IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アジレント・テクノロジーズ・インクの特許一覧

特許7482222発光分光分析による元素識別方法及びシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-01
(45)【発行日】2024-05-13
(54)【発明の名称】発光分光分析による元素識別方法及びシステム
(51)【国際特許分類】
   G01N 21/73 20060101AFI20240502BHJP
【FI】
G01N21/73
【請求項の数】 18
(21)【出願番号】P 2022523719
(86)(22)【出願日】2019-12-23
(65)【公表番号】
(43)【公表日】2022-12-22
(86)【国際出願番号】 IB2019061259
(87)【国際公開番号】W WO2021079184
(87)【国際公開日】2021-04-29
【審査請求日】2022-12-19
(31)【優先権主張番号】2019903971
(32)【優先日】2019-10-22
(33)【優先権主張国・地域又は機関】AU
(31)【優先権主張番号】2019904107
(32)【優先日】2019-10-31
(33)【優先権主張国・地域又は機関】AU
(73)【特許権者】
【識別番号】399117121
【氏名又は名称】アジレント・テクノロジーズ・インク
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
(74)【代理人】
【識別番号】100099623
【弁理士】
【氏名又は名称】奥山 尚一
(74)【代理人】
【識別番号】100125380
【弁理士】
【氏名又は名称】中村 綾子
(74)【代理人】
【識別番号】100142996
【弁理士】
【氏名又は名称】森本 聡二
(74)【代理人】
【識別番号】100166268
【弁理士】
【氏名又は名称】田中 祐
(74)【代理人】
【氏名又は名称】池本 理絵
(74)【代理人】
【氏名又は名称】有原 幸一
(72)【発明者】
【氏名】マッカーシー,ダニエル,フィン
(72)【発明者】
【氏名】ウッズ,マーク,アンドリュー
【審査官】伊藤 裕美
(56)【参考文献】
【文献】特開2011-232106(JP,A)
【文献】特開2001-349829(JP,A)
【文献】米国特許出願公開第2015/0153225(US,A1)
【文献】特開平02-067944(JP,A)
【文献】特開2007-024679(JP,A)
【文献】特開2010-169412(JP,A)
【文献】特開2018-136253(JP,A)
【文献】特開2007-333501(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00-G01N 21/74
(57)【特許請求の範囲】
【請求項1】
サンプルからサンプルスペクトルデータを取得するステップと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するステップであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、ステップと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するステップと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定するステップと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定するステップと、
分析物波長の前記改定リストに適用される一組の基準に基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定するステップと
を含み、
前記サンプルスペクトルデータは、サンプルスペクトル範囲内の波長に対応する発光強さの強度を示すデータを含み、
分析物波長のリストを決定する前記ステップは、元素のそれぞれの所定の発光波長のそれぞれに対応する前記サンプルスペクトル範囲の関心領域を分析することと、飽和結果が前記関心領域内の位置に特定されるかを判定することと、飽和結果が前記関心領域内の位置に特定されないと判定すると、前記発光強さの強度のピークが前記関心領域内の位置に特定されるかを判定することと、前記発光強さの強度のピークが、閾値試験に基づいて前記関心領域内で識別されたという確信度のレベルを決定することとを含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータ実施される方法。
【請求項2】
分析物波長の前記リストを決定する前記ステップは、前記飽和結果がフラットトップを有する前記発光強さの強度のピークを示すかを判定することを更に含む、請求項に記載のコンピュータ実施される方法。
【請求項3】
前記発光強さの強度のピークが、前記関心領域内で識別されたという確信度のレベルを決定することは、前記ピークに最も近い発光強さの強度の標準偏差を計算することであって、それにより、確信度ファクタを決定する、計算することを含む、請求項に記載のコンピュータ実施される方法。
【請求項4】
前記ピークに関連する元素は、前記確信度ファクタが所定の閾値よりも大きい場合に識別されたものとされる、請求項に記載のコンピュータ実施される方法。
【請求項5】
分析物波長のそれぞれの前記対応するスペクトルピークが、干渉発光波長によって影響を受ける可能性を有するかを判定する前記ステップは、
分析物波長のそれぞれに関連するクリーンな干渉発光波長を決定することと、
前記クリーンな干渉発光波長が前記サンプルスペクトルデータのスペクトルピークに対応するかを判定することと
を含む、請求項1~のいずれか一項に記載のコンピュータ実施される方法。
【請求項6】
クリーンな干渉発光波長を決定する前記ステップは、スペクトル干渉によって影響を受ける可能性が最も小さい干渉発光波長を決定することを含む、請求項に記載のコンピュータ実施される方法。
【請求項7】
スペクトル干渉によって影響を受けるスペクトルピークに対応する分析物波長のそれぞれについて前記スペクトル干渉の有意性を、
前記クリーンな干渉発光波長に対応するスペクトルピークと前記関連する分析物波長に対応するスペクトルピークとの間の距離と、
前記クリーンな干渉発光波長に対応するスペクトルピークと前記関連する分析物波長に対応するスペクトルピークとの比と、
前記クリーンな干渉発光波長に対応する発光強さの強度と前記関連する分析物波長に対応する発光強さの強度との比と
のうちの1つ以上に基づいて決定することを更に含む、請求項5又は6に記載のコンピュータ実施される方法。
【請求項8】
サンプルからサンプルスペクトルデータを取得するステップと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するステップであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、ステップと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するステップと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定するステップと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定するステップと、
分析物波長の前記改定リストに適用される一組の基準に基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定するステップと
を含み、
1つ以上の元素が前記サンプル内に存在するという確信度レベルを決定するための前記一組の基準は、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次分析物波長が第1の閾値よりも大きいか、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次及び2次の分析物波長が第2の閾値よりも大きいか
の一方又は両方を含み、
元素についての1次分析物波長は、高ピークスペクトル強度を有する発光波長に対応し、元素についての2次分析物波長は、1次分析物波長の場合よりも低いピークスペクトル強度を有する発光波長に対応する、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータ実施される方法。
【請求項9】
前記第1の閾値は、少なくとも3つの1次分析物波長を有する元素の場合には、2であり、2以下の1次分析物波長を有する元素の場合には、1であり、
前記第2の閾値は、少なくとも1つの1次分析物波長及び1つの2次分析物波長である、請求項に記載のコンピュータ実施される方法。
【請求項10】
前記決定された確信度のレベルに基づいて、識別された元素のリストに1つ以上の元素を付加することを更に含む、請求項1~のいずれか一項に記載のコンピュータ実施される方法。
【請求項11】
識別された元素の前記リスト内の元素のそれぞれについて妥当性を検証することであって、それにより、分析物波長に関連する前記サンプルスペクトルデータのスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いかを判定する、妥当性を検証することと、
識別された元素の前記リスト内の対応する元素を有する分析物波長が、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いと判定すると、対応する元素を識別された元素の前記リストから除去することと
を更に含む、請求項10に記載のコンピュータ実施される方法。
【請求項12】
選択基準に基づいて、識別された元素の前記リスト内の元素のそれぞれに対応する分析物波長を選択的に表示することを更に含み、
前記選択基準は、
前記分析物波長が飽和結果に関連するかと、
対応する元素のそれぞれについて表示する最大数の分析物波長と、
前記分析物波長がユーザ選好に関連するかと
のうちの1つ以上を含む、請求項10又は11に記載のコンピュータ実施される方法。
【請求項13】
識別された元素の前記リスト内の元素のそれぞれの濃度を計算することを更に含み、
元素のそれぞれの前記濃度を計算する前記ステップは、前記対応する元素に関連するスペクトルピークの発光強さの強度を測定し、背景発光を補正することを含む、請求項10~12のいずれか一項に記載のコンピュータ実施される方法。
【請求項14】
外れ値の分析物波長を識別することと、
前記外れ値の分析物波長に関連する測定に基づいて、対応する元素が前記サンプル内に存在するという確信度のレベルを下げることと
を更に含む、請求項1~13のいずれか一項に記載のコンピュータ実施される方法。
【請求項15】
サンプルからサンプルスペクトルデータを取得する発光分光分析装置と、
請求項1~14のいずれか一項に記載のコンピュータ実施される方法を実施するプロセッサと
