IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オープンライト フォトニクス インコーポレイテッドの特許一覧

特許7480029オンチップフォトニック集積回路光学検証
<>
  • 特許-オンチップフォトニック集積回路光学検証 図1
  • 特許-オンチップフォトニック集積回路光学検証 図2
  • 特許-オンチップフォトニック集積回路光学検証 図3
  • 特許-オンチップフォトニック集積回路光学検証 図4
  • 特許-オンチップフォトニック集積回路光学検証 図5A
  • 特許-オンチップフォトニック集積回路光学検証 図5B
  • 特許-オンチップフォトニック集積回路光学検証 図6
  • 特許-オンチップフォトニック集積回路光学検証 図7
  • 特許-オンチップフォトニック集積回路光学検証 図8
  • 特許-オンチップフォトニック集積回路光学検証 図9
  • 特許-オンチップフォトニック集積回路光学検証 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-26
(45)【発行日】2024-05-09
(54)【発明の名称】オンチップフォトニック集積回路光学検証
(51)【国際特許分類】
   G01M 11/00 20060101AFI20240430BHJP
   G02B 6/12 20060101ALI20240430BHJP
   H01S 5/06 20060101ALI20240430BHJP
【FI】
G01M11/00 T
G02B6/12 371
G02B6/12 301
H01S5/06
【請求項の数】 20
【外国語出願】
(21)【出願番号】P 2020194956
(22)【出願日】2020-11-25
(65)【公開番号】P2022058070
(43)【公開日】2022-04-11
【審査請求日】2023-11-24
(31)【優先権主張番号】17/038,422
(32)【優先日】2020-09-30
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】522446306
【氏名又は名称】オープンライト フォトニクス インコーポレイテッド
【氏名又は名称原語表記】OpenLight Photonics, Inc.
【住所又は居所原語表記】6868 Cortona Drive, Suite C, Goleta, California 93117 United States of America
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ベンジャミン・エム.・カーティン
【審査官】小野寺 麻美子
(56)【参考文献】
【文献】特表2012-515350(JP,A)
【文献】特開2003-185526(JP,A)
【文献】米国特許出願公開第2015/0146195(US,A1)
【文献】米国特許第07872489(US,B2)
【文献】米国特許出願公開第2009/0245322(US,A1)
【文献】国際公開第2019/083773(WO,A1)
【文献】EGOROV,A.A.,WAVEGUIDE LIGHT SCATTERING METHOD AS A BEST WAY FOR RESEARCH OF THE STATISTIC IRREGULARITIES OF INTEGRATED-OPTICAL WAVEGUIDES,JOURNAL OF RADIO ELECTRONICS,2010年,pp.1-19
(58)【調査した分野】(Int.Cl.,DB名)
G01M 11/00 - G01M 11/08
G02B 1/00 - G02B 30/60
H01S 1/00 - H01S 5/50
(57)【特許請求の範囲】
【請求項1】
フォトニック集積回路(PIC)中のエラーを検出するための方法であって、
前記PICの集積半導体レーザーによって、複数の導波路によって接続される複数の光学コンポーネントを備える前記PICのフォトニック回路層に沿って伝搬する赤外光を生成することであって、前記フォトニック回路層は前記PICの基板層上に形成され、前記赤外光の一部分は、前記PICの前記基板層を通して前記フォトニック回路層から離れて伝搬する赤外光を生成することと、
前記PICの外部の画像センサを使用して、前記PICの前記基板層を通って前記フォトニック回路層から離れて伝搬する前記赤外光の一部分を画像化することによって、初期フォトニック回路画像を生成することであって、前記初期フォトニック回路画像は、前記赤外光が前記複数の光学コンポーネントのうちの1つ以上によって前記フォトニック集積回路中の第1の光学経路にガイドされている間に生成される、初期フォトニック回路画像を生成することと、
前記複数の光学コンポーネントのうちの1つを使用して、前記フォトニック回路層中の第2の光学経路に前記赤外光を向けることと、
前記赤外光が前記2の光学経路にガイドされている間に、フォトニック回路画像を生成することと、
前記赤外光が前記2の光学経路にガイドされている間に、前記フォトニック回路画像をディスプレイデバイス上に表示することと、
前記フォトニック回路画像と前記初期フォトニクス回路画像の比較に基づいて、前記PICの前記フォトニック回路層の1つ以上の前記光学コンポーネントにおける光学エラーを検出することと、
を備え
方法。
【請求項2】
前記PICは、外部チップと接続する電気接続を有する第1のサイドと前記外部チップから離れて面する前記第1のサイドに対向する第2のサイドとを有するフリップチップコンフィギュレーションのPICチップ中に含まれ、前記画像センサは、前記PICチップの第2のサイドに面している間、前記フォトニック回路画像を生成する、請求項1に記載の方法。
【請求項3】
前記フォトニック回路層は、前記PICチップの第2のサイドに面する前記画像センサからみて前記基板層によってカバーされる、請求項2に記載の方法。
【請求項4】
前記基板層は、可視波長を有する可視光をブロックし、前記可視波長よりも高い赤外波長を有する赤外光に基づいて、赤外光の一部分を通過させる、請求項2に記載の方法。
【請求項5】
前記フォトニック回路画像は、前記画像センサに向けて散乱する前記集積半導体レーザーからの前記赤外光の一部分に基づいて生成される、請求項4に記載の方法。
【請求項6】
前記画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサである、請求項1に記載の方法。
【請求項7】
前記集積半導体レーザーは、レージングなしで前記赤外光が生成されるように、サブレージングしきい値電力が提供される、請求項6に記載の方法。
【請求項8】
前記光学エラーは、前記複数の導波路のうちの1つにおける導波路エラーであり、前記フォトニック回路画像は前記導波路エラーからの前記赤外光の一部分の増加した散乱を表現する、請求項1に記載の方法。
【請求項9】
前記光学エラーは、前記赤外光のうちのいくつかをブロックする前記PIC中の物理素材により前記フォトニック回路層のエリアの減少した散乱として前記フォトニック回路画像内に表現される、請求項1に記載の方法。
【請求項10】
前記集積半導体レーザーは、チューニング可能なレーザーである、請求項9に記載の方法。
【請求項11】
前記複数の光学コンポーネントのうちの1つは、光を前記フォトニック回路層中の前記第1の光学経路と前記第2の光学経路とに向ける光学スイッチである、請求項1に記載の方法。
【請求項12】
