IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社SCREENホールディングスの特許一覧

特許7480194パラメータ最適化方法、プログラム、記録媒体および基板処理装置
<>
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図1
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図2
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図3
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図4
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図5
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図6
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図7
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図8
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図9
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図10
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図11
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図12
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図13
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図14
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図15
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図16
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図17
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図18
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図19
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図20
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図21
  • 特許-パラメータ最適化方法、プログラム、記録媒体および基板処理装置 図22
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-26
(45)【発行日】2024-05-09
(54)【発明の名称】パラメータ最適化方法、プログラム、記録媒体および基板処理装置
(51)【国際特許分類】
   G06N 99/00 20190101AFI20240430BHJP
   B05C 11/10 20060101ALI20240430BHJP
   B05C 5/00 20060101ALI20240430BHJP
   F04B 49/06 20060101ALI20240430BHJP
【FI】
G06N99/00 180
B05C11/10
B05C5/00 101
F04B49/06 311
【請求項の数】 9
(21)【出願番号】P 2022009305
(22)【出願日】2022-01-25
(65)【公開番号】P2023108274
(43)【公開日】2023-08-04
【審査請求日】2022-09-22
(73)【特許権者】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100135013
【弁理士】
【氏名又は名称】西田 隆美
(72)【発明者】
【氏名】仲村 武瑠
(72)【発明者】
【氏名】安陪 裕滋
【審査官】渡辺 順哉
(56)【参考文献】
【文献】特開2020-040046(JP,A)
【文献】若杉 嘉純 ほか,大域的優先探索と局所峰推定の組合せによる2次元最大値探索法,計測自動制御学会論文集,1996年08月31日,Vol.32, No.8,pp.1294-1303,ISSN 0453-4654
(58)【調査した分野】(Int.Cl.,DB名)
G06N 3/00-99/00
B05C 5/00、11/10
F04B 49/06
(57)【特許請求の範囲】
【請求項1】
ノズルから吐出される処理液を基板に供給する基板処理装置において、前記処理液の吐出を制御するためのパラメータを、コンピュータが最適化するパラメータ最適化方法であって、
a) 前記コンピュータが大域的探索によって第1パラメータを最適化する第1最適化工程と、
b) 前記コンピュータが局所的探索によって第2パラメータを最適化する第2最適化工程と、
を含み、
前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、
前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む、パラメータ最適化方法。
【請求項2】
請求項1に記載のパラメータ最適化方法であって、
前記工程b)が前記工程a)の後に実行される、パラメータ最適化方法。
【請求項3】
請求項1に記載のパラメータ最適化方法であって、
前記第1最適化工程は、ベイズ最適化により前記第1パラメータを最適化する工程を含む、パラメータ最適化方法。
【請求項4】
請求項1から請求項3のいずれか1項に記載のパラメータ最適化方法であって、
前記パラメータが、前記ノズルに前記処理液を送給するポンプの動作を制御する制御量である、パラメータ最適化方法。
【請求項5】
請求項1から請求項4のいずれか1項に記載のパラメータ最適化方法であって、
前記工程a)は、前記ノズルから前記処理液を吐出したときの吐出特性の特徴量から導出されるコスト値に基づいて、前記第1パラメータを最適化する工程を含む、パラメータ最適化方法。
【請求項6】
請求項1から請求項5のいずれか1項に記載のパラメータ最適化方法であって、
前記工程b)は、前記定常吐出期間の開始時における吐出速度と、前記定常吐出期間の終了時の吐出速度との比に基づいて、前記第2パラメータを最適化する工程を含む、パラメータ最適化方法。
【請求項7】
ノズルからの処理液の吐出を制御するためのパラメータの最適化をコンピュータに実行させるためのプログラムであって、
a) 大域的探索によって第1パラメータを最適化する第1最適化工程と、
b) 局所的探索によって第2パラメータを最適化する第2最適化工程と、
を前記コンピュータに実行させ、
前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、
前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む、プログラム。
【請求項8】
コンピュータが読み取り可能な記録媒体であって、
請求項7に記載のプログラムを記録した、記録媒体。
【請求項9】
ノズルから吐出される処理液を基板に供給する基板処理装置であって、
第1パラメータおよび第2パラメータを含む複数のパラメータに基づいて、前記ノズルからの前記処理液の吐出を制御する吐出制御部と、
前記ノズルが前記処理液を吐出する際の吐出特性を計測する吐出特性計測部と、
前記吐出特性に基づき、大域的探索によって前記第1パラメータを最適化する第1最適化部と、
前記吐出特性に基づき、局所的探索によって前記第2パラメータを最適化する第2最適化部と、
を備え、
前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、
