故障コスト項及び予算制約のいくつ
か及び/又はすべてを含む。目的関数Jが雑費項、故障コスト項及び予算制約のすべてを
含む場合、目的関数オプティマイザ940は、最適化における任意の予算制約に制約され
ながら、目的関数Jの各項により、全体コストを最適化(例えば、最小化)する最適解を
決定することができる。
【0315】
最適化期間にわたる予算期間の最適化
【0316】
次に、図15を参照すると、いくつかの実施形態による、ハード予算制約下での最適化
期間にわたる累積メンテナンス支出を例示するグラフ1500が示されている。いくつか
の実施形態では、ハード予算制約下での最適化期間にわたる資本購入は、本明細書で述べ
るメンテナンス支出と同様及び/又は同一に例示することができる。いくつかの実施形態
では、ハード予算制約は、メンテナンス予算期間にわたってメンテナンスに費やすことが
できる最大額(例えば、ドル)を示す最大メンテナンス予算である。グラフ1500では
、最適化期間1506が示され、最適化期間1506は、メンテナンス予算期間と同じ期
間である。図15では、最適化期間1506とメンテナンス予算期間とは、同じであり得
、目的関数Jが複数のメンテナンス予算期間を含む必要がなく、それにより目的関数Jに
課される制約の量を低減する。
【0317】
グラフ1500は、いくつかの実施形態によれば、最大メンテナンス予算1504も含
むものとして示されている。いくつかの実施形態では、最大メンテナンス予算1504は
、最適化期間1506にわたってメンテナンスに費やすことができる最大許容額であり得
る。いくつかの実施形態では、最大メンテナンス予算1504は、図13を参照して上で
より詳細に述べたユーザインターフェース836を介してモデル予測的メンテナンスシス
テム602に通信することができる。いくつかの実施形態では、最大メンテナンス予算1
504は、変数Budmaxとして表すことができ、Budmaxは、最適化期間150
6にわたってメンテナンスに費やすことが許される最大額に等しいことがある。
【0318】
引き続き図15を参照すると、グラフ1500は、目的関数オプティマイザ940によ
って最適化期間1506にわたってメンテナンス支出がどのように決定され得るかを示し
ている。いくつかの実施形態によれば、時間ステップ6までメンテナンス支出が生じない
。いくつかの実施形態によれば、グラフ1500の時間ステップ6では、第1のメンテナ
ンス支出1508が示されている。いくつかの実施形態では、第1のメンテナンス支出1
508のコストは、Costmain,1として表すことができる。一般に、メンテナン
ス支出は、Bmain,i=1として時間ステップiで生じるものとして示すことができ
る。いくつかの実施形態では、Bmain,iは、メンテナンス活動に関して図14A
参照して述べたBact,iであり得る。例えば、いくつかの実施形態によれば、第1の
メンテナンス支出1508は、Bmain,6=1として時間ステップ6で生じるものと
して示されている。同様に、時間ステップiでメンテナンスが生じない場合、Bmain
,i=0になる。いくつかの実施形態では、図14を参照して述べた高レベルオプティマ
イザ832からの、時間ステップ6でメンテナンスが実施されるべきであるという判断に
より、第1のメンテナンス支出1508が生じることがある。第1のメンテナンス支出1
508が実施された後、累積メンテナンス支出Costmainは、Costmain
Costmain,1として記述することができる。
【0319】
グラフ1500は、いくつかの実施形態によれば、時間間隔1502も含むものとして
示されている。いくつかの実施形態では、Costmain=Costmain,1は、
時間間隔1502の継続期間全体にわたる累積メンテナンス支出を定義することができる
。時間ステップ16では、第2のメンテナンス支出1510が実施されるものとして示さ
れており、したがって、第2のメンテナンス支出1510のコストは、Costmain
,2として表すことができる。第1のメンテナンス支出1508と同様に、メンテナンス
は、Bmain,16=1として時間ステップ16で生じるものとして示されている。い
くつかの実施形態では、第2のメンテナンス支出1510は、累積メンテナンス支出Co
stmainをCostmain=Costmain,1+Costmain,2に増加
させることができる。最後に、時間ステップ21では、第3のメンテナンス支出1512
が生じるものとして示され、したがって、第3のメンテナンス支出1512のコストは、
Costmain,3として表すことができる。第1のメンテナンス支出1508と同様
に、いくつかの実施形態によれば、Bmain,21=1として時間ステップ21でメン
テナンスが生じるものとして示されている。いくつかの実施形態では、第3のメンテナン
ス支出1512は、累積メンテナンス支出CostmainをCostmain=Cos
main,1+Costmain,2+Costmain,3に増加することができる
。いくつかの実施形態では、最適化期間1506は、時間ステップi=1から時間ステッ
プi=hまで示される。最適化期間1506中、目的関数オプティマイザ940は、いく
つかの実施形態によれば、最適なメンテナンス累積コストがCostmain=Cost
main,1+Costmain,2+Costmain,3であること並びに上述した
ように時間ステップ6、16及び21でメンテナンスが生じることを示す最適なメンテナ
ンス及び交換スケジュールを決定することができる。いくつかの実施形態では、最適なメ
ンテナンス及び交換スケジュールの決定は、最適化期間1506に関する目的関数Jが最
適化されることを示すことがある。
【0320】
グラフ1500は、メンテナンス支出の差1514も含むものとして示されている。い
くつかの実施形態では、メンテナンス支出の差は、最大メンテナンス予算1504と、最
適化期間1506にわたるすべてのメンテナンス支出の合計コストによって決定される累
積メンテナンス支出Costmainの最終値との間の差として定義される。いくつかの
実施形態では、メンテナンス支出の差1514は、変数Jgapとして表すことができる
。一般に、メンテナンス支出の差1514は、図14Aを参照して上述した目的関数オプ
ティマイザ940によって計算されたメンテナンス支出の差と同様及び/又は同一に計算
することができる。いくつかの実施形態では、Jgap<0である(すなわち累積メンテ
ナンス支出の最終値が最大メンテナンス予算1504よりも大きい)場合、目的関数オプ
ティマイザは、ハード予算制約が超過されたため、目的関数Jの新たな解を決定しなけれ
ばならない。
【0321】
ここで、図16を参照すると、例示的な実施形態による、ソフト予算制約下での最適化
期間にわたる累積メンテナンス支出を例示するグラフ1600が示されている。いくつか
の実施形態では、ソフト予算制約下での最適化期間にわたる資本購入は、本明細書で述べ
たメンテナンス支出と同様及び/又は同一に例示することができる。いくつかの実施形態
では、ソフト予算制約は、ペナルティコストであり得、ペナルティコストは、図14A
参照して計算されたペナルティコストと同様及び/又は同一に最大メンテナンス予算16
04と推定メンテナンス支出との間の差に基づいて決定される。いくつかの実施形態では
、グラフ1600のいくつか及び/又はすべては、図15を参照して述べたグラフ150
0と同様及び/又は同一であり得る。
【0322】
グラフ1600は、いくつかの実施形態によれば、最大メンテナンス予算1604を含
むものとして示されている。いくつかの実施形態では、最大メンテナンス予算1604は
図15を参照して述べた最大メンテナンス予算1504と同様及び/又は同一であり得
る。グラフ1600は、いくつかの実施形態によれば、最適化期間1606も含むものと
して示されている。いくつかの実施形態では、最適化期間1606は、図15を参照して
述べた最適化期間1506と同様及び/又は同一である。グラフ1600は、いくつかの
実施形態によれば、第1のメンテナンス支出1608、第2のメンテナンス支出1610
及び第3のメンテナンス支出1612も含むものとして示される。いくつかの実施形態で
は、第1のメンテナンス支出1608、第2のメンテナンス支出1610及び第3のメン
テナンス支出1612は、それぞれ図15を参照して上述した第1のメンテナンス支出1
508、第2のメンテナンス支出1510及び第3のメンテナンス支出1512と同様及