前記フォトニック回路層は、シリコン層と活性層とを備える、請求項1に記載の方法。
【請求項13】
前記複数の導波路は前記シリコン層で形成され、前記複数の光学コンポーネントのうちの1つ以上は、活性層から形成される、請求項12に記載の方法。
【請求項14】
前記集積半導体レーザーは、前記活性層の一部分から形成される、請求項12に記載の方法。
【請求項15】
フォトニック集積回路(PIC)光学エラーを検出するためのシステムであって、
複数の導波路によって接続される複数の光学コンポーネントを含むフォトニック回路層を備えるPICであって、前記フォトニック回路層は前記フォトニック集積回路の基板層上に形成され、前記複数の光学コンポーネントは、前記フォトニック回路層を通して伝搬する赤外光を生成する集積半導体レーザーを含む、PICと、
前記赤外光が前記複数の光学コンポーネントのうちの1つ以上によって前記PIC中の第1の光学経路にガイドされている間に、前記フォトニック回路層からの前記赤外光から初期フォトニック回路画像を生成し、前記赤外光が前記複数の光学コンポーネントのうちの前記1つ以上によって前記PIC中の第2の光学経路にガイドされている間に、前記赤外光からフォトニック回路画像をさらに生成する外部画像センサであって、前記外部画像センサは、前記第2の光学経路にガイドされる前記赤外光が前記フォトニック回路層中を伝搬し、前記PICの前記基板層を通して前記外部画像センサに向けて散乱するときに、前記フォトニック回路画像を生成するように位置付けられる、外部画像センサと
を備える、
ここにおいて、前記システムは、前記フォトニック回路画像と前記初期フォトニクス回路画像の比較に基づいて、前記PICの前記フォトニック回路層の1つ以上の前記光学コンポーネントにおける光学エラーを検出する、システム。
【請求項16】
前記システムは、前記外部画像センサに接続されているディスプレイデバイスをさらに備え、前記外部画像センサおよび前記ディスプレイデバイスは、製造環境の前記PICの近くに位置付けられる、請求項15に記載のシステム。
【請求項17】
前記PICはウエハからシンギュレートされたダイであり、前記PICは、別のチップに電気的に接続されているフォトニックチップ中にあり、ここで、前記外部画像センサは、前記PICが前記別のチップに接続されている間に前記フォトニック回路画像を生成する、請求項15に記載のシステム。
【請求項18】
前記外部画像センサは、前記PICの外部にあり、ここで、前記外部画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサである、請求項15に記載のシステム。
【請求項19】
前記集積半導体レーザーは、レージングなしで前記赤外光を生成するようにサブレージングしきい値電力が提供される、請求項15に記載のシステム。
【請求項20】
前記物理素材は、前記PIC中の接着剤からの残留物を備える、請求項9に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本開示は、一般的に光学回路に関し、より具体的には、光学回路検証およびエラー検出に関する。
【背景】
【0002】
[0002] フォトニック集積回路(PIC)は、PICの製造の間に傷つけられることがある、導波路によって相互接続されるアクティブおよびパッシブコンポーネントの両方を含むことができる。欠陥のロケーションを識別することは、分析中のPICを潜在的に損なうことがある検査を必要とする。さらに、このような検査は、設計および製造プロセスを遅らせる準備を必要とする、分解されるまたはさらされるユニットにおける製造の後に生じる。さらに、PIC製造のウェハ製造ステージにおいて膨大なコストがすでに負担されていることから、このような検査は、製造サイクルの終り近くになる。
【図面の簡単な説明】
【0003】
[0003] 以下の説明は、本開示の実施形態のインプリメンテーションの例として与えられる実例を有する図の説明を含む。図面は、限定ではなく例として理解すべきである。ここで使用されるように、1つ以上の「実施形態」への参照は、本発明の主題事項のうちの少なくとも1つのインプリメンテーションに含まれる、特定の特徴、構造、または特性を説明するものとして理解すべきである。したがって、ここで現れる「1つの実施形態において」または「代替実施形態において」のようなフレーズは、本発明の主題事項のさまざまな実施形態およびインプリメンテーションを説明するが、必ずしもすべて同じ実施形態を参照するわけではない。しかしながら、これらは、必ずしも相互に排他的ではない。任意の特定の要素または動作の説明を容易に識別するために、参照番号中の最上位の数字は、要素または動作が最初に発生する、図面(「図」)番号を指す。
図1】[0004] 図1は、いくつかの例示的な実施形態にしたがう、光学信号を送信および受信するための例示的な光学トランシーバを図示するブロックダイヤグラムである。
図2】[0005] 図2は、本開示の実施形態にしたがう、1つ以上の光学デバイスを含む光学電気デバイスの実例である。
図3】[0006] 図3は、さまざまな実施形態にしたがう、フォトニック集積回路の概略断面図である。
図4】[0007] 図4は、いくつかの例示的な実施形態にしたがう、光学電気デバイスの内部アーキテクチャを示す。
図5A】[0008] 図5Aは、いくつかの例示的な実施形態にしたがう、ポイントエラーを検出するためのフォトニック回路画像を示す。
図5B図5Bは、いくつかの例示的な実施形態にしたがう、ポイントエラーを検出するためのフォトニック回路画像を示す。
図6】[0009] 図6は、いくつかの例示的な実施形態にしたがう、フォトニック集積回路の例示的なフォトニック回路画像を示す。
図7】[0010] 図7は、いくつかの例示的な実施形態にしたがう、素材ベースの光学エラーを検出するための例示的なフォトニック回路アーキテクチャを示す。
図8】[0011] 図8は、いくつかの例示的な実施形態にしたがう、光学ポイントエラーを決定するための方法の例示的なフローダイヤグラムを示す。
図9】[0012] 図9は、いくつかの例示的な実施形態にしたがう、光学経路エラーを決定するための方法の例示的なフローダイヤグラムを示す。
図10】[0013] 図10は、いくつかの例示的な実施形態にしたがう、フォトニック集積回路における素材ベースの光学エラーを決定するための方法の例示的なフローダイヤグラムを示す。
【0004】
[0014] ここで提示する本発明の概念の他の潜在的な実施形態またはインプリメンテーションを説明するとともに、以下に説明する実施形態のうちのいくつかまたはすべてを描くかもしれない、図面の説明を含む、ある詳細およびインプリメンテーションの説明が続く。本開示の実施形態の全体像を以下に提供し、その後に図面を参照してより詳細な説明が続く。
【詳細な説明】
【0005】
[0015] 以下の記述では、説明の目的のために、本発明の主題事項のさまざまな実施形態の理解を提供するための、多数の特定の詳細を述べる。しかしながら、これらの特定の詳細なしで、本発明の主題事項の実施形態を実施できることが当業者に明らかになるだろう。一般的に、周知の命令インスタンス、構造、および、技術は必ずしも詳細に示されない。
【0006】