前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む、基板処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書で開示される主題は、パラメータ最適化方法、プログラム、記録媒体および基板処理装置に関する。
【背景技術】
【0002】
特許文献1に示されるように、ノズルから吐出される処理液を基板に塗布する場合、処理液に与えられる吐出圧力が、基板に塗布される処理液の厚みに大きく影響する。そこで、特許文献1では、吐出圧力に関連するパラメータの最適化が図られている。
【0003】
具体的には、特許文献1の最適化手法は、基板以外に処理液を吐出する疑似吐出工程と、疑似吐出工程における処理液の吐出特性を計測する吐出特性計測工程と、計測された吐出特性の目標特性からのずれの状態量を導出する状態量導出工程と、パラメータの変更に伴う状態量の変化を機械学習して学習モデルを構築する学習工程とを有する。そして、状態量が所定の許容範囲を超えている間は、学習モデルに基づいてパラメータを変更した上で、疑似吐出工程、吐出特性計測工程、状態量導出工程および学習工程が繰り返して実行される。状態量が許容範囲に入ると、最後に変更されたパラメータが処理液供給工程で処理液を吐出する際のパラメータに設定される。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2020-040046号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1の最適化手法によれば、機械学習を活用することによってパラメータの調整作業を自動化できるため、技術者の労力を削減できる。しかしながら、機械学習モデルの学習には、一般的に多くの学習データまたは繰り返し試行数が必要となる。このため、パラメータの最適化作業を単純に自動化しただけでは、知識および経験を有する技術者がパラメータ調整作業を実施する場合と比較して、最適化に要する時間や疑似吐出に伴う処理液の消費量が増大してしまうおそれがある。
【0006】
本発明の目的は、処理液を吐出する装置において、パラメータの最適化を適切かつ効率的に実施できる技術を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するため、第1態様は、ノズルから吐出される処理液を基板に供給する基板処理装置において、前記処理液の吐出を制御するためのパラメータを、コンピュータが最適化するパラメータ最適化方法であって、a)前記コンピュータが大域的探索によって第1パラメータを最適化する第1最適化工程と、b)前記コンピュータが局所的探索によって第2パラメータを最適化する第2最適化工程と、を含み、前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む。
【0008】
第2態様は、第1態様のパラメータ最適化方法であって、前記工程b)が前記工程a)の後に実行される。
【0009】
第3態様は、第1態様のパラメータ最適化方法であって、前記第1最適化工程は、ベイズ最適化により前記第1パラメータを最適化する工程を含む。
【0010】
第4態様は、第1態様から第3態様のいずれか1つのパラメータ最適化方法であって、前記パラメータが、前記ノズルに前記処理液を送給するポンプの動作を制御する制御量である。
【0011】
第5態様は、第1態様から第4態様のいずれか1つのパラメータ最適化方法であって、前記工程a)は、前記ノズルから処理液を吐出したときの吐出特性の特徴量から導出されるコスト値に基づいて、前記第1パラメータを最適化する工程を含む。
【0012】
第6態様は、第1態様から第5態様のいずれか1つのパラメータ最適化方法であって、前記工程b)は、前記定常吐出期間の開始時における吐出速度と、前記定常吐出期間の終了時の吐出速度との比に基づいて、前記第2パラメータを最適化する工程を含む。
【0013】
第7態様は、ノズルからの処理液の吐出を制御するためのパラメータの最適化をコンピュータに実行させるためのプログラムであって、a)大域的探索によって第1パラメータを最適化する第1最適化工程と、b)局所的探索によって第2パラメータを最適化する第2最適化工程と、を前記コンピュータに実行させ、前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む。
【0014】
第8態様は、コンピュータが読み取り可能な記録媒体であって、第7態様のプログラムを記録した。
【0015】
第9態様は、ノズルから吐出される処理液を基板に供給する基板処理装置であって、第1パラメータおよび第2パラメータを含む複数のパラメータに基づいて、前記ノズルからの前記処理液の吐出を制御する吐出制御部と、前記ノズルが前記処理液を吐出する際の吐出特性を計測する吐出特性計測部と、前記吐出特性に基づき、大域的探索によって前記第1パラメータを最適化する第1最適化部と、前記吐出特性に基づき、局所的探索によって前記第2パラメータを最適化する第2最適化部と、を備え、前記第1パラメータは、前記ノズルからの前記処理液の吐出速度が定常吐出速度に高められる立ち上がり期間に対応するパラメータを含み、前記第2パラメータは、前記吐出速度が前記定常吐出速度に維持される定常吐出期間に対応するパラメータを含む。
【発明の効果】
【0016】
第1態様から第6態様のパラメータ最適化方法によれば、比較的最適化が容易な定常吐出速度に対応するパラメータを、局所的探索によって最適化するため、全てのパラメータを大域的探索によって最適化する場合よりも、演算量を軽減できる。したがって、処理液の吐出に対応するパラメータの最適化を適切かつ効率的に行うことができる。
【0017】
第2態様のパラメータ最適化方法によれば、最適化された第1パラメータに基づいて、第2パラメータを最適化できる。
【0018】
第3態様のパラメータ最適化方法によれば、第1パラメータを、ベイズ最適化によって最適化できる。
【0019】
第5態様のパラメータ最適化方法によれば、コスト値に基づいて、第1パラメータを最適化できる。
【0020】
第6態様のパラメータ最適化方法によれば、定常吐出期間における開始時および終了時の吐出速度の比に基づいて第2パラメータが最適化されるため、定常吐出期間における吐出速度が定常吐出速度で一定となるように、第2パラメータを最適化できる。
【図面の簡単な説明】
【0021】
図1】実施形態に係る塗布装置の全体構成を模式的に示す図である。
図2】塗布液供給機構の構成を示す図である。
図3図2に示すポンプの作動ディスク部の移動パターンを示すグラフである。
図4】吐出特性を示すグラフである。
図5】制御ユニットの構成例を示すブロック図である。
図6】塗布装置において実行されるパラメータ最適化処理を示すフローチャートである。
図7図6に示す第1最適化工程の詳細を示すフローチャートである。
図8図6に示す第2最適化工程の詳細を示すフローチャートである。
図9】第1最適化工程によってパラメータが最適化された後の圧力波形を示す図である。
図10】特徴量Fvについて線形回帰をした結果を示す図である。
図11】圧力波形の各期間を説明するための図である。
図12】圧力波形に対してコスト値導出部が実行する演算の一例を模式的に示す図である。
図13】特徴量Fv1に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図14】特徴量Fv2に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図15】特徴量Fv3に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図16】特徴量Fv4を説明するための図である。
図17】特徴量Fv5を説明するための図である。
図18】特徴量Fv6に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図19】特徴量Fv7に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図20】特徴量Fv8に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図21】特徴量Fv9に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