を含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するシステム。
【請求項16】
請求項1~14のいずれか一項に記載のコンピュータ実施される方法を実施するためのコンピュータ実行可能命令を有する、1つ以上の有形の非一時的なコンピュータ可読媒体。
【請求項17】
サンプルからサンプルスペクトルデータを取得するサンプルデータ取り出しモジュールと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するための波長データ取り出しモジュールであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、波長データ取り出しモジュールと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するピーク探索モジュールと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定する干渉探索モジュールと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定する波長処理モジュールと、
分析物波長の前記改定リストに適用される一組の基準に基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定する元素識別モジュールと
を含み、
前記サンプルスペクトルデータは、サンプルスペクトル範囲内の波長に対応する発光強さの強度を示すデータを含み、
前記ピーク探索モジュールは、元素のそれぞれの所定の発光波長のそれぞれに対応する前記サンプルスペクトル範囲の関心領域を分析することと、飽和結果が前記関心領域内の位置に特定されるかを判定することと、飽和結果が前記関心領域内の位置に特定されないと判定すると、前記発光強さの強度のピークが前記関心領域内の位置に特定されるかを判定することと、前記発光強さの強度のピークが、閾値試験に基づいて前記関心領域内で識別されたという確信度のレベルを決定することとを含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータシステム。
【請求項18】
サンプルからサンプルスペクトルデータを取得するサンプルデータ取り出しモジュールと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するための波長データ取り出しモジュールであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、波長データ取り出しモジュールと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するピーク探索モジュールと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定する干渉探索モジュールと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定する波長処理モジュールと、
分析物波長の前記改定リストに適用される一組の基準に基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定する元素識別モジュールと
を含み、
1つ以上の元素が前記サンプル内に存在するという確信度レベルを決定するための前記一組の基準は、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次分析物波長が第1の閾値よりも大きいか、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次及び2次の分析物波長が第2の閾値よりも大きいか
の一方又は両方を含み、
元素についての1次分析物波長は、高ピークスペクトル強度を有する発光波長に対応し、元素についての2次分析物波長は、1次分析物波長の場合よりも低いピークスペクトル強度を有する発光波長に対応する、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、誘導結合プラズマ発光分光分析法(ICP-OES:inductively coupled plasma optical emission spectrometry)(誘導結合プラズマ原子発光分光分析(ICP-AES:inductively coupled plasma atomic emission spectroscopy)とも呼ばれる)等の発光分光分析による元素識別のための方法及びシステムに関する。ただし、本発明の範囲は必ずしもこれに限定されない。
【背景技術】
【0002】
分光分析技法は、サンプル内のターゲット化学種(species)又は分析物(analyte)の存在を識別するために使用される。一部の分光分析技法は、分析物と、可視スペクトルの波長又は見ることができない波長の光等の励起源とのインタラクション(interaction:相互作用)に依存する。使用される特定の分光分析技法に依存して、収集されたスペクトルは、光ビームがサンプルとインタラクトした後にサンプルによって吸収又は放出された光の強度を示すことができる。
【0003】
他の分光分析技法において、励起源は、通常、アルゴンガスから作られるプラズマ源であり、プラズマ源は、霧状化されたサンプルにプラズマエネルギーを提供し、構成原子を励起して、光を放出させる。放出光は、システムに入る光の量を制限する入口スリット又はアパーチャを介して分光分析装置内に方向付けられる。光学デバイスは、放出スペクトルの異なる波長を分離するために、システムに入る光を分散させる。検出器は、発光スペクトルの異なる部分において複数の元素からの発光を取り込むために、複数の波長範囲を同時に記録する。検出器は、典型的には、分光分析システムを通過する光を収集する感光性素子の集積化アレイである。アレイ検出器上での個々のスペクトルの空間的分離は、サンプルによって吸収又は放出される光の異なる波長を区別するために使用される。
【0004】
検出光のスペクトルプロファイルのピーク又は谷は、サンプル内の特定の化学種の存在を示す。一部の分光分析技法において、各化学種の量又は相対量は、したがって、スペクトルから導出することができる。
【0005】
ICP-OESにおける伝統的な方法は、典型的には、任意の所与の分析方法において自分が定量化したいと思う元素を厳密に指定することをユーザに要求する。このアプローチによれば、サンプル内でどの元素に関心があるかについての事前知識をオペレータに求めることになる。
【0006】
事前に存在する調節された(regulated)方法からオペレータが元素のリストを取得することになることが多く、元素のリストは、その方法の妥当性を検証するときに関心がある可能性が高いと考えられた全ての元素を含むことになろう。
【0007】
このアプローチは、オペレータが、自ら採用した方法において指定した元素を除いては、サンプルの組成を認識できないことになる点で、かなりの制限を有する。これは、特に、異常でありかつ同じタイプのサンプルにおいて非常にまれに見出される成分を含む場合があるサンプルにおいて、重要な成分を見落すことにつながる可能性がある。
【0008】
ユーザが自分の関心の元素を指定する要求に加えて、更なるレベルの複雑さとして、ICP-OESにおける既存の方法は、任意の所与の元素の定量化において使用する1つ以上の波長をユーザが指定することも求めている。一般に、波長は、分析が開始する前に指定されなければならない。いくつかの場合には、波長は、後で、多くの分析波長を包含する十分に大きいスペクトル領域が測定中に収集されるときに、指定することができる。しかしながら、両方の場合は、分析されるサンプルに適する波長を、経験を積んだユーザが選択することが必要になる。
【0009】
ICP-OESにおける元素の定量化のための適切な波長の選択は複雑であり、不正確な波長選択は、この分析技法についての一般的なエラー源である。ICP-OESによって元素を定量化するときに、任意の所与の波長が不正確な結果を生じるといういくつかの文書に記録された影響が存在する。
【0010】
スペクトル干渉及び非スペクトル干渉は、サンプル溶液内の元素について任意の所与の分析波長で測定される強度が影響を受け、不正確である可能性がある結果を返しうる、2つの手段である。
【0011】
非スペクトル干渉は、サンプル内の成分が、サンプル導入又はプラズマ条件に影響を及ぼし、所与の元素について1つ以上の分析波長の増大又は抑制をもたらしうる。
【0012】
スペクトル干渉は、分析波長が別の元素又は分子からの発光によって部分的に又は完全にオーバーラップする、又は、構造化されていない背景放射によって別様に影響を受けるときに起こる。スペクトル干渉の存在及び大きさは、同じ方法内でさえも、サンプル依存性が高い。
【0013】
サンプル内のスペクトル干渉を回避する1つの現行の方法は、分析されるサンプルについて干渉がないと思われる分析波長を選択することである。このプロセスは、完全に手作業であり、機器を運用するオペレータの経験及び知識に依存する。有効な結果を全てのサンプルについて取得することができるようにするために、オペレータが、自分の方法において同じ元素について複数の波長を含めることが一般的である。しかしながら、このやり方は、各サンプル内の各元素について複数の結果をユーザに提示し、これらの結果は、その後、どれが最も適切であるかを判定するために解釈されなければならない。
【0014】
スペクトル干渉を回避しようと試みるのではなく、一部の代替の方法は、元素間補正(IEC:Inter-Element Correction)等の種々の較正技法によって、方法の影響を補正することに依存する。
【0015】
これらの方法は、広く受け入れられており、かなり正確な結果を提供することができる。しかしながら、これらの方法は、干渉の原因となる元素を正確に識別し、その後、干渉補正を計算し適用することができるように、適切な化学標準(chemical standards)を調製又は準備する機器オペレータに依存する。したがって、これらの現行のアプローチによると、自分のサンプル内に存在する可能性が高い干渉元素の事前知識がオペレータに求められることになる。干渉物質が曖昧である若しくは珍しい、又は、オペレータが、精通していないサンプルタイプを分析しているとき、オペレータが干渉元素の存在を成功裏に予測することはかなり難しいことがある。
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の実施形態は、上記で説明した欠点又は問題の1つ以上を克服又は改善する、又は、有用な選択を消費者に少なくとも提供する、発光分光分析による元素識別のための方法及びシステムを提供することができる。
【課題を解決するための手段】
【0017】
本発明の1つの態様によれば、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータ実施される方法であって、
サンプルからサンプルスペクトルデータを取得するステップと、