[0016] 説明したように、フォトニック集積回路におけるエラーは、設計および製造において検出することが難しいことがある。この目的のために、オンチップ光源ベースの光学エラー検出システムは、ウエハレベルで、ならびに、ダイシンギュレーションおよびチップとチップパッケージとへ統合された後に、所定のPICにおいて1つ以上の光学エラーを識別するために使用されることができるフォトニック回路画像を生成することができる。オンチップ光源は、PICの1つ以上の基板層を通して、波長範囲(例えば、赤外波長)に感度のよい画像センサに伝搬する波長で光を生成できる。オンチップ光源は、チューニング可能であり、フォトニック集積回路中の異なるタイプの光学エラーを検出するために利用できる異なる電力設定が提供されることができる。光が、フォトニック回路層を照光し、さらに、フォトニック回路のサイドから散乱すると(例えば、基板層を通過し、そこで、屈曲、穴、または特異な素材により光が散乱する)、赤外光を使用してフォトニック回路を画像化できる赤外線CCDとして、外部カメラは実現できる。エラー識別に加えて、システムは、異なる光経路に応答してPICが正しく機能し、コンポーネントがアクティブ化される(例えば、PIC中の光経路を切り替え、意図されたコンポーネントを通して光が伝搬することを確認する)ことを検証するように実現できる。
【0007】
[0017] 図1は、いくつかの例示的な実施形態にしたがう、光学信号を送信および受信するための光学トランシーバ100を図示するブロックダイヤグラムである。光学トランシーバ100は、以下でさらに詳細に説明するように、オンチップ生成光の赤外線画像化を介して光学エラーを識別できる光学電気デバイスの例である。図1中に示している例では、光学トランシーバ100は、電気ハードウェアデバイス150のような電気デバイスからデータを処理し、電気データを光学データに変換し、光学デバイス175のような1つ以上の光学デバイスにより光学データを送り、受け取る。例えば、電気ハードウェアデバイス150は、光学スイッチネットワークにデータを送り、受け取るプラグ着脱可能なデバイスのような光学トランシーバ100を「ホストする」ホストボードであることがあり、ここで、例えば、光学デバイス175は、光学スイッチネットワークの他のコンポーネント(例えば、外部送信機177)であることがある。しかしながら、光学トランシーバ100は、他のタイプの電気デバイスおよび光学デバイスとインターフェースするように実現されることがあることを認識すべきである。例えば、いくつかの例示的な実施形態にしたがうと、光からバイナリ電気データにデータが変換された後にデータを処理するオンボード電気チップと相互接続するように、光学ネットワーク(例えば、導波路、ファイバ)を光学バスとして使用するハイブリッド「マザーボード」上で単一のチップとして、光学トランシーバ100は実現できる。
【0008】
[0018] いくつかの例示的な実施形態では、ハードウェアデバイス150は、光学トランシーバ100の電気インターフェースを収容し、嵌合する電気インターフェースを含む。光学トランシーバ100は、通信システムまたはデバイス内でバックエンドモジュールとして動作するハードウェアデバイス150によって物理的に収容されてもよく、ハードウェアデバイス150から取り外されてもよい、取り外し可能前端モジュールであってもよい。光学トランシーバ100およびハードウェアデバイス150は、例えば、いくつかの例示的な実施形態にしたがう、波長分割多重(WDM)システムまたはパラレルファイバーシステム(例えば、パラレル単一ファイバー(PSM))のような光学通信デバイスまたはシステム(例えば、ネットワークデバイス)のコンポーネントであることがある。
【0009】
[0019] 図示した例において、光学トランシーバ100は、電気回路(例えば、データ送信機105、データ受信機115)およびPIC110のような光学コンポーネントを制御するマイクロプロセッサ102を含む。
【0010】
[0020] 光学トランシーバ100のデータ送信機105は、電気信号を受信でき、電気信号は、フォトニック集積回路(PIC)100の光学送信機コンポ―ンネント(例えば、変調器、加熱器)を介して光学信号に変換される。PIC110は、その後、PIC110とインターフェースする、ファイバーまたは導波路のような光学リンクを介して光学信号を出力できる。出力光データは、その後、広域ネットワーク(WAN)、光学スイッチネットワーク、組み込みシステム中の光学導波路ネットワークなどのようなネットワークを介して、他のコンポーネント(例えば、スイッチ、エンドポイントサーバ、単一組み込みシステムの他の組み込みチップ)によって処理されることができる。
【0011】
[0021] 受信機モードにおいて、PIC110(例えば、光検出器)は、光学デバイス175への1つ以上の光学リンクを介して、高データレート光学信号を受信できる。光学信号は、電気ハードウェアデバイス150のような他のデバイスへの出力のためにデータをより引いデータレートに変調するように、データ受信機115によってさらなる処理のために光を電気信号に変換するように、PIC110(例えば、SOA、フォトダイオード)中の光学受信機コンポーネントによって変換される。光学トランシーバ100によって使用される変調は、パルス振幅変調(例えば、「PAM4」、PAM8等のような4レベルPAM)、直角位相シフトキーイング(QPSK)、2位相シフトキーイング(BPSK)、偏波多重BPSK、M-ary直角振幅変調(M-QAM)などを含むことができる。
【0012】
[0022] 図2は、いくつかの例示的な実施形態にしたがう、1つ以上の光学デバイスを含む光学電気デバイス200の実例である。この実施形態において、光学電気デバイス200は、印刷回路版(PCB)基板205、有機基板210、特定用途向け集積回路(ASIC)215、およびフォトニック集積回路(PIC)220を含む、マルチ構造チップパッケージ構造である。この実施形態において、PIC220は、上記で説明した1つ以上の光学構造(例えば、PIC110)を含んでいてもよい。さらに、単一のASIC215のみが図2中に図示されているが、異なる実施形態およびコンフィギュレーションにしたがって、複数のASICが光学電気デバイス200(例えば、データ送信機105のための送信機ASIC、データ受信機115のための受信機ASIC、マイクロプロセッサ102のためのマイクロプロセッサASIC)に統合できることが認識されるだろう。
【0013】
[0023] いくつかの例示的な実施形態において、PIC220は、シリコンオンインシュレーター(SOI)またはシリコンベースの(例えば、シリコン窒化物(SiN))デバイスを含み、または、シリコンおよび非シリコン素材の両方から形成されるデバイスを備えていてもよい。前記非シリコン素材(代替的に「異種素材」とも呼ばれる)は、III-V族素材、磁気光学素材、または結晶基板素材のうちの1つを備えていてもよい。III-V族半導体素材は、周期表のIII族とV族に含まれる要素(例えば、インジウムガリウムヒ素リン(InGaAsP))を有している。III-V族半導体電子速度がシリコンのものよりもより速いことからIII-V族ベースの素材のキャリア分散効果は、シリコンベースの素材よりもはるかに高い。さらに、III-V族素材は、電気ポンプからの光の効果的な生成を可能にするダイレクトバンドギャップを有している。したがって、III-V族半導体素材は、シリコンと比較して、光を生成することと光の屈折率を変調することの両方に関する増加した効率性を有する光動作を可能にする。したがって、III-V族半導体素材は、電気から光を生成し、光を電気に変換する際に、増加した効率性を有する光動作を可能にする。
【0014】
