IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立造船株式会社の特許一覧

特許7481940極狭開先サブマージアーク溶接方法および極狭開先サブマージアーク溶接装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-01
(45)【発行日】2024-05-13
(54)【発明の名称】極狭開先サブマージアーク溶接方法および極狭開先サブマージアーク溶接装置
(51)【国際特許分類】
   B23K 9/18 20060101AFI20240502BHJP
   B23K 9/095 20060101ALI20240502BHJP
   B23K 31/00 20060101ALI20240502BHJP
【FI】
B23K9/18 Z
B23K9/095 501B
B23K9/095 510E
B23K31/00 Z
【請求項の数】 8
(21)【出願番号】P 2020133448
(22)【出願日】2020-08-06
(65)【公開番号】P2022029879
(43)【公開日】2022-02-18
【審査請求日】2022-12-21
(73)【特許権者】
【識別番号】000005119
【氏名又は名称】日立造船株式会社
(74)【代理人】
【識別番号】110001298
【氏名又は名称】弁理士法人森本国際特許事務所
(72)【発明者】
【氏名】中谷 光良
(72)【発明者】
【氏名】阿部 洋平
(72)【発明者】
【氏名】藤本 貴大
(72)【発明者】
【氏名】安部 正光
【審査官】石川 健一
(56)【参考文献】
【文献】特開2013-233592(JP,A)
【文献】特開2018-001275(JP,A)
【文献】特開昭62-214869(JP,A)
【文献】特開2018-075583(JP,A)
【文献】特開2011-200920(JP,A)
【文献】特公平06-075787(JP,B2)
【文献】特開昭63-030175(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 9/18
B23K 9/095
B23K 31/00
(57)【特許請求の範囲】
【請求項1】
所定の溶接条件のもとで、溶接対象と同じ素材にビードオンプレート溶接を施して、そのビードオンプレート溶接の際のビード幅Wと溶着断面積Aとを計測し、
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱Hを、前記溶接入熱Qと、前記ビード幅Wと、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積Aと前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱Hと距離Rとで形成されるH-R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたH-R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
前記判定線よりも融合不良の無い領域となるように溶接条件を設定して開先溶接を行うことを特徴とする極狭開先サブマージアーク溶接方法。
【請求項2】
溶接時の開先壁への入熱Hを、溶接入熱Qと、ビード幅Wおよびトーチ-開先壁間距離Lの差(W-L)との積で表すことを特徴とする請求項1記載の極狭開先サブマージアーク溶接方法。
【請求項3】
トーチ狙い位置における溶融池表面から開先底のコーナー部までの距離Rを、溶着断面積Aをトーチ-開先壁間距離Lで除したもの(A/L)のべき乗と、トーチ-開先壁間距離Lのべき乗との和で表すことを特徴とする請求項1または2記載の極狭開先サブマージアーク溶接方法。
【請求項4】
トーチ-開先壁間距離Lを開先溶接時に計測し、この計測されたトーチ-開先壁間距離Lに対して、溶接欠陥の生じない適正範囲となる溶接条件を設定することを特徴とする請求項1から3までのいずれか1項記載の極狭開先サブマージアーク溶接方法。
【請求項5】
開先溶接時の溶接条件としての、EN比と、溶接電流と、電圧と、溶接速度とのうちの少なくとも1つを制御することを特徴とする請求項1から4までのいずれか1項記載の極狭開先サブマージアーク溶接方法。
【請求項6】
極狭開先サブマージアーク溶接装置であって、
デジタル式の溶接電源と、
制御装置とを備え、
前記デジタル式の溶接電源は、EN比と、溶接電流と、電圧との設定値を設定変更できるものであり、
前記制御装置は、
所定の溶接条件のもとで、溶接対象と同じ素材にビードオンプレート溶接を施して、そのビードオンプレート溶接の際のビード幅W と溶着断面積A とを計測し、
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱H を、前記溶接入熱Qと、前記ビード幅W と、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積A と前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱H と距離Rとで形成されるH -R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたH -R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
開先溶接を行うために、前記判定線よりも融合不良の無い領域となるように溶接条件を設定することを特徴とする極狭開先サブマージアーク溶接装置。
【請求項7】
トーチ-開先壁間距離Lを調整するためにトーチを溶接線方向に直交する方向に移動させるための移動装置を有することを特徴とする請求項6記載の極狭開先サブマージアーク溶接装置。
【請求項8】
溶接前の開先についてのデータを取得するためのセンサを有することを特徴とする請求項6または7記載の極狭開先サブマージアーク溶接装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は極狭開先サブマージアーク溶接方法および極狭開先サブマージアーク溶接装置に関する。
【背景技術】
【0002】