図22】特徴量Fv10に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。
【発明を実施するための形態】
【0022】
以下、添付の図面を参照しながら、本発明の実施形態について説明する。なお、この実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面においては、理解容易のため、必要に応じて各部の寸法や数が誇張又は簡略化して図示されている場合がある。
【0023】
図1は、実施形態に係る塗布装置1の全体構成を模式的に示す図である。塗布装置1は、基板Sの上面Sfに塗布液を塗布する基板処理装置である。基板Sは、例えば、液晶表示装置用のガラス基板である。なお、基板Sは、半導体ウエハ、フォトマスク用ガラス基板、プラズマディスプレイ用ガラス基板、磁気・光ディスク用のガラス又はセラミック基板、有機EL用ガラス基板、太陽電池用ガラス基板又はシリコン基板、その他フレキシブル基板およびプリント基板などの電子機器向けの各種被処理基板であってもよい。塗布装置1は、例えばスリットコータである。
【0024】
図1においては、塗布装置1の各要素の配置関係を説明するため、XYZ座標系を定義している。基板Sの搬送方向は、「X方向」である。X方向において基板Sが進行する方向(搬送方向の下流へ向かう方)が+X方向、その逆方向(搬送方向の上流へ向かう方)が-X方向である。また、X方向に直交する方向はY方向であり、X方向及びY方向に直交する方向はZ方向である。以下の説明では、Z方向を鉛直方向とし、X方向およびY方向を水平方向とする。Z方向において、+Z方向を上方向、-Z方向を下方向とする。
【0025】
塗布装置1は、+X方向に向かって順に、入力コンベヤ100と、入力移載部2と、浮上ステージ部3と、出力移載部4と、出力コンベヤ110とを備えている。入力コンベヤ100と、入力移載部2と、浮上ステージ部3と、出力移載部4と、出力コンベヤ110とは、基板Sが通過する搬送経路を形成している。また、塗布装置1は、基板搬送部5と、塗布機構7と、塗布液供給機構8と、制御ユニット9とをさらに備えている。
【0026】
基板Sは、上流側から入力コンベヤ100に搬送される。入力コンベヤ100は、コロコンベヤ101と、回転駆動機構102とを備えている。回転駆動機構102は、コロコンベヤ101の各コロを回転させる。コロコンベヤ101の各コロの回転によって、基板Sは、水平姿勢で下流(+X方向)に搬送される。「水平姿勢」とは、基板Sの主面(面積が最大の面)が水平面(XY平面)に対して平行な状態をいう。
【0027】
入力移載部2は、コロコンベヤ21と回転・昇降駆動機構22とを備えている。回転・昇降駆動機構22は、コロコンベヤ21の各コロを回転させるとともに、コロコンベヤ21を昇降させる。コロコンベヤ21の回転によって、基板Sは、水平姿勢で下流(+X方向)に搬送される。また、コロコンベヤ21の昇降により、基板SのZ方向における位置が変更される。基板Sは、入力コンベヤ100から入力移載部2を介して浮上ステージ部3へ移載される。
【0028】
図1に示すように、浮上ステージ部3は、略平板状である。浮上ステージ部3は、X方向に沿って3分割されている。浮上ステージ部3は、+X方向に向かって順に、入口浮上ステージ31と、塗布ステージ32と、出口浮上ステージ33とを備えている。入口浮上ステージ31の上面、塗布ステージ32の上面、および出口浮上ステージ33の上面は、同一平面上にある。浮上ステージ部3は、リフトピン駆動機構34と、浮上制御機構35と、昇降駆動機構36とをさらに備えている。リフトピン駆動機構34は、入口浮上ステージ31に配置されたいくつかのリフトピンを昇降させる。浮上制御機構35は、基板Sを浮上させるための圧縮空気を、入口浮上ステージ31、塗布ステージ32、および出口浮上ステージ33に供給する。昇降駆動機構36は、出口浮上ステージ33を昇降させる。
【0029】
入口浮上ステージ31の上面、および、出口浮上ステージ33の上面には、浮上制御機構35から供給される圧縮空気を噴出する多数の噴出穴がマトリクス状に配置されている。各噴出穴から圧縮空気が噴出すると、基板Sが浮上ステージ部3に対して上方に浮上する。すると、基板Sの下面Sbが浮上ステージ部3の上面から離間しつつ、水平姿勢で支持される。基板Sが浮上した状態における、基板Sの下面Sbと浮上ステージ部3の上面との間の距離(浮上量)は、例えば、10μm以上500μm以下である。
【0030】
塗布ステージ32の上面には、浮上制御機構35から供給される圧縮空気を噴出する噴出穴と、気体を吸引する吸引穴とが、X方向およびY方向において、交互に配置されている。浮上制御機構35は、噴出穴からの圧縮空気の噴出量と、吸引穴からの空気の吸引量とを制御する。これにより、塗布ステージ32の上方を通過する基板Sの上面SfのZ方向における位置が規定値となるように、塗布ステージ32に対する基板Sの浮上量が精密に制御される。なお、塗布ステージ32に対する基板Sの浮上量は、後述するセンサ61またはセンサ62の検出結果に基づいて、制御ユニット9により算出される。また、塗布ステージ32に対する基板Sの浮上量は、好ましくは、気流制御によって高精度に調整可能とされる。
【0031】
浮上ステージ部3に搬入された基板Sは、コロコンベヤ21から+X方向への推進力が付与され、入口浮上ステージ31上に搬送される。入口浮上ステージ31、塗布ステージ32および出口浮上ステージ33は、基板Sを浮上状態で支持する。浮上ステージ部3として、例えば、特許第5346643号に記載された構成が採用されてもよい。
【0032】
基板搬送部5は、浮上ステージ部3の下方に配置されている。基板搬送部5は、チャック機構51と、吸着・走行制御機構52とを備える。チャック機構51は、吸着部材に設けられた吸着パッド(図示省略)を備えている。チャック機構51は吸着パッドを基板Sの下面Sbの周縁部に当接させることにより、基板Sを下側から支持する。吸着・走行制御機構52は、吸着パッドに負圧を付与することにより、基板Sを吸着パッドに吸着する。また、吸着・走行制御機構52は、基板搬送部5をX方向に往復走行させる。
【0033】
チャック機構51は、基板Sの下面Sbが浮上ステージ部3の上面よりも高い位置に位置する状態で、基板Sを保持する。基板Sは、チャック機構51により周縁部が保持された状態で、浮上ステージ部3から付与される浮力により水平姿勢を維持する。
【0034】
図1に示すように、塗布装置1は、板厚測定用のセンサ61を備えている。センサ61は、コロコンベヤ21の近傍に配置されている。センサ61は、チャック機構51に保持された基板Sの上面SfのZ方向における位置を検出する。また、センサ61の直下に基板Sを保持していない状態のチャック(図示省略)が位置することで、センサ61は吸着部材の上面である吸着面の鉛直方向Zにおける位置を検出可能となっている。
【0035】
チャック機構51は、浮上ステージ部3に搬入された基板Sを保持しつつ、+X方向に移動する。これにより、基板Sが入口浮上ステージ31の上方から塗布ステージ32の上方を経由して、出口浮上ステージ33の上方へ搬送される。そして、基板Sは、出口浮上ステージ33から出力移載部4へ移動される。
【0036】
出力移載部4は、基板Sを出口浮上ステージ33の上方の位置から出力コンベヤ110へ移動させる。出力移載部4は、コロコンベヤ41と、回転・昇降駆動機構42とを備えている。回転・昇降駆動機構42は、コロコンベヤ41を回転駆動するとともに、コロコンベヤ41をZ方向に沿って昇降させる。コロコンベヤ41の各コロが回転することによって、基板Sが+X方向へ移動する。また、コロコンベヤ41が昇降することによって、基板SがZ方向に変位する。
【0037】
出力コンベヤ110は、コロコンベヤ111と、回転駆動機構112とを備えている。出力コンベヤ110は、コロコンベヤ111の各コロの回転により基板Sを+X方向に搬送し、基板Sを塗布装置1外へ払い出す。なお、入力コンベヤ100および出力コンベヤ110は、塗布装置1の一部である。ただし、入力コンベヤ100及び出力コンベヤ110は、塗布装置1とは別の装置に組み込まれていてもよい。
