(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-30
(45)【発行日】2024-05-10
(54)【発明の名称】血管モデル
(51)【国際特許分類】
G09B 23/28 20060101AFI20240501BHJP
G09B 9/00 20060101ALI20240501BHJP
【FI】
G09B23/28
G09B9/00 Z
(21)【出願番号】P 2020141461
(22)【出願日】2020-08-25
【審査請求日】2023-05-24
(73)【特許権者】
【識別番号】390030731
【氏名又は名称】朝日インテック株式会社
(74)【代理人】
【識別番号】110001911
【氏名又は名称】弁理士法人アルファ国際特許事務所
(72)【発明者】
【氏名】米山 梨奈
【審査官】安田 明央
(56)【参考文献】
【文献】国際公開第2020/116276(WO,A1)
【文献】国際公開第2018/079711(WO,A1)
【文献】特開2012-203016(JP,A)
【文献】特開2017-146414(JP,A)
【文献】米国特許第05873863(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G09B 23/28
G09B 9/00
(57)【特許請求の範囲】
【請求項1】
弾性材料により形成された模擬血管本体を備える血管モデルであって、
前記模擬血管本体は、前記模擬血管本体の管壁を貫通する連通孔を有し、
前記連通孔は、前記連通孔の周辺が、前記模擬血管本体の管内圧力に応じて
、前記管壁の外側に向かって弾性変形することにより開口する、
血管モデル。
【請求項2】
請求項1に記載の血管モデルであって、
前記連通孔は、線状のスリットであり、
前記管壁を貫通する方向視において、前記スリットは、前記模擬血管本体の延伸方向に突出する屈曲部を有する略V字形状または略U字形状を有する、
血管モデル。
【請求項3】
請求項2に記載の血管モデルであって、
前記模擬血管本体は、その一方の端部に、前記模擬血管本体の内部に液体を供給可能な供給部分を有し、
前記スリットの前記屈曲部は、前記延伸方向における前記供給部分が位置する端部と反対側に位置する端部側に突出している、
血管モデル。
【請求項4】
請求項1から請求項3までのいずれか一項に記載の血管モデルであって、
前記血管モデルは、さらに、前記模擬血管本体が配置された模擬心筋を備え、
前記連通孔は、前記模擬血管本体の表面のうち、前記模擬心筋側の表面に形成されている、
血管モデル。
【請求項5】
請求項1から請求項4までのいずれか一項に記載の血管モデルであって、
前記血管モデルは、心臓血管モデルであり、
前記連通孔は、前記管内圧力が、20mmHg以上、450mmHg以下であるとき開口する、
血管モデル。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される技術は、血管モデルに関する。
【背景技術】
【0002】
臨床でのカテーテル等を用いた治療または検査を模擬するために、実際の血管を模した血管モデル(模擬血管等)を備えたシミュレータが使用されている。
【0003】
臨床でのカテーテル等を用いた治療または検査では、血流速度や血液の粘性といった循環動態や、血管の閉塞状態等を把握するために、血管造影が用いられることがある。血管造影では、血管内に挿入されたカテーテルからX線透過度の低い造影剤を注入して、X線撮影を行う。術者は、得られたX線透視画像(静止画像または動画像、「シネ画像」とも呼ばれる)におけるコントラストの変化から、造影剤の流れの様子を観察することで、循環動態や血管状態を目視にて確認することができる。
【0004】
血管モデルを使用したX線透視画像における造影剤の流れの様子を、実際の臨床上で確認される造影剤の流れの様子と近似させるべく、種々の血管モデルが提案されている。例えば、血管モデルと実際の人体との構造の違いにより、血管モデルを使用したX線透視画像にのみ造影剤が撮像される部分において、当該造影剤の濃度がX線透視画像に撮像されない濃度になるまで当該造影剤を希釈することにより、臨床上の造影剤の拡散像を模擬した血管モデル(模擬人体)が開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
実際の臨床上では、動脈等の比較的太い血管の他、毛細血管等の比較的細い血管が存在する。血管を流れる造影剤は、例えば、心臓の収縮動作により血圧(血管の管内圧力)が上昇した状態において、当該細い血管へ流入しやすく、また、心臓の拡張動作により血圧が下降した状態において、当該細い血管へ流入しにくくなる傾向がある。換言すれば、臨床上での造影剤の拡散像では、血圧が上昇した状態において、当該細い血管は撮像されやすく、また、血圧が下降した状態において、当該細い血管は撮像されにくい傾向がある。このため、血管モデルにおいても、模擬血管の管内圧力の昇降に応じた造影剤の拡散像を、上記臨床上での造影剤の拡散像に近似させることが要求されている。
【課題を解決するための手段】
【0007】
本明細書では、上述した課題を解決することが可能な技術を開示する。この技術は、例えば、以下の形態として実現することが可能である。
【0008】
(1)本明細書に開示される血管モデルは、弾性材料により形成された模擬血管本体を備える血管モデルであって、前記模擬血管本体は、前記模擬血管本体の管壁を貫通する連通孔を有し、前記連通孔は、前記連通孔の周辺が、前記模擬血管本体の管内圧力に応じて弾性変形することにより開口する。すなわち、本血管モデルでは、例えば、模擬血管本体の管内圧力を上昇させることにより連通孔を開口させ、当該管内圧力を下降させることにより連通孔を閉口させることができる。換言すれば、本血管モデルでは、模擬血管本体の管内圧力に応じて、模擬血管本体を流れる流体(例えば、造影剤)を、連通孔の開口から模擬血管本体の外部へ拡散、排出させることができる。このため、本血管モデルでは、造影剤使用時に得られるX線透視画像において、実際の臨床上のX線透視画像で確認される造影剤の濃淡の様子(例えば、血圧の昇降に応じて、毛細血管等の細い血管に造影剤が拡散する様子)を模擬することができる。従って、本血管モデルによれば、模擬血管本体の管内圧力の昇降に応じた造影剤の拡散像を、実際の臨床上で観察される造影像に近似させた血管モデルを提供することができる。