発光分光分析によって定量可能な周期表内の各元素について、1つ以上の所定の発光波長のリストを取得するステップであって、各所定の発光波長は1つ以上の潜在的な干渉発光波長のリストに関連する、ステップと、
発光波長のリストに基づいてサンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するステップと、
各分析物波長について、分析物波長に対応する1つ以上の潜在的な干渉発光波長のリストに基づいて、対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定するステップと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長のリストから除去することによって、1つ以上の分析物波長の改定又は修正された(revised)リストを決定するステップと、
分析物波長の改定リストに適用される一組の基準に基づいて、1つ以上の元素がサンプル内に存在するという確信度のレベルを決定するステップと
を含む、コンピュータ実施される方法が提供される。
【0018】
有利には、分析物波長の改定リストは、サンプル内の任意の元素の存在を判定するステップに先立って、スペクトル干渉を受ける可能性が高い分析物波長を除去するように実質的に前処理される。こうして、サンプル又は関連計装(instrumentation)に関する作業の事前の経験又は知識がない状態で、オペレータが、識別特性が評価されていない(uncharacterised)任意のサンプルに関してコンピュータ実施される方法を使用することができる。
【0019】
一実施の形態において、サンプルスペクトルデータは、サンプルスペクトル範囲内の波長に対応する発光強さの強度(emission strength intensities)を示すデータを含む。
【0020】
サンプルからのサンプルスペクトルデータは、発光分光分析における任意の適切な分析器を使用して取得することができる。例えば、発光分光分析装置は、サンプルスペクトルデータを取得するために使用することができる。特に、ICP-OES又はICP-AES用の計装は、サンプルからのサンプルスペクトルデータを取得するために使用することができる。
【0021】
一実施の形態において、分析器は、プロセッサを有するコンピュータとインタフェースする。インタフェースは、有線又は無線接続とすることができる。コンピュータプロセッサは、コンピュータにより実施される方法のステップの1つ以上を実行するために、コンピュータプロセッサ上にインストールされたソフトウェアアプリケーションを含むことができる。代替の実施形態において、ソフトウェアアプリケーションは、インターネット等のネットワークを介してアクセス可能なクラウドベースアプリケーションとすることができる。いくつかの実施形態において、ソフトウェアアプリケーションは、ローカルネットワークを介して遠隔でアクセス可能とすることができる。
【0022】
典型的には、1つ以上の所定の発光波長のリストは、ICP-OES用の計装等の特定のタイプの分析器について行われた各元素についての標準発光波長(standard emission wavelength)測定に基づいて編集又は蓄積(complied)される。
【0023】
1つ以上の潜在的な干渉発光波長のリストは、それぞれの標準発光波長(特定の元素に関連する)に対する近傍発光波長(neighbouring emission wavelengths)の近接性(proximity)に基づいて決定することができる。近傍発光波長は、特定の元素に対して異なる元素に関連し、発光波長において、特定の元素についての強度測定におけるスペクトル干渉を引き起こす場合がある。
【0024】
1つ以上の所定の発光波長及び関連する潜在的な干渉発光波長のリストは、コンピュータメモリ内のデータベースに記憶することができる。いくつかの実施の形態において、データベースは、遠隔で記憶することができ、ネットワーク又はインターネットを介してアクセス可能とすることができる。データベースは、コンピュータにより実施される方法のステップを実施するためにソフトウェアプログラムの実行中にアクセス可能とすることができる。
【0025】
さらに、分析物波長のリストを決定するステップは、各元素の各所定の発光波長に対応するサンプルスペクトル範囲の関心領域を分析することと、発光強さの強度のピークが関心領域内で位置特定されるかを判定することとを含むことができる。
【0026】
一般に、発光強さの強度のピークが位置特定される場合、サンプル内の元素についての位置特定されたスペクトルピークに対応する発光波長は、本明細書において、サンプル内の元素に対応する分析物波長(analyte wavelength)と呼ばれる。
【0027】
特に、分析物波長のリストを決定するステップは、各元素の各所定の発光波長に対応するサンプルスペクトル範囲の関心領域を分析することと、飽和結果(saturated result)が関心領域内に位置特定されるかを判定することと、飽和結果が関心領域内に位置特定されないと判定すると、発光強さの強度のピークが関心領域内に位置特定されるかを判定することとを含むことができる。
【0028】
飽和結果は、分析器機器の測定範囲を超える発光強さの強度測定に関連することができる。典型的には、飽和結果は、スペクトル干渉が存在する、及び/又は、高濃度の対応する元素がサンプル内に存在するときに遭遇する場合がある。
【0029】
分析物波長のリストを決定するステップは、飽和結果がフラットトップ(flat-top)を有する発光強さの強度のピークを示すかを判定することを更に含むことができる。
【0030】
分析物波長のリストを決定するステップは、発光及び干渉波長に関するデータベースからの情報を使用して、プロセッサ上にインストールされたソフトウェアプログラムによって実施することができる。
【0031】
さらに、分析物波長のリストを決定するステップは、発光強さの強度のピークが、閾値試験(threshold test)に基づいて関心領域内で識別されたという確信度のレベル(level of confidence)を決定することを更に含むことができる。
【0032】
確信度のレベルは、任意の適切な手段を使用して示すことができる。例えば、確信度のレベルは確信度ファクタ(confidence factor)によって表すことができる。確信度ファクタは所定の範囲内の数値によって表すことができる。
【0033】
いくつかの実施の形態において、発光強さの強度のピークが、関心領域内で識別されたという確信度のレベルを決定することは、ピークに最も近い発光強さの強度の標準偏差を計算することであって、それにより、確信度ファクタを決定する、計算することを含むことができる。
【0034】
確信度のレベルを決定するステップは、プロセッサ上にインストールされたソフトウェアプログラムによって実施することができる。
【0035】
いくつかの実施の形態において、ピークに関連する元素は、確信度ファクタが所定の閾値よりも大きい場合、識別されたものとすることができる。所定の閾値は、履歴及び/又は実験サンプルデータに基づいて計算することができる。所定の閾値は、計装を使用して収集された実験データに基づいて、特定のタイプの分析器計装又は特定の計装に従って調節することもできる。
【0036】
いくつかの実施の形態において、各分析物波長の対応するスペクトルピークが、干渉発光波長(interference emission wavelength)によって影響を受ける可能性を有するかを判定するステップは、
各分析物波長に関連するクリーンな干渉発光波長を決定するステップと、
クリーンな干渉発光波長がサンプルスペクトルデータのスペクトルピークに対応するかを判定するステップと
を含むことができる。
【0037】
各分析物波長の対応するスペクトルピークが、干渉発光波長によって影響を受ける可能性を有するかを判定するステップは、プロセッサ上にインストールされたソフトウェアプログラムによって実施することができる。
【0038】
クリーンな又は最もクリーンな干渉発光波長は、典型的には、スペクトル干渉自体によって影響を受ける可能性が最も小さい、分析物波長に関連する全ての潜在的な干渉発光波長の中からの干渉発光波長を指す。さらに、最もクリーンな干渉発光波長は、対応する干渉元素に関連する1次発光波長であり、したがって、干渉元素がサンプル内で検出される場合、確実な強度測定を提供することが可能になる。
【0039】
いくつかの実施の形態において、クリーンな干渉発光波長を決定するステップは、スペクトル干渉によって影響を受ける可能性が最も小さい干渉発光波長を決定することを含むことができる。
【0040】
いくつかの実施の形態において、本方法は、更に、スペクトル干渉によって影響を受けるスペクトルピークに対応する各分析物波長についてスペクトル干渉の有意性を、以下のうちの1つ以上に基づいて決定することを含むことができる。
クリーンな干渉発光波長に対応するスペクトルピークと関連する分析物波長に対応するスペクトルピークとの間の距離。
クリーンな干渉発光波長に対応するスペクトルピークと関連する分析物波長に対応するスペクトルピークとの比。
クリーンな干渉発光波長に対応する発光強さの強度と関連する分析物波長に対応する発光強さの強度との比。
【0041】
発光強さの強度は、スペクトル線強度に基づいて予め決定することができる。
【0042】
スペクトル干渉発光波長の有意性を決定するステップは、プロセッサ上にインストールされたソフトウェアプログラムによって実施することができる。
【0043】
一実施の形態において、1つ以上の元素がサンプル内に存在し得るという確信度レベルを決定するための一組の基準は、
分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長が第1の閾値よりも大きいかと、
分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長及び2次分析物波長が第2の閾値よりも大きいかと
の一方又は両方を含み、
元素についての1次分析物波長は、高ピークスペクトル強度を有する発光波長に対応し、元素についての2次分析物波長は、1次分析物波長の場合よりも低いピークスペクトル強度を有する発光波長に対応する。
【0044】
第1の閾値及び第2の閾値は、確信度の所望の最小レベルに基づいて決定することができる。確信度の所望の最小レベルは、ユーザ要件、業界標準、及び/又は規制要件(regulatory requirements)に基づいて決定することができる。
【0045】
一実施の形態において、第1の閾値は、少なくとも3つの1次分析物波長を有する元素の場合、2であり、2以下の1次分析物波長を有する元素の場合、1であり、第2の閾値は、少なくとも1つの1次分析物波長及び1つの2次分析物波長である。
【0046】
コンピュータ実施される方法は、決定された確信度のレベルに基づいて、識別された元素のリストに1つ以上の元素を付加することを更に含むことができる。識別された元素のリストは、コンピュータデバイスのメモリに記憶することができる。