[0024] したがって、シリコンの低光学損失および高品質酸化物は、本開示の実施形態における、異種光学デバイス中のIII-V族半導体の電気光学効率性と組み合わされ、前記異種デバイスは、デバイスの異種およびシリコンのみの導波路の間で低損失異種光学導波路遷移を利用する。いくつかの例示的な実施形態において、PIC110は、III-V族素材を使用して光を生成するために(図2中には描かれていない)集積レーザーを実現する。
【0015】
[0025] 。
[0026] いくつかの例示的な実施形態では、PIC220の光学デバイスは、ASIC215のような1つ以上のASICに含まれる制御回路、または、1つ以上のASICからからの制御命令によって、少なくとも部分的に制御される。ASIC215とPIC220の両方が銅柱214上に配置されるように示されており、これらは、有機基板210を介してICを通信可能に結合するために使用される。PCB基板205は、ボールグリッドアレイ(BGA)相互接続216を介して有機基板210に結合され、有機基板210を(したがってASIC215およびPIC220を)、示していないが、相互接続モジュール、電力供給等のような光学電子デバイス200の他のコンポーネントに相互接続するように使用されてもよい。
【0016】
[0027] 図示した例では、PIC220は、有機基板210に接続するようにフロントサイド221が「下」に面し、有機基板210から離れるようにバックサイド219が「上」に面するフリップチップコンフィギュレーションである。集積された光源からの光は、バックサイド219を照らすように、PIC220の他の層(例えば、基板、酸化シリコン)を伝搬できる、またはそうでなければ、通過できる波長(例えば、赤外線)である。別の方法でバックサイド219を通して見えないために、フォトニック回路層が覆われているかもしれないにもかかわらず、カメラのような画像センサ217は、画像要素(例えばCCDアレイ)を使用して、光をキャプチャし、PIC220内のフォトニック回路のフォトニック回路画像を生成することができる。カメラまたは画像センサ217から生成した画像は、デスクトップコンピュータのモニタのようなディスプレイ227上に表示でき、これは、光学的欠陥(例えば、導波路エラー)を識別およびラベル付けするようにフォトニック画像上で画像分析を実行できる。例えば、いくつかの例示的な実施形態にしたがうと、エッジ検出または畳み込みニューラルネットワークオブジェクト識別を、フォトニック回路のアクティブエリアおよび導波路中の光学エラーを識別するために、各フォトニック回路画像に適用できる。さらに、PIC220は有機基板210上にフリップチップコンフィギュレーションで画像化されるように図示されているが、オンチップ光源、カメラ、およびディスプレイ227は、別の方法ではフォトニック層を見るのに実用的でなくすることがある、電気接触、トレースでカバーされるかもしれないフロントサイド221を通してPIC220を同様に画像化できることを認識すべきである。例えば、PIC220からのオンチップ光は、フォトニック回路画像を生成するために使用されることができる一方で、PIC220は、(例えば、ダイシンギュレーションの前の、ウエハ製造環境またはクリーンルームにおいて、インラインの)ウエハの一部分である。
【0017】
[0028] 図3は、さまざまな実施形態にしたがう、PIC300の概略断面図である。PIC300は、サイド219が下に面し、トップサイドが上に面するPIC220の例であり、トップサイドのうちのいくつかの層(例えば、電気インターフェース)は、可視性のために除去されている。図示しているように、PIC300は、(シリコンの層、酸化シリコン、およびシリコンを含む)シリコンオンシュレーター基板302であり、断面図で示されている。SOI基板302の最上部のシリコン層304は、パターン化され、その後部分的にエッチングされ、領域307において導波路および他の集積光学構造(例えば、MZI)を形成する。さらに、最上部のシリコン層304は、領域308において、レーザーダイオード(例えば、III-V族素材)の部分からの光を結合するための導波路、(例えば、データを送り、オプション的に低周波数ディザー信号をレーザーに適用するために使用される)関係付けられている変調器、および(例えば、検出器として機能する)フォトダイオードをさらに含む。レーザーは、(自由キャリア吸収、バンドギャップ縮小、バンド充填効果を介して)1次および/または2次電気光学効果あるいはキャリア注入を利用するために領域308において半導体素材を使用して、または、レーザー空洞内に配置された領域307における熱チューニング要素によって、チューニングされることができる。出力カプラは、入力および出力ポートにおいて(より狭いおよびオプション的に先細になる)導波路にマージする(例えば、図3中に示したような上面図において)四角形の形態をとる、例えば、マルチモードインターフェース(MMI)であってもよい。
【0018】
[0029] パターン化され、エッチングされたシリコン層の上に、酸化シリコンの絶縁層が配置され、クラッディング310を形成してもよい。レーザーおよび検出器の領域308において、これらのコンポーネントの集積光学構造よりも上のクラッディング310の上に、n型にドープしたおよびp型にドープした領域を含む化合物半導体素材312(例えば、III-V族素材)が配置され、レーザーダイオード、変調器、フォトダイオードを形成し、典型的には、化合物半導体は、表面に接合され、各機能に対して最適化された複数の異なる素材を含む。パッド金属および金属接触(図示せず)は、誘導放出を引き起こすようにレーザーダイオードを通して電流を流すことと、電流または電圧をレーザーチューニング要素に流すことと、データを送信し、オプション的にディザリングするように変調器にわたって変動電場生成することと、フォトダイオード中で生成された電流を測定することとを促進するように配置されている。レーザーダイオードにおいて生成された光は、下の集積光学構造に結合され、これは、変調器に、オプション的に光学スイッチおよび出力分配器に、および図4中に示すような他の光学コンポーネントにつながる出力カプラによる共振空洞を形成してもよい。
【0019】
[0030] 図4は、いくつかの例示的な実施形態にしたがう、光学電気デバイス402の内部アーキテクチャ400を示す。図示したように、アーキテクチャ400は、光学トランシーバ100のように光学データを送り、受け取ることができる光学電気デバイス402を表示する。光学電気デバイス402は、電子モジュール404およびフォトニクスモジュール407を備えている。電子モジュール404は、電気コンポーネント(例えば、電気伝導経路/トレース、回路制御論理、ASIC、プロセッサ、電力制御回路等)を含み、これらは、図2のASICのような、パッケージ化されたチップ中の1つ以上の電気構造またはASICとして統合されることができる。図示した例において、電子モジュール404は、光学変調のためのデータ(例えば、PAM4データ、QPSKデータ)を受信する送信機制御装置406(例えば、図1のデータ送信機105)を含む。いくつかの例示的な実施形態では、ハードウェアプロセッサ405(CPU、ASIC、マイクロプロセッサ)は、光学電気デバイス402の異なるプロセスを制御する。電子モジュール404は、受信機制御装置410(例えば、データ受信機115)をさらに含み、これは、フォトニクスモジュール中の光学受信機コンポーネントによって生成される光学データを受信できる。電子モジュール404は、電子モジュール404中の電子コンポーネントを含む、光学電子デバイス402に対する電力を供給および制御し、さまざまな電気的に制御されるフォトニックコンポーネント(例えば、レーザー、シリコン光増幅器、フィルタ、変調器等)に電力供給するように電力をフォトニクスモジュール407にさらに供給するための電力制御回路412をさらに含むことができる。
