IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 現代自動車株式会社の特許一覧 ▶ 起亞自動車株式会社の特許一覧

特許7479148自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両
<>
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図1
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図2
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図3
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図4a
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図4b
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図5
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図6
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図7
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図8
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図9
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図10
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図11
  • 特許-自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-25
(45)【発行日】2024-05-08
(54)【発明の名称】自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両
(51)【国際特許分類】
   G08G 1/14 20060101AFI20240426BHJP
   G08G 1/00 20060101ALI20240426BHJP
   G08G 1/16 20060101ALI20240426BHJP
   B60W 30/06 20060101ALI20240426BHJP
【FI】
G08G1/14 A
G08G1/00 X
G08G1/16 A
B60W30/06
【請求項の数】 12
(21)【出願番号】P 2019239405
(22)【出願日】2019-12-27
(65)【公開番号】P2020109668
(43)【公開日】2020-07-16
【審査請求日】2022-08-19
(31)【優先権主張番号】10-2018-0173420
(32)【優先日】2018-12-31
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】591251636
【氏名又は名称】現代自動車株式会社
【氏名又は名称原語表記】HYUNDAI MOTOR COMPANY
【住所又は居所原語表記】12, Heolleung-ro, Seocho-gu, Seoul, Republic of Korea
(73)【特許権者】
【識別番号】500518050
【氏名又は名称】起亞株式会社
【氏名又は名称原語表記】KIA CORPORATION
【住所又は居所原語表記】12, Heolleung-ro, Seocho-gu, Seoul, Republic of Korea
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100127465
【弁理士】
【氏名又は名称】堀田 幸裕
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100158964
【弁理士】
【氏名又は名称】岡村 和郎
(72)【発明者】
【氏名】オー、テドン
【審査官】佐々木 佳祐
(56)【参考文献】
【文献】特開2011-054116(JP,A)
【文献】国際公開第2007/122960(WO,A1)
【文献】特開2008-203167(JP,A)
【文献】特開2016-1464(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/00-99/00
B60W 30/06
(57)【特許請求の範囲】
【請求項1】
自動バレーパーキングを行う方法であって、
車両が、自動バレーパーキングを開始するステップと、
インフラストラクチャが、前記車両へターゲットポジション及びガイドルートを伝送するステップと、
前記ガイドルートに沿って前記車両が自律走行を行い、前記ターゲットポジションに前記車両が自律駐車を行うステップと、
前記車両が、自動バレーパーキングを終了するステップとを含み、
前記インフラストラクチャは、前記ガイドルートを決定するために、
ピックアップ領域から前記ターゲットポジションまでの複数のガイドルートを決定するステップと、
前記複数のガイドルートに対して重みを決定するステップと、
前記複数のガイドルートの中から最終のガイドルートを算出するステップとを行う、自動バレーパーキングを行い、
前記重みを決定するステップは、前記複数のガイドルートにおける各々のガイドルートに含まれる複数のブロック単位のうちの、狭路に対応するブロック単位の数に基づく重みを決定するステップを含み、
前記狭路に対応する前記ブロック単位の数は、各々のガイドルートに含まれる前記複数のブロック単位のうちの、基準長さよりも小さい幅を有するブロック単位の数であり、
前記基準長さは前記車両の幅及び前記車両の長さに基づいて決定される、方法。
【請求項2】
前記重みを決定するステップは、
前記インフラストラクチャが、ガイドルートの長さに基づく重みを決定するステップを含み、
前記ガイドルートの長さに基づく重みは、前記長さが短いほど前記最終のガイドルートとして算出されるように決定される、請求項1に記載の自動バレーパーキングを行う方法。
【請求項3】
前記重みを決定するステップは、
前記インフラストラクチャが、左折/右折の数に基づく重みを決定するステップを含み、
前記左折/右折の数に基づく重みは、前記左折/右折の数が少ないほど前記最終のガイドルートとして算出されるように決定される、請求項1に記載の自動バレーパーキングを行う方法。
【請求項4】
前記重みを決定するステップは、
前記インフラストラクチャが、移動車両の数に基づく重みを決定するステップを含み、
前記移動車両の数に基づく重みは、前記ガイドルートの周辺で移動する車両の数が少ないほど前記最終のガイドルートとして算出されるように決定される、請求項1に記載の自動バレーパーキングを行う方法。
【請求項5】
前記ガイドルートは、車両の現在位置から前記車両のターゲットポジションまで続いた直線、曲線またはこれらの組み合わせで構成される、請求項1に記載の自動バレーパーキングを行う方法。
【請求項6】
前記ガイドルートは複数の通過ポジション及び一つのターゲットポジションで構成される、請求項1に記載の自動バレーパーキングを行う方法。
【請求項7】
自動バレーパーキングを行うための装置であって、
前記装置は、プロセッサと通信回路を含み、
前記装置は、車両の自動バレーパーキングを行うためのターゲットポジション及びガイドルートを決定し、決定されたターゲットポジション及びガイドルートを前記車両へ伝送し、
前記装置は、前記ガイドルートを決定するために、
ピックアップ領域から前記ターゲットポジションまでの複数のガイドルートを決定し、前記複数のガイドルートに対して重みを決定し、前記複数のガイドルートの中から最終のガイドルートを算出し、
前記複数のガイドルートに対する前記重みの決定において、前記複数のガイドルートにおける各々のガイドルートに含まれる複数のブロック単位のうちの、狭路に対応するブロック単位の数に基づく重みを決定し、