【0009】
(2)上記血管モデルにおいて、前記連通孔は、線状のスリットであり、前記管壁を貫通する方向視において、前記スリットは、前記模擬血管本体の延伸方向に突出する屈曲部を有する略V字形状または略U字形状を有する構成としてもよい。本構成が採用された血管モデルでは、模擬血管本体の管内圧力が昇降することにより、スリットの屈曲部が変形してスリットの開口範囲が広がり、または、狭まる。すなわち、模擬血管本体の管内圧力の昇降の程度に応じて、スリットの開口から模擬血管本体の外部へ拡散、排出される流体(例えば、造影剤)の量を調節することができる。このため、本構成が採用された血管モデルによれば、模擬血管本体の管内圧力の昇降の程度に応じた造影剤の拡散像を、実際の臨床上で観察される造影像に近似させた血管モデルを提供することができる。
【0010】
(3)上記血管モデルにおいて、前記模擬血管本体は、その一方の端部に、前記模擬血管本体の内部に液体を供給可能な供給部分を有し、前記スリットの前記屈曲部は、前記延伸方向における前記供給部分が位置する端部と反対側に位置する端部側に突出している構成としてもよい。すなわち、本構成における血管モデルでは、スリットの屈曲部が液体の流れ方向の下流に向かって突出している。このため、本構成が採用された血管モデルによれば、実際の臨床上で観察されるような、血液の流れ方向に沿って造影剤が拡散する造影像に近似させた血管モデルを提供することができる。
【0011】
(4)上記血管モデルにおいて、前記血管モデルは、さらに、前記模擬血管本体が配置された模擬心筋を備え、前記連通孔は、前記模擬血管本体の表面のうち、前記模擬心筋側の表面に形成されている構成としてもよい。すなわち、本構成における血管モデルでは、模擬血管本体の連通孔から拡散された造影剤は、模擬心筋に沿って拡散する。このため、本構成が採用された血管モデルによれば、実際の臨床上で観察されるような、模擬心筋の表面に沿って造影剤が拡散する造影像に近似させた血管モデルを提供することができるとともに、血管モデルの利用者の没入感を向上させることができる。
【0012】
(5)上記血管モデルにおいて、前記血管モデルは、心臓血管モデルであり、前記連通孔は、前記管内圧力が、20mmHg以上、450mmHg以下であるとき開口する構成としてもよい。当該管内圧力の範囲は、動脈血圧のうち収縮期血圧(心臓から拍出された血液が冠動脈壁に与える圧力)の一般的な値に近似する。実際の臨床上では、心臓から拍出される血液は、収縮期には収縮期血圧により、毛細血管等の比較的細い血管に十分に行き渡る。このため、実際の臨床上においても、収縮期の造影像では、拡張期と比較して、毛細血管等の細い血管がより鮮明に観察される。本構成が採用された血管モデルでは、管内圧力が、収縮期血圧と同等の値であるとき、連通孔が開口して流体(例えば、造影剤)を拡散、排出させることができる。従って、本構成が採用された血管モデルによれば、実際の臨床上で観察されるような、冠動脈の造影像に近似させた血管モデルを提供することができる。
【0013】
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、血管モデル、血管モデルを備えるトレーニングキット、血管モデルを備えるシミュレータ、それらの製造方法等の形態で実現することができる。
【図面の簡単な説明】
【0014】
【
図1】第1実施形態における心臓シミュレータの説明図
【
図3】
図1及び2に示す心臓シミュレータのXY断面図
【
図4】
図1に示すX1部における特定主枝部のXZ断面図
【
図5】
図1に示すX1部における特定主枝部のYZ断面図
【
図6】
図1に示すX1部の一部における特定主枝部のXY断面図
【
図7】第2~5実施形態の心臓シミュレータにおける心臓血管モデルの説明図表
【発明を実施するための形態】
【0015】
A.第1実施形態:
A-1.心臓シミュレータの構成:
図1および
図2は、第1実施形態における心臓シミュレータの説明図である。
図3(A)は、
図2のA1-A1線における心臓シミュレータのXY断面図であり、
図3(B)は、
図2のA2-A2線における心臓シミュレータのXY断面図である。
図3(A)および(B)では、図示の便宜上、心臓モデル10の一部分の拡大断面を表すとともに、心臓モデル10の表面10S(より具体的には、後述の模擬心筋17の表面)に配置された心臓血管モデル20の一枝(一部分)のみを表している。なお、各図には、方向を特定するための互いに直交するXYZ軸が図示されている。X軸は心臓モデル10の左右方向(幅方向)に対応し、Z軸は心臓モデル10の高さ方向に対応し、Y軸は心臓モデル10の奥行き方向に対応する。本明細書では、便宜的に、Z軸正方向を「基端側」とも呼び、基端側の端部を「基端部」とも呼ぶ。同様に、Z軸負方向を「先端側」とも呼び、先端側の端部を「先端部」とも呼ぶ。なお、本実施形態において、心臓血管モデル20は、心臓に血液を供給するための血管である冠動脈を模擬した形状のみを図示しており、静脈の図示を省略している。心臓シミュレータ1は、特許請求の範囲における血管モデルの一例である。また、
図1および
図2では、便宜的に、後述の模擬心外膜18の図示を省略している。
【0016】
心臓シミュレータ1は、心臓と心臓の表面を巡る血管を再現するシミュレータである。本実施形態において、心臓シミュレータ1は、心臓モデル10と心臓血管モデル20と固定部材30とを備えている。より具体的には、心臓シミュレータ1は、心臓モデル10と、心臓モデル10の表面10Sに配置された心臓血管モデル20と、心臓血管モデル20を心臓モデル10の表面10Sに固定するための固定部材30とにより構成されている。このような心臓シミュレータ1によれば、心臓血管モデル20に対して造影剤を使用した際に得られるX線透視画像において、実際の臨床上でのX線透視画像で確認される造影剤の濃淡の様子を模擬することができる。
【0017】
図1および