【0038】
塗布機構7は、基板Sの上面Sfに塗布液を塗布する。塗布機構7は、基板Sの搬送経路の上方に配置されている。塗布機構7は、ノズル71を有する。ノズル71は、下面にスリット状の吐出口を有するスリットノズルである。ノズル71は、位置決め機構(不図示)に接続されている。位置決め機構は、ノズル71を、塗布ステージ32の上方の塗布位置(図1中、実線で示す位置)と、後述するメンテナンス位置との間で移動させる。塗布液供給機構8は、ノズル71に接続されている。塗布液供給機構8がノズル71に塗布液を供給することによって、ノズル71の下面に配置された吐出口から塗布液が吐出される。
【0039】
図2は、塗布液供給機構8の構成を示す図である。塗布液供給機構8は、ポンプ81と、配管82と、塗布液補充ユニット83と、配管84と、開閉弁85と、圧力計86と、駆動部87とを備えている。ポンプ81は、塗布液をノズル71に送給するための送給源であり、体積変化により塗布液を送給する。ポンプ81は、例えば、特開平10-61558号公報に記載されたベローズタイプのポンプを採用してもよい。図2に示すように、ポンプ81は、径方向において弾性膨張収縮自在である可撓性チューブ811を有している。可撓性チューブ811の一方端は、配管82を介して塗布液補充ユニット83と接続されている。可撓性チューブ811の他方端は、配管84を介してノズル71と接続されている。
【0040】
ポンプ81は、軸方向において弾性変形自在であるベローズ812を有している。ベローズ812は、小型ベローズ部813と、大型ベローズ部814と、ポンプ室815と、作動ディスク部816とを有している。ポンプ室815は、可撓性チューブ811とベローズ812との間に配置されている。ポンプ室815には、非圧縮性媒体が封入されている。作動ディスク部816は、駆動部87に接続されている。
【0041】
塗布液補充ユニット83は、塗布液を貯留する貯留タンク831を有している。貯留タンク831は、配管82を介してポンプ81と接続されている。配管82には、開閉弁833が介挿されている。開閉弁833は、制御ユニット9からの指令に応じて開閉する。開閉弁833が開かれると、貯留タンク831からポンプ81の可撓性チューブ811への塗布液の補給が可能となる。また、開閉弁833が閉じると、貯留タンク831からポンプ81の可撓性チューブ811への塗布液の補充が規制される。
【0042】
配管84は、ポンプ81の出力側に接続されている。開閉弁85は、配管84に介挿されている。開閉弁85は、制御ユニット9からの指令に応じて開閉する。開閉弁85が開閉することにより、ノズル71に対する塗布液の送液と送液停止とが切り替えられる。圧力計86は、配管84に配置されている。圧力計86は、ノズル71に送液される塗布液の圧力(吐出圧力)を検出し、検出した圧力値を示す信号を制御ユニット9に出力する。
【0043】
図3は、図2に示すポンプ81の作動ディスク部816の移動パターンを示すグラフである。図3中、横軸は時刻を示しており、縦軸は作動ディスク部816の移動速度を示す。駆動部87は、制御ユニット9からの指令に応じて、図3に示すような移動パターン(時間経過に対する作動ディスク部816の速度の変化を示すパターン)で作動ディスク部816を軸方向に変位させる。作動ディスク部816の変位により、ベローズ812の内側の容積が変化する。これにより、可撓性チューブ13が径方向に膨張収縮してポンプ動作を実行し、塗布液補充ユニット83から補給される塗布液がノズル71に向けて送給される。作動ディスク部816の移動パターンは、ノズル71から吐出される塗布液の吐出特性と密接に関係しているため、移動パターンに応じて、図4に示すような吐出特性(吐出圧力の時間変化を示す圧力波形)が得られる。
【0044】
図4は、吐出特性を示すグラフである。図4(a)は、望ましい吐出特性である目標特性を示すグラフである。図4(b)は、実際に測定される吐出特性の一例である。図4中、横軸は時刻を示しており、縦軸は、圧力値(または吐出速度)を示している。
【0045】
本実施形態では、作動ディスク部816の移動を規定する各種パラメータ(加速時間、定常速度、定常速度時間、減速時間など)を調整することによって、ノズル71から吐出される塗布液の吐出特性(具体的には、吐出速度(吐出圧力)の時間変化)を所望の目標特性(図4の(a)に示すグラフ)と一致あるいは近似させる最適化処理が適宜行われる。この点については、後に詳述する。
【0046】
図1および図2に示すように、塗布液供給機構8から塗布液が供給されるノズル71には、センサ62が配置されている。センサ62は、基板SのZ方向における高さを非接触で検知する。センサ62は、制御ユニット9と電気的に接続されている。センサ62の検出結果に基づいて、制御ユニット9は、浮上している基板Sと、塗布ステージ32の上面との間の距離(離間距離)を測定する。そして、制御ユニット9は、測定した離間距離に基づいて、位置決め機構によるノズル71の塗布位置を調整する。なお、センサ62としては、光学式センサ、または、超音波センサを適用できる。
【0047】
塗布機構7は、ノズル洗浄待機ユニット72を備えている。ノズル洗浄待機ユニット72は、メンテナンス位置に配置されたノズル71に対して所定のメンテナンスを行う。ノズル洗浄待機ユニット72は、ローラ721と、洗浄部722と、ローラバット723とを有している。ノズル洗浄待機ユニット72は、ノズル71に対して洗浄および液だまりの形成を行うことによって、ノズル71の吐出口を塗布処理に適した状態に整える。また、塗布装置1においては、塗布液に加わる吐出圧力を評価するため、ノズル71がメンテナンス位置に配置された状態で、ノズル71から塗布液を吐出する疑似吐出が実行される。
【0048】
図5は、制御ユニット9の構成例を示すブロック図である。制御ユニット9は、塗布装置1の各要素の動作を制御する。制御ユニット9は、コンピュータであって、演算部91と、記憶部93と、ユーザインターフェース95とを備えている。演算部91は、CPU(Central Processing Unit)またはGPU(Graphics Processing Unit)などで構成されるプロセッサである。記憶部93は、RAM(Random Access Memory)などの一過性の記憶装置、および、HDD(Hard Disk Drive)およびSDD(Solid State Drive)などの非一過性の補助記憶装置で構成される。
【0049】
ユーザインターフェース95は、ユーザに情報を表示するディスプレイ、ユーザによる入力操作を受け付ける入力機器を有している。制御ユニット9としては、例えばデスクトップ型、ラップトップ型、あるいはタブレット型のコンピュータを用いることができる。
【0050】
記憶部93は、プログラム931を記憶する。プログラム931は、記録媒体Mによって提供される。すなわち、記録媒体Mは、プログラム931をコンピュータである制御ユニット9によって読取可能に記録されている。記録媒体Mは、例えば、USB(Universal Serial Bus)メモリ、DVD(Digital Versatile Disc)などの光学ディスク、磁気ディスクなどである。
【0051】
演算部91は、プログラム931を実行することにより、吐出制御部910、吐出特性計測部911、コスト値導出部913、第1最適化部915、および、第2最適化部917として機能する。
【0052】
吐出制御部910は、ノズル71に塗布液を送給するポンプ81の動作(送給動作)を、予め設定されたパラメータに基づいて制御する。
【0053】
吐出特性計測部911は、吐出特性を計測する。具体的には、吐出特性計測部911は、疑似吐出中に圧力計86から出力される吐出圧力(塗布液の圧力値)に基づいて、圧力波形を計測する。すなわち、吐出特性計測部911は、所定のサンプリング周期で圧力計86が測定した吐出圧力を周期的に取得する。これにより、ノズル71から塗布液が吐出される期間において塗布液に与えられた吐出圧力が取得され、吐出圧力測定データとして記憶部93に記憶される。吐出圧力測定データは、時刻と、その時刻に測定された吐出圧力とを示すデータである。
【0054】