前記狭路に対応する前記ブロック単位の数は、各々のガイドルートに含まれる前記複数のブロック単位のうちの、基準長さよりも小さい幅を有するブロック単位の数であり、
前記基準長さは前記車両の幅及び前記車両の長さに基づいて決定される、装置。
【請求項8】
前記装置は、前記複数のガイドルートに対してガイドルートの長さに基づく重みを決定し、
前記ガイドルートの長さに基づく重みは、前記長さが短いほど前記最終のガイドルートとして算出されるように決定される、請求項に記載の装置。
【請求項9】
前記装置は、前記複数のガイドルートに対して左折/右折の数に基づく重みを決定し、
前記左折/右折の数に基づく重みは、前記左折/右折の数が少ないほど前記最終のガイドルートとして算出されるように決定される、請求項に記載の装置。
【請求項10】
前記装置は、前記複数のガイドルートに対して移動車両の数に基づく重みを決定し、
前記移動車両の数に基づく重みは、前記ガイドルートの周辺で移動する車両の数が少ないほど前記最終のガイドルートとして算出されるように決定される、請求項に記載の装置。
【請求項11】
前記ガイドルートは、車両の現在位置から前記車両のターゲットポジションまで続いた直線、曲線またはこれらの組み合わせで構成される、請求項に記載の装置。
【請求項12】
前記ガイドルートは複数の通過ポジション及び一つのターゲットポジションで構成される、請求項に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、自動バレーパーキング支援システム及び方法、並びにそのためのインフラストラクチャ及び車両に関する。本開示によれば、インフラストラクチャと車両との通信を利用して、車両がドライバなしで移動し、空いている駐車スペースに自律駐車する。また、本開示によれば、インフラストラクチャと車両との通信を利用して、車両がドライバなしで駐車スペースからピックアップ領域へ移動する。
【背景技術】
【0002】
現代社会で駐車に関連して直面している社会的なイシューは、非常に多い。まず、駐車場内では、事故が発生する可能性が非常に高い。また、大型マートやデパートなどの施設に駐車をしようとする場合には、駐車のために消費される時間とエネルギーが非常に多い。また、駐車場に進入した場合にも、空いている駐車スペースを見つけるために消費される時間とエネルギーが非常に多い。また、駐車後も、施設の業務を済ませたドライバが、駐車している車両まで移動しなければならない煩わしさがあり、場合によっては、車両が駐車している位置を忘れてしまうことがある。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本開示は、前述した問題を解決するためのものであり、本開示に係る自動バレーパーキングは、ドライバがドロップオフ(Drop off)領域に車両を停止させ、車両から降りると、車両が自律方式(autonomous)で空き駐車スペースへ移動して駐車を完了することを目的とする。
【0004】
また、本開示に係る自動バレーパーキングは、ドライバが呼び出す場合、駐車している車両は自律方式でピックアップ(Pick up)領域へ移動し、ドライバはピックアップ領域で車両に搭乗して施設を抜け出すことを目的とする。
【課題を解決するための手段】
【0005】
自動バレーパーキングを行う方法が提供され、その方法は、自動バレーパーキングを行う方法であって、自動バレーパーキングを開始するステップと、インフラストラクチャから車両へターゲットポジション及びガイドルートを伝送するステップと、前記ガイドルートに沿って前記車両が自律走行を行い、前記ターゲットポジションに前記車両が自律駐車を行うステップと、自動バレーパーキングを終了するステップとを含み、前記インフラストラクチャは、前記ガイドルートを決定するために、ピックアップ領域から前記ターゲットポジションまでの複数のガイドルートを決定するステップと、前記複数のガイドルートに対して重みを決定するステップと、前記複数のガイドルートの中から最終のガイドルートを算出するステップとを行う方法が提供される。
【0006】
自動バレーパーキングを行うための装置が提供され、前記装置は、プロセッサと通信回路を含み、前記装置は、車両の自動バレーパーキングを行うためのターゲットポジション及びガイドルートを決定し、決定されたターゲットポジション及びガイドルートを前記車両へ伝送し、前記装置は、前記ガイドルートを決定するために、ピックアップ領域から前記ターゲットポジションまでの複数のガイドルートを決定し、前記複数のガイドルートに対して重みを決定し、前記複数のガイドルートの中から最終のガイドルートを算出する。
【図面の簡単な説明】
【0007】
図1】本開示の実施形態に係る自動バレーパーキングシステムを示す図である。
図2】本開示の実施形態に係る自動バレーパーキング装置を示す図である。
図3】本開示の実施形態に係る自動バレーパーキングシステム及び方法を説明するための概念図である。
図4a】本開示に係る自動バレーパーキングを行うインフラストラクチャ及び車両が行う動作を説明するためのブロック図である。
図4b】本開示に係る自動バレーパーキングを行うインフラストラクチャ及び車両が行う動作を説明するためのブロック図である。
図5】本開示に係る自動バレーパーキングを行うインフラストラクチャと車両との通信を説明するための図である。
図6】本開示に係る自動バレーパーキングを行うインフラストラクチャと車両との通信を説明するための図である。
図7】本開示に係る自動バレーパーキングを行うインフラストラクチャと車両との通信を説明するための図である。
図8】本開示に係るガイドルートを決定する方法を説明するための図である。
図9】本開示によって複数のガイドルートが算出され、ガイドルートの長さに基づく重みが決定される方法を説明するための図である。
図10】本開示によって左折及び右折の数に基づく重みが決定される方法を説明するための図である。
図11】本開示によって狭路の数に基づく重みが決定される方法を説明するための図である。
図12】本開示によって移動車両の数に基づく重みが決定される方法を説明するための図である。
【発明を実施するための形態】
【0008】
以下、添付図面を参照して本開示に係る実施形態を詳細に説明する。本開示の構成及びそれによる作用効果は以下の詳細な説明から明確に理解されるだろう。本開示の詳細な説明に先立ち、同一の構成要素については、他の図面上に表示されても、できる限り同一の符号で表示し、公知の構成については、本開示の要旨を曖昧にするおそれがあると判断された場合に具体的な説明を省略することとする。
【0009】
本開示の具体的な説明に先立ち、本開示で使用される用語は、次のとおり定義できる。
【0010】
ドライバ(Driver)は、車両を利用する人間であって、自動バレーパーキングシステムのサービスを受ける人間である。
【0011】
運転権限(Driving authority)は、車両の動作を実行させるための権限である。車両の動作は、例えば、ステアリング動作、加速動作、ブレーキング動作、ギア変速動作、車両の始動をオン/オフにする動作、車両のドアをロック/ロック解除する動作を含む。
【0012】
車両は、自動バレーパーキングを行う機能を有する車両である。
【0013】
電気自動車は、電気モータによって駆動される車両であって、有線プラグ方式で充電されるか或いは無線充電方式で充電される車両である。
【0014】
コントロールセンターは、駐車施設内にある車両のモニタリングを行う施設であって、ターゲットポジション、ガイドルート、許可運転領域を決定し、車両が運転開始命令又は緊急停止命令を伝送するようにすることができる。
【0015】
インフラストラクチャ(infrastructure)は、駐車施設であってもよく、駐車施設内に配置されたセンサであってもよい。また、インフラストラクチャは、駐車ゲート、車両を制御するコントロールセンターを指すこともある。
【0016】
インフラストラクチャ100は、通信を行うための通信回路と、判断及び演算を行うためのプロセッサとを含むことができる。実施形態によって、インフラストラクチャ100は、周辺環境を検知するためのセンサをさらに含むことができる。本明細書で説明されるインフラストラクチャ100による判断及び演算は、インフラストラクチャ100に含まれているプロセッサによって行われ得る。