び/又は同一である。グラフ1600は、いくつかの実施形態によれば、時間間隔160
2も含むものとして示され、時間間隔1602は、図15を参照して述べた時間間隔15
02と同様及び/又は同一であり得る。
【0323】
いくつかの実施形態では、グラフ1600は、ハード予算制約ではなくソフト予算制約
が使用されるため、図15を参照して述べたグラフ1500と異なる。いくつかの実施形
態では、グラフ1600は、時間ステップ25で生じる第4のメンテナンス支出1614
を含むものとして示されている。いくつかの実施形態では、第4のメンテナンス支出16
14は、メンテナンス支出の差1616を最小化するための追加のメンテナンス支出であ
り得る。いくつかの実施形態では、メンテナンス支出の差1616は、図15を参照して
述べたメンテナンス支出の差1514と同様及び/又は同一に計算することができる(す
なわち最大メンテナンス予算1604から、最適化期間1606にわたる各メンテナンス
支出の合計を減算する)。いくつかの実施形態では、第4のメンテナンス支出1614は
、ソフト予算制約によるメンテナンス支出の差1616を最小化するために実施されるこ
とがある。いくつかの実施形態では、メンテナンス支出の差1616が増加するにつれて
、ソフト予算制約によって定義されるペナルティコストが増加する。ペナルティコストマ
ネージャ944によって提供されるペナルティコスト項に基づいてペナルティコストを計
算することができる。いくつかの実施形態では、目的関数オプティマイザ940は、ペナ
ルティコストを最小化するために目的関数Jを最適化することができる(すなわちメンテ
ナンス支出の差1616を減少させることによって)。いくつかの実施形態では、ペナル
ティコストは、メンテナンス支出の差1616の倍数であり得る。例えば、最適化期間1
606にわたるすべてのメンテナンス支出が最大メンテナンス予算1604を超えた場合
、3倍のペナルティがあり得る。例えば、最大メンテナンス予算1604が100ドルだ
け超えた場合、300ドルの追加のペナルティコストが生じることがある。ソフト予算制
約に基づいて、目的関数オプティマイザ940は、いくつかの実施形態によれば、追加の
メンテナンス支出を追加してメンテナンス支出の差1616を最小化してペナルティコス
トを下げることにより、目的関数Jを最適化することができる。例えば、時間ステップ2
5での第4のメンテナンス支出1614は、ソフト予算制約なしでは通常実施されなかっ
た可能性がある。しかし、目的関数Jを最適化するために、目的関数オプティマイザ94
0は、第4のメンテナンス支出1614により生じた追加のコストが、ペナルティコスト
を減少させることによって目的関数Jを最小化することを決定することができる。
【0324】
いくつかの実施形態では、最大メンテナンス予算1604のほとんど及び/又はすべて
が費やされることを奨励するためにソフト予算制約が実装されることがある。例えば、メ
ンテナンス予算は、最適化期間1606にわたってメンテナンスに15,000ドルを割
り振ることがある。したがって、最適化期間1606後に最大メンテナンス予算1604
から費やされていない額は、メンテナンスの観点から実質的に失われる。したがって、い
くつかの実施形態によれば、ユーザが最大メンテナンス予算1604を使い果たすことを
望む場合、ペナルティコスト項は、費やされる最大メンテナンス予算1604の最大額に
対応する目的関数Jの最適解の決定を容易にすることができる。図19Aを参照して述べ
るグラフ1900は、目的関数Jにソフト予算制約をどのように課すことができるかをさ
らに示している。
【0325】
ここで、図17を参照すると、いくつかの実施形態による、複数のメンテナンス予算期
間にまたがる最適化期間に関する累積メンテナンスコストを例示するグラフ1700が示
されている。いくつかの実施形態では、複数の資本購入期間にまたがる最適化期間に関す
る累積資本購入コストは、グラフ1700での累積メンテナンスコストと同様及び/又は
同一に例示することができる。いくつかの実施形態では、最適化期間1702は、ビルデ
ィング管理システム(BMS)に関する個々のメンテナンス予算期間よりも長いことがあ
る。複数のメンテナンス予算期間が最適化期間1702内に入るとき、目的関数生成器9
35によって生成される目的関数Jは、いくつかの実施形態によれば、各メンテナンス予
算期間に関する累積メンテナンス支出がそのメンテナンス予算期間に関する最大メンテナ
ンス予算を超えないように目的関数Jを最適化(例えば、最小化)するように、目的関数
オプティマイザ940によって最適化される必要があり得る。
【0326】
グラフ1700は、いくつかの実施形態によれば、時間ステップ1から時間ステップ1
5までの第1のメンテナンス予算期間1704と、時間ステップ18から時間ステップ3
2までの第2のメンテナンス予算期間1706とを含むものとして示されている。いくつ
かの実施形態では、第1のメンテナンス予算期間1704は、第1の最大メンテナンス予
算1708を有する。いくつかの実施形態では、第2のメンテナンス予算期間1706は
、第2の最大メンテナンス予算1710を有する。いくつかの実施形態では、第1の最大
メンテナンス予算1708は、第2の最大メンテナンス予算1710よりも大きいか又は
小さい。いくつかの実施形態では、第1の最大メンテナンス予算1708は、第2の最大
メンテナンス予算1710に等しい。
【0327】
第1のメンテナンス予算期間1704は、いくつかの実施形態によれば、第1のシリー
ズ1716を含む。いくつかの実施形態では、第1のシリーズ1716は、第1のメンテ
ナンス予算期間1704にわたる一連のメンテナンス支出を表す。第1のシリーズ171
6は、いくつかの実施形態によれば、時間ステップ4で生じる第1のメンテナンス支出及
び時間ステップ10で生じる第2のメンテナンス支出を示す。同様に、第2のメンテナン
ス予算期間1706は、いくつかの実施形態によれば、第2のシリーズ1718を含む。
いくつかの実施形態では、第2のシリーズ1718は、第2のメンテナンス予算期間17
06にわたる一連のメンテナンス支出を表す。第2のシリーズ1718は、いくつかの実
施形態による、時間ステップ19、23及び28で生じる3つのメンテナンス支出を示す
。いくつかの実施形態では、合計メンテナンス支出は、図14Aを参照して上述したCo
stact,jを計算するための式により、目的関数オプティマイザ940によって第1
のメンテナンス予算期間1704及び/又は第2のメンテナンス予算期間1706のいず
れかに関して計算することができる。
【0328】
いくつかの実施形態では、Costmain,1は、第1のメンテナンス予算期間17
04に関する第1の合計メンテナンス支出1712を示す。いくつかの実施形態では、第
1の合計メンテナンス支出1712は、第1のメンテナンス支出の差1714が非ゼロで
あることを示す第1の最大メンテナンス予算1708と異なることがある。いくつかの実
施形態では、第1のメンテナンス支出の差1714は、図14Aを参照して述べたメンテ
ナンス支出の差と同様及び/又は同一に計算することができる。いくつかの実施形態では
図16を参照して述べたソフト予算制約と同様及び/又は同一のソフト予算制約が適用
される場合、第1のメンテナンス支出の差1714がどの程度大きいかに基づいて、ペナ
ルティコストが生じることがある。
【0329】
いくつかの実施形態では、Costmain,2は、第2の合計メンテナンス支出17
20を示す。いくつかの実施形態では、第2の合計メンテナンス支出1720は、第2の
最大メンテナンス予算1710に等しいことがある。いくつかの実施形態では、ソフト予
算制約が適用され、第2の合計メンテナンス支出1720が第2の最大メンテナンス予算
1710に等しい場合、ペナルティコストが生じないことがある。いくつかの実施形態で
は、ソフト予算制約が適用され、第2の合計メンテナンス支出1720が第2の最大メン
テナンス予算1710に等しくない場合、ペナルティコストが生じることがある。
【0330】
引き続き図17を参照すると、目的関数Jは、第1のメンテナンス予算期間1704と
第2のメンテナンス予算期間1706との両方の予算制約を遵守しながら最適化期間17
02の全継続期間にわたって最適化するように、目的関数オプティマイザ940によって
最適化される必要があり得る。例えば、その後、グラフ1700に関する最大予算ベクト