【0020】
[0031] いくつかの例示的な実施形態では、フォトニクスモジュール407は、集積フォトニクス送信機構造414および集積フォトニクス受信機構造432を備える波長分割多重トランシーバアーキテクチャである。いくつかの例示的な実施形態では、集積フォトニクス送信機構造414および集積フォトニクス受信機構造432は、上記で説明した図2中のPIC220のようなPICデバイスに製造される例示的な光学コンポーネントである。集積フォトニクス送信機構造414は、4つのレーンを有する送信機の例であり、例えば、第1の送信機レーン416中の、レーザー450、電界吸収型変調器(EAM)452、およびMZI455を含む含む異なる光学コンポーネントを使用して光の異なる波長を各レーンは取り扱い、他のレーンは、(例えば、異なる波長分割多重波長で)これらのレーン上で光学データを管理するために同じまたは類似したコンポーネントを含んでいてもよい。簡潔にするために、図示した例において、第1の送信機レーン418および第4の送信機レーン418を含む、送信機の2つのレーンのみが図示されており、第2および第3の送信機レーンは省略されている。
【0021】
[0032] 集積フォトニクス受信機構造432は、(例えば、光学ネットワークから)変調された光を受信し、マルチプレクサ434、半導体光学増幅器(SOA)435、および、光検出器436(例えば、フォトダイオード)のような1つ以上の検出器を使用して、光をフィルタリングし、増幅し、電気信号に変換することによって光を処理する光学受信機の例である。
【0022】
[0033] フォトニクスモジュール407は、最初に1つ以上のシリコンコンポーネントを製造した後にIII-V層から活性コンポーネントを製造することが続くことを含む、複数のプロセスで製造することができる。例えば、(例えば、矢印で図示した)フォトニクスモジュール407においてさまざまなコンポーネントに接続する導波路は、シリコンからエッチングされることができ、MZI455およびMZI433のような他のコンポーネントは、同様にシリコンからエッチングされることができる一方で、レーザー(例えば、レーザー428、450)、モニタ用フォトダイオード(例えば、モニタ用フォトダイオード464)、光検出器436のような他のコンポーネントは、その後、(例えば、導波路がエッチングされる)シリコンコンポーネントの後にIII-V族素材から後続する製造サイクルにおいて製造されることができる。
【0023】
[0034] いくつかの例示的な実施形態では、レーザーのうちの1つ以上(例えば、レーザー450)は、送信機レーン416のコンポーネントに光を提供するようにアクティブ化される。レーザー450にバイアスをかけるために供給される電力は、フォトニック層から散乱した光を受信できる赤外線画像装置を使用してフォトニック回路の正確なより高い解像度を可能にするように、光学経路を通して伝搬する低レベル光を生成するためにレーザーしきい値よりも低いことがある。いくつかの例示的な実施形態では、各レーンのレーザーをオンにし、その後、赤外光から生成したフォトニック画像からレーンのコンポーネントを評価することによって、各レーンは、個々にテストされる。いくつかの例示的な実施形態では、各送信機レーンは、複数の受信機レーンのうちの1つへのループバック経路を含み、所定のレーザーレーンがアクティブ化されるとき、送信機レーンを通して、また、ループバック経路を介した受信機コンポーネントを通して、光は伝搬する。このようにして、各コンポーネントおよび光学経路は、フォトニック回路画像を介して評価されることができる。
【0024】
[0035] 図5Aは、いくつかの例示的な実施形態にしたがう、ポイントエラーを検出するための例示的なフォトニック回路画像500を示している。図5Aの例において、集積半導体レーザー(例えば、レーザー450)に電力は提供されていないが、外部照明光源からのフォトニック集積回路503の素材(例えば、シリコン、酸化シリコン、III-V族素材)から反射する周囲の赤外光により、導波路505は、依然として見える。図5Bの例において、サブレージングしきい値電力(例えば、2mA)が提供される集積半導体光源は、レーザーに、導波路505を含む、フォトニック集積回路を通して伝搬する低電力光を生成させる。フォトニック回路画像550において表現されるように、低電力赤外光は、(例えば、基板302の1つ以上の層を通して、および、フリップチップPICのバックサイド219を通して)導波路中の欠陥555から赤外線カメラに向けて散乱する。いくつかの例示的な実施形態では、フォトニック回路画像は、各ピクセルの強度に関連して色付けられ、画像500の直接目視観測によって、異なるエリアで散乱した光の強度を推定できるように疑似色を提供する。いくつかの例示的な実施形態では、スペクトルインジケータ507は、画像500中の光のおおよその強度を決定する際に、ユーザを支援するように、(例えば、ディスプレイ227上に表示される)画像500とともに含まれる。例えば、回路503の大部分は、紫の異なる色合いであることがあり、欠陥555は、視覚的に識別できる異なる色(例えば、白)で表示されることがある。いくつかの例示的な実施形態では、欠陥555は、いくつかの例示的な実施形態にしたがう、ディスプレイ227上にユーザインターフェース要素(例えば、回路、矢印)でラベル付けされる。
【0025】
[0036] 図6は、いくつかの例示的な実施形態にしたがう、フォトニック集積回路の例示的なフォトニック回路画像600および650を示している。図6の例では、画像600および650の両方は、異なる光学経路が照光されたPICの同じ領域を表現している。例えば、画像600では、第1の光学経路610は、集積された光源から光を受信し、コンポーネントの屈曲および終端から散乱する光により、MZI620およびモニタ用フォトダイオード625が見える。例えば、MZI620は、接合の屈曲から光が散乱するY接合を含む。さらに、モニタ用フォトダイオード625は、経路610上の光の一部分を、およびモニタ用フォトダイオード625の端から散乱する光を、利用または監視する光検出器であり、これは、PICを通しておよび画像化センサ217に伝搬する赤外光から画像600において見える。図6の例において、光学スイッチ(表現せず)は、第1の光学経路610から第2の光学経路615に、オンチップレーザーからの光を切り替えることができ、(光を受信しないことから)第2の光学経路615は、画像600では見えないが、画像650では照光される。画像650において、第2の光学経路615は、MZI630とモニタ用フォトダイオード635とを備え、これらの両方は、それぞれのコンポーネントの屈曲および終端において光を散乱する。オンチップソースを使用して、異なるコンポーネントおよび経路を照光することにより、PICの異なるコンポーネントを検証できる。例えば、光学電気チップが誤動作しており、PICが正しく動作しているか不明確である場合、経路が光を受信していることを検証するために異なる部分を画像化することができ、これは、その後、誤動作しているコンポーネントはPICの外部の電気コンポーネント(例えば、ASIC)であるかもしれないという結論を出すために使用できる。代替的に、いくつかの例示的な実施形態にしたがうと、画像600を生成した後、第2の光学経路615を通して光を向けるようにスイッチを作動するが、それにもかかわらず第2の光学経路615が暗いままである場合、経路中にエラー(例えば、ポイントエラー、素材ベースのエラー)、またはコンポーネントエラー(例えば、スイッチエラー)があるという結論を出すことができる。
