(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-25
(45)【発行日】2024-05-08
(54)【発明の名称】工作機械の振動特性の変化を計測する方法および装置
(51)【国際特許分類】
B23Q 17/00 20060101AFI20240426BHJP
B23Q 15/12 20060101ALI20240426BHJP
B23Q 17/12 20060101ALI20240426BHJP
G01H 3/10 20060101ALI20240426BHJP
【FI】
B23Q17/00 Z
B23Q15/12 A
B23Q17/12
G01H3/10
(21)【出願番号】P 2020047845
(22)【出願日】2020-03-18
【審査請求日】2023-02-15
(73)【特許権者】
【識別番号】504139662
【氏名又は名称】国立大学法人東海国立大学機構
(73)【特許権者】
【識別番号】000000974
【氏名又は名称】川崎重工業株式会社
(74)【代理人】
【識別番号】100105924
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】社本 英二
(72)【発明者】
【氏名】早坂 健宏
(72)【発明者】
【氏名】大槻 直洋
【審査官】小川 真
(56)【参考文献】
【文献】特開2012-200844(JP,A)
【文献】特開2018-126837(JP,A)
【文献】特開2014-121741(JP,A)
【文献】特開2017-094463(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q 17/00
B23Q 15/12
B23Q 17/12
G01H 3/10
(57)【特許請求の範囲】
【請求項1】
切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する方法であって、
機械構造の共振周波数を保持するステップと、
切削加工時、保持している共振周波数付近の周波数で機械構造を加振する回転数で、前記主軸を回転するステップと、
複数の異なる回転数で前記主軸を回転したときの機械構造の強制振動応答を取得するステップと、
取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出するステップと、
を有することを特徴とする振動特性変化の計測方法。
【請求項2】
前記共振周波数の変化量および減衰の大きさの少なくとも一方を導出するステップは、複数の強制振動応答から、振動変位がピークとなる周波数および減衰比の少なくとも一方を特定するステップを含む、
ことを特徴とする請求項1に記載の振動特性変化の計測方法。
【請求項3】
前記共振周波数の変化量は、(特定した周波数/保持している共振周波数)として算出される、
ことを特徴とする請求項2に記載の振動特性変化の計測方法。
【請求項4】
導出された共振周波数の変化量および減衰の大きさの少なくとも一方は、安定限界線図の導出に利用される、
ことを特徴とする請求項1から3のいずれかに記載の振動特性変化の計測方法。
【請求項5】
切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する装置であって、
機械構造の共振周波数を保持する共振周波数保持部と、
前記工作機械の切削加工中に、保持している共振周波数付近の複数の異なる周波数で機械構造を加振したときの機械構造の強制振動応答を取得する振動応答取得部と、
取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出する変化量導出部と、
を備えることを特徴とする計測装置。
【請求項6】
切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測するコンピュータに、
前記工作機械の切削加工中に、コンプライアンス伝達関数における共振周波数付近の複数の異なる周波数で機械構造を加振したときの機械構造の強制振動応答を取得する機能と、
取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出する機能と、
を実現させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、工作機械の機械構造の振動特性の変化を計測する技術に関する。
【背景技術】
【0002】