ルBudmaxは、以下の形式での2×1ベクトルになり得る。
【数57】
ここで、Budmax1は、第1の最大メンテナンス予算1708を定義することができ
、Budmax2は、第2の最大メンテナンス予算1710を定義することができる。い
くつかの実施形態では、目的関数オプティマイザ940は、目的関数Jの最適値を決定す
るときに最大予算ベクトルBudmaxを利用することができる。いくつかの実施形態で
は、目的関数Jの最適値を決定するとき、目的関数オプティマイザ940は、図14A
参照して上で定義された最大予算制約を遵守する。いくつかの実施形態では、最大予算制
約を遵守することにより、目的関数Jは、最適化期間1702内の任意のメンテナンス予
算期間に関する最大メンテナンス予算を超えることなく最適化することができる。
【0331】
いくつかの実施形態では、任意のメンテナンス予算期間中に生じない最適化期間170
2中の時間ステップ(例えば、グラフ1700の時間ステップ14~17及び31~h)
があり得る。いくつかの実施形態では、目的関数Jは、任意のメンテナンス予算期間中に
生じない各時間ステップに関するハード予算制約を有することがあり、ハード予算制約は
、上記時間ステップ中にはメンテナンスについてコストが生じないことがあることを示す
ことができる。ハード予算制約に基づいて、メンテナンス予算期間中に生じない各時間ス
テップに関して、目的関数オプティマイザ940は、Maskj,i=0を設定して、メ
ンテナンス予算期間j中に時間ステップiが発生しないことを示すことができる。いくつ
かの実施形態では、Maskの列のすべての値は、0であり得、列に関連付けられた時間
ステップが任意のメンテナンス予算期間中に生じないことを示す。例えば、Maskの値
は、以下の値を有することがある。
【数58】
ここで、第3の列は、すべて0である。いくつかの実施形態では、第3の列がすべて0で
あることは、時間ステップ3中にメンテナンス予算期間1又はメンテナンス予算期間2の
いずれも生じないことを示すことができる。
【0332】
ここで、図18を参照すると、いくつかの実施形態による、部分的に最適化期間180
2外で生じるメンテナンス予算期間を伴う最適化期間1802にわたる累積メンテナンス
コストを例示するグラフ1800が示されている。いくつかの実施形態では、部分的に最
適化期間外で生じる資本購入期間を伴う最適化期間にわたる累積資本購入コストは、グラ
フ1800が累積メンテナンスコストに関するものであるときと同様及び/又は同一に示
すことができる。グラフ1800では、いくつかの実施形態によれば、第1のメンテナン
ス予算期間1804は、最適化期間1802が始まる前に始まるものとして示されている
。さらに、第2のメンテナンス予算期間1806は、いくつかの実施形態によれば、最適
化期間1802中に生じるものとして示され、第3のメンテナンス予算期間1816は、
最適化期間1802中に始まり、最適化期間1802の終了後に継続するものとして示さ
れている。
【0333】
第1のメンテナンス予算期間1804は、いくつかの実施形態によれば、第1の一連の
メンテナンス支出1810を含むものとして示されている。グラフ1800に示されてい
るように、いくつかの実施形態によれば、最適化期間1802の開始(すなわち時間ステ
ップ1)前に第1のメンテナンス支出が成された。いくつかの実施形態では、図14A
参照して述べた予算マネージャ942は、第1のメンテナンス予算期間1804に関する
ハード予算制約を受信することがある。第1のメンテナンス予算期間1804に関するハ
ード予算制約は、第1のメンテナンス予算期間1804が生じる期間を表す第1の時間ス
パンと、第1のメンテナンス予算期間1804中にメンテナンスに費やすことができる最
大額を表す第1の最大メンテナンス予算1808と、最適化期間1802の開始前(すな
わち時間ステップ1前)に第1のメンテナンス予算期間1804中にメンテナンスにどの
程度の額が費やされているかを表す初期支出とを含むことができる。初期支出及び他のハ
ード予算制約に基づいて、図14Aを参照して述べる目的関数オプティマイザ940は、
いくつかの実施形態によれば、第1の最大メンテナンス予算1808を超えない目的関数
Jに関する最適解を決定するように、目的関数生成器935によって生成される目的関数
Jを最適化(すなわち最小化)することができる。いくつかの実施形態では、目的関数J
の最適化を簡略化するために、初期支出によって第1の最大メンテナンス予算1808を
低減することができる。いくつかの実施形態では、最大メンテナンス予算1808は、ペ
ナルティコストに関連付けられたソフト予算制約であり得、その場合、目的関数オプティ
マイザ940は、最適化期間1802全体にわたる累積コストを下げるために、最大メン
テナンス予算1808を超えてペナルティコストを生じる可能性がある。
【0334】
グラフ1800は、いくつかの実施形態によれば、第2の一連のメンテナンス支出18
14及び第2の最大メンテナンス予算1812も含むように示される第2のメンテナンス
予算期間1806を含むものとして示されている。いくつかの実施形態では、第2のメン
テナンス予算期間1806は、図17を参照して述べた第2のメンテナンス予算期間17
06と同様及び/又は同一に目的関数オプティマイザ940によって最適化されることが
ある。
【0335】
グラフ1800は、いくつかの実施形態によれば、第3のメンテナンス予算期間181
6も含むものとして示され、第3のメンテナンス予算期間1816は、第3の最大メンテ
ナンス予算1820及び第3の組のメンテナンス支出1818を含むものとして示されて
いる。第3のメンテナンス予算期間1816は、いくつかの実施形態によれば、最適化期
間1802中に始まるが、最適化期間1802の終了後に継続するものとして示されてい
る。いくつかの実施形態では、目的関数Jの最適化は、最適化期間1802中に生じる第
3のメンテナンス予算期間1816の時間ステップのみが考慮されるように、第3のメン
テナンス予算期間1816を、短縮されたメンテナンス予算期間として扱うように構成す
ることができる。短縮されたメンテナンス予算期間中、最適化期間1802の終了前に第
3の最大メンテナンス予算1820の一部及び/又はすべてを使用するように決定変数を
最適化することができる。いくつかの他の実施形態では、目的関数Jの最適化は、最適化
期間1802の終了後に生じる第3のメンテナンス予算期間1816中の時間ステップを
考慮して、次の最適化期間を過度に複雑にしないように構成することができる。いくつか
の実施形態では、目的関数Jは、最適化期間1802中に第3の最大メンテナンス予算1
820の一部を使用するように制約されることがある。例えば、第3の最大メンテナンス
予算1820は、第3のメンテナンス予算期間1816中に10,000ドルであり得る
が、第3のメンテナンス予算期間1816中に生じる時間ステップの4分の1のみが最適
化期間1802中に生じることがある。このとき、目的関数Jは、第3のメンテナンス予
算期間1816と最適化期間1802とが重なるように、時間ステップ中に使用すること
ができる第3の最大メンテナンス予算1820の所定のパーセンテージのみに制約される
こともある。これにより、第3の最大メンテナンス予算1820の残額を次の最適化期間
中に使用することが可能になり得る。いくつかの実施形態では、メンテナンス予算期間が
最適化期間1802の一部分中に生じるとき、メンテナンス予算期間に関する最大メンテ
ナンス予算の利用可能な額は、最適化期間1802中に生じるメンテナンス予算期間の量
に直接比例する(例えば、メンテナンス予算期間の50%が最適化期間1802中に生じ
る場合、メンテナンス予算期間に関する最大メンテナンス予算の50%が利用可能である
)。
【0336】
次に、図19Aを参照すると、いくつかの実施形態による、メンテナンス予算と推定メ
ンテナンス支出との間の差に基づく関数としてペナルティコストを例示するグラフ190
0が示されている。いくつかの実施形態では、資本購入に関するペナルティコストは、グ
ラフ1900がメンテナンスコストに関するものである場合と同様及び/又は同一に例示
することができる。グラフ1900は、いくつかの実施形態によれば、メンテナンス予算
が推定メンテナンス支出よりも大きくなるように正の部分1904を含むものとして示さ
れている。グラフ1900は、いくつかの実施形態によれば、メンテナンス予算が推定メ