サブマージアーク溶接(Submerged arc welding : SAW)は、その高溶着効率性や高品質性から、圧力容器等の大型鋼構造物における厚板や極厚板の突合せ溶接に多く使われている。SAWで厚板や極厚板を溶接する場合、融合不良(Lack of fusion : LF)などの溶接欠陥を防止するために、開先角度を30°程度まで広くする必要がある。しかし、開先角度が広いと、必要な溶着断面積が増加し、溶接ビードの積層による溶接の完了までに多大な時間を要する。
【0003】
これに対し、開先角度を1~3°とし、ルート幅を狭くした、狭開先SAWでは,必要な溶着断面積が少なくなり、溶接時間の短縮が期待できる。狭開先SAWはこれまでいくつか研究開発が行われてきた。近年では、開先角度をほぼ0°とし、かつ開先幅を18mm以下とすることで、溶接対象である極厚板を溶接ビードの初層から最終層まで1層1パスで積層する極狭開先SAWの研究も進められている。
【0004】
1層1パス施工では、1パスで両側の開先壁を溶融させる必要があるが、開先底のコーナー部はアークプラズマで直接加熱しにくかったり、熱が拡散しやすかったりする等の理由から溶融しにくく、融合不良が生じやすい。また,開先が狭くなると溶接後にスラグが自然にはく離せず、その除去が困難となる。仮に開先壁にアンダカットが生じた場合、そこにスラグが固着し、これを十分に除去できないと、スラグ巻込みの原因となる。これらの溶接欠陥を防止するには,両側の開先壁を溶融しつつ、アンダカットが生じない溶接部形状となる溶接条件を選定する必要がある。しかし、欠陥の生じない溶接条件やトーチ狙い位置についての、すなわち適正な溶接条件についての範囲が狭い。そして、適正な溶接条件範囲が狭いため、溶接中の変動(開先幅の変化や装置の動作ずれ等)で開先幅やトーチ狙い位置が変化してしまって、本来欠陥が生じない溶接条件でも突然欠陥が生じてしまうことがある。
【0005】
一方、近年ではデジタル波形制御が可能な大容量の溶接電源が開発されており、従来の可動鉄心形と比較して出力の安定性や再現性が向上し、EN比、周波数、位相差などについて、出力波形をより精密に制御可能である。たとえば、EN比により溶接ワイヤの送給速度すなわち溶着断面積を制御できる。このように,デジタル波形制御電源ではEN比等のパラメータにより溶接部形状の制御が可能となり、極狭開先SAWにおいて融合不良やアンダカットなどの溶接欠陥を防止することが期待できる。
【0006】
一方、公知技術として、特許文献1や特許文献2に記載されたものがある。このうち、特許文献1には、溶接線に対し左右倣いと上下倣いとを自動で行う装置が記載されている。この装置によれば、開先形状の変化に対して、トーチ狙い位置の自動追従が可能である。特許文献2には、ビード断面高さと溶着断面積から積層時のビード形状を定式化し、各層のトーチ狙い位置を決定するアルゴリズムを用いる溶接方法が記載されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開昭63-30175号公報
【文献】特公平6-75787号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところが、特許文献1に記載のものでは、溶接中の変動に対し溶接条件を適正化できないため、1層1パス施工では溶接欠陥が生じる。特許文献2に記載のものは、1層1パス施工に対応しておらず、入力された溶接条件に対してトーチ狙い位置のみを決定するため、溶接中の変動に対して溶接条件を適正化できない。
【0009】
そこで本発明は、このような問題を解決して、極狭開先SAWにおいて、溶接中の変動に対して溶接欠陥の生じない溶接条件、トーチ狙い位置を制御するアルゴリズムによる溶接方法および溶接装置を得ることを目的とする。
【課題を解決するための手段】
【0010】
この目的を達成するため、本発明の極狭開先サブマージアーク溶接方法は、
所定の溶接条件のもとで、溶接対象と同じ素材にビードオンプレート溶接を施して、そのビードオンプレート溶接の際のビード幅Wと溶着断面積Aとを計測し、
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱Hを、前記溶接入熱Qと、前記ビード幅Wと、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積Aと前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱Hと距離Rとで形成されるH-R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたH-R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
前記判定線よりも融合不良の無い領域となるように溶接条件を設定して開先溶接を行うことを特徴とする。
【0011】
このようにすると、融合不良が生じないようにしながら、極狭開先サブマージアーク溶接を行うことができる。
【0012】
本発明の極狭開先サブマージアーク溶接方法によると、溶接時の開先壁への入熱Hを、溶接入熱Qと、ビード幅Wおよびトーチ-開先壁間距離Lの差(W-L)との積で表すことが好適である。
【0013】
また本発明の極狭開先サブマージアーク溶接方法によると、トーチ狙い位置における溶融池表面から開先底のコーナー部までの距離Rを、溶着断面積Aをトーチ-開先壁間距離Lで除したもの(A/L)のべき乗と、トーチ-開先壁間距離Lのべき乗との和で表すことが好適である。
【0014】
さらに本発明の極狭開先サブマージアーク溶接方法によると、トーチ-開先壁間距離Lを開先溶接時に計測し、この計測されたトーチ-開先壁間距離Lに対して、溶接欠陥の生じない適正範囲となる溶接条件を設定することが好適である。
【0015】
さらに本発明の極狭開先サブマージアーク溶接方法によると、開先溶接時の溶接条件としての、EN比と、溶接電流と、電圧と、溶接速度とのうちの少なくとも1つを制御することが好適である。
【0016】
本発明の極狭開先サブマージアーク溶接装置は、デジタル式の溶接電源と、
制御装置とを備え、
前記デジタル式の溶接電源は、EN比と、溶接電流と、電圧との設定値を設定変更できるものであり、