【0047】
いくつかの実施の形態において、コンピュータ実施される方法の実行後に、各分析物波長は、対応する分析物元素がサンプル内に存在するという確信度のレベルを示す確信度ファクタに従ってランク付けされる。例えば、スペクトル干渉によって影響を受ける可能性が低い分析物波長は、比較的高い確信度ファクタを与えられる場合があり、一方、スペクトル干渉によって影響を受ける可能性が高い分析物波長は、比較的低い確信度ファクタを与えられる場合がある。
【0048】
いくつかの実施の形態において、分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長が第1の閾値よりも大きい場合、それらの検出された1次分析物波長は、第1の確信度ファクタに帰する場合がある。第1の確信度ファクタは、比較的高い確信度ファクタとすることができる。対応する分析物元素も、第1の確信度ファクタに帰する場合がある。
【0049】
さらに、分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長及び2次分析物波長が第2の閾値よりも大きい場合、それらの検出された1次分析物波長及び2次分析物波長は、第2の確信度ファクタに帰する場合がある。対応する分析物元素も、第2の確信度ファクタに帰する場合がある。第2の確信度ファクタは第1の確信度ファクタよりも低い。
【0050】
分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長が第1の閾値よりも小さく、かつ、分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長及び2次分析物波長が第2の閾値よりも小さい場合、それらの検出された1次分析物波長及び2次分析物波長は、第3の確信度ファクタに帰する場合がある。対応する分析物元素も、第3の確信度ファクタに帰する場合がある。第3の確信度ファクタは第2の確信度ファクタよりも低い。
【0051】
いくつかの実施の形態において、識別された元素のリスト内の元素は、それらの関連する確信度ファクタに従ってランク付けされる。
【0052】
いくつかの実施の形態において、コンピュータ実施される方法は、
識別された元素のリスト内の元素のそれぞれの妥当性を検証することであって、それにより、分析物波長に関連するサンプルスペクトルデータのスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いかを判定する、妥当性検証することと、
識別された元素のリスト内の対応する元素を有する分析物波長が、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いと判定すると、対応する元素を、識別された元素のリストから除去することと
を更に含むことができる。
【0053】
各元素を妥当性検証するステップは、プロセッサ上にインストールされたソフトウェアプログラムによって実施することができる。
【0054】
有利には、各元素を妥当性検証するステップは、識別された元素のリスト内の各元素が再評価される機会を提供すし、その結果、おそらくは不正確にサンプル内で見出されたものとされ、識別された元素のリストに付加された任意の元素が削除される。
【0055】
コンピュータ実施される方法は、選択基準に基づいて、識別された元素のリスト内の各元素に対応する分析物波長を選択的に表示することを更に含むことができる。選択基準は、
・分析物波長が、飽和結果に関連するかと、
・対応する各元素について表示する最大数の分析物波長と、
・分析物波長が、ユーザ選択に関連するかと
のうちの任意の1つ以上を含むことができる。
【0056】
コンピュータ実施される方法は、識別された元素のリスト内の各元素の濃度を計算することを更に含むことができる。各元素の濃度を計算するステップは、対応する元素に関連するスペクトルピークの発光強さの強度を測定し、背景発光を補正することを含むことができる。
【0057】
コンピュータ実施される方法は、外れ値(outlier)の分析物波長を識別することと、外れ値の分析物波長に関連する測定値に基づいて、対応する元素がサンプル内に存在するという確信度のレベルを下げることとを更に含むことができる。いくつかの実施の形態において、対応する元素がサンプル内に存在するという確信度のレベルは、元素に関連する分析物波長が検出されるという確信度のレベルに基づいて推測される。
【0058】
本発明の別の態様によれば、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するシステムであって、
サンプルからサンプルスペクトルデータを取得することと、
本明細書に記載のコンピュータ実施される方法を実施するプロセッサと
を含むシステムが提供される。
【0059】
本発明の更なる態様によれば、本明細書に記載のコンピュータ実施される方法を実施するためのコンピュータ実行可能命令を有する1つ以上の有形の非一時的なコンピュータ可読媒体が提供される。
【0060】
本発明の更に別の態様によれば、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータシステムであって、
サンプルからサンプルスペクトルデータを取得するサンプルデータ取り出しモジュールと、
発光分光分析によって定量可能な周期表内の各元素について、1つ以上の所定の発光波長のリストを取得するための波長データ取り出しモジュールであって、各所定の発光波長は1つ以上の潜在的な干渉発光波長のリストに関連する、波長データ取り出しモジュールと、
発光波長のリストに基づいてサンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するピーク探索モジュールと、
各分析物波長について、分析物波長に対応する1つ以上の潜在的な干渉発光波長のリストに基づいて、対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定する干渉探索モジュールと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を、分析物波長のリストから除去することによって、1つ以上の分析物波長の改定リストを決定する波長処理モジュールと、
分析物波長の改定リストに適用される一組の基準に基づいて、1つ以上の元素がサンプル内に存在するという確信度のレベルを決定する元素識別モジュールと
を含むコンピュータシステムが提供される。
【0061】
サンプルデータ取り出しモジュールは、サンプルからサンプルスペクトルデータを取得するために発光分光分析装置とインタフェースすることができる。
【0062】
波長データ取り出しモジュールは、データベースから波長データを取り出すことができる。
【0063】
ピーク探索モジュールは、
各元素の各所定の発光波長に対応するサンプルスペクトル範囲の関心領域を分析し、
飽和結果が関心領域内で位置特定されるかを判定し、
飽和結果が関心領域内で位置特定されないと判定されると、発光強さの強度のピークが関心領域内で位置特定されるかを判定する
ように構成することができる。
【0064】
ピーク探索モジュールは、飽和結果がフラットトップを有する発光強さの強度のピークを示すかを判定するように更に構成することができる。
【0065】
ピーク探索モジュールは、発光強さの強度のピークが、閾値試験に基づいて関心領域内で識別されたという確信度のレベルを決定するように更に構成することができる。発光強さの強度のピークが関心領域内で識別されたという確信度のレベルを決定することは、確信度ファクタを決定するためにピークに最も近い発光強さの強度の標準偏差を計算することを含むことができる。
【0066】
干渉探索モジュールは、各分析物波長に関連するクリーンな干渉発光波長を決定し、クリーンな干渉発光波長がサンプルスペクトルデータ内のスペクトルピークに対応するかを判定するように更に構成することができる。
【0067】
コンピュータシステムは、スペクトル干渉によって影響を受けるスペクトルピークに対応する各分析物波長についてのスペクトル干渉の有意性を、
・クリーンな干渉発光波長に対応するスペクトルピークと関連する分析物波長に対応するスペクトルピークとの間の距離と、
・クリーンな干渉発光波長に対応するスペクトルピークと関連する分析物波長に対応するスペクトルピークとの比と、
・クリーンな干渉発光波長に対応する発光強さの強度と関連する分析物波長に対応する発光強さの強度との比と
のうちの1つ以上に基づいて決定するように更に構成することができる。
【0068】
元素識別モジュールは、1つ以上の元素がサンプル内に存在するという確信度レベルを、
分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長が第1の閾値よりも大きいか、
分析物波長の改定リスト内の各元素に対応する複数の検出された1次分析物波長及び2次分析物波長が第2の閾値よりも大きいか
の一方又は両方に基づいて決定するように構成することができ、
元素についての1次分析物波長は、高ピークスペクトル強度を有する発光波長に対応し、元素についての2次分析物波長は、1次分析物波長の場合よりも低いピークスペクトル強度を有する発光波長に対応する。
【0069】
元素識別モジュールは、決定された確信度のレベルに基づいて、識別された元素のリストに1つ以上の元素を付加するように構成することができる。
【0070】
コンピュータシステムは、識別された元素のリスト内の元素のそれぞれの妥当性を検証することで、それぞれの元素に関連するサンプルスペクトルデータのスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いかを判定し、識別された元素のリスト内の元素が、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いと判定すると、対応する元素を、識別された元素のリストから除去する、妥当性検証モジュールを更に含むことができる。
【0071】
コンピュータシステムは、選択基準(selection criteria)に基づいて、識別された元素のリスト内の各元素に対応する分析物波長を選択的に表示する結果選択モジュールを更に含むことができ、この選択基準は、
・分析物波長が飽和結果に関連するかと、
・対応する各元素について表示する最大数の分析物波長と、
・分析物波長がユーザ選択に関連するかと
のうちの任意の1つ以上を含む。
【0072】
コンピュータシステムは、識別された元素のリスト内の各元素の濃度を計算する濃度計算モジュール(concentration calculation modele)を更に含むことができる。各元素の濃度を計算することは、対応する元素に関連するスペクトルピークの発光強さの強度を測定し、背景発光(background emission)を補正することを含むことができる。
【0073】