【0017】
ターゲットポジションは、車両が駐車する空き駐車スペースを指す。また、ターゲットポジションは、車両が駐車場から外れる状況では、ドライバが搭乗する領域、すなわちピックアップ領域を指すこともある。また、ターゲットポジションは、無線充電が可能な施設が配置された駐車スペースであり得る。例えば、駐車スペースの床に電磁気誘導方式のコイルが埋め込み又は配置された駐車スペースであってもよい。
【0018】
ガイドルートは、車両がターゲットポジションに到達するために通過するルートを指す。例えば、駐車が実行される状況では、ドロップオフ領域から空きスペースまでのルートである。例えば、ガイドルートは、50m前進やコーナーでの左回転などの形式であってもよい。運転ルート(driving route)は、車両が追従するルートを指す。
【0019】
許可運転領域(permitted driving area)は、運転が許された領域、例えば、駐車場内での運転経路を指す。許可運転領域は、隔壁、駐車した車両、駐車ラインによって定義することができる。
【0020】
図1は本開示の実施形態に係る自動バレーパーキングシステムを示す。図1を参照すると、自動バレーパーキングシステム10は、インフラストラクチャ100及び自動バレーパーキング装置200を含むことができる。
【0021】
インフラストラクチャ100は、前述したように、自動バレーパーキングシステムを運営、管理及び実行するための装置又はシステムを意味することができる。例えば、インフラストラクチャ100は駐車施設であってもよい。実施形態によって、インフラストラクチャ100は、センサ、通信装置、警報装置、表示装置、及び前述した装置を制御するサーバを含むことができる。また、インフラストラクチャは、駐車ゲート、車両を制御するコントロールセンターを指すこともある。
【0022】
自動バレーパーキング装置200は、自動バレーパーキングを行う車両を意味することができる。実施形態によって、自動バレーパーキング装置200は、自動バレーパーキングを行うことができる車両に含まれる構成要素又は構成要素の集合を意味することができる。
【0023】
図2は本開示の実施形態に係る自動バレーパーキング装置を示す。図2を参照すると、自動バレーパーキング装置(例えば、車両200)は、センサ210、通信回路220、プロセッサ230及び車両コントローラ240を含むことができる。
【0024】
センサ210は、自動バレーパーキング装置200の周囲の環境を検出することができる。実施形態によって、センサ210は、自動バレーパーキング装置200と特定の物体との距離を測定するか、或いは自動バレーパーキング装置200の周囲の物体を検出することができる。例えば、センサ210は、超音波センサ、レーダーセンサ、ライダーセンサ、カメラ、赤外線センサ、熱感知センサ及びミリ波センサのうちの少なくとも一つを含むことができる。
【0025】
センサ210は、検知結果に基づいて生成されたデータを通信回路220又は車両コントローラ240へ伝送することができる。
【0026】
通信回路220は、インフラストラクチャ100とデータをやり取りすることができる。このような通信は、車両対インフラストラクチャ(V2I:Vehicle to Infra)通信と呼ばれる。また、通信回路220は、他の車両とデータをやり取りすることができる。このような通信は、車両対車両(V2V:Vehicle to Vehicle)通信と呼ばれる。また、V2I通信及びV2V通信を統合してV2X(Vehicle to everything)通信と呼ばれる。実施形態によって、通信回路220は、インフラストラクチャ100から伝送されたデータ(例えば、ターゲットポジション、ガイドルート、運転ルート又は命令など)を受信し、受信したデータを処理してプロセッサ230へ伝達することができる。また、通信回路220は、車両200から生成されたデータをインフラストラクチャ100へ伝送することができる。実施形態によって、通信回路220は車両200のドライバの端末とデータをやり取りすることができる。
【0027】
通信回路220は、無線通信プロトコル又は有線通信プロトコルを用いてデータを伝送又は受信することができる。例えば、前記無線通信プロトコルは、無線LAN(Wireless LAN:WLAN)、DLNA(Digital Living Network Alliance)、Wibro(Wireless Broadband)、WiMAX(World Interoperability for Microwave Access)、GSM(Global System for Mobile communication)、CDMA(Code Division Multi Access)、CDMA2000(Code Division Multi Access 2000)、EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only)、WCDMA(Wideband CDMA)、HSDPA(High Speed Downlink Packet Access)、HSUPA(High Speed Uplink Packet Access)、IEEE802.16、LTE(Long Term Evolution)、LTE-A(Long Term Evolution-Advanced)、ブロードバンド無線移動通信サービス(Wireless Mobile Broadband Service:WMBS)、ブルートゥース(Bluetooth)、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA)、UWB(Ultra-Wideband)、ジグビー(ZigBee)、近距離無線通信(Near Field Communication:NFC)、超音波通信(Ultra Sound Communication:USC)、可視光通信(Visible Light Communication:VLC)、ワイファイ(Wi-Fi)、ワイファイダイレクト(Wi-Fi Direct)などを含むことができる。また、有線通信プロトコルは、有線LAN(Local Area Network)、有線WAN(Wide Area Network)、電力線通信(Power Line Communication:PLC)、USB通信、イーサネット(Ethernet)、シリアル通信(serial communication)、光/同軸ケーブルなどを含むことができ、これに制限されるものではなく、他の装置との通信環境を提供することができるプロトコルはいずれも含まれ得る。
【0028】
プロセッサ230は、車両200の全般的な作動を制御することができる。プロセッサ230は、センサ210と通信回路220を介して伝送されたデータに基づいて車両コントローラ240を制御することができる。実施形態によって、プロセッサ230は、インフラストラクチャ100から伝送されたデータに基づいて車両コントローラ240を制御するための制御信号を生成し、生成された制御信号を車両コントローラ240へ伝送することができる。
【0029】
すなわち、プロセッサ230は、車両200を制御し、自動バレーパーキングを行うための一連の演算又は判断を行うことができる装置を意味することができる。例えば、プロセッサ230は、自動バレーパーキングを行うための命令を含むプログラムが実行されるプロセッサであってもよい。
【0030】
プロセッサ230は、CPU(central processing unit)、MCU(micro controller unit)、ASIC(application specific integrated circuit)、FPGA(field programmable gate array)又はGPU(graphic processing unit)などを含むことができるが、これに限定されるものではない。
【0031】
車両コントローラ240は、プロセッサ230の制御に基づいて車両200を制御することができる。実施形態によって、車両コントローラ240は、プロセッサ230から伝送された制御信号に応答して車両200を制御することができる。例えば、車両コントローラ240は、車両200の移動、停止、移動再開始、ステアリング、加速、減速、駐車、点滅、警報などを制御することができる。