前記制御装置は、
所定の溶接条件のもとで、溶接対象と同じ素材にビードオンプレート溶接を施して、そのビードオンプレート溶接の際のビード幅W と溶着断面積A とを計測し、
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱H を、前記溶接入熱Qと、前記ビード幅W と、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積A と前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱H と距離Rとで形成されるH -R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたH -R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
開先溶接を行うために、前記判定線よりも融合不良の無い領域となるように溶接条件を設定することを特徴とする。
【0017】
このようなものであると、本発明の方法にもとづき融合不良が生じない溶接を実施することができる装置を得ることができる。
【0018】
本発明の極狭開先サブマージアーク溶接装置によると、トーチ-開先壁間距離Lを調整するためにトーチを溶接線方向に直交する方向に移動させるための移動装置を有することが好適である。
【0019】
このようなものであると、トーチ狙い位置にずれが生じた場合に、そのずれを修正することができる。
【発明の効果】
【0020】
本発明によると、溶接中に開先幅が変動するような場合であっても、融合不良が生じないようにしながら、極狭開先サブマージアーク溶接を行うことができる。
【図面の簡単な説明】
【0021】
図1】狭開先に対してサブマージアーク溶接を行ったときの良好な溶融状態を示す図である。
図2】狭開先に対してサブマージアーク溶接を行ったときにコーナー部に融合不良が生じた状態を示す図である。
図3】狭開先に対してサブマージアーク溶接を行ったときに溝壁にアンダカットが生じた状態を示す図である。
図4】溶接欠陥の発生状況を観察するための実験装置を示す図である。
図5】各ルート幅Wの値での溶接部断面のマクロ試験結果を示す図である。
図6】ビード高さhと溶込み深さDとの関係を示す図である。
図7】ルート幅Wとビード高さhと溶込み深さDとの関係を示す図である。
図8】各トーチ狙い位置Pでの溶接部横断面のマクロ試験結果を示す図である。
図9】トーチ狙い位置Pとビード高さhと溶込み深さDとの関係を説明する図である。
図10】トーチ狙い位置Pとビード高さhと溶込み深さDとの関係を示す図である。
図11】トーチ-開先壁間距離Lを示す図である。
図12】トーチ-開先壁間距離Lと開先壁での溶融面積Aとの関係を示す図である。
図13】トーチ-開先壁間距離Lと開先壁での溶融幅Wとの関係を示す図である。
図14図13より導出される「L+W」と「L」との関係を示す図である。
図15図13より導出される「L+W」と「L」との関係を示す図である。
図16図13より導出される「L+W」と「L」との関係を示す図である。
図17図13より導出される「L+W」と「L」との関係を示す図である。
図18】アーク溶接における溶融池の形成状態を示す図である。
図19】アーク溶接における溶融池の形成状態を示す図である。
図20】アーク溶接における溶融池の形成状態を示す図である。
図21】アーク溶接における溶融池の形成状態を示す図である。
図22】極狭開先サブマージアーク溶接における入熱の状況を示す図である。
図23】溶融池表面から開先底のコーナー部までの距離を説明する図である。
図24】開先壁への入熱Hおよび距離の二乗rと開先溶接での融合不良LFの判定結果とを示す図である。
図25】開先壁への入熱Hおよび距離の二乗rと開先溶接での融合不良LFの判定結果とを示す図に、トーチ-開先壁間距離Lをプロットした図である。
図26】開先壁への入熱Hおよび距離の二乗rと開先溶接での融合不良LFの判定結果とを示す図に、入熱量Qが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図27】開先壁への入熱Hおよび距離の二乗rと開先溶接での融合不良LFの判定結果とを示す図に、ビード幅Wが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図28】開先壁への入熱Hおよび距離の二乗rと開先溶接での融合不良LFの判定結果とを示す図に、溶着断面積Aが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図29】開先壁への入熱Hを横軸、溶融池表面から開先底のコーナー部までの一般化した距離Rを縦軸としたときの、極狭開先溶接時の融合不良判定モデル例を示す図である。
図30図29にトーチ-開先壁間距離Lをプロットした図である。
図31図29に溶着断面積Aが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図32図29に入熱量Qが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図33図29にビード幅Wが変化したときのトーチ-開先壁間距離Lをプロットした図である。
図34】本発明の実施の形態の極狭開先サブマージアーク溶接装置を示す図である。
図35図34の溶接装置を用いた溶接工程のフローを示す図である。
【発明を実施するための形態】
【0022】
本発明は実験的手法に基づいて完成された。以下、その実験的手法を参照したうえで本発明について詳述する。
【0023】
図1図3は、狭開先に対してサブマージアーク溶接を行ったときの状況を示す。ここで11は開先の溝壁、12は溝底、13は溝底のコーナー部、Wはルート幅すなわち溝壁11、11どうしの間隔、14は溶融池である。このうち、図1は、良好な溶融状態を示す。すなわち、溝壁11、溝底12、コーナー部13が、それぞれ適度な深さまで溶融している。これに対し、図2はコーナー部13において融合不良LFが生じた状態を示す。図3は、図における右側の溝壁11にアンダカット15が生じた状態を示す。
【0024】