コンピュータシステムは、外れ値の分析物波長を識別し、外れ値の分析物波長に関連する測定に基づいて、対応する元素がサンプル内に存在するという確信度のレベルを下げる外れ値チェックモジュールを更に含むことができる。
【0074】
有利には、本発明の実施の形態は、オペレータによる元素発光波長の事前選択が必要なしに存在する場合がある、ICP-OES技法にとって利用可能な全ての元素を識別するために、識別特性評価されていない溶液内の元素発光波長を自動的に識別する。
【0075】
本発明をより容易に理解し、実施することができるために、本発明の1つ以上の好ましい実施形態が、ここで、添付図面を参照して、単に例として説明される。
【図面の簡単な説明】
【0076】
図1a】本発明の一実施形態による発光分光分析を使用する元素識別のためのシステムを示す概略図であり、本発明の一実施形態による元素識別のためのコンピュータ実施される方法のプロセスステップを要約するプロセスフロー図を更に示す図である。
図1b図1aのコンピュータ実施される方法における背景発光補正及び濃度計算に関連するディスプレイ情報を示す図である。
図2a図1aに示すコンピュータ実施される方法のデータ収集サブプロセスを示すプロセスフロー図である。
図2b図1aに示すコンピュータ実施される方法のデータローディングサブプロセスを示すプロセスフロー図である。
図2c図2bに示すサブプロセスによって提供される、標準発光波長データ及び関連する潜在的な干渉発光波長データに関連するディスプレイ情報を示す図である。
図3図1aに示すコンピュータ実施される方法の元素探索プロセスを示すプロセスフロー図である。
図4図3に示す元素探索プロセスにおいてスペクトルピークを決定するサブプロセスを示すプロセスフロー図である。
図5a】本発明の例示的な実施形態による、サンプル1~10についての複数の識別された元素のうちの一部について、図1aに示す方法に基づいて決定された濃度結果に関連するディスプレイ情報を示す図である。
図5b図5aに示すサンプル1内の元素リチウム(Li)の分析物波長についてのスペクトルデータの分析物波長、対応する確信度等級(confidence ratings)、及びグラフィカル表現を含む更なる結果に関連するディスプレイ情報を示す図である。
図5c】本発明の例示的な実施形態による、サンプル1~10についての複数の識別された元素のうちの一部について、図1aに示す方法に基づいて決定された濃度結果に関連するディスプレイ情報を示す図である。
図5d図5cに示すサンプル7内の元素リチウム(Li)の分析物波長についてのスペクトルデータの、分析物波長、対応する確信度等級、及びグラフィカル表現を含む更なる結果に関連するディスプレイ情報を示す図である。
図6図3に示す元素探索プロセスにおいて干渉スペクトルピークを決定するサブプロセスを示すプロセスフロー図である。
図7a】本発明の例示的な実施形態による、サンプル1~10についての複数の識別された元素のうちの一部について、図1aに示す方法に基づいて決定された濃度結果に関連するディスプレイ情報を示す図である。
図7b図7aに示すサンプル5内の分析物波長についてのスペクトルデータの分析物波長、対応する確信度等級、及びグラフィカル表現を含む更なる結果に関連するディスプレイ情報を示す図である。
図7c】本発明の例示的な実施形態による、サンプル1~10についての複数の識別された元素のうちの一部について、図1aに示す方法に基づいて決定された濃度結果に関連するディスプレイ情報を示す図である。
図7d図7cに示すサンプル10内の分析物波長についてのスペクトルデータの、分析物波長、対応する確信度等級、及びグラフィカル表現を含む更なる結果に関連するディスプレイ情報を示す図である。
図8図3に示す元素探索プロセスにおいて分析物元素の存在を判定するサブプロセスを示すプロセスフロー図である。
図9図1aに示す方法において、スペクトル干渉の存在の妥当性を検証し再評価するプロセスを示すプロセスフロー図である。
図10図1aに示す方法において、表示のために容認された(accepted)分析物波長を選択的に決定するプロセスを示すプロセスフロー図である。
図11図1aに示す方法において、外れ値の結果を決定するプロセスを示すプロセスフロー図である。
図12図1aに示す方法において、表示のに最もよく利用可能な結果を選択するプロセスを示すプロセスフロー図である。
図13】本発明の一例示的な実施形態による、サンプルスペクトルデータの選択された部分における、識別された分析物波長及び分析物元素のグラフィカル表現の形態でのディスプレイ情報を示す図である。
図14】本発明の一実施形態によるシステムのユーザインタフェースからの抜粋の図であり、HJ 781-2016固体廃棄物分解におけるAs、Mn、及びVについての波長に関する、いくつかの一般的でかつ問題のあるスペクトル干渉の自動識別を示す。
図15】本発明の一実施形態によるシステムのユーザインタフェースからの抜粋であり、分解の前に酸を添加するときの技術者の不注意による「土壌4」内の検出されたClの非存在、及び、「土壌4」内のSbの非存在を示し、分解におけるHClの欠如の結果として、これは、このサンプル内で可溶化されていなかった可能性が高い。
図16a】本発明の一実施形態によるシステムのユーザインタフェースからの抜粋であり、複数のサンプルについて周期表ヒートマップスタイル可視化を比較し、この実施形態において、濃度ベースのカラーコード化(concentration-based colour-coding)は、測定される溶液の間の差を識別するために視覚的に直感的な方法を提供することができる。
図16b】本発明の一実施形態によるシステムのユーザインタフェースからの抜粋の図であり、複数のサンプルについて周期表ヒートマップスタイル可視化を比較し、この実施形態において、濃度ベースのカラーコード化は、測定された溶液の間の差を識別する視覚的に直感的な方法を提供することができる。
図17】本発明の一実施形態によるシステムのユーザインタフェースからの抜粋であり、Mn分析物波長について確信度等級表を示し、ユーザインタフェースは、ユーザ要求によって、2つのMn主線(prime lines)に対する潜在的なFe干渉を示す情報ボックスを更に提供する。
図18】サンプル内の全ての他の元素の相対濃度を示すヒートマップを更に示す図である。
【発明を実施するための形態】
【0077】
図1aに示すように、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するシステム100は、誘導結合プラズマ発光分光分析法(ICP-OES:Inductively Coupled Plasma Optical Emission Spectrometry)(誘導結合プラズマ原子発光分光分析(ICP-AES:Inductively Coupled Plasma Atomic Emission Spectroscopy)とも呼ばれる)機器等の発光分光分析装置102を含む。ICP-OES機器102は、分析のために1つ以上のサンプルからスペクトルデータを取得する。システム100は、プロセッサ(図示せず)を更に含み、プロセッサは、プロセッサ上にインストールされたアプリケーションであって、機器102から取得されるサンプルスペクトルデータを分析するソフトウェア実装式方法106を実行し、或るレベルの確信度(confidence)をもって、サンプル内の1つ以上の元素の存在を識別するためのアプリケーションを有する。いくつかの場合に、サンプル内の元素が検出レベルよりも低い場合、機器102は、いずれの元素の存在も識別することができない。ディスプレイデバイス104は、システム100とのユーザインタラクションを容易にするユーザインタフェースを提供し、サンプル分析からの出力を表示するために、プロセッサに結合される。
【0078】
コンピュータによる実施される方法(computer implemented method)106は、機器102内にロードされる1つ以上の識別特性評価されていない(uncharacterized)サンプル溶液からサンプルスペクトルデータを取得し、以下で更に詳細に説明される一連の機能ステップにおいて、各サンプル内の1つ以上の元素の存在を識別するためにサンプルを自動的に分析する。方法106は、単一サンプルに関して説明される。しかしながら、方法106が、単一サンプルを分析することに限定されず、任意の適切な数のサンプルを扱うことが可能であることが理解される。
【0079】
始動するステップ200にて、サンプルスペクトルデータは、機器102内にロードされるサンプル溶液から収集され、理論的な発光波長データはデータリポジトリ(data repository)からロードされる。データリポジトリは、発光分光分析によって定量可能な周期表内の全ての元素のリスト(本明細書において、元素リストとも呼ばれる)、及び、元素リスト内の各元素についての理論的な発光波長データを提供する。理論的な発光波長データは、標準サンプルの測定値に基づいて及び/又は米国国立標準技術研究所(NIST:National Institute of Standards and Technology)によって公開された原子スペクトルデータベースからの標準データ等の標準データに基づいて手作業で編集することができる。特に、理論的な発光波長データは、元素リスト内の各元素についての標準発光波長及び各標準発光波長に関連する潜在的な干渉波長データを含む。始動するステップ200に関する更なる詳細は、図2a~図2cを参照して以下で更に詳細に説明される。
【0080】
クエリ(query)ステップ108にて、方法100は、元素探索プロセス(Element Search process)300が、分析下のサンプル溶液に関して元素リスト内の各元素について実行されたかをチェックする。実行された場合、方法106は、プロセス700を実行し始める。実行されなかった場合、方法106は、元素リスト内の次の元素についてプロセス300を実行し始める。
【0081】
まとめると、プロセス300は、サンプルスペクトルデータ内のスペクトルピークに対応する、スペクトル干渉がない可能性が高い分析物波長のリストを決定するために、サンプル溶液からのサンプルスペクトルデータに対して理論的な発光波長データを比較する。プロセス300は、その後、分析物波長のリストを所定の基準に対して評価することによって、1つ以上の元素がサンプル内に存在すると、或るレベルの確信度を持って更に判定する。プロセス300は、所定の基準に基づいてサンプル内に存在する可能性が高い元素のリスト、及び、それらの元素を識別するために使用される分析物波長のリスト(識別された元素及び分析物波長のリスト110)を生成する。プロセス300は元素リスト内の各元素に適用される反復プロセスである。プロセス300は、図3を参照して更に詳細に説明される。
【0082】
プロセス700にて、方法106は、任意の更なるスペクトル干渉を決定するために、識別された元素及び分析物波長のリスト110の妥当性を検証し再評価する。スペクトル干渉によって影響を受けると判定されるリスト110からの任意の分析物波長は、リスト110から除去される及び/又は低い確信度の等級を与えられる。プロセス700は、図9を参照して更に詳細に説明される。