ンテナンス支出よりも小さくなるように負の部分1902も含むものとして示されている
。さらに、グラフ1900は、いくつかの実施形態によれば、メンテナンス予算が推定メ
ンテナンス支出に等しくなるように平衡点1914も含むものとして示されている。グラ
フ1900は、いくつかの実施形態によれば、勾配1910及び勾配1912も含むもの
として示される。いくつかの実施形態では、勾配1910は、図14を参照して述べたよ
うに、pk,jを計算する区分的関数におけるBudmax,j-Costest,j
0(すなわちA)に関する勾配を表すことがある。いくつかの実施形態では、勾配191
2は、図14Aを参照して述べたように、pk,jを計算する区分的関数におけるBud
max,j-Costest,j>0(すなわちB)に関する勾配を表すことがある。い
くつかの実施形態では、グラフ1900に示されるBudmax,j及びCostest
,jは、図14を参照して述べたBudmax,j及びCostest,jと同様及び/
又は同一であり得る。いくつかの実施形態では、目的関数オプティマイザ940は、平衡
点1914として示されるBudmax,jがCostest,jと等しくなる決定変数
の値を決定することが可能であり得、その場合、ペナルティコストは生じ得ない。いくつ
かの実施形態では、ペナルティコストが減少されるにつれて、図14Aを参照して述べた
修正された目的関数Jmodも減少される。
【0337】
いくつかの実施形態では、グラフ1900は、メンテナンス予算期間における単一のタ
イプのメンテナンスに関するものであり得る。いくつかの実施形態では、メンテナンス予
算期間に関する全体的なメンテナンス予算は、特定のメンテナンスプロジェクトに関する
より小さいメンテナンス予算に分解することができる。例えば、メンテナンス予算期間に
わたる全体的なメンテナンス予算が20,000ドルであることがあり、暖房、換気及び
空気調和(HVAC)メンテナンスに5,000ドルを割り振ることができ、窓のメンテ
ナンスに5,000ドルを割り振ることができ、他のメンテナンスに10,000ドルを
割り振ることができる。上記の例では、メンテナンス予算期間中の特定のメンテナンスプ
ロジェクトに関するメンテナンス予算を上回るか又は下回る特定のメンテナンスプロジェ
クトの推定メンテナンス支出に関して、各タイプのメンテナンスは、異なるペナルティコ
ストを生じることがある(すなわち各タイプのメンテナンスに関してAとBの値が異なる
ことがある)。次いで、目的関数オプティマイザ940は、各タイプのメンテナンスに関
して生じるすべてのペナルティコストの全体的な値によって制約される目的関数Jを最適
化する決定変数の値を決定することができる。いくつかの実施形態では、メンテナンス予
算期間にわたる全体的なメンテナンス予算は、全体的なメンテナンス予算を超えないよう
にハード予算制約を有することがあるが、全体的なメンテナンス予算を超えない限り、メ
ンテナンスの各タイプに関するメンテナンスを超えることができる。この場合、目的関数
オプティマイザ940は、それらの決定に基づいて目的関数Jがさらに最適化され得る場
合、特定のメンテナンスプロジェクトに関するメンテナンス予算を超える決定変数を決定
することができる。
【0338】
勾配1910が勾配1912と異なる場合、グラフ1900は、最大予算を超える支出
に関連するペナルティコストが最大予算未満の支出と異なるペナルティを課されるように
、非対称の予算制約を表すことがある。しかし、勾配1910が勾配1912と同じであ
る場合、グラフ1900は、最大予算を超える支出が最大予算未満の支出と同じペナルテ
ィを課されるような対称的な予算制約を表すことができる。
【0339】
ここで、図19Bを参照すると、いくつかの実施形態による、ビルディング機器の劣化
に基づくビルディング機器の故障確率分布を例示するグラフ1920が示されている。グ
ラフ1920は、分布1922を含むものとして示されている。分布1922は、ビルデ
ィング機器のビルディングデバイスの故障確率を示すことができる。分布1922に基づ
いて、最適化期間中の様々な時点に関して、ビルディングデバイスの故障確率を決定する
ことができる。例えば、分布1922は、ビルディングデバイスの故障確率が、時点T
と比較して時点Tにおいてより小さい値であることを示すことができる。同様に、時点
では、ビルディングデバイスの故障確率は、時点T及びTにおけるよりも大きい
ものとして示されている。分布1922は、標準分布に従うように示されているが、ビル
ディングデバイスの劣化が故障確率にどのように影響を及ぼすかに応じて、任意の確率分
布であり得ることを理解されたい。
【0340】
グラフ1920は、閾値1924として示される閾値X及び複数の臨界点1926~1
936も含むものとして示されている。グラフ1920は、経時的なビルディングデバイ
スの特定の特性の劣化指標値を示す複数のシリーズ1938~1948も含むものとして
示されている。各臨界点1926~1936において、シリーズ1938~1948の1
つが、臨界点1926~1936の関連する点に等しいものとして示されている。例えば
、シリーズ1938は、時点Tで臨界点1926に等しいものとして示されている。グ
ラフ1920に示されているように、閾値1924を超えるシリーズは、ビルディングデ
バイスの何らかの側面/構成要素などが何らかの臨界値を超えていることを示すことがで
きる。例えば、ビルディングデバイスがファンであり、シリーズ1940が上記ファンの
回転数を示す場合、閾値1924は、ファンが問題なく動作すると推定される回転数(例
えば、ファンを製造した企業によって指定される)であり得る。いくつかの実施形態では
、シリーズ1938~1948は、それぞれ一意の閾値1924を有する。例えば、ビル
ディングデバイスがファンである場合、シリーズ1938がファンの回転数を示すとき、
シリーズ1938に関する閾値1924は、回転数であり得る一方、シリーズ1942に
関する閾値1924は、設置してからファンが動作されている時間量であり得る。
【0341】
シリーズ1938~1948のそれぞれが閾値1924に近づき且つ/又は閾値192
4を超えると、分布1922によって示されるように、デバイスの故障確率が上昇するこ
とがある。臨界値1926~1936でシリーズ1938~1948のより多くが閾値1
924を超えるにつれて、分布1922によって示される故障確率が上昇するものとして
示されている。例えば、分布1922によって示される故障確率は、シリーズ1938及
びシリーズ1940が時点T及びTで閾値1924を超えた後でさえ低い(例えば、
30%未満)ものとして示されている。しかし、シリーズ1948が時点Tで閾値19
24を超えるときまで、ビルディングデバイスの故障確率は、大きい(例えば、90%超
)ものとして示されている。リスクコスト項が目的関数Jに含まれている場合、目的関数
オプティマイザ940は、分布1922を利用して、ビルディング機器の故障確率が期間
にわたってどのように変化するかを推定し、目的関数Jの最適化の結果に対するリスクコ
スト項の影響を決定することができる。目的関数オプティマイザ940は、分布1922
を推定故障コストと組み合わせて利用して、最適化期間にわたる様々な時間ステップでの
リスクコスト項の値を決定することができる。
【0342】
ここで、図19Cを参照すると、いくつかの実施形態による、ビルディング機器の劣化
を低減するために実施されたメンテナンスに基づいて合計コストがどのように影響を及ぼ
されるかを例示するグラフ1950である。グラフ1950は、メンテナンス活動を含む
が、任意のタイプの修理活動(例えば、交換、メンテナンスなど)が同様の効果を有し得
ることを理解すべきである。グラフ1950は、シリーズ1952とシリーズ1954と
を含むものとして示されている。シリーズ1952及びシリーズ1954は、ある期間に
わたる様々なビルディングデバイスの劣化指標値を例示することができる。例えば、シリ
ーズ1952は、その期間にわたるヒータの劣化指標値を例示することができ、シリーズ
1954は、期間にわたるIDUの劣化指標値を例示することができる。いくつかの実施
形態では、シリーズ1952及びシリーズ1954は、単一のビルディングデバイスの異
なる構成要素の劣化指標値を示す。例えば、シリーズ1952は、ODUの凝縮器コイル