コスト値導出部913は、吐出特性計測部911によって計測された吐出特性(圧力波形)から、所定のコスト関数に基づいてコスト値を導出する。コスト値は、第1最適化部915が最適化演算を行う際に使用される。第1最適化部915は、大域的探索法によりパラメータを最適化する。大域的探索による最適化として、本例では、ベイズ最適化を行う。なお、大域的探索法は、ベイズ最適化に限定されるものではなく、遺伝的アルゴリズムが採用されてもよい。第2最適化部917は、局所的探索法によりパラメータを最適化する。局所的探索による最適化については、後述する。
【0055】
塗布装置1において、ノズル71から吐出される塗布液を基板Sの上面Sfに均一な膜厚で塗布するためには、ノズル71から吐出される際の塗布液の吐出速度、つまり吐出特性を調整することが重要である。例えば、図4(a)に示すような目標特性でノズル71から塗布液を吐出することで、膜厚の均一性を高めることができる。したがって、吐出特性が目標特性に近づくように、吐出特性と密接に関連するパラメータの最適化が重要である。本実施形態では、図3に示すように、作動ディスク部816の移動を既定する以下の16個のポンプ制御用の設定値を、最適化対象のパラメータとしている。
・定常速度V1
・加速時間T1:停止状態から定常速度V1に加速させる時間
・定常速度時間T2:定常速度V1を継続させる時間
・定常速度V2
・加速時間T3:定常速度V1から定常速度V2に減速させる時間
・定常速度時間T4:定常速度V2を継続させる時間
・定常速度V3
・加速時間T5:定常速度V2から定常速度V3に加速させる時間
・定常速度時間T6:定常速度V3を継続させる時間
・定常速度V4
・加速時間T7:定常速度V3から定常速度V4に減速させる時間
・定常速度時間T8:定常速度V4を継続させる時間
・定常速度V5
・加速時間T9:定常速度V4から定常速度V5に加速させる時間
・定常速度時間T10:定常速度V5を継続させる時間
・減速時間T11:定常速度V5から停止状態に減速させる時間
【0056】
上記パラメータは、ノズル71に塗布液を送給するポンプ81の動作(送給動作)を制御するための制御量に相当する。なお、パラメータの種類および個数は、特に制限されるものではなく、ポンプ81の送給動作を制御する制御量である限り、任意に設定され得る。
【0057】
上記パラメータの調整は、例えば、塗布処理の種類に応じてレシピが変更される。また、ユーザから入力機器を介した指示入力に基づいて、パラメータの調整が行われる場合もある。上記16個のパラメータのうち、V5については、定常速度V4の値を中心として、わずかに変更することで調整することが可能であることが多い。このため、V5の最適化の難易度は、相対的に低い。一方、V5以外のパラメータ(V1~V4,T1~T11)については、塗布液ごとに試行錯誤しながら吐出特性を把握しつつ調整を進める必要があるため、最適化の難易度が相対的に高い。
【0058】
そこで、本実施形態では、V5以外のパラメータ(第1パラメータ)の最適化については、汎用的で大域的に探索可能なベイズ最適化が適用される。一方、V5(第2パラメータ)の最適化については、上記ベイズ最適化による調整後に、後述する局所的な探索手法が適用される。
【0059】
図6は、塗布装置1において実行されるパラメータ最適化処理を示すフローチャートである。パラメータ最適化処理が開始されると、まず、ノズル移動工程S1が実行される。ノズル移動工程S1では、ノズル71が、上記メンテナンス位置に移動される。ノズル移動工程S1により、塗布装置1において、疑似吐出が実行可能となる。
【0060】
ノズル移動工程S1が完了すると、第1最適化工程S2が実行される。第1最適化工程S2においては、第1最適化部915により、V5以外のパラメータ(V1~V4,T1~T11)が最適化される。なお、第1最適化工程S2においては、パラメータV5が所定の値に固定される。そして、第1最適化工程S2の後、第2最適化工程S3が行われる。第2最適化工程S3においては、V5が最適化される。
【0061】
図3に示すように、作動ディスク部816の移動速度がV5に維持される区間は、図4(b)に示す「定常吐出期間」に対応する。「定常吐出期間」は、ノズル71からの塗布液の吐出速度(吐出圧力)がほぼ一定の速度(定常吐出速度)に維持される区間である。すなわち、V5を最適化する第2最適化工程S3は、定常吐出期間に対応するパラメータを最適化する工程に相当する。
【0062】
また、V5以外のパラメータのうち、V1~V4およびT1~T9は、図4(b)に示す「立ち上がり期間」に対応するパラメータである。「立ち上がり期間」は、吐出速度がゼロから定常吐出速度まで高められる区間である。パラメータV1~V4,T1~T9を最適化する第1最適化工程S2は、立ち上がり期間に対応するパラメータを最適化する工程に相当する。
【0063】
<第1最適化(大域的探索による最適化)>
図7は、図6に示す第1最適化工程S2の詳細を示すフローチャートである。図7に示すように、第1最適化工程S2では、まず、上記16個のパラメータが設定される(ステップS21)。パラメータの初期値は、例えば乱数から生成した値、あるいは、ユーザが指定した値とされる。ステップS21の後、吐出特性計測部911が、吐出特性である圧力波形を計測する(ステップS22)。ステップS22の後、コスト値導出部913が、計測された圧力波形からコスト値を導出する(ステップS23)。
【0064】
コスト値は、圧力波形の評価結果を数値で示したものである。後述するように、コスト値導出部913は、圧力波形を入力とし、コスト値を出力とするコスト関数に基づいて、コスト値を導出する。本実施形態では、圧力波形(図4(b))が、目標とする圧力波形(図4(a))から相違するほど、コスト値が大きくなるようにコスト関数が設定される。
【0065】
ステップS23の後、コスト値が所定の閾値未満であるか判定される(ステップS24)。コスト値が所定の閾値以上と判定された場合(ステップS24においてNo)、第1最適化部915が、現在設定されているパラメータとステップS23によって導出されたコスト値とに基づいて、次の探索点(すなわち、新たなパラメータ)を取得する(ステップS25)。そして、ステップS25の後、再び、ステップS21が実行される。これにより、次の探索点である新たなパラメータに基づいて疑似吐出が行われることにより、圧力波形の計測(ステップS22)が再び実行される。
【0066】
一方、ステップS24において、コスト値が所定の閾値未満であると判定された場合(ステップS24においてYes)、パラメータが最適化されたものとして、第1最適化部915は、第1最適化工程S2を終了する。
【0067】
<第2最適化工程(局所的探索による最適化)>
図8は、図6に示す第2最適化工程S3の詳細を示すフローチャートである。第2最適化工程S3が開始されると、まず、第2最適化部917は、第1最適化工程S2によってパラメータが最適化された圧力波形から、特徴量Fvを算出する(ステップS31)。特徴量Fvを算出する手順について、図9を参照しつつ説明する。
【0068】
図9は、第1最適化工程S2によってパラメータが最適化された後の圧力波形を示す図である。第2最適化部917は、特徴量Fvを算出するために、圧力波形における定常吐出期間のデータを抽出する。そして、第2最適化部917は、定常吐出期間のデータについて、線形回帰を行う。この線形回帰により、図9に示す回帰直線L1が取得される。そして、第2最適化部917は、回帰直線L1に基づいて、定常吐出期間の開始時刻の圧力Psと、定常吐出期間の終了時刻の圧力Peとをそれぞれ取得する。さらに、第2最適化部917は、圧力Peに対する圧力Psの比の値(=Ps/Pe)を、特徴量Fvとして算出する。圧力Psは、定常吐出期間の開始時の吐出速度に対応する。圧力Peは、定常吐出期間の終了時の吐出速度に対応する。
【0069】
図8に戻り、ステップS31の後、第2最適化部917は、V5を更新する(ステップS32)。具体的には、第2最適化部917は、現在のV5に、特徴量Fvを乗じて得られる値を、新たなV5とする。
【0070】
ステップS32の後、疑似吐出が行われるとともに、吐出特性計測部911が圧力波形を計測する(ステップS33)。そして、第2最適化部917は、ステップS33によって取得された圧力波形の特徴量Fvを算出する(ステップS34)。ステップS34は、ステップS31と同様の手順で行われる。