【0083】
プロセスステップ800にて、方法106は、更に、識別された元素及び分析物波長のリスト110を評価し、ディスプレイデバイス104上に表示するために、リスト110内の各元素について最も適切な分析物波長を選択する。
【0084】
ステップ112にて、リスト110内の分析物波長のそれぞれについて、分析物波長に関連する正味のスペクトルピークの強度を決定するために、背景発光の補正が適用される。任意の標準ICP-OESの背景補正技法を使用することができる。例えば、その頑健性(robustness)によって、当てはめ式背景補正技法(Fitted Background Correction technique)を使用することができる。ステップ112にて、リスト110内の各分析物波長について、関連元素についての半定量的濃度が、濃度較正曲線に対する所定の強度を使用して計算される。任意の標準ICP-OES較正曲線を使用することができ、例えば、較正曲線は線形又は二次式とすることができる。
【0085】
例えば、図1bに示すように、方法106によって生成されるディスプレイ情報は、サンプル内で識別される元素ナトリウム(Na)に関連する分析物波長のリストを含む。Naについての589.892nmの第1の分析物波長116は、三つ星の確信度等級118、0.51mg/Lの計算された濃度、7874.7c/sの強度、及び36933.7c/sの背景発光を有する。
【0086】
図1bのグラフ126は、強度対波長のプロットであり、背景発光130についての推定に対して、Na分析物波長589.892nmについてサンプルスペクトルデータ内のスペクトルピーク128を示す。
【0087】
同様に、グラフ132及び134は、Na分析物波長588.995nm及び568.821nmにそれぞれ関連するサンプルスペクトルデータの部分を示す。
【0088】
ここで図1aを参照すると、プロセスステップ900にて、方法106は、1元素当たりの潜在的な外れ値の結果についてリスト110内の分析物波長の評価を行い、それぞれの分析物波長に関連する確信度の等級を調整する。プロセス900は、図11を参照して更に詳細に説明される。
【0089】
プロセスステップ1000にて、方法106は、表示するための最も適切な結果を識別するために、重み付け基準に基づいてリスト110内の分析物波長に対して重み付けを適用する。プロセス900は、図12を参照して更に詳細に説明される。
【0090】
方法106のサンプルデータ収集及びデータベースローディングステップ200に関連するサブプロセス202、212を示す図2a及び図2bをここで参照する。
【0091】
サブプロセス202中に、サンプルスペクトルデータは、機器102を使用して識別特性を評価されていないサンプル溶液から取得される。
【0092】
始動ステップ204にて、識別特性を評価されていないサンプル溶液は機器102内にロードされる。本明細書は単一サンプル溶液に関してプロセスを説明するが、機器が、典型的には、複数のサンプル溶液からスペクトルデータを順次取り出すように構成されることを当業者は理解するであろう。
【0093】
ステップ206にて、機器102は、識別特性を評価されていないサンプル溶液からスペクトルサンプルデータを取得する。スペクトルサンプルデータは、サンプルのスペクトルにわたる波長について測定強度を提供する。典型的には、サンプルスペクトルデータは、広い波長範囲と信号強さ範囲との両方をカバーする多くのデータ点からなるであろう。
【0094】
ステップ206からの出力208は、方法106で使用するために、システム100のデータリポジトリ210に保存され、本明細書においてサンプルスペクトルデータと呼ばれる。
【0095】
サブプロセス212中に、標準原子発光波長データは、方法106の実行中に使用するために、データリポジトリ218からロードされる。
【0096】
クエリステップ214にて、サブプロセス212は、標準原子発光波長データが元素リスト内の全ての元素について取り出されているかをチェックする。取り出されている場合、サブプロセス212は終了し、取り出されていない場合、サブプロセス212は、それぞれの残りの元素についてステップ216に進む。サブプロセス212は反復プロセスであり、以下で説明するステップは、全ての関連発光波長データが、元素リスト内の全ての元素についてロードされるまで、元素リスト内の各元素に適用される。
【0097】
ステップ216にて、サブプロセス212は、データリポジトリ218から、上位10個の一次元素発光波長を取り出し、その発光波長をリスト222内に記憶する。
【0098】
ステップ220にて、ステップ216にて取り出された各発光波長について、サブプロセス212は、データリポジトリ218から、発光波長に関連する潜在的な干渉発光波長のリストを取り出し、潜在的な干渉発光波長のリストをリスト222内にも記憶する。
【0099】
標準発光波長と干渉発光波長のリスト222は、ルックアップテーブル等の任意の適切な構造又は形態で生成することができ、ルックアップテーブルは、元素リスト内の各元素についての上位10個の発光波長のリスト及び各発光波長についての潜在的な干渉発光波長のセットを含む。
【0100】
図2cのディスプレイ情報は、データリポジトリ218から入手可能な情報を示す。例えば、マンガン(Mn)等の元素リスト内の元素について、259.372nmの2次発光波長224は、259.371nmのジルコニウム(Zr)226、259.371nmのモリブデン(Mo)228、259.373nmの鉄(Fe)230、259.376nmのニオブ(Nb)232等についての近傍発光波長からのスペクトル干渉に遭遇する場合がある。
【0101】
方法106の元素探索プロセス300は、ここで図3を参照して説明される。プロセス300は、サブプロセス212でロードされた標準発光波長及び干渉発光波長のリスト222からのデータを使用する。
【0102】
クエリステップ302にて、プロセス300は、スペクトルピーク及び干渉を識別する関連プロセスステップ400~500が、リスト222からの各発光波長に適用されたかをチェックする。適用された場合、プロセス300はステップ308に進む。適用されなった場合、プロセス300は、サンプルスペクトルデータ内でスペクトルピークを識別するサブプロセス400に進む。クエリステップ302は、リスト222内の全ての発光波長が処理されるまで、リスト222からの各発光波長を通して反復する。サブプロセス400は、図4図5a、及び図5dを参照して以下で更に詳細に説明される。
【0103】
クエリステップ304にて、サンプルスペクトルデータ内のそれぞれのスペクトルピークが、少なくとも一定のレベルの確信度を持って識別された場合、プロセス300は、クエリステップ306に進む。スペクトルピークが見出された場合、対応する発光波長は、本明細書において分析物波長(analyte wavelength)と呼ばれる。分析物波長のリストは、分析物波長のリスト310内で編集される。識別されなかった場合、プロセス300は、クエリステップ302に戻って、分析のためにリスト222内で次の発光波長の位置を特定する。
【0104】
クエリステップ306にて、プロセス300は、それぞれの分析物波長が、リスト222からのデータに基づいて、潜在的な干渉発光波長のセットに関連するかを判定する。関連する場合、プロセス300は、サブプロセス500に進んで、サンプルスペクトルデータ内で干渉発光波長についてスペクトルピークを識別する。関連しない場合、プロセスは、クエリステップ302に戻って、分析のためにリスト222内で次の発光波長の位置を特定する。サブプロセス500は、図6図7a、及び図7dを参照して以下で更に詳細に説明される。
【0105】
ステップ308にて、プロセスステッスプ400~500の結果として、スペクトル干渉によって影響を受ける可能性が高いスペクトルピークに関連すると識別された分析物波長はリスト310から除去される。その結果、リスト310は、スペクトル干渉によって影響を受ける可能性が高いと判定されたスペクトルピークに対応する分析物波長を除外するために改定される(本明細書において、分析物波長の改定リスト312と呼ばれる)。
【0106】
サブプロセス600にて、一組のルールが、分析物波長の改定リスト312に適用されて、1つ以上の元素がサンプル内に存在すると一定のレベルの確信度を持って判定する。サブプロセス600は、図8を参照して以下で更に詳細に説明される。改定リスト312は複数のサブリストを含むことができる。各サブリストは、特定の元素に関連する分析物波長のリストを含む。
【0107】
リスト310を編集するために各分析物波長についてスペクトルピークを識別するサブプロセス400は、ここで、図4を参照して説明される。
【0108】
ステップ402にて、データリポジトリ210からのサンプルスペクトルデータは、分析のために使用される。サブプロセス400は、それぞれの分析物波長に対応するサンプルスペクトルデータの関連領域を決定し、その関連領域をそれぞれの分析物波長についての関心領域として設定する。
【0109】
ステップ404にて、サブプロセス400は、それぞれの分析物波長について関連山頂部分を位置特定するために関心領域内で制約付き探索(constrainded search)を行う。探索は、近傍スペクトルピークに関連する不正確な頂上部分を不正確に位置特定することを防止するために制約付きである。
【0110】
クエリステップ406にて、サブプロセス400は、実質的にフラットな部分がスペクトルピークの上端に存在するかを判定することによって、飽和強度の結果が関心領域内に位置特定されるかを判定する。飽和結果は、機器102の測定可能範囲を超える強度測定を含む。実質的にフラットな部分が位置特定される場合、サブプロセス400はステップ408に進み、位置特定されない場合、サブプロセス400は412に進む。
【0111】
ステップ408にて、サブプロセス400は、実質的にフラットな部分を有する位置特定されたピークが、それぞれの分析物波長についてフラットトップピークに似ているかを評価する(例えば、図5B参照)。
【0112】
クエリステップ410にて、フラットトップピークがステップ408にて位置特定される場合、サブプロセス400はステップ416に進む。位置特定されない場合、それぞれの分析物波長についてのサブプロセス400は終了し、分析物波長に対応するスペクトルピークが位置特定されなかったことを示す出力は、プロセス300のステップ304への入力のために提供される。
【0113】
ステップ416にて、サブプロセス400は、分析物波長に関連するスペクトルピークが見出されたと判定する。しかしながら、フラットトップスペクトルピーク及び飽和強度の結果を正確に決定する困難さのせいで、分析物波長に対応するスペクトルピークが識別されたという確信度のレベルを示す確信度の等級は低いスコアを与えられる。分析物波長に対応するスペクトルピークが位置特定されたことを示す出力は、プロセス300のステップ304への入力のために提供される。
【0114】