[実験]
溶接欠陥は、図1図3に示すルート幅Wと、トーチ狙い位置Pすなわちルート幅Wの方向における溶接トーチの位置とに影響を受けると見込まれる。そこで、ルート幅Wとトーチ狙い位置Pとの変化が溶接欠陥に及ぼす影響を評価するため、シングルトーチで開先溶接を実施した。各溶接条件で溶接欠陥を判定し、ビード高さh、溶込み深さDを計測した。また、開先溶接時と溶接部の形状を比較するため、ビードオンプレート溶接も実施した。得られた結果から融合不良判定モデルを作成するために、シングルトーチおよびタンデムトーチを用いて、ビード幅Wおよび溶着断面積Aを変化させた溶接条件で ビードオンプレート溶接を実施し、各溶接条件でのビード幅Wおよび溶着断面積Aを計測した。次に、それらの溶接条件で開先溶接を実施し、融合不良を判定した。
【0025】
用いた実験装置の概略を図4に示す。この図4は、タンデムトーチで開先溶接するときの装置構成であって、16、17はその溶接トーチ、18は溶接トーチ16、17を移動させるためのキャリッジ、19は溶接ワイヤのフィーダ、20は溶接電源である。溶接電源20には、デジタル波形制御できるものを使用した。21は試験体であるが、この試験体21の材質は、2/Cr-1Mo鋼であった。開先溶接での極狭開先を模擬するため、試験体21を構成する1対の長さ400mm×幅70mm×板厚30mmの材料どうしの間に、長さ400×幅w(寸法の違うものを複数種類準備した)×板厚25mmのインサート材24をはさみ、開先角度0°、開先深さ20mmの試験体とした。この開先試験体について大型鋼構造物と同等の冷却速度となるように、試験体側面に水冷銅板22を設置した。また、溶接時の変形を抑制するためストロングバック23を取り付けた。矢印25は、溶接方向を示す。予熱、パス間温度は200~250℃とし、後熱処理は実施しなかった。ビードオンプレート溶接では、長さ400mm×幅70mm×板厚20mmの平板試験体を使用した。溶接ワイヤおよびフラックスは、JIS Z3183 S642-2CM相当のものを使用した。実験条件は種々のものを採用したが、溶接現象を分かりやすくするため単電極のシングルトーチとし、トーチ角度は0°(垂直)とした。溶接条件は、EN比(交番電流における負電流の比)0.5の矩形波、溶接電流600A、溶接電圧33V、溶接速度30cm/min、CTWD(Contact Tip to Work Distance)30mmを「基準条件」とした。上述のインサート材の幅wを変化させることで、ルート幅WをW=8~18mmで変化させた。トーチ狙い位置Pは、開先の中心の位置を0mmとし、溶接線方向に対して直交方向に1~3mmの範囲で変化させた。
【0026】
実験に際しては、実施工で想定されるシングルトーチまたは2電極を直列に配置したタンデムトーチ とした。電極角度は、シングルトーチでは0°、タンデムトーチでは先行電極は0°、後行電極は15°とした。タンデムトーチでのトーチ間隔は15mmとした。溶接条件は、EN比を0.0~1.0、溶接電流を400~800A、電圧を20~40V、溶接速度を30~43cm/min(シングルトーチ)、60~81cm/min(タンデムトーチ)でそれぞれ変化させた。CTWDは、30mmで一定とした。開先試験体のルート幅Wは14mm、トーチ狙い位置Pは0mmとした。
【0027】
ビードオンプレート溶接、開先溶接それぞれの結果に対して、溶接部の形状を確認するため溶接部断面マクロ試験を実施し、ビード幅Wおよび溶着断面積Aを計測した。試験位置は、溶接定常部であるところの、溶接開始位置および終了位置からそれぞれ100mm以上離れた位置とした。
【0028】
[実験結果]
ルート幅Wが溶接欠陥に及ぼす影響を評価するため、上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)に対して、ルート幅Wを8~18mmの範囲で変化させた。各ルート幅Wの値での溶接部断面のマクロ試験結果を図5に示す。トーチ狙い位置はP=0mmで一定である。図5には、同条件でのビードオンプレート溶接結果も併せて示す。ルート幅W=8mmでは、融合不良は生じなかったが、開先の両壁面が大きく溶融し、アンダカットが生じた。アンダカット部は、スラグが固着し除去できなかった。ルート幅W=12~15mmでは、アンダカット、融合不良共に生じない良好な溶接部が得られた。ルート幅W=16mmでは、片側(図における左側)の開先壁は溶融するが、反対側(図における右側)は、溶融せず融合不良となり、スラグを除去できなかった。ルート幅W=18mmでは、両壁面ともに溶融せず融合不良となり、両側の溶接止端部でスラグを除去できなかった。このルート幅W=18mmでは、ビードオンプレートでのビード幅W(約26.5mm)と比較してルート幅Wは小さかった(18mm)が、開先壁は溶融しなかった。
【0029】
次に、トーチ狙い位置Pでの開先底からの溶接金属が溶着した高さ(ビード高さh)と、開先底から母材側へ溶込んだ深さ(溶込み深さD)とを評価した。これらの関係を図6に示す。ここで、28は溶接トーチ、29は溶接ワイヤである。ルート幅Wとビード高さhと溶込み深さDとの関係を図7に示す。同じ溶接条件であるので溶着断面積は変わらないが、ビード高さhは、ルート幅Wが広くなると低くなり、W=12mm以上でほぼ一定となった。一方、溶込み深さDは、ルート幅W=8mmのときに最も浅く、ルート幅Wが広くなると深くなり、ルート幅W=14mm以上で一定となった。
【0030】
トーチ狙い位置Pが溶接欠陥に及ぼす影響を評価するため、溶接欠陥が生じなかったルート幅W=14mmの試験体に対して、上記の基準条件でトーチ狙い位置Pを0~3mmで変化させた。各トーチ狙い位置Pでの溶接部横断面のマクロ試験結果を図8に示す。図8に示される溶接部断面において、開先中心から右側を、トーチ狙い位置Pの正の方向とした。トーチ狙い位置P=1~2mmの範囲では、溶接部の形状が狙いずれ方向(右側)に偏るが、溶接欠陥は生じなかった。一方、P=3mmでは、トーチが離れた側の開先壁は溶融せず、融合不良LFが生じた。一方、図6に示すトーチ28が近づいた側では、広い範囲で開先壁が溶融し、アンダカットが生じスラグが除去できなかった。トーチ狙い位置Pとビード高さhと溶込み深さDとの関係を図9および図10に示す。ビード高さhおよび溶込み深さDは、トーチ狙い位置Pの直下での値である。トーチ狙い位置P=0~2mmの範囲では、ビード高さhと溶込み深さDとは、トーチ狙い位置Pの大きさが変動してもそれぞれ値の変化は認められなかった。これに対し、トーチ狙い位置P=3mmとなると、ビード高さhと溶込み深さDとは、ともに大きくなった。