【0026】
[0037] 図7は、いくつかの例示的な実施形態にしたがう、素材ベースの光学エラーを検出するための例示的なフォトニック回路アーキテクチャ700を示している。上記で説明したように、導波路経路のそれぞれ(例えば、図3の領域307および領域308に沿った経路)は、赤外光を生成またはそうでなければ伝搬することができ、赤外光は、画像センサ217による画像化のために、フォトニック集積回路のバックサイド219を通してPICの1つ以上の層(例えば、基板302のSiO2および1つ以上のSi層)を通して送信されることができる。しかしながら、図7の例において、ブロッキング素材705(例えば、接着剤残留物または不十分な接着による空隙)は、伝搬する、またはそうでなければ、ブロッキング素材705によってブロックされる光によって画像化されることができるエラーを引き起こす。例えば、フォトニック集積回路を通して伝搬する光は、所定のセットの波長の赤外光であることがあり、光が素材705とぶつかるとき、光の波長を変化させ、これは、(例えば、画像内のPICの他のエリアと比較して)異なる色合いを有するフォトニック集積回路のエリアとして表現されることができる。レーザーがチューニング可能ないくつかの例示的な実施形態では、素材705がフォトニック集積回路内に位置付けられている場合、集積された光源によって、光の異なる波長が生成されることができ、より良好に絶縁するための異なる波長を使用して、素材は画像化されることができる。さらに、および、いくつかの例示的な実施形態にしたがうと、光源は、異なる波長を通して掃引される一方で、赤外線カメラはビデオを記録し、掃引の間の各波長において、それは(PICの他の素材とは)異なって応答することから、素材705は、画像化されることができ、素材は、ビデオのフレームと比較して他の素材からより容易に区別されることができる。いくつかの例示的な実施形態では、素材705の物理組成のような特性は、素材705の周りのエリアから発され、表現される光の波長における変化に基づいて決定されることができる。例えば、素材705が近似量だけ赤外光の波長を変化またはシフトする(例えば、20nmのシフト)ように知られている接着性である場合、ブロッキング素材705の素材組成は、フォトニック集積回路の他の部分と比較して、素材705のシフト(例えば、色における違い)に基づいて識別されることができる。
【0027】
[0038] 図8は、いくつかの例示的な実施形態にしたがう、光学ポイントエラーを決定するための方法800の例示的なフローダイヤグラムである。光学ポイントエラーは、導波路の散乱ポイント(例えば、裂け目または穴)、フォトニック集積回路の屈曲または終端部分から散乱する光、または、所定のコンポーネント屈曲/端からの光の不足(例えば、光学スイッチによって光が向けられるMZIから光が発しない)を含むことがある。
【0028】
[0039] 動作805において、フォトニック集積回路中で集積レーザーを調節する。例えば、オンチップ集積レーザーは、赤外波長で光を生成するようにチューニングされる。動作810において、フォトニック集積回路内で集積レーザーを使用して、赤外光が生成される。動作810において光が生成されると、光は、フォトニック集積回路の異なる部分を伝搬および照光する(例えば、フォトニック集積回路全体を照光する、光学スイッチから向けられた光を受信する光の異なる部分を照光する)。いくつかの例示的な実施形態では、光は低電力レベルで生成され、生成される光は非コヒーレントであり(例えば、レーザー光ではない)、光が回路を横切ることから光の経路はより明確になる(例えば、レーザー光によるより高い解像度は、画像センサの画像化要素を照らさず、または、過飽和にしない)。
【0029】
[0040] 動作815において、フォトニック回路を通して伝搬する光からフォトニック集積回路画像が生成される。例えば、屈曲、穴、または終端から散乱する光は、フリップチップフォトニック集積回路のバックサイドの基盤素材を通して、画像を生成する赤外線カメラに伝搬する。
【0030】
[0041] 動作820において、光学ポイントエラーが画像中で識別される。例えば、光学ポイントエラーは、図5B中に図示したような導波路からの穴を含むことがある。さらなる例として、所定のエリアから光が発せられないとき、光学ポイントエラーは、フォトニック集積回路中の屈曲または端から発する光を含むことがある。さらなる例として、試験セットアップにおいて光を受信すべきと想定されるPICの領域からの光が欠如すると、画像において、光学エラーを識別できる(例えば、光が第2の経路615に向けられたが、画像において第2の経路は暗く、または、画像において第2の経路中の1つ以上のコンポーネントが暗く、これは、コンポーネント中にエラーがあることを示す)。
【0031】
[0042] 図9は、いくつかの例示的な実施形態にしたがう、光学経路エラーを決定するための方法900の例示的なフローダイヤグラムである。動作905において、フォトニック集積回路中で集積レーザーが調節される。例えば、動作905において、集積レーザーは、赤外波長で赤外光を生成するように調節されたチューニング可能な波長レーザーである。
【0032】
[0043] 動作910において、フォトニック集積回路内で集積レーザーを使用して、赤外光が生成される。動作910において赤外光が生成されると、光は、フォトニック集積回路の異なる部分を伝搬および照光する(例えば、フォトニック集積回路全体を照光する、1つ以上の光学スイッチから向けられた光を受信する回路の異なる部分を照光する)。
【0033】
[0044] 動作915において、フォトニック集積回路中で光学経路が変更される。例えば、光学スイッチは、上記で説明したように、第1の光学経路610から第2の光学経路615へとアクティブ光学経路を変更する。
【0034】
[0045] 動作920において、アクティブ化された経路を通して伝搬する光からフォトニック集積回路画像が生成される。例えば、アクティブ化された光学経路の屈曲、穴、または終端から散乱する赤外光は、フォトニック集積回路の基盤素材を通して、およびフリップチップフォトニック集積回路のバックサイドを通して記憶装置中のディスプレイのための画像を生成する赤外線カメラに伝搬する。
【0035】
[0046] 動作925において、生成された画像中で1つ以上の光学経路エラーが識別される。例えば、光学経路エラーは、アクティブ化された光学経路中に暗いまたはそうでなければ光を受信しないコンポーネントのうちの1つ以上を含むことがあり、これは、コンポーネントに欠陥があることを示す。さらに、光学経路エラーは、経路全体が暗い画像を含むことがあり、これは、経路が1つ以上のスイッチコンポーネントから光を受信しないことを示す。
【0036】
[0047] 図10は、いくつかの例示的な実施形態にしたがう、フォトニック集積回路中で素材ベースの光学エラーを決定する方法1000の例示的なフローダイヤグラムである。
【0037】
[0048] 動作1005において、第1のセットの赤外波長で光を生成するようにチューニングされた集積レーザー源を使用して、赤外光が生成される。動作1010において、(例えば、画像センサ217を介して)フォトニック集積回路を通して伝搬する光からフォトニック集積回路画像が生成される。