ステップ412にて、サブプロセス400は、通常スペクトルピーク(飽和結果又はフラットトップピークではない)についてサンプルスペクトルデータ内の関心領域を評価する。2つ以上のスペクトルピークが関心領域内に存在することが可能である。
【0115】
ステップ414にて、サブプロセス400は、ステップ420にて背景の標準偏差を計算するために、ステップ404にて位置特定された頂上部分に基づいて適切なローカル背景位置を決定する。
【0116】
クエリステップ418にて、スペクトルピークが、関連する山頂部分(relevant summit position)に存在すると、ステップ414が判定する場合、サブプロセス400はステップ420に進む。存在しない場合、サブプロセス400は終了する。それぞれの分析物波長に対応するスペクトルピークが位置特定されたことを示す出力は、プロセス300のステップ304への入力のために提供される。
【0117】
ステップ420にて、ローカルな背景測定のための制約付き探索が、スペクトルピークのアペックス位置(spectral peak apex position)の近くで実施される。背景点の補間は、スペクトルピークのアペックス位置における正味ピーク強度が決定されることを可能にする。標準偏差(SD:Standard Deviation)は、スペクトルピークに対するローカルな背景測定について計算される。最大のSDを有するローカルな背景が選択される。
【0118】
ステップ422にて、妥当な背景SD(background SD)を用いて、信号対雑音比に基づく確信度ファクタがスペクトルピークに割り当てられ、次の通りに計算される。
確信度ファクタ=正味ピーク強度 / ((背景SD)×BG閾値)
ここで、BG閾値(BGthreshold)は、典型的には1~10の範囲内のスカラ量である。
それぞれの分析物波長に対応するスペクトルピークは、確信度ファクタが閾値試験にパスする場合に検出されると考えられ、例えば、
確信度ファクタ > C閾値
である。ここで、C閾値(Cthreshold)は、典型的には1~10の範囲内のスカラ量である。
【0119】
妥当な背景SDが存在しない場合、ピークアペックス位置における補間した背景値に置き換えられ、信号対雑音比ではなく信号対背景比が計算される。
【0120】
上記サブプロセス400は、スペクトルピーク検出の1つの例示的な方法を参照して説明されるが、任意の適切なピーク検出アルゴリズムを実装することができることが理解される。いくつかの適切な例示的なピーク検出アルゴリズムは、ウィンドウ閾値法(window threshold method)、微分分析(derivative analysis)、及びウェーブレット変換(wavelet transforms)を含むことができるが、それに限定されない。
【0121】
ステップ422の終了時に、それぞれの分析物波長に対応するスペクトルピークが位置特定されたことを示す出力は、プロセス300のステップ304への入力のために提供される。
【0122】
図5a及び図5bのディスプレイ情報は、リチウム(Li)について分析物波長に関連するフラットトップスペクトルピークの例を提供する。図5aに示すように、サンプル1内の元素Liについての強度は2.4E+0mg/L(424)である。図5bは、Liについての分析物波長670.783nmが、670.783nmの分析物波長に最も近い670.774nmにおけるフラットトップスペクトルピーク426の識別によって、一つ星等級(低い確信度ファクタを反映する)を与えられることを示す。
【0123】
図5c及び図5dのディスプレイ情報は、リチウム(Li)について分析物波長に関連する通常スペクトルピークの例を提供する。図5cに示すように、サンプル7内の元素Liについての強度428は6.78mg/Lである。図5dは、Liについての分析物波長670.783nmが、670.783nmの分析物波長に最も近い670.774nmにおける通常スペクトルピーク430の識別によって、五つ星等級(高い確信度ファクタを反映する)を与えられることを示す。
【0124】
元素探索プロセス300のクエリステップ306において識別された各潜在的な干渉発光波長についてスペクトルピークを識別するサブプロセス500は、ここで図6を参照して説明される。
【0125】
クエリステップ502は、クエリステップ306において識別された全ての潜在的な干渉発光波長がサブプロセス500によって評価されたかを判定する。評価された場合、サブプロセス500は終了する。評価されなかった場合、サブプロセス500は、評価のために次の潜在的な干渉発光波長を取得し、ステップ504に進む。
【0126】
ステップ504にて、標準発光波長及び干渉発光波長のリスト222に基づいて、サブプロセス500は、それぞれの干渉発光波長に対応する、関連する干渉元素の存在を判定するために、クリーンな干渉発光波長を選択する。典型的には、サブプロセス500は、容認可能な確信度を有する結果をもたらす可能性が高いリスト222に基づいて、対応する干渉元素に関連する発光波長のリストから最も適切な干渉発光波長の位置を特定しようと試みる。例えば、サブプロセス500は、干渉発光波長とのスペクトル干渉を引き起こす可能性がある近傍発光波長から十分に分離した干渉発光波長をスペクトル上で選択することができる。さらに、選択されたクリーンな干渉発光波長は、サンプルスペクトルデータ内の飽和強度結果に関連しない。したがって、サブプロセス500は、クリーンな干渉発光波長であって、スペクトル干渉自身を受ける可能性が小さくかつ容認可能な(acceptable)結果をもたらすことができる可能性が高い、クリーンな干渉発光波長の位置を特定しようと試みる。
【0127】
サブプロセスステップ400にて、図4を参照して上記で説明した同じスペクトルピーク識別法が使用されて、選択されたクリーンな干渉発光波長が同じスペクトルデータ内のスペクトルピークに対応するかを判定する。
【0128】
クエリステップ506にて、スペクトルピークがクリーンな干渉発光波長に対応しないとサブプロセス400が判定する場合、サブプロセス500は、クリーンな干渉発光波長に対応する干渉元素がサンプル内に存在しないと判定し、クエリステップ502に戻り、次の干渉発光波長が分析のために取得される。スペクトルピークがクリーンな干渉発光波長に対応するとサブプロセス400が判定する場合、サブプロセス500は、クリーンな干渉発光波長に対応する干渉元素がサンプル内に存在すると判定し、サブプロセス500はクエリステップ508に進む。
【0129】
クエリステップ508にて、サブプロセス500は、検出された干渉元素が、サブプロセス400で計算された確信度ファクタに基づいて有意であるかを判定する。典型的には、識別された干渉元素が、1~50の範囲内の所定の閾値よりも大きい確信度ファクタに関連する場合、サブプロセス500は、干渉元素が有意であると判定し、ステップ510に進む。関連しない場合、サブプロセス500は、干渉元素が有意でないと判定し、クエリステップ502に戻って、次の入手可能な干渉発光波長を取り出す。
【0130】
ステップ510にて、分析物波長についてのスペクトルピークとその関連する干渉発光波長との間の距離が決定される。検出された干渉元素及びその関連する分析物元素についての測定強度及び相対強度も決定される。測定強度は、干渉対分析物比(IAR(interference to analyte ratio)又は(PSi/PSa))を計算するために使用され、相対強度は、相対強度干渉対分析物比(RIR(relative intensity interference to analyte ratio)又は(RIi/Ria))を計算するために使用される。
【0131】
クエリステップ512にて、サブプロセス500は、潜在的な干渉発光波長が、以下の3つの閾値試験に基づいて、可能性の高い干渉波長として判定され、可能性の高い干渉発光波長のリスト516に付加されるべきかを判定する。
ピーク分離 < S閾値 (1)
(PSi/PSa) > P閾値 (2)
(RIi/Ria) > R閾値 (3)
ここで、
S閾値(Sthreshold)は、分析物波長に対応するスペクトルピーク(分析物ピーク)のアペックスと関連する干渉発光波長に対応するスペクトルピーク(干渉ピーク)のアペックスとの間の最大分離(典型的には、1.0~20.0の範囲内)であり、
P閾値(Pthreshold)は、測定された干渉ピーク信号と測定された分析物ピーク信号との比についての最小値(通常、0.1~10.0の範囲内)であり、
R閾値(Rthreshold)は、干渉相対強度と分析物相対強度との比についての最小値(通常、1.0~20.0の範囲内)である。
【0132】
閾値試験(1)は、干渉ピークと分析物ピークとの間の距離が1~20の範囲内の閾値よりも小さいかを判定する。閾値試験(2)は、IARが0.1~10.0の範囲内の閾値よりも大きいかを判定する。閾値試験(3)は、RIRが1.0~20.0の範囲内の閾値よりも大きいかを判定する。
【0133】
上記閾値試験のいずれかが真である場合、サブプロセスはステップ514に進み、潜在的な干渉発光波長は、可能性の高い干渉波長であると判定され、リスト516に付加される。真でない場合、サブプロセス512はクエリステップ502に戻って、次の入手可能な干渉発光波長を取り出す。
【0134】
例として、図7a及び図7bは、サンプル5(518、図7a)を分析するためにコンピュータ実施された方法106を使用した後に、干渉元素であるクロム(Cr)が近傍発光波長222.823nm(520、図7b)で検出されたという非常に高い確信度によって、分析物元素であるビスマス(Bi)が発光波長222.821nmで検出されたという非常に低い確信度が存在することが識別されたことを示す。少なくとも2つのスペクトルピークが近接して波長222.821nmの近くに存在することが、図7bにおいて領域522に示すスペクトルにも示される。
【0135】
同様に、図7c及び図7dは、サンプル10(524、図7c)を分析するためにコンピュータ実施された方法106を使用した後に、干渉元素である銅(Cu)が近傍発光波長213.598nm(526、図7d)で検出されたという非常に高い確信度によって、分析物元素であるリン(P)が発光波長213.618nmで検出されたという非常に低い確信度が存在することが識別されたことを示す。飽和結果が波長223.619nmの近くに存在することが、図7dにおいて領域528に示すスペクトルにも示される。
【0136】
1つ以上の分析物元素がサンプル内で識別されると、或るレベルの確信度を持って判定するサブプロセス600は、ここで図8を参照して説明される。サブプロセス600は、元素リスト内の各元素について反復的に実行されて、一組の所定の基準に基づいて改定リスト312内の識別された分析物波長に基づいて、元素を、サンプル内で見出されたものとすることができるかを判定する。
【0137】