【0032】
すなわち、車両コントローラ240は、本明細書で説明される車両200の作動を制御するための機能を全て行うことができるものと理解されるべきである。例えば、車両コントローラ240は、車両200の駆動装置、制動装置、操舵装置、加速装置、警報装置及び点滅装置を含むことができる。
【0033】
一方、別の説明がなくても、本明細書で説明される車両200の作動又は機能は、センサ210、通信回路220、プロセッサ230及び車両コントローラ240のうちの少なくとも一つの組み合わせによって適切に行われるものと理解されるべきである。
【0034】
図3は本開示の実施形態に係る自動バレーパーキングシステム及び方法を説明するための概念図である。
【0035】
図3を参照すると、(1)において、ドライバは車両を運転して駐車場に進入し、ドロップオフ領域へ車両を移動させる。
【0036】
(2)において、ドロップオフ領域に到達したドライバは車両から下車し、運転権限はドライバからインフラストラクチャへ伝達される。
【0037】
(3)において、インフラストラクチャは、駐車場内に存在する複数の駐車スペースの中から空き駐車スペースを検索し、当該車両の駐車に適した空き駐車スペースを決定する。また、インフラストラクチャは、決定された空き駐車スペースまでのガイドルートを決定する。駐車スペース及びガイドルートが決定されると、車両は自律的にガイドルートに沿って走行し、当該駐車スペースの周囲に到達した後、駐車スペースへの自動バレーパーキングを行う。
【0038】
(4)において、ドライバは、自分の車両の出車を決定し、ピックアップ領域へ移動する。
【0039】
(5)において、インフラストラクチャは、適正なターゲットポジションを決定する。例えば、適正なターゲットポジションは、ピックアップ領域内に存在する複数の駐車スペースの中でも、空いている駐車スペースであってもよい。また、インフラストラクチャは、決定されたターゲットポジションまでのガイドルートを決定する。ターゲットポジション及びガイドルートが決定されると、車両は、自律的にガイドルートに沿って走行し、当該駐車スペースの周囲に到達した後、駐車スペースへの自動バレーパーキングを行う。
【0040】
(6)において、ドライバはピックアップ領域に到達し、運転権限はインフラストラクチャからドライバへ伝達される。ドライバは車両を運転して駐車場の出口へ移動する。
【0041】
図4a及び図4bは本開示に係る自動バレーパーキングを行うインフラストラクチャ及び車両が行う動作を説明するためのブロック図である。
【0042】
(1)では、自動バレーパーキングを開始するためのインフラストラクチャ及び車両の動作が説明される。インフラストラクチャは、ドライバ及び車両を認識し、適正なドライバ及び車両であるか否かを決定する。例えば、インフラストラクチャは、ドライバが入力するID及びパスワードを用いて、当該ドライバが適正なドライバであるか否かを決定する。また、インフラストラクチャは、車両の固有番号を用いて、当該車両が適正な車両であるか否かを決定する。車両は、エンジンのオン/オフを行うことができる。また、車両は、電源のオン/オフを行うことができる。例えば、車両のエンジンはオフになったが、電源がオンになった状態はACCオン(アクセサリーオン)状態であり得る。車両のエンジンのオン/オフ及び電源のオン/オフは、インフラストラクチャから命令を受信して行うことができ、或いはインフラストラクチャの命令なしに車両が自律的に行うことができる。車両はドアをロック/ロック解除することができる。車両のドアのロック及びロック解除は、インフラストラクチャから命令を受信して行うことができ、或いはインフラストラクチャの命令なしに車両が自律的に行うことができる。車両が自動パーキング段階に進行する場合には、車両のドアをロックすることが好ましい。また、車両の運転権限が車両からインフラストラクチャへ伝達される。運転権限は、車両の動作を実行させるための権限であって、車両の動作は、ステアリング動作、加速動作、ブレーキング動作、ギア変速動作、車両の始動をオン/オフにする動作、車両のドアをロック/ロック解除する動作を含む。車両の権限をインフラストラクチャへ伝達することにより、インフラストラクチャは、車両が自動バレーパーキングを行う途中で、当該車両を完全に制御することができる。これにより、車両の意図せぬ動作が発生する可能性が低くなり、駐車場内の車両事故が防止できる。しかし、場合に応じて、運転権限の一部は車両からインフラストラクチャへ伝達されずに車両に残っていることがあり、或いは、運転権限の一部は車両とインフラストラクチャが共同で保有することがある。例えば、ブレーキング動作は、自動バレーパーキングが行われている状況で非常状況が発生した場合に動作しなければならないものであって、車両が自らADASセンサなどを用いてリスクを検知した場合、インフラストラクチャの制御なしに自らブレーキングを行うことが好ましいためである。また、車両は、車両の内部に人間又は動物が存在するか否かを判断する。本開示に係る自動バレーパーキングの完了後から車両が出車されるまでに相当の時間がかかるので、車両の内部に人間又は動物が存在する場合に発生する可能性のあるリスクを除去するためである。車両の内部に人間又は動物が存在するか否かは、車両に搭載されたセンサを用いて判断することができる。
【0043】
(2)において、ターゲットポジション、ガイドルート及び運転ルートが決定できる。ターゲットポジション、ガイドルート及び運転ルートの決定は、インフラストラクチャが行うことができる。インフラストラクチャによって決定されたターゲットポジション、ガイドルート及び運転ルートは、インフラストラクチャから車両へ伝達できる。
【0044】
ターゲットポジションは、車両が移動して到達しなければならない最終の目的地である。ターゲットポジションは、車両が駐車場に入車する状況では車両が駐車をしなければならない駐車場内の空き駐車スペースである。ターゲットポジションは、車両が駐車場から出庫する状況ではピックアップ領域内の空き駐車スペースである。または、ターゲットポジションは、空き駐車スペースの代わりに、空き駐車スペース周辺の特定のポイントであり得る。例えば、駐車場内の特定の区域に空き駐車スペースが連続して又は隣接して複数存在する場合には、ターゲットポジションは、このような複数の空き駐車スペース周辺の特定のポイントで構成できる。この場合、車両は、該当する特定のポイントへ移動した後、車両に搭載されているドライバ補助システム(ADAS)の自律駐車機能を活性化させて所望の駐車スペースに駐車することができる。ADASの自律駐車機能は、例えばPAPS(Partially Automated Parking System)であってもよい。このような例示によれば、駐車余裕スペースを管理する上での効率性がさらに増加することができる。すなわち、インフラストラクチャの立場では、正確なターゲットポジションを計算する代わりに、ラフ(rough)な地点だけを認識することで十分であるので、プロセッシングに必要なエネルギーを減少させることができる。
【0045】
ガイドルートは、車両が自律走行のために追従しなければならないルートである。例えば、ガイドルートは、10メートル直進、最初の角で右折、20メートル前進してから左折などの形式で構成できる。または、ガイドルートは、駐車場マップ内で現在位置からターゲットポジションまで続いた直線、曲線、またはこれらの組み合わせで構成できる。または、ガイドルートは、駐車場マップ内での複数の通過ポジションと一つのターゲットポジションで構成できる。例えば、ガイドルートは、複数の通過ポジションとしてA1柱、B2柱、C3柱を含み、ターゲットポジションとしてD23駐車区域を含むことができる。このように、ガイドルートは、直線ないしは曲線で構成されず、通過ポジションとターゲットポジションで構成される場合、直線、曲線、または距離(10メートルなど)についての情報が要求されないので、車両とインフラストラクチャ間の通信(V2Iなど)にかかる情報量を減少させることができる。
【0046】