の劣化指標値を示すことができ、シリーズ1954は、ODUのファンの劣化指標値を示
すことができる。
【0343】
シリーズ1952及びシリーズ1954の値が増加するにつれて、関連の構成要素の効
率の低下により、動作コストが増加することがある。例えば、シリーズ1952がAHU
の劣化指標値を例示する場合、AHUの加熱/冷却コイル、AHUのファンなどの効率低
下により、AHUの動作に関連する動作コストが増加することがある。
【0344】
メンテナンス/交換が実施されない場合、シリーズ1952及びシリーズ1954は、
故障閾値を超えるまで増加し続けることがあり、シリーズ1952及びシリーズ1954
に関連する構成要素が故障しているとみなされる。構成要素の故障は、例えば、構成要素
をアクティブにする/オンにすることができない、構成要素が最適なエネルギー消費量よ
りも多い特定量のエネルギーを消費する、構成要素の信頼性が何らかの閾値を下回ってい
るなど、様々な状態によって測定することができる。シリーズ1952及びシリーズ19
54の値を減少させるために、ビルディング機器に対するメンテナンスを実施して、ビル
ディング機器の効率を向上させることができる。グラフ1950に示されているように、
メンテナンスは、メンテナンス時点1956~1962で行われるものとして示されてい
る。特に、シリーズ1952に関連する構成要素は、メンテナンス時点1956、メンテ
ナンス時点1960及びメンテナンス時点1962にメンテナンスを受けるものとして示
されており、シリーズ1954に関連する構成要素は、メンテナンス時点1958にメン
テナンスを受けるものとして示されている。上述したように、メンテナンス時点1956
~1962に実施される活動は、簡略化のためにメンテナンス活動として示されているが
、任意のメンテナンス活動、交換活動及び/又はビルディング機器の効率及び/又は信頼
性を高めることができる任意の他の活動を含むことができる。
【0345】
メンテナンス時点1956~1962のそれぞれでメンテナンスコストが生じるものと
して示されている。上述のように、シリーズ1952及びシリーズ1954の値が増加す
るにつれて、シリーズ1952及びシリーズ1954に関連する構成要素を動作させる動
作コストも増加する。動作コストを低減するために、メンテナンスを実施して構成要素の
効率を高め、それにより動作コストを低減することができる。しかし、メンテナンスを実
施すると、メンテナンスコストが生じることがある。したがって、目的関数オプティマイ
ザ940は、メンテナンスコストが動作コストの低減よりも大きくならないように、メン
テナンスを実施するときを決定する必要があり得る。いくつかの実施形態では、リスクコ
スト項が目的関数Jに組み込まれる場合、メンテナンスを実施してリスクコスト項の影響
を低減すると、メンテナンスのコストが動作コストの低減よりも大きい場合でも目的関数
Jをさらに最適化することができる。
【0346】
図19Cは、信頼性勾配1964及び信頼性勾配1966も含むものとして示されてい
る。信頼性勾配1964は、修理(例えば、メンテナンス、交換など)が実施されない場
合、ビルディング機器の信頼性が時間と共にどのように変化するかを示すことができる。
特に、時間の経過と共に、信頼性勾配1964は、暗くなるように示されており、これは
、ビルディング機器の信頼性が劣化していることを示す。ビルディング機器に対して実施
される各修理活動は、ビルディング機器の信頼性を向上させ、それによってビルディング
機器の故障確率を低減することができる。例えば、電気機器の配線の修理は、電気接続が
安定していることを保証することによって電気機器の信頼性を高めることができる。いく
つかの実施形態では、修理が行われない場合、ビルディング機器の信頼性が向上すること
があり得ず、ビルディング機器が故障するまで劣化し続ける。
【0347】
信頼性勾配1966は、最適な修理スケジュールが実施された場合、信頼性が時間と共
にどのように変化するかを例示することができる。最適な修理スケジュールは、メンテナ
ンス活動、交換活動及び/又はビルディング機器の信頼性を高めることができる他の活動
を含むことができる。最適な修理スケジュールは、ビルディング機器の信頼性が維持され
ることを保証するために修理を実施するのに最適な時点を示すことができる。信頼性勾配
1966で示されるように、修理が行われない信頼性勾配1964と比較して、ビルディ
ング機器の信頼性は、時間にわたって維持される。
【0348】
最適な修理スケジュールは、いずれの修理を実施すべきか及びいつその修理を行うべき
かを決定するために、コスト関数(例えば、目的関数J)の最適化によって決定すること
ができる。各修理が何らかの関連コスト(例えば、メンテナンスコスト)を有するため、
最適化は、最適な修理時間を決定してコストを最適化(例えば、低減)し、且つビルディ
ング機器の信頼性が維持されることを保証することを必要とされることがある。リスクコ
スト項がコスト関数に組み込まれる場合、リスクコスト項は、高レベルの信頼性を維持す
るためにビルディング機器に対していずれの修理がいつ実施されるかに影響を及ぼすこと
があり、それによりコスト関数に対するリスクコスト項の影響を軽減する。
【0349】
モデル予測的メンテナンスプロセス
【0350】
ここで、図20を参照すると、いくつかの実施形態による、ハード予算制約を受ける図
13を参照して述べたモデル予測的メンテナンス(MPM)システム602を動作させる
ためのプロセス2000のフローチャートが示されている。いくつかの実施形態では、プ
ロセス2000は、メンテナンスコストについて示したのと同様及び/又は同一に資本購
入にも適用することができる。いくつかの実施形態では、プロセス2000は、ビルディ
ングシステム600の構成要素によって実施することができる。いくつかの実施形態では
、プロセス2000は、図6~9を参照して上でより詳細に述べたように、MPMシステ
ム602によって実施することができる。いくつかの実施形態では、プロセス2000は
図10を参照して述べたプロセス1000と同様及び/又は同一であり得る。
【0351】
プロセス2000は、いくつかの実施形態によれば、MPMシステム602を介して、
メンテナンス予算と、各メンテナンス予算に関するメンテナンス予算期間とを受信するこ
と(ステップ2002)を含む。いくつかの実施形態では、メンテナンス予算期間は、メ
ンテナンス予算期間が生じる時間間隔であり得る。メンテナンス予算期間が生じる時間間
隔は、いくつかの実施形態によれば、最適なメンテナンス戦略の最適化期間中で完全に生
じるか、部分的に生じるか又は全く生じないことがある。いくつかの実施形態では、メン
テナンス予算期間に関するメンテナンス予算は、メンテナンス予算期間中にメンテナンス
に費やされる額がメンテナンス予算を超えてはならないことを示すハード予算制約であり
得る。例えば、メンテナンス予算が10,000ドルである場合、メンテナンス予算期間
にわたってメンテナンスに費やすことができるのは、10,000ドル以下である。いく
つかの実施形態では、図14Aを参照して述べた予算マネージャ942は、ステップ20
02を実施するように構成することができる。
【0352】
プロセス2000は、いくつかの実施形態によれば、ビルディングでの可変の状態又は
条件に影響を及ぼすようにビルディング機器を動作させること(ステップ2004)も含
むものとして示されている。いくつかの実施形態では、ステップ2004~ステップ20
16は、図10を参照して述べたステップ1002~ステップ1014と同様及び/又は
同一であり得る。
【0353】
プロセス2000は、いくつかの実施形態によれば、受信されたメンテナンス予算及び
メンテナンス予算期間に基づいて最大予算制約を定義すること(ステップ2018)を含
む。いくつかの実施形態では、最大予算制約は、最適化期間にわたってメンテナンスに費
やすことができる最大額(例えば、ドル)とすることができる。いくつかの実施形態では
、第1のメンテナンス予算期間及び/又は最後のメンテナンス予算期間は、最適化期間の
一部分中に生じる。第1のメンテナンス予算期間が最適化期間の一部分中で生じた場合、
残りの予算(すなわち前の最適化期間で費やされなかった額)は、いくつかの実施形態に
よれば、第1のメンテナンス予算期間に関する最大予算制約として使用することができる
。最後のメンテナンス予算期間が最適化期間の一部分中に生じた場合、いくつかの実施形