【0071】
ステップS34の後、第2最適化部917は、特徴量Fvが1±αの範囲内であるかを判定する(ステップS35)。ここで、「α」は、任意に設定される小数である。上述したように、定常吐出期間は、塗布液を一定速度で吐出する区間であるため、開始時の圧力Psと終了時の圧力Peとは本来一致するべきである。そこで、ステップS35において、特徴量Fvが1±αの範囲内にあるかが判定されることによって、現在のV5が適正か判定される。
【0072】
ステップS35において、特徴量Fvが1±αの範囲内であると判定された場合(ステップS35においてYes)、第2最適化部917は、V5が最適化されたものとして、第2最適化工程S3を終了する。一方、ステップS35において、特徴量Fvが1±αの範囲外であると判定された場合(ステップS35においてNo)、第2最適化部917は、ステップS31およびステップS34において取得された特徴量Fvについて線形回帰を実行する(ステップS36)。
【0073】
図10は、特徴量Fvについて線形回帰をした結果を示す図である。図10中、横軸はV5を示し、縦軸は特徴量Fvを示す。図10に示す複数(3つ)の点は、ステップS31またはステップS34において取得された、特徴量Fvを示している。図10に示すように、特徴量Fvについて線形回帰が実行されることによって、回帰直線L2が取得される。
【0074】
図8に戻って、ステップS36の後、第2最適化部917は、V5を更新する(ステップS37)。具体的には、第2最適化部917は、ステップS36によって取得された回帰直線L2に基づいて、Fvが1となるV5の値(=V5′)を算出する。そして、第2最適化部917は、V5を算出された値に更新する。そして、更新されたV5に基づいて、ステップS33が再び実行される。このように、第2最適化工程S3では、特徴量Fvが1±αの範囲内となるまで、ステップS33からステップS37が繰り返し実行される。
【0075】
以上のように、塗布装置1において、塗布液の吐出に関する全パラメータのうち、最適化が比較的容易なパラメータV5については、局所的探索による最適化が適用される。これにより、全パラメータについてベイズ最適化などの大域的探索による最適化が適用される場合と比較して、演算量を軽減できる。したがって、塗布液を吐出する塗布装置1において、パラメータの最適化を適切かつ効率的に実施できる。また、疑似吐出の試行回数を減らすことができるため、塗布液の消費量を抑えることができる。
【0076】
なお、パラメータV5以外のパラメータについても、局所的探索による最適化が適用されてもよい。
【0077】
<コスト値の算出方法>
次に、第1最適化工程S2において最適化のために使用されるコスト値の算出方法について説明する。コスト値は、圧力波形から、所定の評価項目毎に特徴量を算出し、各特徴量Fv1~Fv10を足し合わせることによって求められる。以下、各評価項目の特徴量Fv1~Fv10について説明する。
【0078】
図11は、圧力波形の各期間を説明するための図である。図11中、横軸は時刻を示し、縦軸は吐出圧力を示す。なお、図11以降の各グラフにおいても、横軸は時刻を示し、縦軸は吐出圧力を示す。
【0079】
図11に示すように、ノズル71からの塗布液の吐出を開始する時刻taにおける吐出圧力と、ノズル71からの塗布液の吐出を終了した時刻teにおける吐出圧力とは、初期圧力Piとなっている。ただし、吐出の開始時および終了時それぞれの圧力が、常に初期圧力Piに一致するとは限らない。
【0080】
図11に示すように、吐出期間Ttは、立ち上がり期間Taと、遷移期間Tbと、定常期間Tcと、立ち下がり期間Tdとに分割される。立ち上がり期間Taは、塗布液供給機構8がノズル71からの塗布液の吐出を開始する時刻ta(すなわち、塗布液供給機構8が作動ディスク部816の移動を開始する時刻ta)から、吐出圧力が目標圧力Ptに到達する時刻tbまでの期間である。つまり、時刻taにおいてノズル71からの塗布液の吐出が開始されると、吐出圧力は、時刻taから時刻tbまでの間に、初期圧力Piから目標圧力Ptまで増加する。
【0081】
遷移期間Tbは、時刻tbから、所定の振動減衰期間を経過する時刻tcまでの期間である。この振動減衰期間は、吐出圧力の時間変化が安定するのに要する期間であり、例えばユーザによるユーザインターフェース95への入力操作によってあらかじめ設定され、記憶部93に記憶されている。
【0082】
定常期間Tcは、時刻tcから、塗布液供給機構8が吐出圧力の減少を開始する時刻td(すなわち、塗布液供給機構8が作動ディスク部816の目標速度からの減速を開始する時刻td)までの期間である。つまり、塗布液供給機構8は、時刻tcから時刻tdまでの間、作動ディスク部816を等速(上述したV5)で移動させ、時刻tdに作動ディスク部816の減速を開始する。なお、定常期間Tcにおいて、吐出圧力は基本的に目標圧力Ptで安定する。ただし、定常期間Tcにおいても、吐出圧力の時間変化は微小な振動を含んでいる。このため、定常期間Tcにおいて、吐出圧力は、目標圧力Ptよりも大きくなったり、小さくなったりする。
【0083】
遷移期間Tbと定常期間Tcとは、定圧期間Tbcを構成する。つまり、定圧期間Tbcは、時刻tbから時刻tdの間の期間である。
【0084】
立ち下がり期間Tdは、時刻tdから、塗布液供給機構8がノズル71からの塗布液の吐出を終了する時刻te(すなわち、塗布液供給機構8が作動ディスク部816を停止させる時刻te)までの期間である。つまり、吐出圧力は、時刻tdから時刻teまでの間に初期圧力Piまで減少し、時刻teにおいて、ノズル71からの塗布液の吐出が停止する。
【0085】
図12は、圧力波形に対してコスト値導出部913が実行する演算の一例を模式的に示す図である。図12に示すように、コスト値導出部913は、圧力波形を時間微分することによって、圧力波形の1回微分D1を算出する。さらに、コスト値導出部913は、吐出圧力の時間変化の1回微分D1を時間で微分することによって、吐出圧力の時間変化の2回微分D2を算出する。また、コスト値導出部913は、次の各式に基づき、平均絶対誤差MAEおよび二乗平均平方根誤差RMSEを算出する。
MAE(α、β)=(1/n)・(Σ|α-β|)
RMSE(α、β)=((1/n)・(Σ(α-β)2))1/2
nは、データ数である。
【0086】
図13は、特徴量Fv1に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図13に示す評価項目では、定常期間Tcにおける吐出圧力の平均値(すなわち定常圧力Pm)と初期圧力Piとの差に相当する振幅を有する台形波形と、実際の圧力波形との誤差(理想台形絶対誤差)に基づき、圧力波形が評価される。
【0087】
具体的には、立ち上がり期間Taのうち、所定の下側基準圧力と、当該下側基準圧力より大きい所定の上側基準圧力との間における吐出圧力の時間変化に対して線形回帰分析が実行されて、立ち上がり回帰直線Lr_Rが算出される。この立ち上がり回帰直線Lr_Rは、時刻t11から時刻t12の間で、初期圧力Piから定常圧力Pmまで線形に増加する。
【0088】
同様に、立ち下がり期間Tdのうち、上側基準圧力と下側基準圧力との間における吐出圧力の時間変化に対して線形回帰分析が実行されて、立ち下がり回帰直線Lr_Fが算出される。この立ち下がり回帰直線Lr_Fは、時刻t13から時刻t14の間で、定常圧力Pmから初期圧力Piまで線形に減少する。
【0089】
なお、下側基準圧力および上側基準圧力は、初期圧力Piより大きくて目標圧力Ptより小さい圧力であり、例えばユーザによるユーザインターフェース95への入力操作によって設定されて、記憶部93に記憶される。例えば、下側基準圧力は、初期圧力Piと目標圧力Ptとの差の絶対値の20%の圧力を初期圧力Piに加算した圧力としてもよい。また、上側基準圧力は、初期圧力Piと目標圧力Ptとの差の絶対値の80%の圧力を初期圧力Piに加算した圧力としてもよい。
【0090】