(3)において、駐車場内で車両の自律走行が行われ得る。車両の自律走行は、車両の移動、停止、移動再開始を含む。車両の自律走行は、インフラストラクチャから車両へ伝送される命令に応じて車両が行うことができる。又は、車両の自律走行は、インフラストラクチャからの命令に依存せず、車両が自律的に行うことができる。車両は、許可運転領域内でガイドルートに沿ってターゲットポジションへ自律的に走行することができる。ドライバがない自律走行の場合、所定の速度未満で走行するように車両が制御できる。このような所定の速度は、インフラストラクチャから車両へ伝達された値であるか、或いは車両に格納された値であり得る。また、車両は、ガイドルートに沿って自律走行する上で与えられたガイドルートから所定の誤差を外れることなく走行するように制御できる。このような所定の誤差は、インフラストラクチャから車両へ伝達された値であるか、或いは車両に格納された値であり得る。また、車両は、ガイドルートに沿って自律走行する上でカーブを行わなければならない場合に、所定の最小回転半径に従うことができる。このような所定の最小回転半径は、インフラストラクチャから車両へ伝達された値であるか、或いは車両に格納された値であり得る。車両は、ガイドルートに沿って自律走行する上で所定の最大加速度を超えないように制御できる。このような所定の最大加速度は、インフラストラクチャから車両へ伝達された値であるか、或いは車両に格納された値であり得る。
【0047】
(4)において、位置測定が行われ得る。位置測定の対象は、駐車を行っている車両、駐車場内に存在する障害物、又は既に駐車が完了した車両であり得る。インフラストラクチャは、車両又は障害物の位置を測定し、車両の位置をデータベースに格納することができる。インフラストラクチャは、車両又は障害物を識別及び検出し、駐車を行っている複数の車両それぞれの安全性をモニタリングすることができる。また、インフラストラクチャは、ターゲットポジションに到達して駐車を行っている車両の動作をモニタリングし、命令を伝達することができる。車両は自分の位置を測定することができる。車両は、測定された自分の位置をインフラストラクチャへ伝達することができる。車両が測定する自分の位置の誤差は、所定の誤差範囲内にあり、所定の誤差は、インフラストラクチャによって決定された値であり得る。車両は、周辺を検知して、存在する障害物の位置を測定することができ、測定された障害物の位置をインフラストラクチャに伝送することができる。車両とインフラストラクチャとの通信に使用される周波数は、所定の周波数であり得る。
【0048】
(5)において、自律駐車が行われ得る。自律駐車は、ターゲットポジションの周辺に到達した車両が空き駐車スペースに自律的に駐車することを指す。車両は、自分に搭載された距離センサを用いて、障害物又は周辺に駐車している車両を検知することを用いて自律駐車を行うことができる。車両に搭載された距離センサは、例えば、超音波センサ、レーダーセンサ、ライダーセンサ、カメラを含むことができる。
【0049】
(6)において、車両の緊急ブレーキが行われる。車両の緊急ブレーキは、インフラストラクチャから伝達される命令に基づいて行うことができ、或いは車両が障害物を検出した場合に自ら行うことができる。インフラストラクチャは、車両の周辺が不安全であると決定する場合、車両に緊急ブレーキを命令することができる。車両が緊急ブレーキを行った後、インフラストラクチャが車両の周辺が安全であると決定する場合、車両に自律走行又は自律駐車の再開始を命令することができる。車両は、障害物を検出した場合、緊急ブレーキを行うことができる。また、車両は、緊急ブレーキの実行をインフラストラクチャに報告することができ、緊急ブレーキの原因となる障害物の種類又は位置をインフラストラクチャに報告することができる。車両が緊急ブレーキを行う場合の減速の大きさは、所定の減速値に従うことができ、所定の減速値は、インフラストラクチャによって決定された値であるか、或いは車両に格納された値であり得る。所定の減速値は、障害物の種類、障害物の位置、当該車両と障害物との距離に応じて決定できる。車両は、インフラストラクチャから自律走行又は自律駐車の再開始命令を受信する場合、自律走行又は自律駐車を再開始することができる。又は、車両は、周辺の障害物が除去されたことを決定する場合、自律走行又は自律駐車を再開始することができる。車両は、自律走行又は自律駐車を再開始すること、周辺の障害物の除去をインフラストラクチャに報告することができる。
【0050】
(7)において、自動バレーパーキングが終了する。車両が自律走行及び自律駐車を完成させた後、インフラストラクチャは、車両に制御リリース(release)命令を伝達する。車両は、インフラストラクチャの命令を受信して、又はインフラストラクチャの命令に依存せずに、エンジンのオン/オフ又は電源のオン/オフを行うことができる。また、車両は、インフラストラクチャの命令を受信して、又はインフラストラクチャの命令に依存せずに車両のドアをロックすることができる。また、車両は、インフラストラクチャの命令を受信して、又はインフラストラクチャの命令に依存せずに、車両のパーキングブレーキを実行することができる。
【0051】
(8)において、エラー制御が行われ得る。エラー制御は、車両とインフラストラクチャとの通信エラー又は車両の機械的エラーを含む。インフラストラクチャは、車両との通信をモニタリングして、通信エラーが発生するか否かを検出することができる。車両は、インフラストラクチャとの通信をモニタリングして、通信エラーが発生すか否かを検出することができる。車両は、自分に搭載されたセンサを含むアクセサリーの動作状態をモニタリングして、機械的エラーが発生するか否かを検出することができる。車両は、車両の内部に人間又は動物が存在するか否かを検知して、車両の内部に人間又は動物が存在することを決定する場合、緊急ブレーキを行うことができる。車両は、緊急ブレーキを行った後、インフラストラクチャからの命令を受信して自律駐車又は自律走行を再開始することができる。又は、車両は、緊急ブレーキを行った原因が除去されたかを決定し、除去された場合には自律駐車又は自律走行を再開始することができる。
【0052】
図5は本開示に係る自動バレーパーキングを行うインフラストラクチャと車両との通信を説明するための図である。
【0053】
(1)において、車両からインフラストラクチャに車両資格情報(vehicle qualification information)が伝達できる。車両資格情報には、それぞれの車両を他の車両と区別することができる識別子が含まれる。例えば、車両資格情報は車両の固有ナンバーであってもよい。車両資格情報は、車両が駐車場に進入して自動バレーパーキングが開始するステップ(図4aの(1)参照)で伝達できる。
【0054】
(2)において、インフラストラクチャから車両に自動バレーパーキング準備命令が伝達できる。自動バレーパーキング準備命令は、自律走行が開始する前に伝達できる。
【0055】
(3)において、車両からインフラストラクチャへ車両情報が伝達できる。車両情報は、車両の状態情報、車両の位置情報を含むことができる。車両の状態情報は、車両が走行中であるか、車両が停止した状態であるか、車両が緊急停止した状態であるかを含むことができる。車両情報は、周期的に伝達でき、特定の周波数(例えば、1秒に1回、すなわち1Hz)で伝達できる。よって、車両情報は、車両とインフラストラクチャとの通信エラーが発生したか否かを決定するパラメータとして利用できる。例えば、通信周波数に応じて予定された時点で車両情報がインフラストラクチャに到達しない場合、インフラストラクチャは、車両とインフラストラクチャとの通信にエラーが発生したことを決定することができる。
【0056】
(4)において、インフラストラクチャから車両へ車両情報応答が伝達できる。車両情報応答は、(3)での車両情報に対する応答であって、車両情報と同じ周波数で伝達できる。したがって、車両情報応答は、車両とインフラストラクチャとの通信エラーが発生したか否かを決定するパラメータとして利用可能である。例えば、通信周波数に応じて予定された時点で車両情報応答が車両に到達していない場合に、車両は、車両とインフラストラクチャとの通信にエラーが発生したことを決定することができる。
【0057】