工作機械の重要な性能の一つはびびり振動安定性の高さであり、安定限界が高いほど、大きな切込み量で高能率な加工が可能となる。加工現場では、再生びびりやモードカップリングびびりなどの対策として安定限界線図が工作機械ごとに作成され、加工の開始前、オペレータは安定限界線図を利用して、高能率な加工条件を設定する。
【0003】
図1は、びびり振動を伴う切削加工プロセスのブロック線図を示す。
図1に示すブロック線図は、過去の振動変位が現在の振動変位にフィードバックされる状態を表現する。非特許文献1は、工作機械の機械構造のコンプライアンス伝達関数および比切削抵抗を用いて
図1に示す閉ループの特性方程式を解くことで、安定限界線図を理論的に求める手法を開示する。
【0004】
加工現場に新しい工作機械が搬入されると、その稼働開始前にオペレータは、工具および被削材を含む機械構造のコンプライアンス伝達関数をハンマリング試験によって測定し、比切削抵抗を動力計を用いて測定する。オペレータはコンピュータ上で安定限界線図を作成するソフトウェアを起動し、測定したコンプライアンス伝達関数および比切削抵抗を含む各種パラメータを入力すると、当該ソフトウェアが、安定限界線図を作成して記憶装置に保存する。加工条件の設定時、オペレータは保存した安定限界線図をディスプレイに表示させて、高能率な加工を実現する主軸回転速度および切込み量を探し出す。
【0005】
図2は、安定限界線図の一例を示す。安定限界線図の横軸は主軸回転速度[rpm]、縦軸は工具の切込み量[mm]を表し、臨界曲線が、再生びびり振動の安定領域と不安定領域の境界を示す。この安定限界線図において、黒丸は、びびり振動が発生する可能性の高い加工条件を、白丸は、びびり振動が発生しない可能性の高い加工条件を示す。びびり振動安定性が高い回転数領域は「安定ポケット」と呼ばれ、回転数が高くなるほど、安定ポケットは広くなる。たとえばアルミニウム合金などの材料を大量に高速で削り出す航空機の機体部品製造において、安定ポケットの位置を正しく示す安定限界線図は、高能率な加工条件の設定に必要となる。
【先行技術文献】
【非特許文献】
【0006】
【文献】"切削加工におけるびびり振動の発生機構と抑制", 社本英二, 電気製鋼, 第82巻2号(2011) pp.143-155
【発明の概要】
【発明が解決しようとする課題】
【0007】
非特許文献1に開示されるように、安定ポケットに対応する回転数は、コンプライアンス伝達関数における共振周波数と関係しており、ミリングのような多刃工具での切削加工では、その共振周波数を工具の刃数および1以上の整数で割った値となることが知られている。そのため安定限界線図の安定ポケットが正確な回転数を示すためには、コンプライアンス伝達関数における共振周波数が、主軸回転時の共振周波数と一致していることが必要となる。
【0008】
しかしながら、主軸が静止した状態で測定したコンプライアンス伝達関数は、実際に主軸が回転しているときのコンプライアンス伝達関数に必ずしも一致しない。主軸の回転時(特に高速回転時)、ベアリングの予圧が遠心力や熱変形によって変化するため、主軸の静止時と回転時とで共振周波数がずれ、振動特性は変化する。
【0009】
また回転工具を交換すると、交換の前後でコンプライアンス伝達関数が変化することがある。たとえば回転工具を工具自動交換装置で交換した場合、交換前と比べて接触状態に変化があれば、交換の前後で接触剛性や接触部での摩擦減衰が異なるようになる。また機械構造の経年変化により可動部の摩耗等が進むことで、機械構造の共振周波数は徐々に変化する。
【0010】
上記したように、安定ポケットに対応する回転数は、コンプライアンス伝達関数における共振周波数により決定される。そのため実際の主軸回転時の共振周波数が、コンプライアンス伝達関数における共振周波数からずれていると、安定限界線図における安定ポケットの位置が正確でないために、オペレータが、びびり振動を生じうる加工条件を選択する可能性が生じる。そこで工作機械の機械構造の振動特性の変化を計測する技術の開発が望まれている。
【0011】
本開示はこうした状況に鑑みてなされており、その目的とするところは、工作機械の機械構造の振動特性の変化を計測する技術を提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明のある態様は、切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する方法に関する。この方法は、機械構造の共振周波数を保持するステップと、切削加工時、保持している共振周波数付近の周波数で機械構造を加振する回転数で、主軸を回転するステップと、複数の異なる回転数で主軸を回転したときの機械構造の強制振動応答を取得するステップと、取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出するステップとを有する。