また、時刻taから時刻t11までの区間に対して、開始時近似直線Lr_sが設定される。この開始時近似直線Lr_sは、初期圧力Piを示す傾きがゼロの直線である。つまり、開始時近似直線Lr_sは、ノズル71からの塗布液の吐出開始時点(時刻ta)から、立ち上がり回帰直線Lr_Rの開始時点までを接続する直線である。なお、回帰直線の状態(傾き)によっては、時刻t11は時刻taより前になり、時刻t12は時刻tbより後になることもある。このように、t11<taとなる場合には、開始時近似直線Lr_sは省略される。
【0091】
また、時刻t14から時刻teまでの区間に対して、終了時近似直線Lr_eが設定される。この終了時近似直線Lr_eは、初期圧力Piを示す傾きがゼロの直線である。つまり、終了時近似直線Lr_eは、立ち下がり回帰直線Lr_Fの終了時点から、ノズル71からの塗布液の吐出終了時点(時刻te)までを接続する直線である。なお、te<t14となる場合には、終了時近似直線Lr_eは省略される。
【0092】
さらに、時刻t12から時刻t13の区間に対して、定常直線Lr_mが設定される。この定常直線Lr_mは、定常圧力Pmを示す傾きがゼロの直線である。つまり、定常直線Lr_mは、立ち上がり回帰直線Lr_Rの終了時点(時刻t12)と立ち下がり回帰直線Lr_Fの開始時点(時刻t13)とを接続する、定常圧力Pmを示す直線である。
【0093】
以上のように、コスト値導出部913は、時系列で配列された開始時近似直線Lr_s、立ち上がり回帰直線Lr_R、定常直線Lr_m、立ち下がり回帰直線Lr_Fおよび終了時近似直線Lr_eで構成された近似波形WF1を算出する。そして、コスト値導出部913は、時刻taから時刻teまでの吐出期間Ttの全体において、圧力波形の圧力値と近似波形WF1との間の平均絶対誤差MAE(理想台形絶対誤差)を、特徴量Fv1として算出する。コスト値導出部913は、算出した特徴量Fv1を、記憶部93に記憶させる。
【0094】
特徴量Fv1に基づく評価によれば、吐出期間Ttの全体における吐出圧力の時間変化が理想的な形状(すなわち、台形形状)から大きく乖離する場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0095】
図14は、特徴量Fv2に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図14の評価項目では、吐出圧力の立ち上がりの滑らかさが評価される。具体的には、立ち上がり期間Taのうち、下側基準圧力P2_lと、当該下側基準圧力P2_lより大きい上側基準圧力P2_uとの間における吐出圧力の時間変化に対して曲線回帰分析が実行されて、立ち上がり回帰曲線Nrが算出される。この曲線回帰分析は二次曲線によって実行される。
【0096】
下側基準圧力P2_lは初期圧力Piに設定される。また、上側基準圧力P2_uは、下側基準圧力P2_lより大きくて目標圧力Ptより小さい圧力である。上側基準圧力P2_uは、例えばユーザによるユーザインターフェース95への入力操作によって設定され、記憶部93に記憶される。上側基準圧力P2_uは、初期圧力Piと目標圧力Ptとの差の絶対値の20%の圧力を初期圧力Piに加算した圧力としてもよい。この立ち上がり回帰曲線Nrは、時刻t21から時刻t22の間で、下側基準圧力P2_l(初期圧力Pi)から上側基準圧力P2_uまで増加する。なお、時刻t21は時刻taに一致し、時刻t22は時刻taより後で時刻tbより前の時刻である。
【0097】
コスト値導出部913は、立ち上がり回帰曲線Nrで構成された波形WF2を算出する。そして、コスト値導出部913は、時刻t21から時刻t22までの立ち上がり初期期間Ta_sにおいて、測定された圧力波形の圧力値と波形WF2との間の二乗平均平方根誤差RMSEを、特徴量Fv2として算出する。そして、コスト値導出部913は、算出した特徴量Fv2を、記憶部93に記憶させる。
【0098】
特徴量Fv2に基づく評価によれば、ノズル71からの塗布液の吐出開始前の状態の影響を受けて、吐出開始直後の吐出圧力に異常が発生した場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。なお、曲線回帰分析に使用可能な曲線は二次曲線に限られず、指数関数などの別の曲線でもよい。
【0099】
図15は、特徴量Fv3に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図15の評価項目では、立ち上がり期間Taが一定期間内に収まっているかが評価される。具体的には、コスト値導出部913は、初期圧力Piから目標圧力Ptへ吐出圧力が増大するのに要する時刻taから時刻tbまでの立ち上がり期間Taの長さ(=tb-ta)を特徴量Fv3として算出する。そして、コスト値導出部913は、算出した特徴量Fv3を、記憶部93に記憶させる。
【0100】
特徴量Fv3に基づく評価によれば、目標圧力Ptまでの立ち上がり期間が、所定の一定期間よりも短い、または長い吐出圧力に対して、大きなスコア(すなわち、否定的評価)を与えることができる。
【0101】
図16は、特徴量Fv4を説明するための図である。図16(A)は、特徴量Fv4に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図16(B)は、特徴量Fv4に基づく評価によって不適正と判断される吐出圧力の時間変化の例を示す図である。図16(A)の評価項目では、吐出圧力の立ち上がりにおける異常の有無が評価される。
【0102】
具体的には、コスト値導出部913は、時刻taから時刻tbまでの立ち上がり期間Taについて、吐出圧力の時間変化の1回微分D1を算出して、1回微分波形WF4を求める。そして、コスト値導出部913は、立ち上がり期間Taにおいて、1回微分波形WF4が、所定の閾値Th4と交差する回数を、特徴量Fv4として求める。図16(A)の例では、1回微分波形WF4と閾値Th4(例えば、0.002)とは、時刻t41および時刻t42のそれぞれで交差しており、交差回数(特徴量Fv4)は2回となる。コスト値導出部913は、算出した特徴量Fv4を、記憶部93に記憶させる。
【0103】
特徴量Fv4に基づく評価によれば、立ち上がり期間Taにおける吐出圧力の時間変化に段が生じた場合に(例えば、図16(B))、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0104】
図17は、特徴量Fv5を説明するための図である。図17(A)は、特徴量Fv5に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図17(B)は、特徴量Fv5に基づく評価によって不適正と判断される吐出圧力の時間変化の例を示す図である。図17(A)の評価項目では、吐出圧力の立ち上がりにおける異常の有無が評価される。
【0105】
具体的には、コスト値導出部913は、時刻taから時刻tbまでの立ち上がり期間Taについて、吐出圧力の時間変化の2回微分D2を算出して、2回微分波形WF5を求める。そして、コスト値導出部913は、立ち上がり期間Taにおいて、2回微分波形WF5の絶対値が、所定の閾値Th5と交差する回数を、特徴量Fv5として求める。図17(A)の例では、2回微分波形WF5の絶対値と閾値Th5(例えば、0.0002)とは、時刻t51、t52、t53およびt54のそれぞれで交差しており、交差回数(特徴量Fv5)は4回となる。コスト値導出部913は、算出した特徴量Fv5を、記憶部93に記憶させる。
【0106】
特徴量Fv5に基づく評価によれば、立ち上がり期間Taにおける吐出圧力の時間変化に段が生じた場合に(例えば、図17(B)に示すように)、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0107】
図18は、特徴量Fv6に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図18の評価項目では、吐出圧力の立ち上がりが後半において失速していないかが評価される。具体的には、コスト値導出部913は、時刻taから時刻tbまでの立ち上がり期間Taについて、吐出圧力の時間変化の2回微分D2を算出して、2回微分波形WF6を求める。
【0108】