(5)において、インフラストラクチャから車両へターゲットポジション及びガイドルートが伝達できる。ターゲットポジション及びガイドルートの伝達は、自動バレーパーキング開始命令がインフラストラクチャから車両へ伝達される前に或いは伝達された後に行われ得る。
【0058】
(6)において、インフラストラクチャから車両へ運転バウンダリーが伝達できる。運転バウンダリーは、許可運転領域との境界を標識するランドマーク(例えば、駐車ライン、中央ライン、道路バウンダリーライン)を含むことができる。運転バウンダリーの伝達は、自動バレーパーキング準備命令が伝達された後に行われ得る。このような運転バウンダリーは、駐車場マップ(map)の形でインフラストラクチャから車両へ伝達できる。
【0059】
(7)において、インフラストラクチャから車両へ自動バレーパーキング開始命令が伝達できる。自動バレーパーキング開始命令の伝達は、ガイドルート及び運転バウンダリーが伝達された後に行われ得る。また、車両の緊急ブレーキが行われた後、車両周辺の安全が確認された後に伝達できる。
【0060】
(8)において、インフラストラクチャから車両へ緊急ブレーキ命令が伝達できる。
【0061】
(9)において、インフラストラクチャから車両へ車両制御リリース命令が伝達できる。車両制御リリース命令の伝達は、車両の駐車スペースへの自律駐車が完了した後に行われ得る。
【0062】
図6は本開示に係る自動バレーパーキングを行うインフラストラクチャ100と車両200との通信を説明するための図である。
【0063】
(1)において、車両200は、駐車場の通路へ進入して停止位置に停止する。このような停止位置は、駐車場の入り口ゲートであってもよい。車両200は、インフラストラクチャ100に、停止位置に到着したことを報告する。(2)において、インフラストラクチャ100は、当該車両200の大きさ及び車両200のナンバーを認証する。(3)において、インフラストラクチャ100は車両200に認証ID要求を伝送し、(4)において、車両200はインフラストラクチャ100に認証IDを伝送する。(5)において、インフラストラクチャ100は、受信した認証IDに基づいて、駐車場進入を承認するか否かを判断する。(6)において、インフラストラクチャ100は、受信した認証IDに基づいて、当該車両200の駐車場進入が承認されるか否かを知らせる。例えば、インフラストラクチャ100は、停止位置の周辺に配置されたモニターを介して承認又は不承認を表示することができる。車両200のドライバは、駐車場進入が承認された場合に、ドロップオフ領域へ車両200を移動させる。(7)において、ドライバは、車両200の始動をオフにして車両200から下車し、車両200のドアをロックした後、ドロップオフ領域から外れる。(8)において、車両200の権限は、車両200(又はドライバ)からインフラストラクチャ100へ伝達される。また、(9)において、インフラストラクチャ100は、ドライバから車両200の権限を伝達されたことを通知する。このような通知は、移動通信ネットワークを介してドライバのスマート機器へ伝送できる。
【0064】
図7は本開示に係る自動バレーパーキングを行うインフラストラクチャ100と車両200との通信を説明するための図である。
【0065】
(1)において、インフラストラクチャ100は、車両200の始動のオン(on)を指示する要求を車両200へ伝送することができる。(2)において、車両200は、インフラストラクチャ100からの要求に応答して、車両200の始動をオンにすることができる。(3)において、車両200は、始動をオンにした後に、前記始動のオンの応答をインフラストラクチャ100へ伝送することができる。(4)において、インフラストラクチャ100は、自動バレーパーキングの準備を指示する要求を車両200へ伝送することができる。(5)において、車両200は、前記自動バレーパーキング準備の要求に応答して、前記自動バレーパーキングが準備されたか(OK)又は準備されていないか(NG)を指示する応答をインフラストラクチャ100へ伝送することができる。(6)において、インフラストラクチャ100は、同期化要求を車両200へ伝送することができる。前記同期化要求は、インフラストラクチャ100の時間と車両200の時間との同期化を指示する要求であり得る。例えば、前記同期化要求は、インフラストラクチャ100の時間に関する情報を含むことができる。(7)において、車両200は、前記同期化要求に応答して同期化を行い、(8)において、前記同期化が完了したことを指示する応答をインフラストラクチャ100へ伝送することができる。例えば、インフラストラクチャ100と車両200との同期化が完了する前まで、複数の同期化要求がインフラストラクチャ100から車両200へ伝送できる。(9)において、インフラストラクチャ100は、駐車場マップ情報を車両200へ伝送することができる。このような駐車場マップ情報はランドマーク情報を含むことができる。(10)において、車両200は、伝送されたランドマーク情報に基づいて車両200の位置を推定(又は計算)することができ、車両200は、推定された車両200の位置をインフラストラクチャ100へ伝送することができる。(11)において、インフラストラクチャ100は、ターゲットポジション(駐車位置)を決定することができる。(12)において、インフラストラクチャ100は、許可運転領域についての情報を車両200へ伝送することができる。例えば、インフラストラクチャ100は、許可運転領域の境界を車両200へ伝送することができる。(13)において、インフラストラクチャ100は、ガイドルートを車両200へ伝送することができる。(14)において、インフラストラクチャ100は、自動バレーパーキングの開始を指示する命令を車両200へ伝送することができる。
【0066】
図8は本開示に係るガイドルートを決定する方法を説明するための図である。
【0067】
図9は本開示によって複数のガイドルートが算出され、ガイドルートの長さに基づく重みが決定される方法を説明するための図である。
【0068】
図10は本開示によって左折及び右折の数に基づく重みが決定される方法を説明するための図である。
【0069】
図11は本開示によって狭路の数に基づく重みが決定される方法を説明するための図である。
【0070】
図12は本開示によって移動車両の数に基づく重みが決定される方法を説明するための図である。
【0071】
図8及び図9乃至図12を参照して、本開示に係るガイドルートを決定する方法を説明する。
【0072】
図8を参照すると、複数のガイドルートを算出するステップ(S810)が行われる。
【0073】
図9を参照すると、現在位置からターゲットポジションまでのガイドルートとして2つのガイドルートが算出される。第1ガイドルートは点が付されたハッチングで表示され、第2ガイドルートは斜線が付されたハッチングで表示される。インフラストラクチャは、駐車場内の精密マップを保有しており、現在の自動バレーパーキングのために自律走行中の車両及び自動バレーパーキングを完了して駐車されている車両に関する情報を保有している。よって、インフラストラクチャは、このような情報に基づいて、現在位置からターゲットポジションまでの複数のガイドルートを算出することができる。
【0074】
図8を参照すると、ガイドルートの長さに基づく重みを決定するステップ(S820)が行われる。例えば、第1ガイドルートに沿う場合、現在位置からターゲットポジションまで車両が移動しなければならない距離は60mであり得る。また、第2ガイドルートに沿う場合には、現在位置からターゲットポジションまでの車両が移動しなければならない距離は75mであり得る。自動バレーパーキングのために自律走行を行う上で、経路が長くなるほど、他の車両または障害物、周辺の環境変化により、計画された経路と実際の走行環境が異なる可能性が高い。よって、本開示によれば、ガイドルートの長さに基づいて重みを適用しようとする。
【0075】