【0013】
本発明の別の態様は、切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する装置に関する。この計測装置は、機械構造の共振周波数を保持する共振周波数保持部と、工作機械の切削加工中に、保持している共振周波数付近の複数の異なる周波数で機械構造を加振したときの機械構造の強制振動応答を取得する振動応答取得部と、取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出する変化量導出部と、を備える。
【0014】
なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
【発明の効果】
【0015】
本開示によれば、工作機械の機械構造の振動特性の変化を計測する技術を提供することが可能となる。
【図面の簡単な説明】
【0016】
【
図1】切削加工プロセスのブロック線図を示す図である。
【
図3】加工システムの機能ブロックを示す図である。
【
図4】ハンマリング試験によって測定されたコンプライアンス伝達関数の例を示す図である。
【
図5】(a)は、回転工具で加工する際に生じる切削力と回転角の関係を示し、(b)は、切削力の周期波形をフーリエ変換した周波数領域の切削力を示す図である。
【
図6】各周波数成分に対して導出された変位量を示す図である。
【発明を実施するための形態】
【0017】
図3は、実施形態の加工システム1の機能ブロックを示す。加工システム1は、切削工具または被削材が取り付けられた主軸を回転させる回転機構を備える工作機械2と、工作機械の機械構造の振動特性の変化を計測する計測装置3と、コンプライアンス伝達関数における共振周波数を用いて安定限界線図を作成する安定限界線図作成装置4とを備える。実施形態で、計測装置3および安定限界線図作成装置4は、それぞれ工作機械2から分離した構成として示すが、計測装置3および安定限界線図作成装置4の少なくとも一方が、工作機械2の機能として工作機械2に組み込まれてもよい。
【0018】
振動センサ5は、工作機械2の機械構造が加振されたときの強制振動応答を示す振動データを、計測装置3に出力する。振動センサ5は、振動変位を検出するギャップセンサであってよく、振動の加速度を検出する加速度センサであってよく、振動の速度を検出する速度センサ(たとえばレーザドップラ速度計)であってよい。また振動センサ5は、振動を推定するための物理量(力、トルク、モータ電流、ひずみ、音など)を測定するセンサであってもよい。計測装置3は、共振周波数保持部10、回転数出力部11、振動応答取得部12および変化量導出部13を有する。
【0019】
図3において、さまざまな処理を行う機能ブロックとして記載される各要素は、ハードウェア的には、回路ブロック、メモリ、その他のLSIで構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
【0020】
図4は、ハンマリング試験によって測定されたコンプライアンス伝達関数の例を示す。このコンプライアンス伝達関数は、工作機械の稼働開始前に、主軸が静止した状態でオペレータがハンマで機械構造を加振することで取得される。
図4に示すコンプライアンス伝達関数において、共振周波数は1000Hzである。共振周波数保持部10は、コンプライアンス伝達関数における共振周波数の値を保持する。共振周波数保持部10は、コンプライアンス伝達関数そのものを保持してもよく、いずれにしても共振周波数が1000Hzであることを特定できる情報を保持していればよい。
【0021】
実施形態では、工作機械2が実際の加工条件またはそれに近い条件で被削材を切削するときに発生する切削力を、機械構造を強制加振する加振力として取り扱うことで、計測装置3が、機械構造の振動特性の変化を同定する。振動センサ5は、工作機械2が実際に切削加工を行っているときの機械構造の振動データを計測装置3に出力し、計測装置3は、振動データにもとづいて振動特性の変化、具体的には共振周波数の変化量を計測する。以下、エンドミル工具のような多刃の回転工具を使用したときの振動特性の変化の計測手法について説明する。
【0022】