【0031】
[融合不良判定モデルの作成]
(溶接欠陥を防止するためのトーチ-開先壁間距離Lの条件)
上記の実験結果から、溶接欠陥は、ルート幅Wとトーチ狙い位置Pとに影響を受けることがわかった。これらのルート幅Wやトーチ狙い位置Pの値が変わると、溶接トーチと開先壁との距離が変わる。すなわち、ルート幅Wとトーチ狙い位置Pとの関係は、図11に示されるトーチ-開先壁間距離Lで表現できる。図5および図8において、開先壁が過剰に溶融、ガウジングされアンダカットが生じたことから、アンダカットと、開先壁が溶融した面積とには相関があると考えられる。ここで、開先壁で溶融した面積(図5図8のように断面表示されたときに現れる面積)を、Aと定義する(図12参照)。また、上述のように、開先溶接時の融合不良LFは、開先底のコーナー部13で生じやすい。すなわち、開先壁を大きく溶融する溶接条件とするほど、融合不良LFを防止できると考えられる。ここで、開先底でコーナー部13から開先壁側に溶融した幅(溶込んだ深さ)をWと定義する。上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)において、開先壁での溶融幅Wおよびトーチ狙い位置Pを変化させた条件で、溶融面積Aを計測した結果を図12に示す。同様の条件で、溶融幅Wを計測した結果を図13に示す。これらの計測結果は、左右の開先壁で別々に計測したものをともに表している。凡例はそれぞれ良好(〇)、アンダカットが発生(△)、融合不良LFが発生(×)である。図12に示すように、トーチ-開先壁間距離Lが小さくなると溶融面積Aは増加し、アンダカットが生じたL=4mmでは溶融面積Aは30mm以上となった。また、図13に示すように、開先壁での溶融幅Wは、トーチ-開先壁間距離L=5~6mmで極大となり、トーチ-開先壁間距離Lがさらに大きくなると減少し、W=0mmとなったときには融合不良LFが生じた。以上より、同一の溶接条件で、トーチ-開先壁間距離Lが小さくなると、アンダカットが生じやすく、開先壁での溶融幅Wは減少する。一方、トーチ-開先壁間距離Lが大きすぎると、開先底を十分に溶融できなくなり融合不良LFが生じる。つまり、上述の基準条件での、極狭開先SAWで溶接欠陥を防止するトーチ-開先壁間距離Lの範囲は4<L≦7.5mmである。
【0032】
(融合不良LFへの影響因子)
図13に示すように、開先壁での溶融幅Wは、トーチ-開先壁間距離L=5~6mmで極大となり、Lがさらに大きくなると減少した。ここで、ビードオンプレート溶接でのビード幅Wと開先壁での溶融幅Wとから、開先壁による溶接部形状への影響を考える。図13より導出される「L+W」と「L」との関係を図14図17に示す。L≦4mmではアンダカットが生じるため、L≧4mmを対象とした。図14において、〇は融合不良LFなし、×は融合不良が生じた。「L+W」は開先底で溶融した幅であり、開先溝の幅方向でどれだけが溶融できたかを表している。L+W>Lの範囲で、融合不良LFの無い良好な溶接部となる。
【0033】
図14において、横軸の方向に沿って「領域(a)」「領域(b)」「領域(c)」と3つの領域に分ける。ここで、ビードオンプレート溶接時のビード幅Wを考慮すると、領域(a)はW/2≦Lとなる領域であり、ここでは、図15に示すようにビード幅Wに対しトーチ-開先壁間距離Lが大きく、したがってトーチ狙い位置Pから開先壁が遠くなるため、ビード幅Wはビードオンプレート溶接とほぼ同じとなる。すなわち、L+W=W/2となり、融合不良LFとなる。領域(b)は、7.5mm<L<W/2であって、図16に示すようにトーチ-開先壁間距離Lはビード幅よりも小さくなるが、開先壁を溶融できず、融合不良LFが生じる。ビードオンプレート溶接と比較して、開先溶接では熱が拡散しやすいため、開先壁は溶融しにくい。領域(c)は、4mm≦L≦7.5mmとトーチ-開先壁間距離Lが小さくなる領域である。この領域では、溶接トーチから開先壁まで十分な熱量が輸送されるため、図17に示すように開先壁を溶融する。そのため、L+W>Lとなり、融合不良LFは生じない。
【0034】
しかし、図13に示したように、トーチ-開先壁間距離L=5mmより小さいL=4mmで、開先壁での溶融幅Wは減少した。L=4mmとなるのは、図7においてルート幅W=8mmとなる場合や、図10においてトーチ狙い位置P=3mmとなる場合である。どちらの場合でもビード高さhは増加し、溶込み深さDは減少している。一方、トーチ狙い位置の直下におけるビード高さhと溶込み深さDとの和は、ルート幅Wやトーチ狙い位置Pに依らずほぼ一定であった。
【0035】
アーク溶接では、図18および図19に示すように、アーク31に基づくアーク力32によって溶融池14を下向きに押し下げる力と、重力によって生じる溶融金属の位置ヘッド33とが釣り合う状態で、溶融池14が形成される。ルート幅が狭い狭開先では、アーク力32よりも溶融金属の位置ヘッド33の方が大きくなり、溶融金属の先行現象(溶融金属がアーク直下の溶融池表面上に大きく盛り上がり、アークによる入熱が開先の底に届かなくなる現象)が生じやすくなる。図7および図10において、各ルート幅Wおよびルート狙い位置Pでビード高さhと溶け込み深さDとの和に差異が認められなかったのは、溶接電流の2乗に比例するアーク力32が強くなったためと考えられる。したがって、トーチ狙い位置直下でビード高さhが増加すると、溶融池14を下向きに押し下げる力と位置ヘッド33とは、開先の溝底12よりも高い位置で釣り合う(図20および図21)。その結果、アークプラズマと開先壁(特に開先底のコーナー部13)の距離が遠くなり、そのため十分に加熱できなくなって、開先壁での溶融幅Wが減少したと考えられる。したがって、融合不良LFを防止するには、溶接トーチ28と開先底のコーナー部13との距離が遠くならないよう、トーチ-開先壁間距離Lとビード高さhとを小さくする必要がある。