図2を用いて、心臓モデル10の構成について説明する。心臓モデル10は、実際の心臓を模擬した外形を有している。心臓モデル10は、例えば、実際の心室を模擬するように略球体状に形成することができる。また、
図3(A)および(B)に示すように、心臓モデル10は、実際の心臓により近似させるために、バルーン16と模擬心筋17との2層構造を有している。バルーン16は、心臓モデル10の最も内側に配置された球状体であり、内腔10Lを有している。バルーン16の形成材料としては、弾性を有するゴムや、熱可塑性エラストマー(TPE)等の合成樹脂材料等を挙げることができる。模擬心筋17は、バルーン16の表面を覆っている。模擬心筋17の形成材料は、心臓血管モデル20に形成された後述の連通孔210から分散された造影剤をさらに分散させる拡散流路(緩衝流路)として機能させる観点から、多孔体とすることができる。また、模擬心筋17は、心臓モデル10の拍動動作(拡張および収縮動作)によって、バルーン16の内腔10Lにおける体積の増減に追従可能なように、伸縮性のある材料で形成されうる。模擬心筋17の形成材料としては、例えば、ナイロン不織布等の不織布や、ポリウレタンフォーム、ポリアミドフォーム、ポリエチレンフォーム、シリコンフォーム、ゴムスポンジ等の発泡体により形成された、複数の細孔を有する多孔質体や、X線透過性を有する軟性素材(例えば、PVA、シリコン等)の合成樹脂等を挙げることができる。
【0018】
心臓モデル10は、さらに、模擬心外膜18を備えていてもよい。模擬心外膜18は、心臓モデル10の表面10Sを覆う膜状の部材である。模擬心外膜18は、心臓モデル10の拍動動作(拡張および収縮動作)によって、バルーン16の内腔10Lにおける体積の増減に追従することによって、心臓血管モデル20が心臓モデル10(より具体的には、模擬心筋17)から離脱することを抑制可能なように、伸縮性のある材料で形成されうる。模擬心外膜18は、例えば、X線透過性を有する軟性素材の合成樹脂(例えば、PVA、シリコン等)により形成された袋状の部材である。模擬心外膜18の内面と心臓モデル10の表面10Sとの間の空間には、上述した心臓血管モデル20(血管モデル)が収容されている。なお、模擬心外膜18には、心臓血管モデル20に形成された後述の連通孔210から排出された造影剤や模擬血液を排出するための排出口が形成されていてもよい。排出口は、模擬心外膜18のうち、心臓モデル10の先端側(心尖部)の近傍等に設けられていてもよい。
【0019】
心臓モデル10は、例えば、心臓モデル10の内腔10Lに流体の送出を行うことで心臓モデル10を拡張させ、心臓モデル10の内腔10Lの流体の吸出を行うことで心臓モデル10を収縮させることにより、実際の心臓の拍動を模擬することができる。
【0020】
図1および
図3を用いて、心臓血管モデル20の構成について説明する。心臓血管モデル20は、心臓モデル10の表面10Sに配置されている。より具体的には、心臓血管モデル20は、模擬心筋17上に配置されている。心臓血管モデル20は、基端20Pが上行大動脈の一部を模擬した形状に形成され、先端20Dが左右の冠動脈を模擬した形状に形成されている。以降、心臓血管モデル20のうち、左冠動脈を模擬した部分を左冠動脈モデル200LFとも呼び、右冠動脈を模擬した部分を右冠動脈モデル200RTとも呼ぶ。また、左冠動脈モデル200LFと右冠動脈モデル200RTとを総称して、冠動脈モデル200とも呼ぶ。
【0021】
心臓血管モデル20を構成する基端20Pおよび先端20Dの形成材料は、X線透過性を有する弾性材料であれば、特に限定されない。当該弾性材料のヤング率は、実際の血管が有する弾性に近似させる観点から、例えば、10kPa以上、200kPaGPa以下程度とすることができる。当該弾性材料として、例えば、ポリビニルアルコール(PVA)、シリコン等の合成樹脂、コラーゲン等を挙げることができる。なお、心臓血管モデル20を構成する各部材の形成材料は、互いに同じ種類であってもよく、また、異なる種類であってもよい。
【0022】
基端20Pは、基端側に開口部20OPを有し、先端側において主枝部201に接続する管状体であり、内腔20Lを有している。なお、心臓血管モデル20を備える心臓シミュレータ1の使用時には、基端20Pの開口部20OPから、流体(模擬血液や造影剤)を加圧しながら供給することにより、当該流体を心臓血管モデル20全体へと拡散させる。本実施形態において、基端20Pは、上記流体の供給装置(図示せず)に接続されている。流体は、特許請求の範囲における液体の一例である。
【0023】
先端20Dを構成する冠動脈モデル200は、主枝部201と、側枝部202と、接続部203と、分岐部204とを有している。主枝部201は、冠動脈における主要な血管を模擬しており、側枝部202は、主枝部201から伸びる微細な血管を模擬している。
図3(A)に示すように、主枝部201は、内腔201Lを有する管状体であり、側枝部202も、主枝部201と同様に、内腔202Lを有する管状体である。より具体的には、主枝部201および側枝部202は、それぞれ、一端に開口部(図示せず)を有し、他端に外形上閉塞している閉塞部を有する有底管状体である。本明細書において、「外形上閉塞している」とは、見かけ上において、端部が閉ざされ塞がれていることを意味する。すなわち、機能的に閉塞していることを意味するものではなく、例えば、当該端部等に形成された後述の連通孔210から流体を排出することが可能である。主枝部201の内腔201Lの内径は、例えば、1mm~2mm程度であり、側枝部202の内腔202Lの内径は、例えば、1mm~2mm程度である。また、主枝部201の管壁の厚さは、特に限定されないが、例えば、0.5mm以上、1mm以下であり、側枝部202の管壁の厚さは、特に限定されないが、例えば、0.1mm以上、0.5mm以下である。なお、以下の説明において、主枝部201と側枝部202とをまとめて「枝部201,202」と呼ぶことがあり、内腔201Lと内腔202Lとをまとめて「内腔201L,202L」と呼ぶことがある。なお、主枝部201の詳細構成については、後で説明する。
【0024】