図5(a)は、回転工具で加工する際に生じる切削力と回転角の関係の例を示す。実施形態の工作機械2は、主軸を数万rpmの回転数で回転する能力をもち、たとえばアルミニウム合金などの材料を大量に高速で削り出す航空機の機体部品製造に利用される。この例ではエンドミル工具の刃数を2枚、主軸回転数を30000rpmとして、主軸回転周波数を500Hz、刃の通過周波数を1000Hzとする高速加工を実施する。
【0023】
図5(b)は、
図5(a)に示す切削力の周期波形をフーリエ変換した周波数領域の切削力を示す。刃の通過周波数が1000Hzであるため、切削力には、1000Hzの整数倍の周波数成分が存在する。なお基本的には1000Hzの整数倍以外の周波数成分の切削力は0となる。このことは、主軸回転数を30000rpmとすることで、切削加工中に工作機械2の機械構造が、1000Hzの基本周波数成分とその高調波成分で加振されることを意味する。
【0024】
振動センサ5は、1000Hzの基本周波数成分とその高調波成分を含む加振力が機械構造を強制振動させたときの振動データを検出して、計測装置3に出力する。振動センサ5により検出された振動データは、切削加工中にメモリ(図示せず)に記録されて、切削加工の終了後に、計測装置3に供給されてよい。
【0025】
実施形態で、主軸回転数が30000rpmであるときの切削力の基本周波数は、
図4に示すコンプライアンス伝達関数における共振周波数に一致している。そのためコンプライアンス伝達関数の共振周波数が、主軸回転時の共振周波数に近ければ、機械構造の振動は、切削力の基本周波数で支配的となり、測定は容易である。正確には周波数分析(一般にはフーリエ変換)を行い、着目する共振周波数に近い成分の振動の大きさを評価してよい。
【0026】
切削加工では、切削速度が少し変化しても、切削力は大きく変化しないことが知られている。そのため主軸回転数を少し変化させても、その他の加工条件、すなわち一刃あたりの送り量、軸方向の切込み量および半径方向の切込み量等を変えなければ、
図5(a)の切削力の周期波形はほとんど変化しない。そのため主軸回転数を30000rpm付近で変化させたとき、
図5(b)に示す刃の通過周波数の整数倍成分の切削力は、振幅は変化せずに、周波数のみが変化する。
【0027】
たとえば主軸回転数が28500rpmのとき、刃の通過周波数の1倍成分の振幅は約106Nのまま、周波数が950Hzとなる。刃の通過周波数の2倍成分についても同様であり、主軸回転数が28500rpmのとき、刃の通過周波数の2倍成分の振幅は約68Nのまま、周波数が1900Hzとなる。つまり刃の通過周波数のN倍成分の切削力は、振幅は変化せず、周波数が(950×N)Hzとなる。そのため工作機械2が主軸を28500rpmで回転させると、30000rpmで回転させたときと同じ振幅の切削力で被削材を切削しつつ、950Hzの基本周波数成分とその高調波成分を含む加振力で、機械構造を強制振動させることができる。
【0028】
主軸回転数を上げた場合も同様であり、主軸回転数が31500rpmのとき、刃の通過周波数の1倍成分の振幅は約106Nのまま、周波数が1050Hzとなり、刃の通過周波数の2倍成分の振幅は約68Nのまま、周波数が2100Hzとなる。つまり刃の通過周波数のN倍成分の切削力は、振幅は変化せず、周波数が(1050×N)Hzとなる。そのため工作機械2が主軸を31500rpmで回転させると、30000rpmで回転させたときと同じ振幅の切削力で被削材を切削しつつ、1050Hzの基本周波数成分とその高調波成分を含む加振力で、機械構造を強制振動させることができる。
【0029】
実施形態では、工作機械2が主軸を高速回転することが可能であることを利用して、コンプライアンス伝達関数の共振周波数の近傍で、複数の異なる刃の通過周波数を設定し、工作機械2の機械構造を共振周波数近傍の周波数で加振する。計測装置3は、振動センサ5から振動データを取得して、稼働時の機械構造における共振周波数を測定する。
【0030】
図4に示す共振周波数と、稼働時の機械構造における共振周波数とが一致しない理由としては、主軸の静止時と回転時におけるベアリングの予圧の変化や、機械構造における経年変化、また回転工具の交換による接触状態の変化等があげられる。また、同じ型番の工作機械、ホルダー、工具を使用しても、それらのいずれかあるいはすべてが変わると、個体差(特に接触状態の違い)によって共振周波数は変化する。
【0031】