【0036】
[溶接欠陥の生じない溶接条件範囲]
(融合不良判定モデル)
図11図13に示した、溶接欠陥の生じないトーチ-開先壁間距離Lの範囲(4mm<L≦7.5mm)は、上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)のもとでの結果である。これに対し、溶接条件が変わると溶接部形状は変化し、特に融合不良LFは溶接条件の影響を受けやすい。様々な溶接条件に対して融合不良LFを防止する条件範囲を選定するためには、一般に非常に多くの実験を実施する必要がある。しかし、本発明においては、ビードオンプレート溶接による実験結果から、極狭開先SAWで融合不良LFを防止する条件を判定するモデルを作成した。
【0037】
すなわち、上記の考察から、極狭開先SAWでの融合不良LFの原因は、アークから開先壁まで輸送される熱量が低下することにある。すなわち、溶接中にどれだけ入熱するかという点と、その入熱熱量がどれだけ幅広く輸送されるかという点とが、重要となる。溶接電流I[A]、溶接電圧V[V]、溶接速度v[cm/min]を用いると、溶接入熱Q[kJ/mm]は、以下の式(1)で算出される。
【0038】
Q=I×V×60/(v×10)×1/1000 (1)
【0039】
ここで、溶接入熱がQであり、ビードオンプレート溶接でのビード幅がWである溶接条件の場合、溶接入熱Qがビード幅Wの範囲に投与されると考える。このとき、同じ条件での極狭開先SAWでは、図22に示すように、溶接部の半分を考えるとQ/2が入熱し、これが片側W/2の範囲に投与される。このとき、熱源であるアークプラズマからL(トーチ-開先壁間距離)だけ離れた位置に開先壁があった場合に、開先壁に輸送される熱量はW/2-Lとなる。これを開先壁への入熱H[kJ/mm・mm]として、以下の式(2)で定義する。このとき、アークによる入熱はガウス分布であり、溶融池温度はトーチ狙い位置直下で最大となり、溶融池端側となるにつれ低温となるが、簡単のためビード幅方向への入熱は一様であるとする。
【0040】
=Q/2(W/2-L) (2)
【0041】
融合不良のもう一つの原因は、ビード高さhが増加することにある。ビード高さhが増加すると、アークプラズマから開先底のコーナー部までの距離が遠くなり、このコーナー部を十分に加熱できなくなる。ここで、極狭開先SAW時の溶融池のビード高さh[mm]は、ビードオンプレート溶接での溶着断面積A[mm]と、トーチ-開先壁間距離Lとを用いて、以下の式(3)で表される。
【0042】
h=A/2L (3)
【0043】
トーチ狙い位置における溶融池表面を原点とすると、この原点から開先底のコーナー部までの距離の二乗rは、ビード高さhとトーチ-開先壁間距離Lとを用いて、以下の式(4)で表される(図23)。
【0044】
=h+L (4)
【0045】
式(2)によって算出されるHと、式(4)によって算出されるrとを、それぞれ融合不良LFの発生に影響を及ぼすパラメータとして判定モデルを作成した。Hとrとを変化させるために、ビード幅Wおよび溶着断面積Aの異なる溶接条件でビードオンプレート溶接を実施し、各溶接条件でのビード幅Wおよび溶着断面積Aを計測した。次に、それらの溶接条件で開先溶接を実施し、融合不良LFの発生の有無を判定した。実験方法および試験体の形状は、前述の通りとした。また、開先試験体のルート幅W=14mm、トーチ狙い位置P=0mm、トーチ-開先壁間距離L=7mmで、これらは一定とした。
【0046】
各溶接条件におけるビード幅Wおよび溶着断面積Aから算出される、開先壁への入熱Hおよび距離の二乗rと、開先溶接での融合不良LFの判定結果とを、図24に示す。凡例は、融合不良無し(〇)、片側の開先壁で融合不良(◇)、両側の開先壁で融合不良(×)である。横軸のHの値が大きいほど開先壁への溶接入熱が大きいことを示し、縦軸のrの値が大きいほど熱源と開先底のコーナー部とが遠くなることを示す。図24において、たとえば同じr=70mm程度の条件で比較すると、H=0.8kJ/mm・mmでは両側の開先壁で融合不良LFが生じたが、H=12.5kJ/mm・mm以上の条件では融合不良LFは 生じなかった。つまりHが大きい条件ほど融合不良LFが生じにくいといえる。また、同じH=10kJ/mm・mm程度の条件で比較すると、r=75mmでは片側の開先壁で融合不良LFが生じたが、r=63mmでは融合不良LFは生じなかった。すなわち、開先壁への入熱Hごとに融合不良LFが生じない距離の二乗rの限界値が存在するといえる。図24中に示すように、ビードオンプレート溶接で得られたビード幅Wおよび溶着断面積Aから、開先壁への入熱Hおよび距離の二乗rを導出し、融合不良LFの判定条件を求めることができた。
【0047】
各溶接条件での開先の溶融幅(溶込んだ深さ)Wの計測結果を図25に示す。色が濃く明度が低いプロット程、Wが大きいことを示している。ここでの溶融幅Wは、両開先壁での平均値である。両側で 融合不良LFとなった条件ではW=0mm、片側で融合不良LFとなった条件ではW=0.1~0.3mmと小さな値となった。一方、融合不良LFが生じなかった条件ではW=0.3mm以上の値となった。また、開先壁への入熱Hが大きくなり、かつ距離の二乗rが小さくなると、溶融幅はW=0.9mmまで増加した。
【0048】
[融合不良の生じないトーチ-開先壁間距離L]
上述のように、基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)のもとで、溶接欠陥が生じないトーチ-開先壁間距離Lの範囲(4mm<L≦7.5mm)を求めることができた。しかし、これは基準条件下のものであり、溶接条件が変われば、溶接欠陥が生じないトーチ-開先壁間距離Lの範囲も変化する。そこで、以下においては、融合不良判定モデル上でトーチ-開先壁間距離Lの影響を評価し、溶接条件に応じた融合不良の生じないトーチ-開先壁間距離Lの範囲をモデルから決定する。
【0049】