接続部203は、一の主枝部201と、他の枝部201,202とを接続する部分である。接続部203において、一の主枝部201の内腔201Lと、他の枝部201,202の内腔201L,202Lとは、連通させた状態で接続されている。この接続は種々の手段で実現でき、例えば、各枝部201,202をクリップ等の留置具で留めることで実現してもよく、各枝部201,202を接着剤で固定することで実現してもよく、各枝部201,202を合成樹脂で覆うことで実現してもよい。
【0025】
分岐部204は、実際の人体と同様に、一の枝部201,202が、一または複数の枝部201,202へと分岐する部分である。一の枝部201,202と、一または複数の枝部201,202とは、接続部203によって接続されていてもよく、また、両者が一体的に形成されていてもよい。
【0026】
図1において矢印で示すように、心臓血管モデル20の基端20Pにおいて、内腔20Lに流入した流体(模擬血液や造影剤)は、左冠動脈モデル200LFと右冠動脈モデル200RTとにそれぞれ分岐し、各冠動脈モデル200LF,200RTにおいて、主枝部201の内腔201Lを先端側に向かって進む。流体は、途中、分岐部204による分岐を経て、各主枝部201および各側枝部202の先端まで流れる。
【0027】
固定部材30は、心臓モデル10の表面10S(具体的には、模擬心筋17の表面)に対して、心臓血管モデル20の各部、すなわち、主枝部201および側枝部202を固定するための部材である(
図2参照)。固定部材30の形状は、特に限定されないが、例えば、シール状とすることができる。固定部材30の形成材料としては、例えば、X線透過性を有する軟性素材の合成樹脂(例えば、PVA、シリコン、ポリウレタン、カラギナンなどの多糖類等)等を挙げることができる。
図2に示すように、心臓シミュレータ1には、複数の固定部材30が設けられている。なお、固定部材30の設置位置や、設置個数は任意に決定することができる。固定部材30は、例えば、外力および冠動脈モデル200における圧力が他の部位と比べて高い部分(接続部203や分岐部204)や、冠動脈モデル200の先端に位置する部分(側枝部202や、主枝部201の先端部)等の各部に配置されることが好ましい。また、固定部材30は、例えば、心臓血管モデル20(例えば、主枝部201)のうち、心臓モデル10の表面10S(具体的には、模擬心筋17の表面)との接触部分を除く表面全体を覆うように配置されることが好ましい。心臓血管モデル20をより確実に心臓モデル10へと固定しつつ、心臓血管モデル20を流れる流体が、心臓血管モデル20に形成された後述の連通孔210を介して、心臓モデル10の表面10S(具体的には、模擬心筋17)へと拡散することを妨げないようにするためである。心臓シミュレータ1では、固定部材30によって、心臓モデル10の表面10Sに対して心臓血管モデル20を固定することができるため、心臓モデル10と心臓血管モデル20との位置関係を所望の位置に維持できる。
【0028】
A-2.主枝部201の詳細構成:
冠動脈モデル200における主枝部201のうちの一の主枝部201(以下、「特定主枝部201X」と呼ぶ)の詳細構成について説明する。
図4は、
図1のX1部における特定主枝部201XのXZ断面図である。
図4には、
図3(B)のIV-IVの位置における特定主枝部201Xの断面が拡大されて示されている。
図4の下段(破線枠内)には、連通孔210の周辺が拡大されて示されている。
図4では、便宜的に、特定主枝部201Xの延伸方向をZ軸方向に一致させており、固定部材30の図示を省略している。なお、特定主枝部201Xは、特許請求の範囲における模擬血管本体の一例である。
【0029】
上述したように、心臓血管モデル20の基端20Pにおいて、内腔20Lに供給された流体(模擬血管や造影剤)は、分岐部204による分岐を経て、特定主枝部201Xの基端から先端まで流れる(
図1参照)。換言すれば、特定主枝部201Xの一方の端部である基端部は、特定主枝部201Xの内腔201Lに流体(模擬血管や造影剤)を供給可能な供給部分SPとして機能する。より具体的には、供給部分SPは、特定主枝部201Xにおいて分岐部204が位置する部分である。特定主枝部201Xの内腔201Lは、特許請求の範囲における「模擬血管本体の内部」の一例であり、供給部分SPは、特許請求の範囲における供給部分の一例である。
【0030】
図3(B)および
図4に示すように、特定主枝部201Xは、その先端部(
図1のX1部)において、特定主枝部201Xの管壁VWを貫通する複数(本実施形態では、9個)の連通孔210を有している。本実施形態において、連通孔210は、特定主枝部201Xの表面201Sのうち、心臓モデル10の表面10S側(換言すれば、模擬心筋17側)の表面に形成されている。すなわち、連通孔210は、特定主枝部201Xの内腔201Lと内腔201Lの外部(本実施形態において、模擬心筋17)とが連通するように開口する。本明細書において、連通孔210とは、特定主枝部201Xの管内圧力に応じて、閉口状態から開口状態へと移行する孔を意味する。本明細書において、「閉口状態」とは、連通孔210が完全に閉鎖している状態に限らず、流体(特には、造影剤)が排出されない程度に隙間を有している状態を含むことを意味し、「開口状態」とは、連通孔210が、流体(特には、造影剤)が排出可能な程度に開口している状態を意味する。
【0031】
本実施形態において、連通孔210は、線状のスリットである。より具体的には、
図4のXZ断面において、連通孔210(以下適宜「スリット210」とも呼ぶ)は、一方の端部TP1と、他方の端部TP2と、屈曲部CPとを有する略V字形状に形成されている。また、スリット210は、屈曲部CPが、特定主枝部201Xの先端側(Z軸負方向)に突出するよう形成されている。換言すれば、屈曲部CPは、特定主枝部201Xの延伸方向(Z軸方向)であって、特定主枝部201Xの供給部分SPが位置する端部(基端部)と反対側に位置する端部(先端部)側に突出している。すなわち、スリット210の屈曲部CPは、流体F(模擬血液MBや造影剤CA)の流れ方向の下流に向かって突出している。また、本実施形態において、屈曲部CPは、特定主枝部201Xの中心軸OL上に重なっている。このように形成されたスリット210は、開閉可能な弁として機能する。なお、