態によれば、図14Aを参照して上で述べたBudreducedに関する式を予算マネ
ージャ942によって使用して、最後のメンテナンス予算期間に関する最大予算制約を生
成することができる。いくつかの実施形態では、予算マネージャ942は、ステップ20
18を実施するように構成することができる。
【0354】
プロセス2000は、いくつかの実施形態によれば、メンテナンス予算期間に関する最
大予算制約及び/又は最大メンテナンス予算を受ける目的関数Jが最適化されること(ス
テップ2020)を含む。いくつかの実施形態では、ステップ2020は、図10を参照
して述べたステップ1016と同様及び/又は同一であり得る。いくつかの実施形態では
、目的関数Jの最適化中、最大予算制約は、特定のメンテナンス/交換活動によって生じ
るコストにより、最適化期間に関する合計メンテナンス支出が最大予算制約を超える場合
、それらのメンテナンス/交換活動が実施されるのを妨げることがある。いくつかの実施
形態では、最大予算制約は、最適化期間が単一のメンテナンス予算期間と同じ期間である
場合(すなわちステップ2018でn=1)にのみ、ステップ2020で使用することが
できる。いくつかの実施形態では、最適化期間が単一のメンテナンス予算期間と同じ期間
ではないとき(例えば、単一のメンテナンス予算期間が最適化期間の一部分中にのみ生じ
、最適化期間中に生じる2つ以上のメンテナンス予算期間があるなど)、最大予算制約は
、ステップ2020で使用されないことがあり、代わりに、目的関数Jは、ステップ20
02で受信された各メンテナンス予算期間に関する各メンテナンス予算に従って制約する
ことができる。このようにして、目的関数Jは、各メンテナンス予算期間に関するメンテ
ナンス予算を超えないように最適化することができる。最適化問題がどのように解かれる
かに応じて、予算制約は、最適化期間にわたって追跡される状態(例えば、残りの予算)
、目的関数Jへの追加の項などとして実装することができる。いずれにせよ、ステップ2
020は、最適なメンテナンス戦略が、ステップ2018で定義された任意の予算制約に
準拠していることを保証することができる。いくつかの実施形態では、目的関数オプティ
マイザ940は、ステップ2020を実施するように構成することができる。
【0355】
プロセス2000は、例示的な実施形態によれば、MPMシステム602が最適なメン
テナンス戦略に基づいてビルディング機器の効率及び信頼性を更新すること(ステップ2
022)を含む。いくつかの実施形態では、ステップ2022は、図18を参照して述べ
たステップ1018と同様及び/又は同一であり得る。ステップ2022の完了後、プロ
セス2000は、ステップ2010に戻ることができる。
【0356】
ここで、図21を参照すると、例示的な実施形態による、ソフト予算制約を受ける図1
3を参照して述べたMPMシステム602によって実施されるプロセス2100のフロー
チャートが示されている。いくつかの実施形態では、プロセス2100は、メンテナンス
コストについて示したのと同様及び/又は同一に資本購入にも適用することができる。い
くつかの実施形態では、プロセス2100は、ビルディングシステム600の構成要素に
よって実施することができる。いくつかの実施形態では、プロセス2100は、図6~9
を参照して述べたように、MPMシステム602によって実施することができる。いくつ
かの実施形態では、プロセス2100は、図20を参照して述べたプロセス2000と同
様及び/又は同一であり得る。さらに、ステップ2102~ステップ2116は、いくつ
かの実施形態によれば、図20を参照して述べたステップ2002~ステップ2016と
同様及び/又は同一であり得る。
【0357】
プロセス2100は、いくつかの実施形態によれば、メンテナンス予算期間中の最大メ
ンテナンス予算と合計メンテナンスコストとの間の差に基づいて、各メンテナンス予算期
間に関するペナルティコスト項を定義すること(ステップ2118)を含む。いくつかの
実施形態では、ペナルティコスト項は、ステップ2102で受信された各メンテナンス予
算期間に関して、さらに定義することができる。各ペナルティコスト項は、目的関数Jの
最適化を制約し、メンテナンス予算期間中のメンテナンス予算と合計メンテナンスコスト
との間の差が増加するにつれて、メンテナンス予算期間に関連するペナルティコストが増
加し得る。いくつかの実施形態では、ペナルティコストマネージャ944は、ステップ2
118を実施するように構成することができる。
【0358】
プロセス2100は、いくつかの実施形態によれば、ステップ2118で定義された各
ペナルティコスト項に従って目的関数Jが最適化されること(ステップ2120)を含む
。いくつかの実施形態では、目的関数Jが各ペナルティコストを遵守しながら最適化され
るように、最適なメンテナンス戦略を生成することができる。いくつかの実施形態では、
メンテナンス予算期間の一部及び/又はすべては、いくらかのペナルティコストを生じる
(すなわちメンテナンス予算期間に関してpk,j≠0)ことがあるが、生じるペナルテ
ィコストは、それでも目的関数Jが最適化されるように十分に小さいことがある。いくつ
かの実施形態では、目的関数オプティマイザ940は、ステップ2120を実施するよう
に構成することができる。
【0359】
プロセス2100は、例示的な実施形態によれば、MPMシステム602が最適なメン
テナンス戦略に基づいてビルディング機器の効率及び信頼性を更新すること(ステップ2
122)を含む。いくつかの実施形態では、ステップ2122は、図20を参照して述べ
たステップ2022と同様及び/又は同一であり得る。ステップ2122の完了後、プロ
セス2100は、ステップ2110に進むことができる。
【0360】
ここで、図22を参照すると、いくつかの実施形態による、ビルディング機器の故障リ
スクを受ける、図13を参照して述べたMPMシステム602を動作させるためのプロセ
ス2200が示されている。ビルディング機器の故障リスクをMPMに組み込むことによ
り、コスト関数(例えば、目的関数J)は、ビルディング機器の故障により生じ得るコス
トを最適化(例えば、低減)することができる。故障リスクを組み込むことで、ビルディ
ング機器のメンテナンス/交換に関する決定により、コストを最適化しながら、ビルディ
ング機器の予期しない故障の可能性を低減することを保証することができる。ビルディン
グ機器の予期しない故障は、ビルディング機器のメンテナンス/交換を実施してビルディ
ング機器を動作状態に戻すなどの追加コスト及びまた例えば未対処の負荷又は失われた生
産量などの機会コストをもたらすことがある。いくつかの実施形態では、プロセス220
0の一部及び/又はすべてのステップは、MPMシステム602によって実施される。
【0361】
プロセス2200は、いくつかの実施形態によれば、ビルディングでの可変の状態又は
条件に影響を及ぼすようにビルディング機器を動作させること(ステップ2202)を含
むものとして示されている。いくつかの実施形態では、ステップ2202~2214は、
図10を参照して述べたプロセス1000のステップ1002~1014と同様及び/又
は同一である。いくつかの実施形態では、ステップ2202~2214は、MPMシステ
ム602によって実施される。
【0362】
プロセス2200は、いくつかの実施形態によれば、推定信頼性の関数として、最適化
期間にわたるビルディング機器の故障リスクに関連するコストCostriskを定義す
ること(ステップ2216)を含むものとして示されている。Costriskは、最適
化期間の各時間ステップiに関するすべてのリスクコストCrisk,iの合計によって
定義することができる。いくつかの実施形態では、ステップ2216は、最適化期間にわ
たるビルディング機器の推定信頼性を使用して、最適化期間の各時間ステップにおけるビ
ルディング機器のデバイスの故障確率を決定することを含む。デバイスの故障確率に基づ
いて、最適化にわたる合計コストに対する故障の影響を推定することができる。合計コス
トに対する故障の影響を推定するために、機器故障に関連するコストを決定することがで
きる。特に、ビルディングデバイスのメンテナンス/交換を実施するためのコスト及び/
又はビルディングデバイスの故障に関連する機会コストを決定することができる。機会コ
ストは、ビルディングデバイスの故障により生じるメンテナンス/交換コスト以外の任意