図13で示したところの、トーチ-開先壁間距離Lを、図25においてプロットした。この図25において、凡例は、良好(●)、アンダカット(▲)、開先溝の片側で融合不良(◆)、開先溝の両側で融合不良(×)である。上述の式(2)、式(4)より、L>4mmの範囲では1/L項の影響は小さいため、判定モデル上でLを変化させるとほぼ2次曲線に近い形となる。上述の実験では、図13に示したように、L=5~6mmにおいて溶融幅W=1.5mmで極大となり、そのときに融合不良は生じなかった。ところが、これよりもLが大きくなるにつれてWは減少し、L=8mmでは開先溝の片側で、L=9mmでは開先溝の両側で、それぞれ融合不良が生じた。また、L=4mmでは、融合不良は生じなかったが、溶融幅Wが減少した。これらの実験結果を判定モデルと比較すると、判定モデル上ではL=5~6mmでRが極小となり、Wが大きい領域にプロットされ、融合不良の生じない判定となった。これに対し、この範囲よりもLが大きくなるにつれて、開先壁への入熱Hは減少し、距離の二乗rは増加し、Wが小さい領域にプロットされ、L=8mm以上では融合不良の判定となった。一方、トーチ-開先壁間距離L=4mmでは、開先壁への入熱Hは増加するが、あわせて距離の二乗rも増加し、プロットはWが小さい領域(融合不良側)に近づいた。以上より、Lを変化させた実験結果と判定モデルの結果とは一致した。作成した判定モデルを用いることで、融合不良の生じないLの範囲を算出することができた。
【0050】
判定モデルを用いて、溶接条件に対応したトーチ-開先壁間距離Lの範囲を決定した。実験結果より、上述の基準条件では、ビード幅W=26.5mm、溶着断面積A=64.6mmであった。また、式(1)より、入熱量Q=4.0kJ/mmであった。アーク溶接では、ビード幅および溶着断面積は溶接入熱に比例するため、それぞれの値だけを変化させるのは難しい。一方、前述のように、デジタル波形制御電源を用いた場合は、EN比によって、溶接入熱一定で溶着断面積Aを±20%程度変化させることができる。そこで、デジタル波形制御電源により入熱量Q、ビード幅W、溶着断面積Aを単独で変化させることが可能な範囲を±20%として、基準条件から溶接部の形状を変化させ、各トーチ-開先壁間距離Lでの開先壁への入熱Hおよび距離の二乗rの値を算出した。その結果を判定モデル上にプロットしたものを図26~28に示す。ここで、入熱量Qまたはビード幅Wが小さい条件では曲線が全体的に左側にシフトし、融合不良LFの生じないLの範囲は5mm≦L≦6mmまで狭くなる。一方、これらが大きい条件では、曲線は右側にシフトし、4mm≦L≦7.5mmで融合不良は生じない(図26図27)。溶着断面積Aが小さい条件では、曲線は全体的に下側にシフトし、4mm<L≦7.5mmで融合不良LFは生じず、これに対し溶着断面積Aが大きい条件では、上側にシフトし、いずれのLでも融合不良が生じる(図28)。以上のように、判定モデルを用いることで、ビードオンプレート溶接での入熱量Q、ビード幅W、溶着断面積Aから、極狭開先SAWでの適正な溶接条件範囲と、それに対応したLの範囲とを決定できる。また、入熱量Qとビード幅Wとを大きくするとともに、溶着断面積Aを小さくして、判定モデル上で曲線を右下へシフトさせると、融合不良の生じないトーチ-開先壁間距離Lの範囲を広げることができる。
【0051】
[一般化]
上述の式(2)は、一般化して次のように書き換えることができる。
【0052】
=C1×Q(C2×W-L) (2a)
【0053】
すなわち、HはQと(W-L)との積で表すことができる。この式(2a)において、C1は任意の数、C2は0.5≦C2≦1の範囲の任意の数とすることができる。
【0054】
また、上述の式(4)は、式(3)を代入したうえで、一般化して次のように書き換えることができる。
【0055】
R=(A/L)C3+(L)C3 (4a)
【0056】
Rは、溶融池表面から開先底のコーナー部までの一般化した距離であって、式(4a)に示されるように、(A/L)のべき乗と、(L)のべき乗との和で表すことができる。C3は、0<C3<5の範囲の任意の数とすることができる。
【0057】
図29は、開先壁への入熱Hを横軸、原点としての溶融池表面から開先底のコーナー部までの距離Rを縦軸としたうえで、C1=1、C2=0.5、C3=1としたときの、極狭開先溶接時の融合不良判定モデル例である。図24の場合と同様に、破線で示した判定線よりも下ならば融合不良は生じず、判定線よりも上では融合不良となる。図29において、判定線は、実験結果で一部融合不良となった結果および融合不良となった結果から、最小二乗法により求めた。なお、判定線は、他の適宜の手法によって求めることもできる。
【0058】
上述の繰り返しになるが、ビード幅Wと溶着断面積Aとは溶接条件によって一意に求まる。これに対し、トーチ-開先壁間距離Lは、溶接中の変動によって常に変化する可能性がある。たとえば、ビード幅W=26.5mm、溶着断面積A=64.6mmの条件下で、Lだけが変化した場合には、融合不良判定モデル上では図30において実線で表されるようになる。ここでも、同様に、L=4~7.5mmの範囲では融合不良は生じないが、Lが8mm以上である場合には融合不良が生じる。図30において、L=8mmというのは、ほぼ判定線上に存在するため、融合不良となった。
【0059】
上記の条件下で、溶着断面積Aだけを変化させたときの融合不良の判定の様子を図31に示す。ここでは、溶着断面積A=77.4mmの条件下ではL=4~7mmの範囲で、またA=64.6mmの条件下ではL=4~7.5mmの範囲で、さらにA=51.7mmの条件下ではL=4~8mmの範囲で、それぞれ融合不良は発生しない。
【0060】
このように,溶接中に変動するトーチ-開先壁間距離Lに対して、判定モデル上で判定線より下となるように溶接条件を常に制御することで、融合不良を確実に防止することができる。
【0061】
図32は、同様に入熱量Qだけを変化させた溶接条件での融合不良判定の様子を示す。ここでは、Q=4.8kJ/mmの条件下ではL=4~8mmの範囲で、またQ=4.0kJ/mmの条件下ではL=4~7.5mmの範囲で、さらにQ=3.2kJ/mmの条件下ではL=4~7mmの範囲で、それぞれ融合不良は発生しない判定となる。
【0062】
図33は、同様にビード幅Wだけを変化させた溶接条件のもとでの融合不良判定の様子を示す。ここでは、W=32.0mmの条件下ではL=4~9mmの範囲で、またW=26.5mmの条件下ではL=4~7.5mmの範囲で、さらにW=21.0mmの条件下ではL=4~6mmの範囲で、いずれも融合不良は発生しない判定となる。