ガイドルートの長さに基づく重みは、車両が移動しなければならない距離が短いほど、最終のガイドルートとして算出される方式で決定できる。例えば、複数のガイドルートのうち、重みを適用した結果値が最も低いガイドルートが最終のガイドルートとして算出される場合、移動距離が短い第1ガイドルートに適用される重みは、移動距離が長い第2ガイドルートに適用される重みよりもさらに低くてもよい。例えば、第1ガイドルートに適用されるガイドルートの長さに基づく重みは、(第1距離)/(第1距離+第2距離)の形で決定できる。図9を参照した実施形態では、第1ガイドルートに対して決定される長さに基づく重みは60/(60+75)で決定でき、第2ガイドルートに対して決定される長さに基づく重みは75/(60+75)で決定できる。第1ガイドルートに長さに基づく重みを適用した結果は、60*60/135であって約26.67であり、第2ガイドルートに長さに基づく重みを適用した結果は、75*75/135であって約41.67であり得る。本実施形態は、結果値の低いガイドルートが最終のガイドルートとして算出される場合なので、結果値のさらに低い第1ガイドルートが最終のガイドルートとして決定できる。
【0076】
一方、ガイドルートに重みを適用した結果値が大きい場合を最終のガイドルートとして算出する場合は、前述した例の逆で計算される。
【0077】
図8を参照すると、左折/右折の数に基づく重みを決定するステップ(S830)が行われる。図10を参照すると、第1ガイドルートでは左折及び右折の数が2つであり、第2ガイドルートでは左折及び右折の数が4つである。自動バレーパーキングのために自律走行を行うにあたり、左折または右折の際にヨーレート(yaw rate)によって位置の認識が最も多い妨害を受けて位置認識失敗による例外状況の発生可能性が高くなる。よって、本開示によれば、左折または右折の数に基づいて重みを適用しようとする。
【0078】
左折/右折の数に基づく重みは、車両が行わなければならない左折または右折の合計数が小さいほど最終のガイドルートとして算出される方式で決定できる。例えば、複数のガイドルートの中から、本重みを適用した結果値が最も低いガイドルートが最終のガイドルートとして算出される場合、左折及び右折の合計数がより少ない第1ガイドルートに適用される重みは、左折及び右折の数がさらに多い第2ガイドルートに適用される重みよりもさらに低くてもよい。例えば、第1ガイドルートに適用される左折/右折に基づく重みは、(第1ガイドルートの数)/(第1ガイドルートの数+第2ガイドルートの数)の形で決定できる。図10を参照した実施形態では、第1ガイドルートに適用される左折/右折の数に基づく重みは、2/(2+4)で決定でき、第2ガイドルートに適用される左折/右折の数に基づく重みは、4/(2+4)で決定できる。
【0079】
このような重みは、他の重みと複合的に適用されてもよく、それとも、他の重みとは独立して決定されてもよい。つまり、最終のガイドルートは、本明細書で提案するすべての重みを適用した結果から算出でき、或いは、本明細書で提案する重みのうちの一部を適用した結果から算出できる。
【0080】
図9を参照して説明したガイドルートの長さに基づく重みに続いて、図10を参照して説明した左折/右折の数に基づく重みを適用すると、次のとおりである。第1ガイドルートに重みを適用した結果値は、26.67*2/6であって約8.89であり、第2ガイドルートに重みを適用した結果値は、41.67*4/6であって約27.28である。本実施形態は、結果値の低いガイドルートが最終のガイドルートとして算出される場合なので、結果値のさらに低い第1ガイドルートが最終のガイドルートとして決定できる。
【0081】
一方、ガイドルートに重みを適用した結果値が大きい場合を最終のガイドルートとして算出する場合は、前述した例示の逆で計算される。
【0082】
図8を参照すると、狭路の数に基づく重みを決定するステップ(S840)が行われる。図11を参照すると、第1ガイドルート上の狭路は、ブロック単位を基準に2回存在し、第2ガイドルート上の狭路は、同じくブロック単位を基準に4回存在する。自動バレーパーキングのために自律走行を行うにあたり、狭路を自律走行するロジックは相対的にさらに複雑であり、他の車両との衝突可能性が高くなる。よって、本開示によれば、車両が通過しなければならない狭路の数に基づく重みを適用しようとする。
【0083】
本開示に係る狭路は、ガイドルートの中で予め決定された長さよりも狭い場合を指す。本開示に係る狭路の数に基づく重みは、車両が通過しなければならない狭路の数が少ないほど最終のガイドルートとして算出される方式で決定できる。例えば、複数のガイドルートの中から、本重みを適用した結果値が最も低いガイドルートが最終のガイドルートとして算出される場合、狭路の数がさらに少ない第1ガイドルートに適用される重みは、狭路の数がさらに多い第1ガイドルートに適用される重みよりもさらに低くてもよい。例えば、第1ガイドルートに適用される狭路の数に基づく重みは、(第1ガイドルートの数)/(第1ガイドルートの数+第2ガイドルートの数)の形で決定できる。図11を参照した実施形態では、第1ガイドルートに適用される狭路の数に基づく重みは、2/(2+6)で決定でき、第2ガイドルートに適用される狭路の数に基づく重みは、6/(2+6)で決定できる。
【0084】
このような重みは、他の重みと複合的に適用されてもよく、それとも、他の重みとは独立して決定されてもよい。つまり、最終のガイドルートは、本明細書で提案するすべての重みを適用した結果から算出でき、或いは本明細書で提案する重みのうちの一部を適用した結果から算出できる。
【0085】
図9を参照して説明したガイドルートの長さに基づく重み、及び図10を参照して説明した左折/右折の数に基づく重みに続いて、図11を参照して説明した狭路の数に基づく重みを適用すると、次のとおりである。第1ガイドルートに重みを適用した結果値は、8.89*2/8であって約2.22であり、第2ガイドルートに重みを適用した結果値は、27.28* 6/8であって約20.46である。本実施形態は、結果値の低いガイドルートが最終のガイドルートとして算出される場合なので、結果値がさらに低い第1ガイドルートが最終のガイドルートとして決定できる。
【0086】
一方、ガイドルートに重みを適用した結果値が大きい場合を最終のガイドルートとして算出する場合は、前述した例示の逆で計算される。
【0087】
一方、本開示による狭路は、対象車両の長さ及び幅に応じて弾力的に決定できる。例えば、小型車の場合に狭路として決定される基準長さは、大型車の場合に狭路で決定される基準長さよりも短いことがある。
【0088】
図8を参照すると、移動車両の数に基づく重みを決定するステップ(S850)が行われる。図12を参照すると、第1ガイドルート上で移動中の車両の数は0個であり、第2ガイドルート上で移動中の車両の数は2つである。自動バレーパーキングのために自律走行を行うにあたり、移動中の車両は、障害物または周囲環境によって変数が発生する可能性が高いため、車両間の衝突の可能性が高くなる。よって、本開示によれば、ガイドルート上で移動している車両(つまり、自律走行を行っている他の車両)の数に基づいて重みを適用しようとする。
【0089】
本開示に係る移動車両とは、ガイドルートの周辺で自律走行を行っている他の車両を指す。本開示に係る移動車両の数に基づく重みは、ガイドルートの周辺で自律走行を行っている車両が少ないほど、最終のガイドルートとして算出される方式で決定できる。例えば、複数のガイドルートのうち、本重みを適用した結果値が最も低いガイドルートが最終のガイドルートとして算出される場合には、移動中の他の車両の数がさらに少ない第1ガイドルートに適用される重みは、移動中の他の車両の数がさらに多い第1ガイドルートに適用される重みよりもさらに低い。例えば、第1ガイドルートに適用される狭路の数に基づく重みは、(第1ガイドルートの数)/(第1ガイドルートの数+第2ガイドルートの数)の形で決定できる。ただし、本実施形態のように第1ガイドルートの数が0個である場合、基礎値として1または2を設定することができる。本実施形態に基礎値を適用すると、(基礎値+第1ガイドルートの数)/(基礎値+第1ガイドルートの数+第2ガイドルートの数)の形で決定できる。図12を参照した実施形態では、第1ガイドルートに適用される移動車両の数に基づく重みは、1/(1+0+2)で決定でき、第2ガイドルートに適用される移動車両の数に基づく重みは、2/(1+0+2)で決定できる。
【0090】