一方、静止時の機械構造における共振周波数と稼働時の機械構造における共振周波数が一致しないと言っても、その差は小さく、振動モードの形状はほとんど変化しないものと考えられる。なお、切削プロセスの剛性(切込みが増すほど、工具を押し戻す方向の切削力が増すため、切削プロセスが付加的な剛性として働く現象)も共振周波数の変化(通常は増大)に寄与するが、その影響については後述する。
【0032】
このことを利用して加工システム1では、工作機械2が、コンプライアンス伝達関数における共振周波数付近の周波数で機械構造を加振する複数の異なる回転数で主軸を回転し、計測装置3が、複数の異なる周波数の加振力で機械構造が加振されているときの強制振動応答を取得し、取得した複数の強制振動応答から、共振周波数の変化量を導出する。計測装置3は、共振周波数付近のコンプライアンスの変化から、着目する振動モードの減衰の大きさ(例えば減衰比)を導出してもよい。
【0033】
切削加工中、振動センサ5は、機械構造の強制振動応答を示す振動データを取得する。機械構造における振動モードが既知であることを前提に、振動センサ5は、その振動モードの節でない位置であって、実加工の妨げにならない位置に固定されることが好ましい。振動応答取得部12は、振動センサ5から振動データを取得すると、既知の振動モードに基づいて、振動モードの各位置(工具先端の加工点を含む)の振幅を推定してもよい。
【0034】
振動特性の変化を測定する際、回転数出力部11は、工作機械2に設定する主軸回転数を出力する。回転数出力部11は、ディスプレイに、設定するべき主軸回転数を表示し、オペレータが、この表示を見て、工作機械2に主軸回転数を設定してよい。回転数出力部11は、共振周波数保持部10が保持している共振周波数の付近で加振力を機械構造に提供するように、主軸回転数を導出する。以下、導出する複数の異なる主軸回転数と、その主軸回転数による切削力の基本周波数との関係の例を示す。
・ 27000rpm - 900Hz
・ 27750rpm - 925Hz
・ 28500rpm - 950Hz
・ 29250rpm - 975Hz
・ 30000rpm - 1000Hz
・ 30750rpm - 1025Hz
・ 31500rpm - 1050Hz
・ 32250rpm - 1075Hz
・ 33000rpm - 1100Hz
【0035】
回転数出力部11は、共振周波数の付近の加振力として、共振周波数の0.9倍以上、且つ1.1倍以下の範囲に含まれる周波数の加振力を機械構造に提供するように、主軸回転数を導出することが好ましい。この例で回転数出力部11は、9つの主軸回転数を導出しているが、共振周波数前後の所定の範囲内で、10以上の主軸回転数を導出してもよい。
【0036】
オペレータは、回転数出力部11がディスプレイに表示した主軸回転数を工作機械2に設定し、工作機械2は、設定された回転数で主軸を回転する。上記の例でオペレータは、9回の切削工程で、9つの主軸回転数を工作機械2に設定する。なお1回の切削工程中で主軸回転速度を変動してよい場合には、オペレータは、1回の切削工程中に、27000rpm、27750rpm、28500rpm、29250rpm、30000rpm、30750rpm、31500rpm、32250rpm、33000rpmの順に主軸回転速度を変化させることを、工作機械2に設定してもよい。
【0037】
振動応答取得部12は、工作機械2の切削加工中に、共振周波数の付近の複数の異なる周波数で機械構造を加振したときの機械構造の強制振動応答を、振動センサ5から取得する。計測装置3による計測機能が工作機械2に組み込まれている場合には、工作機械2が、回転数出力部11から出力される回転数を、主軸回転数として自律的に設定し、振動応答取得部12が、複数の異なる回転数で主軸を回転したときの機械構造の強制振動応答を、振動センサ5から取得してよい。変化量導出部13は、取得した複数の回転数における強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出する機能を備える。
【0038】
同じ加工を繰り返して行う工程で経年変化を監視する場合には、その加工中に複数の異なる主軸回転数で加工する箇所を加工プログラム内に設定し、それらの箇所を加工するタイミングに合わせて計測装置3が機械構造の共振振動応答を自動的に計測するようにしてもよい。その場合、計測対象とする箇所の加工においては、主軸回転数以外の加工条件は同じであることが望ましい。
【0039】