図4のXZ断面は、スリット210が管壁VWを貫通する方向視(Y軸方向視)における断面の一例である。
【0032】
スリット210における端部TP1から端部TP2までの長さ(具体的には、スリット210に沿った長さ)は、特に限定されないが、スリット210が開口可能であり、かつ、血管内に挿入されたカテーテル等がスリット210に進入することを抑制する観点から、例えば、0.05mm以上、1mm以下である。また、Z軸方向における、屈曲部CPと端部TP1(端部TP2)との間の距離Dは、特に限定されないが、スリットを開閉させる観点から、特定主枝部201Xの管壁VWの厚さ以上であることが好ましく、例えば、0.5mm以上、6mm以下である。また、屈曲部CPにおける内角θαは、特に限定されないが、流体の流れに沿ってスリットを開閉させる観点から、例えば、45°以上、90°以下である。また、複数のスリット210は、特に限定されないが、例えば、
図4に示されるように、スリット210と、当該スリット210に隣接するスリット210との間の間隔Pi(以下、「ピッチPi」と呼ぶ)が、特定主枝部201Xの基端側から先端側へ向かうほど小さく(狭く)なるよう形成されていてもよい。このような構成とすることにより、特定主枝部201Xの先端側ほど造影剤CAが広範囲に拡散しやすく、造影剤使用時に得られるX線透視画像において、実際の臨床上のX線透視画像で確認される造影像の濃淡の様子(例えば、造影剤が細動脈に沿って拡がったのち細静脈に拡散して消える様子)により近似させることができる。このようなスリット210は、例えば、略V字形状の断面を有する注射針等で、特定主枝部201Xの管壁VWを穿刺する方法等により形成することができる。
【0033】
A-3.心臓シミュレータ1の動作:
図5および
図6を用いて、本実施形態の心臓シミュレータ1の動作について説明する。
図5は、
図1のX1部における特定主枝部201XのYZ断面図であり、
図6は、
図1のX1部の一部における特定主枝部201XのXY断面図である。
図5(A)には、
図4および
図6(A)のVA-VAの位置における特定主枝部201Xであって、スリット210が閉口状態である特定主枝部201Xが拡大されて示されている。
図5(B)には、
図6(B)のVB-VBの位置における特定主枝部201Xであって、スリット210が開口状態である特定主枝部201Xが拡大されて示されている。
図6(A)には、
図4および
図5(A)のVIA-VIAの位置における特定主枝部201Xであって、スリット210が閉口状態である特定主枝部201Xが拡大されて示されている。
図6(B)には、
図5(B)のVIB-VIBの位置における特定主枝部201Xであって、スリット210が開口状態である特定主枝部201Xが拡大されて示されている。なお、
図5では、便宜的に、心臓モデル10および固定部材30の図示を省略しており、
図6では、便宜的に、固定部材30の図示を省略している。また、各図において、特定主枝部201Xの内腔201Lには、模擬血液MBと造影剤CAとを含む流体Fが満たされている。
【0034】
心臓血管モデル20に供給する流体Fは、例えば、基端20Pを介して特定主枝部201Xへと供給される。すなわち、流体Fの供給量を大きく(供給速度を速く)することにより特定主枝部201Xの管内圧力Pは上昇し、流体Fの供給量を小さく(供給速度を遅く)することにより特定主枝部201Xの管内圧力Pは低下する。本明細書において、「管内圧力」とは、ヒトの血圧を模擬したものであり、例えば、特定主枝部201Xに圧力計を繋ぎ、測定することができる。また、流体力学的に流速から概算で管内圧力を求めることもできる。このように、特定主枝部201Xへと供給された流体Fは、後述の連通孔210を通過して、模擬心筋17に吸収される。模擬心筋17に吸収された流体Fは、例えば、内腔10Lへと排出され、さらには、心臓モデル10の外部へと排出される。
【0035】
図5および
図6を用いて、特定主枝部201Xの管内圧力Pの昇降による特定主枝部201Xのスリット210の開閉機構を説明する。以下の説明において、特定主枝部201Xの管内圧力Pが低下した状態を代表して「収縮状態」と呼び、特定主枝部201Xの管内圧力Pが上昇した状態を代表して「拡張状態」と呼ぶ。
図5(A)および
図6(A)に示すように、収縮状態において、特定主枝部201Xに形成されたスリット210は閉口状態である。一方、
図5(B)および
図6(B)に示すように、拡張状態では、特定主枝部201Xの内腔201Lを流れる流体Fの流量Vが増加して管内圧力Pが上昇し、特定主枝部201Xに形成されたスリット210は開口状態となる。これは、特定主枝部201Xが弾性材料で形成されていることにより、スリット210の周辺が管内圧力Pによって弾性変形し、スリット210を開閉する弁として機能するためである。
【0036】
収縮状態における流体Fの流量V(以下、「収縮期流量Vs」とも呼ぶ)は、例えば、0.1ml/秒以上、0.6ml/秒以下である。また、収縮状態における特定主枝部201Xの管内圧力P(以下、「収縮期圧力Ps」とも呼ぶ)は、例えば、15mmHg以上、80mmHg以下である。拡張状態における流体Fの流量V(以下、「拡張期流量Ve」とも呼ぶ)は、例えば、0.2ml/秒以上、1.3ml/秒以下である。また、拡張状態における特定主枝部201Xの管内圧力P(以下、「拡張期圧力Pe」とも呼ぶ)は、例えば、20mmHg以上、450mmHg以下、さらには、80mmHg以上、180mmHg以下である。すなわち、拡張期流量Veの値は、収縮期流量Vsの値より大きく、拡張期圧力Peの値は、収縮期圧力Psの値より大きい。
【0037】
本実施形態において、スリット210は略V字形状に形成されている。このため、拡張状態では、スリット210の周辺が拡張期圧力Peによって、特定主枝部201Xの外部(具体的には、心臓モデル10の表面10S)へと押し下げられるとともに押し広げられることにより、スリット210の開口が拡張する。拡張状態において拡張された開口は、再度、収縮状態となったとき、拡張期圧力Peから解放され、弾性変形により収縮して元の閉口状態へと戻る。このため、特定主枝部201Xの管内圧力Pが低い(収縮期圧力Psである)状態では、特定主枝部201Xに形成されたスリット210は閉口状態となり、