【0038】
[0049] 動作1015において、(例えば、第1のセットの波長より高いまたは低い)第2のセットの赤外波長で光を生成するようにチューニングされた集積レーザー源を使用して、赤外光が生成される。
【0039】
[0050] 動作1020において、集積回路を通して伝搬する第2のセットの波長の光からさらなるフォトニック集積回路が生成される。動作1025において、図7を参照して上記で説明したように、1つ以上の素材ベースの光学エラーが識別される。図10の例では2つの画像が生成されているが、いくつかの例示的な実施形態では、フォトニック集積回路を通して伝搬する波長は、チューニング可能な光源を使用して掃引される一方で、赤外線カメラはビデオを生成し、これは、素材ロケーションおよび特性を識別するためにライブまたはリアルタイムビデオとしてディスプレイデバイス上に表示される。
【0040】
[0051] 以下は、例示的な実施形態である:
【0041】
[0052] 例1。フォトニック集積回路(PIC)中のエラーを検出するための方法であって、前記PICの集積半導体レーザーによって、複数の波形によって接続される複数の光学コンポーネントを備える前記PICのフォトニック回路層に沿って伝搬する赤外光を生成することと、ここで、前記フォトニック回路層は前記PICの基板層上に形成され、前記赤外光の一部分は、前記PICの前記基板層を通して前記フォトニック回路層から離れて伝播し、前記PICの外部の画像センサを使用して、前記PICの前記基板層を通って前記フォトニック回路層から伝搬する前記赤外光の一部分を画像化することによって、フォトニック回路画像を生成することと、前記フォトニック回路画像をディスプレイデバイス上に表示することと、を備え、前記フォトニック集積回路は前記PICの前記フォトニック回路層の1つ以上のコンポーネントにおける光学エラーを表示する。
【0042】
[0053] 例2。前記PICは、外部チップと接続する電気接続を有する第1のサイドと前記外部チップから離れて面する前記第1のサイドに対向する第2のサイドとを有するフリップチップコンフィギュレーションのPICチップ中に含まれ、前記画像センサは、前記PICチップの第2のサイドに面している間、前記フォトニック回路画像を生成する、例1の方法。
【0043】
[0054] 例3。前記フォトニック回路層は、前記PICチップの第2のサイドに面する前記画像センサからみて前記基板層によってカバーされる、例1または2の方法。
【0044】
[0055] 例4。前記基板層は、可視波長を有する可視光をブロックし、前記可視波長よりも高い赤外波長を有する赤外光に基づいて、赤外光の一部分を通過させる、例1-3のうちのいずれかの方法。
【0045】
[0056] 例5。前記フォトニック回路画像は、前記画像センサに散乱する前記集積半導体レーザーからの前記赤外光の一部分に基づいて生成される、例1-4のうちのいずれかの方法。
【0046】
[0057] 例6。前記画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサである、例1-5のうちのいずれかの方法。
【0047】
[0058] 例7。前記集積半導体レーザーは、レージングなしで前記赤外光が生成されるように、サブレージングしきい値電力が提供される、例1-6のうちのいずれかの方法。
【0048】
[0059] 例8。前記光学エラーは、前記複数の導波路のうちの1つにおける導波路エラーであり、前記フォトニック回路画像は前記導波路エラーからの前記赤外光の一部分の増加した散乱を表現する、例1-7のうちのいずれかの方法。
【0049】
[0060] 例9。前記光学エラーは、前記赤外光のうちのいくつかをブロックする素材により前記フォトニック回路層のエリアの減少した散乱として表現される、例1-8のうちのいずれかの方法。
【0050】
[0061] 例10。前記集積半導体レーザーは、チューニング可能なレーザーである、例1-9のうちのいずれかの方法。
【0051】
[0062] 例11。前記PICのチューニング可能なレーザが1つ以上の初期波長にチューニングされる間に初期フォトニック回路を生成することをさらに備え、ここで、前記光学エラーを表現する前記フォトニック回路画像は、前記チューニング可能なレーザーが前記初期波長とは異なる赤外波長で前記赤外光を生成するようにチューニングされる間に、生成され、ここで、減少した散乱を有する前記エリアは、前記素材により前記フォトニック回路画像中の外観が変化する、例1-10のうちのいずれかの方法。
【0052】
[0063] 例12。前記複数の光学コンポーネントのうちの1つを使用して、前記フォトニック回路層中の第1の光学経路に前記赤外光をガイドすることによって、初期フォトニック回路画像を生成することと、前記複数の光学コンポーネントのうちの1つを使用して、前記フォトニック回路層中の第2の光学経路に前記赤外光を向けることとをさらに備え、ここで、前記光学エラーを表現する前記フォトニック回路画像は、前記赤外光が前記第2の光学経路に向けられている間に、前記画像センサによって生成される、例1-11のうちのいずれかの方法。
【0053】
[0064] 例13。前記複数の光学コンポーネントのうちの1つは、光を前記フォトニック回路層中の前記第1の光学経路と前記第2の光学経路とに向ける光学スイッチである、例1-12のうちのいずれかの方法。
【0054】
[0065] 例14。前記フォトニック回路層は、シリコン層と活性層とを備える、例1-13のうちのいずれかの方法。
【0055】
[0066] 例15。前記複数の導波路は前記シリコン層で形成され、前記複数の光学コンポーネントのうちの1つ以上は、活性層から形成される、例1-14のうちのいずれかの方法。
【0056】
[0067] 例16。前記集積半導体レーザーは、前記活性層の一部分から形成される、例1-15のうちのいずれかの方法。
【0057】
[0068] 例17。フォトニック集積回路光学エラーを検出するためのシステムであって、複数の導波路によって接続される複数の光学コンポーネントを含むフォトニック回路層を備えるフォトニック集積回路であって、前記フォトニック回路層は前記PICの基板層上に形成され、前記複数の光学コンポーネントは、前記フォトニック回路層を通して伝搬する赤外光を生成する集積半導体レーザーを含むフォトニック集積回路と、前記フォトニック回路層からの前記赤外光からフォトニック回路画像を生成する外部画像センサであって、前記外部画像センサは、前記フォトニック回路層中を伝播し、前記フォトニック集積回路の前記基板層を通して前記外部画像センサに散乱する前記赤外光を画像化するように位置付けられる、外部画像センサとを備える。
【0058】
[0069] 例18。前記システムは、前記外部画像センサに接続されているディスプレイデバイスをさらに備え、前記外部画像センサおよび前記ディスプレイデバイスは、製造環境の前記フォトニック集積回路の近くに位置付けられ、前記フォトニック集積回路は、複数の回路を備えるウエハに含まれる、例1-17のうちのいずれかのシステム。
【0059】
[0070] 例19。前記フォトニック集積回路はウエハからシンギュレートされたダイであり、前記フォトニック集積回路は、前記フォトニック回路層に近い電気インターフェースサイド上の別のチップに電気的に接続されているフォトニックチップ中にあり、前記基板層は、前記フォトニック回路層によって別のチップから分離され、ここで、前記外部画像センサは、前記フォトニック集積回路が前記別のチップに接続されている間に前記フォトニック回路画像を生成する、例1-17のうちのいずれかのシステム。