【0063】
[溶接装置]
図34は、本発明の実施の形態の極狭開先サブマージアーク溶接装置を示す。ここで41は溶接対象、42はシングルトーチ構造の溶接トーチである。溶接トーチ42は、走行台車43に搭載されることで、溶接対象41に設けられた極狭開先44の長さ方向に沿って溶接方向45へ移動可能である。溶接トーチ42は、1軸スライダ46に取り付けられることで、極狭開先44の幅方向に位置調節できるように構成されている。47はレーザセンサで、溶接トーチ42と一体化されることで、1軸スライダ46によって溶接トーチ42と一緒に極狭開先44の幅方向に移動されるように構成されている。そしてレーザセンサ47は、溶接個所よりも前方で極狭開先44を認識し、現在のトーチ42の位置と、トーチ42から左右の開先壁までの距離L、Lとを計測する。また図34において、48はデジタル溶接電源、49は制御装置(PC)である。制御装置49は、各溶接条件でのビード幅Wと溶着断面積Aとをあらかじめデータベースとして保有しておき、以下の処理1と処理2とを行うアルゴリズムを有する。
【0064】
すなわち、処理1では、制御装置49は、計測された距離L、Lの値にもとづき、融合不良とならない条件を融合不良判定モデルから選定して、溶接電源48に、EN比、溶接電流、電圧の値を指示するとともに、走行台車43に溶接速度の値を指示する。
【0065】
処理2では、制御装置49は、トーチ42の狙い位置が常に開先の中心(L=L)となり、かつL、L>4mmとなるように、1軸スライダ46による溶接トーチ42の移動量ΔLを決定する。すなわち制御装置49は、現在のトーチ狙い位置と目的の狙い位置との差を移動量として1軸スライダ46に指示することで、トーチ狙い位置が常に適正となるように制御する。
【0066】
デジタル溶接電源48にて制御される溶接条件は、以下の範囲とすることが適切である。すなわち、EN比:0.0~1.0、溶接電流:400~800[A]、溶接電圧:20~40[V]、溶接速度:30~81[cm/min]とすることが適切である。
【0067】
[溶接のフロー]
図34の溶接装置を用いた溶接工程を図35のフローチャートを参照しながら説明する。図35のステップS11で工程が開始されたなら、まずステップS12において、図34のレーザセンサ47により溶接対象41の開先44のデータを取得する。このレーザセンサ47による取得データは制御装置49に送られ、制御装置49は、ステップS13において、トーチ42から左右の開先壁までの距離L、Lのデータを取得する。そして制御装置49は、ステップS14において、上述の融合不良判定モデルを用いて、取得された距離L、Lのデータの条件下で融合不良が生じるかどうかを判断する。
【0068】
ステップS14において融合不良が生じると判断された場合には、ステップS15において、溶接条件の変更すなわち新たな溶接条件の選定を行う。そして、その選定結果を受けて、ステップS16では、溶接電源48において設定されるべきEN比に変更があったかどうかが判断される。変更があった場合は、溶接電源48においてEN比の設定値を変更するように制御装置49が制御する(ステップS17)。ステップS16においてEN比の設定値に変更がなかった場合およびステップS17において溶接電源48でのEN比の設定値の変更が行われた場合には、次に、ステップS18で、溶接電源48において設定されるべき溶接電流に変更があったかどうかが判断される。変更があった場合は、溶接電源48において溶接電流の設定値を変更するように制御装置49が制御する(ステップS19)。ステップS18において溶接電流の設定値に変更がなかった場合およびステップS19において溶接電源48での電流の設定値の変更が行われた場合には、次に、ステップS20で、溶接電源48において設定されるべき電圧に変更があったかどうかが判断される。変更があった場合は、溶接電源48において電圧の設定値を変更するように制御装置49が制御する(ステップS21)。ステップS20において電圧の設定値に変更がなかった場合およびステップS21において溶接電源48での電圧の設定値の変更が行われた場合には、次に、ステップS22で、走行台車43において設定されるべき溶接速度に変更があったかどうかが判断される。変更があった場合は、走行台車43の移動速度すなわちその移動量の設定値を変更するように制御装置49が制御する(ステップS23)。
【0069】
ステップS22において溶接速度に変更がなかった場合と、ステップS23において走行台車43の移動量の設定値の変更が行われた場合と、前述のステップS14において融合不良判定モデルを用いて判定した結果、融合不良は生じないと判定された場合とには、ステップS24において、ステップS13で取得した距離L、Lのデータから、制御装置49によって、LとLとが等しいかどうかが判断される。LとLとが等しいと判断された場合には、ステップS12に戻って、それ以後の工程を繰り返す。LとLとが等しくないと判断された場合には、ステップS25において、これを等しくするように、制御装置49から1軸スライダ46に、それに対応した移動量ΔLが指示される。LとLとが等しくなるように1軸スライダ46が移動量ΔLだけ溶接トーチ42を移動させたなら、同様にステップS12に戻って、それ以後の工程を繰り返す。
【0070】
上記した各溶接パラメータの影響度について説明する。EN比が大きくなると、ビードオンプレート溶接時のビード幅Wは減少し、溶着断面積Aは増加する。溶接電流が大きくなると、ビード幅W、溶着断面積Aはともに増加する。電圧が高くなると、ビード幅Wは増加するが溶着断面積Aは変化しない。溶接速度が大きくなると、ビード幅Wはやや減少し、溶着断面積Aは減少する。
【符号の説明】
【0071】
41 溶接対象
42 溶接トーチ
43 走行台車
46 1軸スライダ
47 レーザセンサ
48 デジタル溶接装置
49 制御装置
ビード幅
溶着断面積
L トーチ-開先壁間距離
Q 溶接入熱
開先壁への入熱
R 溶融池表面から開先底のコーナー部までの一般化した距離
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35