図5(A)および
図6(A)に示すように、造影剤CAを含む流体Fが外部へと排出しにくい状態となる。一方、特定主枝部201Xの管内圧力Pが高い(拡張期圧力Peである)状態では、特定主枝部201Xに形成されたスリット210が開口状態となり、
図5(B)および
図6(B)に示すように、造影剤CAを含む流体Fが開口から外部へと排出しやすい状態となる。また、特定主枝部201Xの管内圧力Pが高くなるにつれて、スリット210の開口範囲が広がって上記開口から排出される流体Fの量は大きくなり、管内圧力Pが低くなるにつれて、スリット210の開口範囲が狭まって上記開口から排出される流体Fの量は小さくなる。このため、特定主枝部201Xの収縮状態/拡張状態に伴い、閉口状態/開口状態を繰り返すスリット210から、造影剤CAをより細かく拡散および排出することができる。この結果、造影剤使用時に得られるX線透視画像における造影像の濃淡の様子(造影剤の拡散および消失像)を、実際の血管により近づけることができる。
【0038】
上述のように、特定主枝部201Xの管内圧力Pが低い(収縮期圧力Psである)状態となると、スリット210は再び閉口状態となる。このため、心臓シミュレータ1および心臓血管モデル20を流体(水や生理食塩水等)に浸した湿潤状態で使用する場合において、心臓血管モデル20の周囲を満たす流体や造影剤CAが、スリット210から流体流路内(例えば、特定主枝部201Xの内腔201L)へと逆流することを抑制できる。
【0039】
図6(B)を用いて、造影剤CAの拡散の様子を説明する。本実施形態の特定主枝部201Xは、心臓モデル10の模擬心筋17上に配置されている。このため、スリット210を通って外部へ排出された造影剤CAは、心臓モデル10の模擬心筋17へと流れ込む。ここで、上述のように、模擬心筋17は、多孔質体により形成されているため、模擬心筋17は、流れ込んだ造影剤CAの圧力および流速をさらに分散させる拡散流路(緩衝流路)として機能する。このように、本実施形態の心臓シミュレータ1では、心臓血管モデル20における特定主枝部201Xの先端部と、心臓モデル10の模擬心筋17との両方で造影剤CAの拡散および排出を行うため、造影剤CAをより細かく拡散および排出することができる。この結果、造影剤使用時に得られるX線透視画像における造影像の濃淡の様子(造影剤の拡散および消失像)を、実際の血管により近づけることができる。
【0040】
さらに、本実施形態の心臓シミュレータ1では、スリット210は、特定主枝部201Xの先端部に設けられているため、流体流路(特定主枝部201Xの内腔201L)の先端部で、造影剤使用時に得られるX線透視画像における造影像の濃淡の様子(造影剤の拡散および消失像)を模擬できる。
【0041】
A-4.本実施形態の効果:
以上説明したように、本実施形態の心臓シミュレータ1は、特定主枝部201Xを有する心臓血管モデル20を備えている。特定主枝部201Xは、弾性材料により形成されている。特定主枝部201Xは、特定主枝部201Xの管壁VWを貫通するスリット210を有している。スリット210は、スリット210の周辺が、特定主枝部201Xの管内圧力Pに応じて弾性変形することにより開口する。すなわち、本実施形態の心臓シミュレータ1では、例えば、特定主枝部201Xの管内圧力Pを上昇させることによりスリット210を開口させ、当該管内圧力Pを下降させることによりスリット210を閉口させることができる。換言すれば、本実施形態の心臓シミュレータ1では、特定主枝部201Xの管内圧力Pに応じて、特定主枝部201Xを流れる流体F(例えば、造影剤CA)を、スリット210の開口から特定主枝部201Xの外部へ拡散、排出させることができる。このため、本実施形態の心臓シミュレータ1では、造影剤使用時に得られるX線透視画像において、実際の臨床上のX線透視画像で確認される造影剤の濃淡の様子(例えば、血圧の昇降に応じて、毛細血管等の細い血管に造影剤が拡散する様子)を模擬することができる。従って、本実施形態の心臓シミュレータ1によれば、特定主枝部201Xの管内圧力Pの昇降に応じた造影剤CAの拡散像を、実際の臨床上で観察される造影像に近似させた心臓シミュレータを提供することができる。
【0042】
本実施形態の心臓シミュレータ1では、スリット210は、線状のスリットである。また、
図4のXZ断面において、スリット210は、特定主枝部201Xの延伸方向(Z軸方向)に突出する屈曲部CPを有する略V字形状を有している。このため、特定主枝部201Xの管内圧力Pが昇降することにより、スリット210の屈曲部CPが変形してスリット210の開口範囲が広がり、または、狭まる。すなわち、特定主枝部201Xの管内圧力Pの昇降の程度に応じて、スリット210の開口から特定主枝部201Xの外部へ拡散、排出される流体F(例えば、造影剤CA)の量を調節することができる。このため、本実施形態の心臓シミュレータ1によれば、特定主枝部201Xの管内圧力Pの昇降の程度に応じた造影剤CAの拡散像を、実際の臨床上で観察される造影像に近似させた心臓シミュレータを提供することができる。
【0043】
本実施形態の心臓シミュレータ1では、特定主枝部201Xは、基端部に供給部分SPを有している。スリット210の屈曲部CPは、先端部側に突出している。すなわち、本実施形態における心臓シミュレータ1では、スリット210の屈曲部CPが流体Fの流れ方向の下流に向かって突出している。このため、本実施形態の心臓シミュレータ1によれば、実際の臨床上で観察されるような、血液の流れ方向に沿って造影剤が拡散する造影像に近似させた心臓シミュレータを提供することができる。
【0044】
本実施形態の心臓シミュレータ1では、特定主枝部201Xが配置された模擬心筋17を備えている。スリット210は、特定主枝部201Xの表面201Sのうち、模擬心筋17側の表面(心臓モデル10の表面10S側の表面)に形成されている。すなわち、本実施形態における心臓シミュレータ1では、特定主枝部201Xのスリット210から拡散された造影剤CAは、心臓モデル10に沿って拡散する。このため、本実施形態の心臓シミュレータ1によれば、実際の臨床上で観察されるような、模擬心筋17の表面(すなわち、心臓モデル10の表面10S)に沿って造影剤が拡散する造影像に近似させた心臓シミュレータを提供することができるとともに、心臓シミュレータの利用者の没入感を向上させることができる。