このような重みは、他の重みと複合的に適用されてもよく、それとも、他の重みとは独立して決定されてもよい。つまり、最終のガイドルートは、本明細書で提案するすべての重みを適用した結果から算出されてもよく、本明細書で提案する重みのうちの一部を適用した結果から算出されてもよい。
【0091】
図9を参照して説明したガイドルートの長さに基づく重み、図10を参照して説明した左折/右折の数に基づく重み、及び図11を参照して説明した狭路の数に基づく重みに続いて、図12を参照して説明した移動車両の数に基づく重みを適用すると、次のとおりである。第1ガイドルートに重みを適用した結果値は、2.22*1/3であって約0.74であり、第2ガイドルートに重みを適用した結果値は、20.46*2/3であって約13.64である。本実施形態は、結果値の低いガイドルートが最終のガイドルートとして算出される場合なので、結果値のさらに低い第1ガイドルートが最終のガイドルートとして決定できる。
【0092】
一方、ガイドルートに重みを適用した結果値が大きい場合を最終のガイドルートとして算出する場合は、前述した例示の逆で計算される。
【0093】
一つ以上の例示的な実施形態において、説明した機能は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの任意の組み合わせで実現できる。ソフトウェアで実現される場合、これらの機能は、コンピュータ可読媒体上に一つ以上の命令又はコードとして格納又は伝送できる。コンピュータ可読媒体は、一つの場所から他の場所へのコンピュータプログラムの伝達を容易にする任意の媒体を含む通信媒体及びコンピュータ記憶媒体をすべて含む。記憶媒体は、コンピュータによってアクセス可能な任意の利用可能媒体であり得る。限定ではない例示として、このようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROM又は他の光ディスクストレージ、磁気ディスクストレージ又は他の磁気記憶デバイス、又は命令やデータ構造の形で所望のプログラムコードを伝達又は格納するために使用でき、コンピュータによってアクセス可能な任意の他の媒体を含むことができる。また、任意の接続がコンピュータ可読媒体として適切に呼ばれる。例えば、ソフトウェアが同軸ケーブル、光ファイバーケーブル、ツイストペアケーブル、デジタル加入者回線(DSL)、又は赤外線、ラジオ及び超高周波などの無線技術を利用してウェブサイト、サーバ又は他のリモートソースから伝送される場合、同軸ケーブル、光ファイバーケーブル、ツイストペアケーブル、DSL、又は赤外線、ラジオ及び超高周波などの無線技術が媒体の定義に含まれる。ここで使用されたディスク(disk及びdisc)は、コンパクトディスク(CD)、レーザーディスク、光ディスク、デジタル多用途ディスク(DVD)、フロッピーディスク、及びブルーレイディスクを含み、ディスク(disk)は、通常、データを磁気的に再生するのに対し、ディスク(disc)は、データをレーザによって光学的に再生する。これらの組み合わせも、コンピュータ可読媒体の範囲内に含まれるべきである。
【0094】
実施形態がプログラムコード又はコードセグメントで実現されるとき、コードセグメントは、プロシージャ、関数、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、又は命令、データ構造、又はプログラムステートメントの任意の組み合わせを示すことができるものと認識すべきである。コードセグメントは、情報、データ、引数(argument)、パラメータ又はメモリコンテンツを伝達及び/又は受信することにより、他のコードセグメント又はハードウェア回路に接続できる。情報、引数、パラメータ、データなどは、メモリ共有、メッセージパッシング、トークンパッシング、ネットワーク送信などを含む任意の適当な手段を利用して伝達、発送又は伝送できる。さらに、いくつかの側面から、方法又はアルゴリズムのステップ及び/又は動作は、コンピュータプログラム物に統合できる機械可読媒体及び/又はコンピュータ可読媒体上にコード及び/又は命令のいずれか、又はこれらの任意の組み合わせもしくはセットとして常駐することができる。
【0095】
ソフトウェアでの実現において、ここで説明した技術は、ここで説明した機能を行うモジュール(例えば、プロシージャ、関数など)で実現できる。ソフトウェアコードは、メモリユニットに記憶でき、プロセッサによって実行できる。メモリユニットは、プロセッサ内に実現されてもよく、プロセッサの外部に実現されてもよい。この場合、メモリユニットは、公知のように様々な手段によってプロセッサに通信可能に接続できる。
【0096】
ハードウェアでの実現において、処理ユニットは、一つ以上の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラム可能論理回路(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、ここで説明した機能を行うように設計された他の電子ユニット、又はこれらの組み合わせ内に実現できる。
【0097】
上述したのは、一つ以上の実施形態の実例を含む。もちろん、上述した実施形態を説明する目的でコンポーネント又は方法の可能な全ての組み合わせを記述することができるのではなく、当業者は、様々な実施形態の多くの追加の組み合わせ及び置換が可能であることを認識することができる。したがって、説明した実施形態は、添付された請求の範囲の真意及び範囲内にあるすべての代案、変形及び改造を含むものである。しかも、詳細な説明又は請求の範囲において「含む」という用語が使用される範囲について、このような用語は、使用される時に「構成される」という用語が請求の範囲で過渡的な単語として解釈されるように、「構成される」という用語と同様に包括的なものである。
【0098】
ここで使用されたように、「推論する」又は「推論」という用語は、一般に、イベント及び/又はデータによって捕捉される1セットの観測から、システム、環境及び/又はユーザーの状態について判断又は推論するプロセスを指す。推論は、特定の状況又は動作を識別するために用いることができ、或いは、例えば状態に対する確率分布を生成することができる。推論は確率的でありうる。すなわち、データ及びイベントの考察に基づく当該状態に対する確率分布の計算でありうる。推論は、また、1セットのイベント及び/又はデータから上位レベルイベントを構成するために利用される技術を指すこともある。このような推論は、1セットの観測されたイベント及び/又は格納されたイベントデータからの新しいイベント又は動作、イベントが時間において密接に相関するか否か、及びイベントとデータが一つ又は複数のイベント及びデータソースから出るかを推定するようにする。
【0099】
さらに、本出願において使用されているように、「コンポーネント」、「モジュール」、「システム」などの用語は、これに限定されるものではないが、コンピュータ関連のエンティティ、例えば、ハードウェア、ファームウェア、ハードウェアとソフトウェアとの組み合わせ、ソフトウェア又は実行中のソフトウェアを含むものとする。例えば、コンポーネントは、プロセッサ上で実行するプロセス、プロセッサ、オブジェクト、実行可能な実行スレッド、プログラム及び/又はコンピュータでありうるが、これらに限定されるものではない。例として、演算デバイス上で駆動するアプリケーション及び演算デバイスの両方がコンポーネントであることもある。一つ以上のコンポーネントがプロセス及び/又は実行スレッド内に常駐してもよく、コンポーネントが一つのコンピュータに集中してもよく、及び/又は2以上のコンピュータの間に分散されてもよい。加えて、これらのコンポーネントは、各種のデータ構造を格納した各種コンピュータ可読媒体から実行されてもよい。コンポーネントは、一つ以上のデータパケット(例えば、ローカルシステム、分散システムの他のコンポーネント、及び/又は信号により他のシステムとインターネットのようなネットワークを介して相互作用するあるコンポーネントからのデータ)を有する信号に従うなど、ローカル及び/又は遠隔処理によって通信をしてもよい。
図1
図2
図3
図4a
図4b
図5
図6
図7
図8
図9
図10
図11
図12