のコストを含むことができる。例えば、HVACシステムのヒータが故障した場合、ヒー
タが位置されているスペースを(例えば、居住者の安全のために)一時的に閉鎖する必要
があり得る。スペースの閉鎖により、居住者による他のスペースの賃借、貴重な会議のキ
ャンセルなどに関連するコストが発生する可能性があり、それらすべては、最適化期間に
わたるビルディングシステムの合計コストに影響を及ぼす可能性がある追加のコスト及び
/又は機会の損失につながる。
【0363】
ステップ2216は、時間ステップiでの様々なリスクコスト(例えば、メンテナンス
/交換コストと機会コストとの合計)に関連するコストCrisk,iを決定することを
含むことができる。ステップ2204及び2206でそれぞれ決定/推定されたビルディ
ング機器の機器性能情報及び/又は推定効率及び信頼性に基づいて劣化の状態を推定する
ことができる。推定される劣化状態が増すにつれて、ビルディングデバイスの故障確率も
上昇し得る。
【0364】
すべてのビルディングデバイスの劣化状態を推定するために、ステップ2216は、例
えば、各ビルディングデバイスの現在の推定信頼性と、各ビルディングデバイスが最初に
設置されたときに基づく最適な信頼性とを比較することを含むことができる。Crisk
,iの値を決定するために、ステップ2216は、各時間ステップiで各ビルディングデ
バイスに関連する故障コストを推定することも含むことができる。いくつかの実施形態で
は、ビルディングデバイスの故障コストは、ユーザによって推定される。いくつかの実施
形態では、ビルディングデバイスの故障コストは、例えば、ビルディングデバイスの場所
、ビルディングデバイスがスペースの状況にどのように影響を及ぼすかなど、様々な情報
に基づいてシステム(例えば、MPMシステム602)によって推定される。
【0365】
時間ステップiに関する各ビルディングデバイスの故障確率及び故障コストに基づいて
、Crisk,iは、以下の式によって決定することができる。
risk,i=Cfail,i fail,i(δ
ここで、Pfail,i(δ)は、劣化状態δでの、追跡されるビルディング機器の
各ビルディングデバイスに関する故障確率のベクトルであり、Cfail,iは、各ビル
ディングデバイスの故障のコストを定義する行列である。さらに、Costrisk(す
なわち最適化期間にわたる合計リスクコスト)の値は、以下の式によって決定することが
できる。
【数59】
ここで、hは、最適化期間での時間ステップの総数である。いくつかの実施形態では、ス
テップ2216は、故障リスク予測器946によって実施される。
【0366】
プロセス2200は、いくつかの実施形態によれば、ビルディング機器の信頼性を向上
させる雑多な修理に関連するコストcostmiscを定義すること(ステップ2218
)を含むものとして示されている。雑多な修理は、ビルディング機器の信頼性を向上させ
るために追加の修理オプションを提供する。いくつかの実施形態では、雑多な修理は、ビ
ルディング機器の信頼性を向上させるが、ビルディング機器の効率を改善しない。雑多な
修理は、ステップ2220で以下に述べる最適化中に特に有用であり、目的関数に対する
Costriskの影響を軽減することができる。ビルディング機器の信頼性が低下する
につれてCostriskが増加するため、信頼性を向上させるための雑多な修理は、C
ostmain及びCostcapによって定義されるメンテナンス及び交換活動に対す
る有利な代替策を提供することができる。いくつかの実施形態では、Costmisc
関連する雑多な修理がCostmain及び/又はCostcapと共に組み込まれる。
いくつかの実施形態では、ステップ2218は、雑費予測器948によって実施される。
【0367】
プロセス2200は、いくつかの実施形態によれば、コストCostop、Cost
ain、Costcap、Costrisk及びCostmiscを含む目的関数を最適
化して、ビルディング機器のための最適なメンテナンス戦略を決定すること(ステップ2
220)を含むものとして示されている。いくつかの実施形態では、ステップ2220は
図10を参照して述べたプロセス1000のステップ1016と同様及び/又は同一で
ある。最適なメンテナンス戦略は、ビルディング機器に関するメンテナンス及び/又は交
換を含むことができることを理解すべきである。Costriskを目的関数に組み込む
ことにより、故障確率が低く保たれることを保証するために、ビルディング機器の特定の
ビルディングデバイスのメンテナンス/交換を優先させることができる。目的関数の結果
を最適化(例えば、減少)するために、故障に関連する高い機会コストを伴うビルディン
グデバイスは、高い機会コストを伴うビルディングデバイスの故障確率が低く保たれる(
例えば、1%、5%など)ことを保証するために、追加及び/又はより頻繁なメンテナン
ス/交換を受けるように目的関数によって決定することができる。
【0368】
Costmiscが目的関数に含まれており、且つ/又は雑多な修理がCostmai
及び/若しくはCostcapに含まれている場合、目的関数の最適化は、目的関数に
対するCostriskの影響を低減するために特定の雑多な修理を実施すべきであると
判断することがある。それぞれの雑多な修理は、関連のビルディングデバイスの推定信頼
性を向上させ、それにより関連のビルディングデバイスに関するCostriskの影響
を低減することができる。有利には、雑多な修理は、メンテナンス及び/又は交換活動よ
りも安価であり得、したがってCostriskを低減するためのより安価な代替策を提
供することができる。ステップ2220では、最適化は、Costmisc、Cost
ain及び/又はCostcapによって定義される各修復活動を考慮に入れて、最適化
期間にわたってコストを最小化する最適なメンテナンス及び交換スケジュールを決定する
ことができる。
【0369】
いくつかの実施形態では、最適化は、リスク回避値によって制約される。リスク回避値
は、ユーザ及び/又はシステムによって設定することができ、特定のビルディングデバイ
スに関する最大許容故障確率を示す。例えば、ユーザは、故障コストが1,000ドル以
上のビルディングデバイスに関して、リスク回避値を20%に設定することができる。リ
スク回避値により、最適化は、1,000ドル以上の推定故障コストを有する任意のビル
ディングデバイスが最適化期間を通して20%未満の故障確率を有するように、最適なメ
ンテナンス及び交換スケジュールを決定することができる。実質的に、リスク回避値は、
特定のビルディングデバイスの故障確率が特定の値未満に保たれることをビルディング機
器のメンテナンス及び/又は交換に関連する決定変数が保証するように、最適化に対して
制約を課すことができる。いくつかの実施形態では、ステップ2220は、目的関数オプ
ティマイザ940によって実施される。
【0370】
プロセス2200は、いくつかの実施形態によれば、最適なメンテナンス戦略に基づい
てビルディング機器の効率及び信頼性を更新すること(ステップ2222)を含むものと
して示されている。いくつかの実施形態では、ステップ2222は、図10を参照して述
べたプロセス1000のステップ1018と同様及び/又は同一である。いくつかの実施
形態では、ステップ2222は、MPMシステム602によって実施される。
【0371】
可変冷媒流量システムのモデル予測的メンテナンス
【0372】
ここで、図23A~23Bを参照すると、いくつかの実施形態によれば、可変冷媒流量
(VRF)システム2300が示されている。VRFシステム2300は、複数の屋外V
RFユニット2302及び複数の屋内VRFユニット2304を含むものとして示されて
いる。屋外VRFユニット2302は、ビルディングの外に位置させることができ、冷媒
を加熱又は冷却するように動作することができる。屋外VRFユニット2302は、電気
を消費して、冷媒を液相、気相及び/又は過熱気相間で変換することができる。屋内VR
Fユニット2304は、ビルディング内の様々なビルディングゾーン全体にわたって分散
させることができ、加熱又は冷却された冷媒を屋外VRFユニット2302から受け取る
ことができる。各屋内VRFユニット2304は、屋内VRFユニットが位置されている
特定のビルディングゾーンに関する温度制御を提供することができる。
【0373】
VRFシステムの主な利点は、いくつかの屋内VRFユニット2304が冷却モードで