【0045】
本実施形態の心臓シミュレータ1では、スリット210は、管内圧力Pが、20mmHg以上、450mmHg以下であるとき開口する。本実施形態の心臓シミュレータ1では、管内圧力Pが、拡張期圧力Peの範囲であるとき、スリット210が開口して流体F(例えば、造影剤CA)を拡散、排出させることができる。従って、本実施形態の心臓シミュレータ1によれば、実際の臨床上で観察されるような、冠動脈の造影像に近似させた心臓シミュレータを提供することができる。
【0046】
B.他の実施形態:
図7は、第2~5の実施形態の心臓シミュレータにおける心臓血管モデルの説明図表である。第2~5の実施形態の心臓シミュレータでは、第1実施形態から、特定主枝部201Xや連通孔210の形状・構造を変更してある。図表では、縦軸にA~Dのラベルを付してある。ラベルのA~Dの各行に示す図面では、第2~5の実施形態の特定主枝部や連通孔を拡大して示してある。横軸には、拡張状態と収縮状態とのラベルを付してある。拡張状態と収縮状態とのラベルの各列に示す図面では、第2~5の実施形態の特定主枝部や連通孔の拡張状態と収縮状態とを拡大して示してある。以降では、第2~5実施形態の心臓シミュレータの構成のうち、上述した第1実施形態の心臓シミュレータ1と同一の構成については、同一の符号を付すことにより、その説明を適宜省略する。なお、
図7では、便宜的に、流体Fの図示を省略している。
【0047】
B-1.第2実施形態:
図7(A)の収縮状態の欄には、スリット210aが閉口状態である特定主枝部201Xaであって、
図4の破線枠内に示された部分に相当する部分における特定主枝部201XaのXZ断面が示されている。
図7(A)の拡張状態の欄には、スリット210aが開口状態である特定主枝部201XaのYZ断面が示されている。第2実施形態の心臓シミュレータでは、心臓血管モデル20aは、第1実施形態の特定主枝部201Xに代えて、特定主枝部201Xaを有しており、本実施形態の特定主枝部201Xaでは、スリット210aの形状が略U字形状である点で、第1実施形態の特定主枝部201Xとは異なっている。
【0048】
より具体的には、
図7(A)の収縮状態の欄に示されているように、第2実施形態のスリット210aは、一方の端部TP1と、他方の端部TP2と、屈曲部CPaと、を有する略U字形状に形成されている。本実施形態のスリット210aは、第1実施形態のスリット210と同様に、屈曲部CPaが、特定主枝部201Xaの先端側(Z軸負方向)に突出するように形成されている。このため、
図7(A)の拡張状態の欄に示されているように、特定主枝部201Xaの拡張状態では、スリット210aの周辺が拡張期圧力Peによって、弾性変形して、特定主枝部201Xaの外部へと押し下げられるとともに押し広げられることにより、スリット210aの開口が拡張する。また、拡張状態において拡張された開口は、再度、収縮状態となったとき、元の閉口状態へと戻る。このように、スリット210aにおける屈曲部CPaの形状は任意の形状を採用することができる。なお、第2実施形態の心臓シミュレータは、第1実施形態と同様の効果を奏する。
【0049】
B-2.第3実施形態:
図7(B)の収縮状態の欄には、スリット210bが閉口状態である特定主枝部201Xbであって、
図4の破線枠内に示された部分に相当する部分における特定主枝部201XbのXZ断面が示されている。
図7(B)の拡張状態の欄には、スリット210bが開口状態である特定主枝部201XbのYZ断面が示されている。第3実施形態の心臓シミュレータでは、心臓血管モデル20bは、第1実施形態の特定主枝部201Xに代えて、特定主枝部201Xbを有しており、特定主枝部201Xbでは、スリット210bの形状が略I字形状である点で、第1実施形態の特定主枝部201Xとは異なっている。
【0050】
より具体的には、
図7(B)の収縮状態の欄に示されているように、第3実施形態のスリット210bは、一方の端部TP1と他方の端部TP2とを有する略I字形状に形成されている。このため、
図7(B)の拡張状態の欄に示されているように、特定主枝部201Xbの拡張状態では、スリット210bの周辺が拡張期圧力Peによって、弾性変形して、特定主枝部201Xbの外部へと押し下げられるとともに押し広げられることにより、スリット210bの開口が拡張する。また、拡張状態において拡張された開口は、再度、収縮状態となったとき、元の閉口状態へと戻る。なお、第4実施形態の心臓シミュレータは、第1実施形態における効果のうち、連通孔210が、特定主枝部201Xの先端部側に突出する屈曲部CPを有する略V字形状であることにより奏する効果を除き、同様の効果を奏する。
【0051】
B-3.第4実施形態:
図7(C)の収縮状態の欄には、連通孔210cが閉口状態である特定主枝部201Xcであって、
図4の破線枠内に示された部分に相当する部分における特定主枝部201XcのXZ断面が示されている。
図7(C)の拡張状態の欄には、連通孔210cが開口状態である特定主枝部201XcのXZ断面が示されている。第4実施形態の心臓シミュレータでは、心臓血管モデル20cは、第1実施形態の特定主枝部201Xに代えて、特定主枝部201Xcを有しており、特定主枝部201Xcでは、連通孔210cの形状が略O字形状の貫通孔である点で、第1実施形態の特定主枝部201Xとは異なっている。
【0052】
より具体的には、第4実施形態の連通孔210cは、収縮状態においては、特定主枝部201Xcの弾性により閉口し、拡張状態においては、開口する貫通孔である(
図7(C)の収縮状態/拡張状態の欄参照)。すなわち、連通孔210cは、特定主枝部201Xcの拡張状態では、連通孔210cの周辺が拡張期圧力Peによって、弾性変形して、連通孔210cの外側へと押し広げられることにより、連通孔210cの開口が拡張する。また、拡張状態において拡張された開口は、再度、収縮状態となったとき、元の閉口状態へと戻る。なお、第4実施形態の心臓シミュレータは、第1実施形態における効果のうち、連通孔210が、特定主枝部201Xの先端部側に突出する屈曲部CPを有する略V字形状であることにより奏する効果を除き、同様の効果を奏する。