まず工作機械2は主軸を27000rpmで回転し、工作機械2の機械構造を900Hzの基本周波数成分とその高調波成分で加振する。振動センサ5は、加振された機械構造の強制振動応答を示す振動データを検出し、振動応答取得部12が、振動データを取得する。変化量導出部13は振動データから、900Hzの基本周波数成分とその高調波成分に対する変位量を導出する。この変位量は、共振周波数に近い900Hzの基本周波数成分に実質的に依存する値となる。なお正確には、フーリエ変換を行って900Hzの周波数成分による変位量を抽出することが望ましい。
【0040】
次に工作機械2は主軸を27750rpmで回転し、工作機械2の機械構造を925Hzの基本周波数成分とその高調波成分で加振する。振動センサ5は、加振された機械構造の強制振動応答を示す振動データを検出し、振動応答取得部12が、振動データを取得する。変化量導出部13は振動データから、925Hzの基本周波数成分とその高調波成分に対する変位量を導出する。この変位量は、共振周波数に近い925Hzの基本周波数成分に実質的に依存する値となる。なお正確には、フーリエ変換を行って925Hzの周波数成分による変位量を抽出することが望ましい。
【0041】
その後、工作機械2は、主軸を28500rpm、29250rpm、30000rpm、30750rpm、31500rpm、32250rpm、33000rpmで回転し、変化量導出部13は、それぞれの回転数で検出された振動データから変位量を導出する。
【0042】
図6は、各周波数成分に対して導出された変位量を示す。変化量導出部13は、複数の強制振動応答から導出される変位量にもとづいて、振動変位がピークとなる周波数を特定する。この例では975Hzの振動変位をピークとしているが、回転数出力部11は、さらに29250rpm近傍の主軸回転数を出力して、オペレータが工作機械2に設定し、変化量導出部13が、振動応答取得部12で取得された強制振動応答から、より正確なピーク周波数を導出するようにしてもよい。このピーク周波数は、主軸回転時の機械構造の共振周波数であり、変化量導出部13は、共振周波数保持部10に保持された共振周波数(1000Hz)の変化量を算出する。変化量は変化の倍率、つまり(特定したピーク周波数/保持している共振周波数)として算出されてよく、この例では、共振周波数が975/1000倍になったことが導出される。
【0043】
変化量導出部13は、振動モードの減衰の大きさを導出してもよい。変化量導出部13は、減衰の大きさとして、たとえば半値幅法により減衰比を同定してもよい。半値幅法では、振動(この場合は変位量)の大きさがピーク値の√2分の1倍になる周波数の幅Δfとピークとなる周波数fpから、減衰比ζが次式によって近似的に算出できることが知られている。
【数1】
変化量導出部13は、変位量がピーク周波数fp(975Hz)の変位量の√2分の1倍になる2つの周波数を特定して、その幅Δfを導出することで、上記式から減衰比ζを算出してよい。
【0044】
変化量導出部13は、共振周波数保持部10に保持されている共振周波数を、特定したピーク周波数で更新するとともに、導出した変化量を、安定限界線図作成装置4に供給してよい。安定限界線図作成装置4は、作成済みの安定限界線図に対して、横軸方向に変化倍率(975/1000)を乗算することで、安定ポケットの位置を正確にした安定限界線図を再作成してよい。変化量導出部13が減衰比ζも安定限界線図作成装置4に供給する場合、安定限界線図作成装置4は、減衰の変化も反映した安定限界線図を再作成してよい。
【0045】
実施形態において、機械構造の特性の変化を測定するための加工は、コンプライアンス伝達関数の変化を測定する目的で行うものであってもよいし、実際の生産として行われる加工であってもよい。後者の場合には、興味ある周波数(変化を監視したい振動モードの共振周波数)付近で、複数の異なる刃の通過周波数で加工を行い、必要な周波数分解能で強制振動応答のピーク値が検出されるまで刃の通過周波数を変化させることが好ましい。その際に加工条件(軸方向および半径方向の切込み量、一刃あたりの送り量)が同一であることが望ましい。もし加工条件が異なる際には、切削力解析を利用し、それらの異なる条件で、利用するn倍成分の加振力振幅値がどの程度異なるかを予測し、補正してもよい。
【0046】
以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。実施形態では、複数刃の回転工具を使用したときの振動特性の変化の計測手法を示したが、1枚刃の回転工具を使用したときの振動特性の変化も同様に計測できる。
【0047】