【0060】
[0071] 例20。前記画像センサは、前記外部画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサであり、ここで、前記集積半導体レーザーは、レージングなしで前記赤外光を生成するようにサブレージングしきい値電力が提供される、例1-17のうちのいずれかのシステム。
【0061】
[0072] 前述の詳細な説明において、本発明の主題事項の方法、および装置は、その特定の例示的な実施形態を参照して説明してきた。しかしながら、本発明の主題事項のより広い精神および範囲から逸脱することなく、これらに対するさまざまな修正および変更を行ってもよいことが明らかであろう。それゆえに、本明細書および図面は、限定的よりもむしろ、実例的であるとみなされる。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[C1]
フォトニック集積回路(PIC)中のエラーを検出するための方法であって、
前記PICの集積半導体レーザーによって、複数の波形によって接続される複数の光学コンポーネントを備える前記PICのフォトニック回路層に沿って伝搬する赤外光を生成することと、ここで、前記フォトニック回路層は前記PICの基板層上に形成され、前記赤外光の一部分は、前記PICの前記基板層を通して前記フォトニック回路層から離れて伝播し、
前記PICの外部の画像センサを使用して、前記PICの前記基板層を通って前記フォトニック回路層から伝搬する前記赤外光の一部分を画像化することによって、フォトニック回路画像を生成することと、
前記フォトニック回路画像をディスプレイデバイス上に表示することと、を備え、前記フォトニック集積回路は前記PICの前記フォトニック回路層の1つ以上のコンポーネントにおける光学エラーを表示する、
方法。
[C2]
前記PICは、外部チップと接続する電気接続を有する第1のサイドと前記外部チップから離れて面する前記第1のサイドに対向する第2のサイドとを有するフリップチップコンフィギュレーションのPICチップ中に含まれ、前記画像センサは、前記PICチップの第2のサイドに面している間、前記フォトニック回路画像を生成する、C1に記載の方法。
[C3]
前記フォトニック回路層は、前記PICチップの第2のサイドに面する前記画像センサのからみて前記基板層によってカバーされる、C2に記載の方法。
[C4]
前記基板層は、可視波長を有する可視光をブロックし、前記可視波長よりも高い赤外波長を有する赤外光に基づいて、赤外光の一部分を通過させる、C2に記載の方法。
[C5]
前記フォトニック回路画像は、前記画像センサに散乱する前記集積半導体レーザーからの前記赤外光の一部分に基づいて生成される、C4に記載の方法。
[C6]
前記画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサである、C1に記載の方法。
[C7]
前記集積半導体レーザーは、レージングなしで前記赤外光が生成されるように、サブレージングしきい値電力が提供される、C6に記載の方法。
[C8]
前記光学エラーは、前記複数の導波路のうちの1つにおける導波路エラーであり、前記フォトニック回路画像は前記導波路エラーからの前記赤外光の一部分の増加した散乱を表現する、C1に記載の方法。
[C9]
前記光学エラーは、前記赤外光のうちのいくつかをブロックする素材により前記フォトニック回路層のエリアの減少した散乱として表現される、C1に記載の方法。
[C10]
前記集積半導体レーザーは、チューニング可能なレーザーである、C9に記載の方法。
[C11]
前記方法は、
前記PICのチューニング可能なレーザが1つ以上の初期波長にチューニングされる間に初期フォトニック回路を生成することをさらに備え、
ここで、前記光学エラーを表現する前記フォトニック回路画像は、前記チューニング可能なレーザーが前記初期波長とは異なる赤外波長で前記赤外光を生成するようにチューニングされる間に、生成され、
ここで、減少した散乱を有する前記エリアは、前記素材により前記フォトニック回路画像中の外観が変化する、C10に記載の方法。
[C12]
前記複数の光学コンポーネントのうちの1つを使用して、前記フォトニック回路層中の第1の光学経路に前記赤外光をガイドすることによって、初期フォトニック回路画像を生成することと、
前記複数の光学コンポーネントのうちの1つを使用して、前記フォトニック回路層中の第2の光学経路に前記赤外光を向けることとをさらに備え、
ここで、前記光学エラーを表現する前記フォトニック回路画像は、前記赤外光が前記第2の光学経路に向けられている間に、前記画像センサによって生成される、C1に記載の方法。
[C13]
前記複数の光学コンポーネントのうちの1つは、光を前記フォトニック回路層中の前記第1の光学経路と前記第2の光学経路とに向ける光学スイッチである、C12に記載の方法。
[C14]
前記フォトニック回路層は、シリコン層と活性層とを備える、C1に記載の方法。
[C15]
前記複数の導波路は前記シリコン層で形成され、前記複数の光学コンポーネントのうちの1つ以上は、活性層から形成される、C14に記載の方法。
[C16]
前記集積半導体レーザーは、前記活性層の一部分から形成される、C14に記載の方法。
[C17]
フォトニック集積回路光学エラーを検出するためのシステムであって、
複数の導波路によって接続される複数の光学コンポーネントを含むフォトニック回路層を備えるフォトニック集積回路であって、前記フォトニック回路層は前記PICの基板層上に形成され、前記複数の光学コンポーネントは、前記フォトニック回路層を通して伝搬する赤外光を生成する集積半導体レーザーを含むフォトニック集積回路と、
前記フォトニック回路層からの前記赤外光からフォトニック回路画像を生成する外部画像センサであって、前記外部画像センサは、前記フォトニック回路層中を伝播し、前記フォトニック集積回路の前記基板層を通して前記外部画像センサに散乱する前記赤外光を画像化するように位置付けられる、外部画像センサとを備える、システム。
[C18]
前記システムは、前記外部画像センサに接続されているディスプレイデバイスをさらに備え、前記外部画像センサおよび前記ディスプレイデバイスは、製造環境の前記フォトニック集積回路の近くに位置付けられ、前記フォトニック集積回路は、複数の回路を備えるウエハに含まれる、C17に記載のシステム。
[C19]
前記フォトニック集積回路はウエハからシンギュレートされたダイであり、前記フォトニック集積回路は、前記フォトニック回路層に近い電気インターフェースサイド上の別のチップに電気的に接続されているフォトニックチップ中にあり、前記基板層は、前記フォトニック回路層によって別のチップから分離され、ここで、前記外部画像センサは、前記フォトニック集積回路が前記別のチップに接続されている間に前記フォトニック回路画像を生成する、C17に記載のシステム。
[C20]
前記外部画像センサは、前記フォトニック集積回路の外部にあり、ここで、前記外部画像センサは、前記赤外光の赤外波長に感度のよい赤外画像センサであり、ここで、前記集積半導体レーザーは、レージングなしで前記赤外光を生成するようにサブレージングしきい値電力が提供される、C17に記載のシステム。
図1
図2
図3
図4
図5A
図5B
図6
図7
図8
図9
図10