【0053】
B-4.第5実施形態:
図7(D)の収縮状態の欄には、連通孔210dが閉口状態である特定主枝部201Xdであって、
図4の破線枠内に示された部分に相当する部分における特定主枝部201XdのXZ断面が示されている。
図7(D)の拡張状態の欄には、連通孔210dが開口状態である特定主枝部201XdのYZ断面が示されている。第5実施形態の心臓シミュレータでは、心臓血管モデル20dは、第1実施形態の特定主枝部201Xに代えて、特定主枝部201Xdを有しており、特定主枝部201Xdでは、連通孔210dが部分的に形成されたスリットに加え、貫通孔を有している点で、第1実施形態の特定主枝部201Xとは異なっている。
【0054】
より具体的には、
図7(D)の収縮状態の欄に示されているように、第5実施形態の連通孔210dは、一方の端部TP1と、他方の端部TP2と、屈曲部CP1とを有する略V字形状の第1の周縁と、端部TP1と端部TP2と屈曲部CP2とを有する略U字形状の第2の周縁とから構成されている。連通孔210dは、端部TP1,TP2の付近においてスリット状であり、第1の周縁と第2の周縁との間において貫通孔を有している。連通孔210dは、収縮状態においては、第1の周縁と第2の周縁との間は、特定主枝部201Xdの弾性により閉口し、拡張状態においては、開口する貫通孔である(
図7(D)の収縮状態/拡張状態の欄参照)。連通孔210dは、第1実施形態の連通孔210と同様に、屈曲部CP1と屈曲部CP2とが、特定主枝部201Xdの先端側(Z軸負方向)に突出するように形成されている。このため、
図7(D)の拡張状態の欄に示されているように、特定主枝部201Xdの拡張状態では、連通孔210dの周辺が拡張期圧力Peによって、弾性変形して、特定主枝部201Xdの外部へと押し下げられるとともに押し広げられることにより、連通孔210dの開口が拡張する。また、拡張状態において拡張された開口は、再度、収縮状態となったとき、元の閉口状態へと戻る。なお、第5実施形態の心臓シミュレータは、第1実施形態と同様の効果を奏する。
【0055】
C.変形例:
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0056】
上記実施形態では、血管モデルとして、心臓シミュレータ1の構成の一例を示したが、これに限定されない。例えば、血管モデルは、心臓血管モデル20であってもよい。また、血管モデルは、心臓血管モデルの他、脳血管モデルや、肝臓血管モデルや、下肢血管モデルであってもよい。これらの血管モデルに、本実施形態の連通孔210を形成することができる。
【0057】
上記実施形態において、心臓モデル10は、模擬心外膜18を備えていなくてもよい。
【0058】
上記実施形態において、心臓血管モデル20は、冠動脈モデル200に加えて、静脈を模擬したモデルを含んでいてもよい。また、心臓血管モデル20は、主枝部201と、側枝部202と、接続部203と、分岐部204とを備えるとしたが、これに限定されず、主枝部201以外の各構成を省略しても良い。例えば、側枝部202を省略して一の主枝部201のみから構成してもよい、例えば、接続部203を省略して、主枝部201を一体成型し、主枝部201の付け替え不能な構成としてもよい。また、例えば、分岐部204を省略して、分岐部204のない主枝部201によって冠動脈モデル200を構成してもよい。
【0059】
上記実施形態において、心臓血管モデル20の基端20Pは、例えば、心臓モデル10に接続されていてもよい。、このような構成において、心臓モデル10の挙動と心臓血管モデル20の特定主枝部201Xからの流体Fの分散タイミングとを、実際の人体に近似させることができる。心臓血管モデル20の基端20Pは、心臓モデル10に限定されず、他の生体モデルに接続されていてもよい。
【0060】
上記実施形態において、連通孔210は、特定主枝部201Xにのみ形成されていることとしたが、これに限定されない。例えば、本実施形態の連通孔210は、他の主枝部201や側枝部202、右冠動脈モデル200RTの主枝部201や側枝部202、上記静脈のうちの一または複数に形成されていてもよい。また、上記実施形態において、連通孔210は、特定主枝部201Xの先端側に形成されることとしたが、これに限定されず、特定主枝部201Xの基端側に形成されていてもよい。このような構成においても、X線透視画像において、特定主枝部201Xの基端側に接続された毛細血管等の細い血管等を模擬することができる。
【0061】
上記実施形態において、連通孔210は、略V字形状や略U字形状等の形状に限定されず、例えば、波形状や星形状、鍵穴状等他の形状であってもよい。
【0062】
上記実施形態において、連通孔210は、特定主枝部201Xの表面のうち、模擬心筋17側の表面に形成されていなくてもよい。また、連通孔210の形成位置は特に限定されず、上記実施形態のよう、中心軸OLと平行な複数の線上に重なるように形成されていてもよく、また、ランダムに形成されていてもよい。
【0063】
上記実施形態では、特定主枝部201Xには、一種類の形状の連通孔210が形成されているが、これに限定されず、特定主枝部201Xには、複数の種類の連通孔210が組み合わされて形成されていてもよい。
【符号の説明】
【0064】
1: 心臓シミュレータ
10: 心臓モデル
16: バルーン
17: 模擬心筋
18: 模擬心外膜
20: 心臓血管モデル
20D: 先端
20P: 基端
20a,20b,20c,20d: 心臓血管モデル
30: 固定部材
200: 冠動脈モデル
200LF: 左冠動脈モデル
200RT: 右冠動脈モデル
201: 主枝部
201X,201Xa,201Xb,201Xc,201Xd: 特定主枝部
202: 側枝部
203: 接続部
204: 分岐部
210,210a,210b,210c,210d: 連通孔
210,210a:スリット
CA: 造影剤
SP: 供給部分
VW: 管壁