振動センサ5は、主軸内の加工点に近いベアリングの固定側付近に配置された加速度センサであってもよい。加速度センサによる検出方向は、主軸の2つの半径方向であってよく、また、その内の一方向であってもよく、さらに軸方向を追加した三方向であってもよい。また振動センサ5は、工作機械2の送り軸/主軸を駆動するモータの電流値、各軸のエンコーダ信号から計算される位置、その位置から目標位置を引いた位置偏差、前後の位置の差から求められる速度など、間接的に振動を推定するための物理量を測定するセンサであってもよい。
【0048】
実施形態では、対象とする機械構造の共振周波数(1000Hz)が、刃の通過周波数の1倍成分付近にある場合について説明したが、周波数分析によって検出可能なレベルで機械構造を強制振動させることができれば、任意のN倍成分付近にある場合であってもよい。
【0049】
実施形態で説明したように、切削中には、切削プロセスが付加的な剛性(切取り厚さ方向の比切削抵抗と切削幅を掛け合わせた値)として働くことで、わずかに機械構造の共振周波数が変化(通常は増大)することが知られている。しかしながら一般に、その切削プロセス剛性は機械構造の剛性に比べて非常に小さい。もしそれらが同等であると、切取り厚さの減少量(切削力を機械構造の剛性で除すことで算出される)と実切取り厚さ(切削力を切削プロセス剛性で除すことで算出される)が同等になり、設定した切取り厚さに対してその半分程度しか切り取ることができない。切削は、設定した切取り厚さとほぼ等しい実切取り厚さで材料を除去することによって、工作機械の運動を加工面に転写して正確な形状を創製するプロセスであるため、通常は切取り厚さの減少量が無視できる程度に小さい条件(具体的には高剛性機械構造を利用して、切削幅が大き過ぎない条件)で実施される。つまり、通常切削プロセス剛性は機械構造の剛性に比べて大幅に小さく、その付加によって機械構造の共振周波数が変化する量は無視できる。ただしより正確な同定を行う場合には、切削プロセスの剛性を測定または推定することにより、その影響を考慮して共振周波数を推定してもよい。
【0050】
本開示の態様の概要は、次の通りである。本開示のある態様は、切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する方法に関する。この振動特性変化の計測方法は、機械構造の共振周波数を保持するステップと、切削加工時、保持している共振周波数付近の周波数で機械構造を加振する回転数で、前記主軸を回転するステップと、複数の異なる回転数で前記主軸を回転したときの機械構造の強制振動応答を取得するステップと、取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出するステップと、を有する。
【0051】
この態様によると、保持している共振周波数付近の周波数で機械構造を強制加振することで、共振周波数の変化量および減衰の大きさの少なくとも一方を比較的簡易に計測できる。導出された共振周波数の変化量および/または減衰の大きさは、安定限界線図の導出に利用されてよい。これにより、振動特性の変化に合わせた安定限界線図を導出することが可能となる。
【0052】
共振周波数の変化量および減衰の大きさの少なくとも一方を導出するステップは、複数の強制振動応答から、振動変位がピークとなる周波数および減衰比の少なくとも一方を特定するステップを含んでよい。変化量は、(特定した周波数/保持している共振周波数)として算出されてよい。
【0053】
本開示の別の態様は、切削工具または被削材が取り付けられた主軸の回転機構を備えた工作機械の機械構造の振動特性の変化を計測する装置に関する。この計測装置は、機械構造の共振周波数を保持する共振周波数保持部と、前記工作機械の切削加工中に、保持している共振周波数付近の複数の異なる周波数で機械構造を加振したときの機械構造の強制振動応答を取得する振動応答取得部と、取得した複数の強制振動応答から、共振周波数の変化量および減衰の大きさの少なくとも一方を導出する変化量導出部と、を備える。
【0054】
この態様によると、保持している共振周波数付近の周波数で機械構造を強制加振することで、共振周波数の変化量および減衰の大きさの少なくとも一方を比較的簡易に計測できる。
【符号の説明】
【0055】
1・・・加工システム、2・・・工作機械、3・・・計測装置、4・・・安定限界線図作成装置、5・・・振動センサ、10・・・共振周波数保持部、11・・・回転数出力部、12・・・振動応答取得部、13・・・変化量導出部。