そして、コスト値導出部913は、立ち上がり期間Taにおいて、2回微分波形WF6が、所定の正の閾値(Th5)より大きくなる時間T_1stと、2回微分波形WF6が所定の負の閾値(-Th5)より小さくなる時間T_2ndとをそれぞれ求める。ここで、正の閾値と負の閾値とは、同一の絶対値(Th5)を有して、互いに異なる符号を有する。かかる正および負の閾値の絶対値(Th5)は、上記の特徴量Fv5による評価で用いた閾値Th5のそれと等しい。そして、コスト値導出部913は、これらの時間の比(=T_1st/T_2nd)を、特徴量Fv6として求める。さらに、コスト値導出部913は、次式に基づき、特徴量Fv6を変換する。
Fv6=|1-Fv6|
コスト値導出部913は、変換された特徴量Fv6を、記憶部93に記憶させる。
【0109】
塗布液の塗布対象となる基板Sの搬送速度は、加速期間の後半においても失速することなく目標速度に到達する。したがって、塗布液に与えられる吐出圧力も立ち上がり期間Taにおいて失速することなく、目標圧力Ptに到達することが好適となる。特徴量Fv6に基づく評価によれば、立ち上がり期間Taにおいて吐出圧力が失速した場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0110】
図19は、特徴量Fv7に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図19の評価項目では、立ち上がりの終了時における吐出圧力の時間変化の鋭さが評価される。具体的には、立ち上がり期間Taのうち、下側基準圧力P7_lと、当該下側基準圧力P7_lより大きい上側基準圧力P7_uとの間における吐出圧力の時間変化に対して直線回帰分析が実行されて、立ち上がり終期回帰直線Lrが算出される。ここで、下側基準圧力P7_lは、初期圧力Piと目標圧力Ptとの差の絶対値の80%の圧力を初期圧力Piに加算した圧力であり、上側基準圧力P7_uは、初期圧力Piと目標圧力Ptとの差の絶対値の90%の圧力を初期圧力Piに加算した圧力であり、吐出圧力は、時刻t71から時刻t72までの間に、下側基準圧力P7_lから上側基準圧力P7_uへ増大する。
【0111】
この立ち上がり終期回帰直線Lrは、時間経過に伴って増大して、時刻t73において定常圧力Pm(定常期間Tcにおける吐出圧力の平均値)に到達する。こうして、時刻t71から時刻t73の区間に対して、立ち上がり終期回帰直線Lrが設定される。さらに、コスト値導出部913は、時刻t73から時刻tbまでの間において定常圧力Pmを示す傾きがゼロの延設直線Lmを設定する。上述の通り、時刻tbは、吐出圧力が目標圧力Ptに到達する時刻であり、立ち上がり期間Taの終了時刻に相当する。つまり、この延設直線Lmは、立ち上がり終期回帰直線Lrの終了時点から立ち上がり期間Taの終了時点まで延びるように設けられる。なお、tb<t73の場合には、延設直線Lmは省略される。
【0112】
以上のように、時系列で配列された立ち上がり終期回帰直線Lrおよび延設直線Lmで構成された近似波形WF7が算出される。そして、コスト値導出部913は、吐出圧力が目標圧力Ptの90%となる時刻t72から100%となる時刻tbまでの立ち上がり終期期間Ta_eにおいて、圧力波形の圧力値P_measureと近似波形WF7との間の差を示す値を、特徴量Fv7として算出する。具体的には、重み基準時間幅Tw=t73-t72が設定される。そして、重み付き二乗平方根誤差和が、次式に基づき算出される。
Fv7=(Σ(P_measure-WF7)×W)1/2
時刻t≦t73+2×Twの範囲でW=1
時刻t>t73+2×Twの範囲でW=w
wは、1より大きい重み係数であり、例えば10である
【0113】
コスト値導出部913は、算出した特徴量Fv7を、記憶部93に記憶させる。特徴量Fv7に基づく評価によれば、立ち上がりの勢いが弱く丸みを帯びた波形を吐出圧力の時間変化が示す場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0114】
図20は、特徴量Fv8に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図20の評価項目では、吐出圧力の立ち上がりに発生するオーバーシュートの程度が評価される。具体的には、コスト値導出部913は、吐出圧力が最大値Pmaxに達した時刻t81において、吐出圧力の2回微分D2の符号(正/負)を求める。そして、コスト値導出部913は、吐出圧力の2回微分D2の符号が、時刻t81での符号から2回切り替わる時刻t82を算出する。そして、時刻t81から時刻t82までの初期振動期間Tb_sにおける吐出圧力の時間変化が評価される。
【0115】
具体的には、この初期振動期間Tb_sにおける吐出圧力の時間変化の最小値P8minが求められて、定常圧力Pmおよび圧力P8minのうち、小さい方の圧力が、対象圧力Pgに選択される。そして、最大圧力Pmaxと対象圧力Pgとの差、すなわち次式に基づき、特徴量Fv8が算出される。
Fv8=Pmax-Pg
【0116】
コスト値導出部913は、算出した特徴量Fv8を、記憶部93に記憶させる。特徴量Fv8に基づく評価によれば、立ち上がりの勢いが強く、大きなオーバーシュートを吐出圧力の時間変化が示す場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0117】
図21は、特徴量Fv9に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図21の評価項目では、遷移期間Tbにおける吐出圧力の時間変化の安定度が評価される。具体的には、コスト値導出部913は、遷移期間Tbにおける吐出圧力と、定常期間Tcにおける吐出圧力の平均値である定常圧力Pmとについて、次式に基づき、二乗平均平方根誤差RMSE(P_measure,Pm)を特徴量Fv9として算出する。
Fv9=RMSE(P_measure,Pm)
【0118】
コスト値導出部913は、算出した特徴量Fv9を、記憶部93に記憶させる。特徴量Fv9に基づく評価によれば、吐出圧力の時間変化が遷移期間Tbにおいてリンギングを示す場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0119】
図22は、特徴量Fv10に基づき吐出圧力の時間変化を評価する評価項目を説明するための図である。図22に示す評価項目では、定圧期間Tbcにおける吐出圧力の時間変化の安定度が評価される。具体的には、コスト値導出部913は、定圧期間Tbcにおいて、吐出圧力の最大値Pmaxと最小値P10minとを求める。そして、コスト値導出部913は、定圧期間Tbcにおける最大圧力Pmaxと最小圧力P10minとの差、すなわち次式に基づき、特徴量Fv10を算出する。
Fv10=Pmax-P10min
【0120】
コスト値導出部913は、算出した特徴量Fv10を、記憶部93に記憶させる。特徴量Fv10に基づく評価によれば、塗布液の膜厚に影響の大きな定常期間Tcにおいて大きなばらつきを吐出圧力の時間変化が示す場合に、この吐出圧力に対して大きなスコア(すなわち、否定的評価)を与えることができる。
【0121】
コスト値導出部913は、特徴量Fv1~Fv10の和をコスト値として導出する。ただし、コスト値導出部913は、各特徴量Fv1~Fv10に対して重み付けしてもよい。すなわち、コスト値導出部913は、特徴量Fv1~Fv10の重み付け和をコスト値として導出してもよい。
【0122】
なお、上述した特徴量Fv1~Fv10は、例示である。したがって、その他の特徴量がコスト値の算出に使用されてもよい。また、特徴量Fv1~Fv10のうち一部がコスト値の算出に使用されてもよい。
【0123】
この発明は詳細に説明されたが、上記の説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。
【符号の説明】
【0124】
1 塗布装置(基板処理装置)
9 制御ユニット
71 ノズル
81 ポンプ
91 演算部
93 記憶部
910 吐出制御部
911 吐出特性計測部
913 コスト値導出部
915 第1最適化部
917 第2最適化部
931 プログラム
EL 有機
M 記録媒体
S 基板

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22