動作することができ、他の屋内VRFユニット2304が加熱モードで動作できることで
ある。例えば、屋外VRFユニット2302及び屋内VRFユニット2304は、加熱モ
ード、冷却モード又はオフモードでそれぞれ動作することができる。各ビルディングゾー
ンは、個別に制御することができ、異なる温度設定値を有することができる。いくつかの
実施形態では、各ビルディングは、ビルディングの外(例えば、屋上)に位置された最大
3つの屋外VRFユニット2302と、ビルディング全体にわたって(例えば、様々なビ
ルディングゾーン内に)分散された最大128個の屋内VRFユニット2304とを有す
る。
【0374】
VRFシステム2300には多くの異なる構成が存在する。いくつかの実施形態では、
VRFシステム2300は、各屋外VRFユニット2302が単一の冷媒戻りライン及び
単一の冷媒出口ラインに接続する2パイプシステムである。2パイプシステムでは、加熱
又は冷却された冷媒の1つのみを、単一の冷媒出口ラインを通して提供することができる
ため、すべての屋外VRFユニット2302が同じモードで動作する。他の実施形態では
、VRFシステム2300は、各屋外VRFユニット2302が冷媒戻りライン、高温冷
媒出口ライン及び低温冷媒出口ラインに接続する3パイプシステムである。3パイプシス
テムでは、2つの冷媒出口ラインを通して加熱及び冷却の両方を同時に提供することがで
きる。
【0375】
いくつかの実施形態では、VRFシステム2300は、図6~9を参照して述べたモデ
ル予測的メンテナンス(MPM)システム602と統合され得る。いくつかの実施形態で
は、MPMシステム602は、VRFシステム2300及びシステム内の任意の/すべて
の構成要素に関する最適なメンテナンス戦略を決定するように構成され得る。いくつかの
実施形態では、MPMシステム602は、以下と同様及び/又は同一のVRFシステム2
300及びその任意の/すべての構成要素に関する最適な購入/交換戦略を決定するよう
に構成され得る。
【0376】
いくつかの実施形態では、MPMシステム602は、各構成要素の現在の劣化状態及び
使用推定(例えば、負荷予測及び性能曲線)について、VRFシステム2300の構成要
素の一部及び/又はすべてを監視するように構成され得る。例えば、MPMシステム60
2は、各屋内VRFユニット2304及び各屋外VRFユニット2302を監視すること
ができる。各VRFユニットは、様々な要因(例えば、VRFユニットが設置されたとき
、VRFユニットが使用される頻度、VRFユニットが実行される電力の平均レベルなど
)により、異なる現在の劣化状態を有し得る。現在の劣化状態及び使用推定に基づいて、
MPMシステム602は、動作コスト、メンテナンスコスト及び/又は資本コストを予測
することが可能であり得る。いくつかの実施形態では、これらの予測は、図10を参照し
て述べたプロセス1000と同様及び/又は同一のプロセスによって行われる。
【0377】
いくつかの実施形態では、上記の様々なコストが予測された後、最適化期間に関して目
的関数Jが生成され得る。目的関数Jが生成された後、MPMシステム602は、目的関
数Jを最適化(すなわち最小化)するように構成することができる。いくつかの実施形態
では、この最適化は、VRFシステム2300の各構成要素について決定変数の最適値を
決定することができる。例えば、1つの決定変数は、ビルディングゾーンが適切に冷却さ
れていないことに応答して、屋内VRFユニット2304が最適化期間中の特定の時間ス
テップにおいてメンテナンスを実施される必要があり得ることを示すことがある。別の決
定変数は、屋外VRFユニット2302が設置されたときよりもさらに50%多くの電力
を消費しているという決定に応答して、最適化期間中の特定の時間ステップにおいて屋外
VRFユニット2302を交換する必要があり得る(すなわち資本コストが生じる)こと
を示すことがある。
【0378】
いくつかの実施形態では、VRFシステム2300のメンテナンスを管理するMPMシ
ステム602は、VRFシステム2300に関する最適なメンテナンス戦略を決定すると
きに予算制約を実施するように構成され得る。予算制約は、様々な実施形態によれば、ハ
ード予算制約、ソフト予算制約又はハード予算制約とソフト予算制約との何らかの組合せ
を含むことがある。いくつかの実施形態では、ハード予算制約は、最適化期間中のある期
間(例えば、予算期間)に関するメンテナンス支出が超過されないようにする最大メンテ
ナンス予算であり得る。いくつかの実施形態では、ハード予算制約は、図14Aを参照し
て述べたハード予算制約と同様及び/又は同一であり得る。いくつかの実施形態では、ソ
フト予算制約は、メンテナンス予算と最適化期間中のある期間に関してメンテナンスに費
やされた実際の額との間の差について、目的関数Jの最適化中に追加することができるペ
ナルティコストを含むことがある。いくつかの実施形態では、ソフト予算制約は、図14
Aを参照して述べたソフト予算制約と同様及び/又は同一であり得る。いくつかの実施形
態では、VRFシステム2300に関する最適なメンテナンス戦略を決定する一方、ハー
ド予算制約及び/又はソフト予算制約は、目的関数Jを最適化しながら制約内に収まるよ
うに決定変数の値を変えることができる。
【0379】
例示的実施形態の構成
【0380】
様々な例示的実施形態に示したようなシステム及び方法の構成及び配置は、例示的なも
のにすぎない。本開示ではいくつかの実施形態のみを詳細に述べているが、多くの変更形
態が可能である(例えば、様々な要素のサイズ、寸法、構造、形状及び広さ、パラメータ
の値、取付け配置、材料の使用、色、向きなど)。例えば、要素の位置が逆にされ得るか
、又は他の方法で変更され得、個々の要素の性質若しくは数又は位置が変化又は変更され
得る。したがって、そのような変更形態は、すべて本開示の範囲内に含まれることが意図
される。任意のプロセス又は方法ステップの順序又は並びは、代替実施形態に従って変更
されるか又は並べ替えられ得る。本開示の範囲から逸脱することなく、例示的実施形態の
設計、動作条件及び配置に対する他の置換形態、修正形態、変更形態及び省略形態がなさ
れ得る。
【0381】
本開示は、様々な動作を達成するための方法、システム及び任意の機械可読媒体でのプ
ログラム製品を企図する。本開示の実施形態は、既存のコンピュータプロセッサを使用し
て実装されるか、この目的若しくは別の目的で組み込まれた適切なシステムのための専用
コンピュータプロセッサによって実装されるか、又は有線システムによって実装され得る
。本開示の範囲内の実施形態は、機械実行可能命令又はデータ構造を担持又は記憶するた
めの機械可読媒体を備えるプログラム製品を含む。そのような機械可読媒体は、汎用若し
くは専用コンピュータ又はプロセッサを備える他の機械によってアクセスすることができ
る任意の利用可能な媒体であり得る。一例として、そのような機械可読媒体は、RAM、
ROM、EPROM、EEPROM、CD-ROM若しくは他の光ディスク記憶装置、磁
気ディスク記憶装置若しくは他の磁気記憶デバイス又は任意の他の媒体を含むことができ
、そのような媒体は、機械実行可能命令又はデータ構造の形態での所望のプログラムコー
ドを担持又は記憶するために使用することができ、さらに汎用若しくは専用コンピュータ
又はプロセッサを備える他の機械によってアクセスすることができる。上記の媒体の組合
せも機械可読媒体の範囲に含まれる。機械実行可能命令は、例えば、汎用コンピュータ、
専用コンピュータ又は専用処理機械に特定の機能若しくは機能群を実施させる命令及びデ
ータを含む。
【0382】
図面は、方法ステップの特定の順序を示しているが、ステップの順序は、図示されるも
のと異なり得る。また、2つ以上のステップが並行して又は一部並行して実施され得る。
そのような変形形態は、選択されるソフトウェア及びハードウェアシステム並びに設計者
の選択に依存する。そのような変形形態は、すべて本開示の範囲内にある。同様に、ソフ
トウェア実装は、様々な接続ステップ、処理ステップ、比較ステップ及び決定ステップを
達成するために規則ベースの論理及び他の論理を備えた標準的なプログラミング技法によ
って達成することができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14A
図14B
図15
図16
図17
図18
図19A
図19B
図19C
図20
図21
図22
図23A-23B】