クエリステップ602にて、サブプロセス600は、上位10個の1次発光波長の中からの最小個数の分析物波長が、元素リスト内の各元素について、分析物波長の改定リスト312内で識別されるかを判定する。一実施形態において、サブプロセス600は、3つ以上の発光波長を有する元素の場合、最小個数2の分析物波長が、1つの発光波長を有する元素の場合、最小個数1の分析物波長が存在するかを判定する。典型的には、分析物波長は、それらの関連する確信度ファクタに応じてランク付けされる。存在する場合、サブプロセス600はクエリステップ604に進む。存在しない場合、サブプロセス600はクエリステップ622に進む。
【0138】
クエリステップ604にて、サブプロセス600は、上位3個の1次発光波長の中からの最小個数の分析物波長が、元素リスト内の各元素について、分析物波長の改定リスト312内で識別されるかを判定する。一実施形態において、サブプロセス600は、3つ以上の発光波長を有する元素の場合、最小個数2の分析物波長が、1つの発光波長を有する元素の場合、最小個数1の分析物波長が存在するかを判定する。典型的には、分析物波長は、それらの関連する確信度ファクタに応じてランク付けされる。存在する場合、サブプロセス600はクエリステップ606に進む。存在しない場合、サブプロセス600はクエリステップ612に進む。
【0139】
クエリステップ606にて、見出された最小個数の分析物波長が、任意のスペクトル干渉に関連する可能性が低い場合、サブプロセス600はステップ608に進む。そうでなければ、サブプロセス600は、現在評価されている分析物元素について終了し、サブプロセス600は、元素リスト内の次の元素について反復的に実行される。
【0140】
ステップ608にて、現在評価されている分析物元素が、見出されたものとされる。識別された元素及びその関連する分析物波長は、識別された元素及び分析物波長のリスト110に付加される。
【0141】
クエリステップ612にて、サブプロセス600は、現在の分析物元素についての分析物波長のうちの少なくとも1つが、スペクトル干渉によって影響を受けない強い(例えば、10よりも大きい確信度ファクタを有する)1次波長であり、かつ、現在の分析物元素についての分析物波長のうちの少なくとも1つが、上位10個の1次波長からのスペクトル干渉によって影響を受けない低次(例えば、1~3の確信度ファクタを有する)分析物波長であるかを判定する。本質的に、クエリステップ612にて、サブプロセス600は、各元素について、少なくとも1つの強い1次分析物波長及び支持する弱い分析物波長が存在するかを判定する。存在する場合、サブプロセス600は、ステップ608に進み、現在の分析物元素は、見出されたものとされ、関連する分析物波長と共にリスト110に付加される。存在しない場合、サブプロセス600は、クエリステップ614に進む。
【0142】
ステップ614にて、サブプロセス600は、上位10個の1次波長からの低次分析物波長が、改定リスト312内の評価された元素について、見出されたかをチェックする。見出された場合、サブプロセス600は、クエリステップ616に進む。見出されなかった場合、サブプロセス600は、現在評価されている分析物元素について終了し、サブプロセス600は、元素リスト内の次の元素について反復的に実行される。
【0143】
クエリステップ616にて、見出された全ての低次分析物波長がスペクトル干渉を受ける場合、サブプロセス600は、ステップ620に進む。干渉を受けない場合、サブプロセス600は、ステップ618に進む。
【0144】
ステップ618にて、サブプロセス600は、見出された低次分析物波長の一部が、スペクトル干渉なしであるか又は比較的弱いスペクトル干渉を有するかをチェックする。そうである場合、サブプロセス600は、ステップ608に進み、それぞれの分析物元素は、低次分析物波長に関して見出されたものとされる。元素及び関連する分析物波長はその後、リスト110に付加される。そうでない場合、サブプロセス600は、現在評価されている分析物元素について終了し、サブプロセス600は、元素リスト内の次の元素について反復的に実行される。
【0145】
ステップ620にて、サブプロセス600は、見出された1次分析物波長がそれぞれ、強い信号を有するかを判定する。有する場合、サブプロセス600は、ステップ608に進み、それぞれの分析物元素は、低次分析物波長に関して見出されたものとされる。元素及び関連する分析物波長はその後、リスト110に付加される。有しない場合、サブプロセス600は、現在評価されている分析物元素について終了し、サブプロセス600は、元素リスト内の次の元素について反復的に実行される。
【0146】
クエリステップ622にて、サブプロセス600は、任意の強い(例えば、10よりも大きい確信度ファクタ)分析物波長が、現在の分析物元素についての上位10個の1次波長から見出されたかを判定する。見出された場合、サブプロセス600は、クエリステップ624に進む。見出されなかった場合、サブプロセス600は、現在評価されている分析物元素について終了し、サブプロセス600は、元素リスト内の次の元素について反復的に実行される。
【0147】
ステップ624にて、サブプロセス600は、任意の弱い(例えば、1~3の確信度ファクタ)分析物波長が、現在の分析物元素について上位10個の1次波長から見出されたかを判定する。見出された場合、サブプロセス600は、クエリステップ626に進む。見出されなかった場合、サブプロセス600は、ステップ608に進み、元素は、クエリステップ622で識別された強い1次分析物波長に関して見出されたものとされる。元素及び関連する分析物波長はその後、リスト110に付加される。
【0148】
ステップ626にて、弱い分析物波長(及びステップ622からの強い1次分析物波長)は、分析物元素に関して見出されたものとされる。元素及び関連する分析物波長はその後、リスト110に付加される。
【0149】
プロセス700は、リスト110内の元素のそれぞれに関連する分析物波長のうちの任意の分析物波長が、それでもスペクトル干渉を受けるかを再評価し妥当性検証する。プロセス700は、したがって、スペクトル干渉を受ける可能性が高いリスト110から任意の元素を除去するために、リスト110内の元素について分析物波長のそれぞれを再評価する微調整ステップである。
【0150】
クエリステップ702にて、リスト110内の各元素について、プロセス700は、プロセスステップ704~714による再評価のために任意の更なる対応する分析物波長が存在するかを判定する。存在する場合、プロセス700はステップ704に進む。存在しない場合、プロセス700はサブプロセス600に進む。
【0151】
クエリステップ704にて、プロセス700は、現在の分析物波長に対応する全ての潜在的な干渉発光波長を通して反復し、クエリステップ706が考慮するために次の入手可能な潜在的な干渉発光波長を選択する。更なる入手可能な干渉発光波長が残っていない場合、プロセス700はクエリステップ702に戻る。更なる入手可能な干渉発光波長が残っている場合、プロセス700は、次の入手可能な干渉発光波長に関するクエリステップ706に進む。
【0152】
クエリステップ706にて、プロセス700は、現在の干渉発光波長がリスト110内の対応する元素を有するかを判定する。有する場合、プロセス700は708に進む。有しない場合、プロセス700は、クエリステップ704に戻って、次の入手可能な干渉波長を取り出す。
【0153】
クエリステップ708にて、干渉発光波長が、それぞれの分析物波長に関連すると以前に識別された場合、プロセス700は、クエリステップ702に戻って、リスト110内の現在の元素に関連する次の分析物波長を取り出す。干渉発光波長が、それぞれの分析物波長に関連すると以前に識別されなかった場合、プロセス700は、ステップ710に進んで、干渉の影響を決定する。
【0154】
ステップ710にて、近接性スカラ量が、干渉の有意性を判定するために計算される。典型的には、1.0から分析物波長と干渉波長との間の波長ギャップ(nm単位)を引くという計算を使用することができる。分析物波長と対応する干渉発光波長との間の距離に基づく他の適切な計算を使用することもできる。さらに、分析物波長のピーク強度と最高確信度元素の干渉波長のピーク強度の相対強度比が計算される。
【0155】
クエリステップ712にて、プロセス700は、近接性スカラ量が閾値(典型的には、0.2~1.0の範囲内)を超えたか、かつ、スケーリングされた強度及び相対強度が所与の閾値(典型的には、0.05~0.9の範囲内)よりも大きいかを判定する。そうである場合、プロセス700はステップ714に進む。そうでない場合、プロセス700は、クエリステップ702に戻って、次の入手可能な干渉波長を取り出す。
【0156】
クエリステップ714にて、プロセス700は、ステップ712で評価された干渉波長を用いて、可能性の高い干渉発光波長のリスト516を更新する。
【0157】
サブプロセス600にて、リスト110内の各元素について、識別された元素についての全ての対応する分析物波長がステップ704~714によって処理されると、サブプロセス600は、可能性の高い干渉発光波長の更新リスト516に基づいて再実行される。
【0158】
クエリステップ718にて、サブプロセス600の再実行は、現在のリスト110内の各元素が、容認可能なレベルの確信度を持ってサンプル内に存在するかを判定する。現在の元素が、容認可能なレベルの確信度を持ってサンプル内に存在しないと判定される場合、プロセス700は終了する。そうでなければ、プロセス700はステップ720に進む。典型的には、サブプロセス600は、元素に関連する分析物波長が容認可能なレベルの確信度を持って存在するかを判定する。その後、関連する元素がサンプル内に存在するかについての推測を、分析物波長について決定された確信度のレベルに基づいて行うことができる。
【0159】
ステップ720にて、プロセス700は、リスト110から、現在の元素及び関連する分析物波長を除去する。
【0160】
リスト110からの分析物波長を評価し、容認された分析物波長のリスト(最終的には、ディスプレイデバイス104によって表示するための)を生成するプロセス800は、ここで、図10を参照して説明される。典型的には、選択は、例えば、以下の、
・分析物波長が飽和結果に関連するか、
・分析物波長がスペクトル干渉に関連するか、
・それぞれの対応する元素について表示する最大個数の分析物波長、
・分析物波長がユーザ選択に関連するか、
のうちの任意の1つ以上を含む、所定の基準に基づいて行われる。
【0161】
クエリステップ802にて、プロセス800は、リスト110内の全ての元素がステップ804~812に基づいて評価されたかを判定する。評価された場合、プロセス800は終了する。評価されなかった場合、プロセス800はクエリステップ804に進む。
【0162】
クエリステップ804にて、プロセス800は、リスト110内の各元素について、元素が、スペクトル干渉がない分析物波長について少なくとも1つの飽和強度測定値に関連するかを判定する。関連する場合、プロセス800はステップ806に進む。関連しない場合、プロセス800はステップ808に進む。
【0163】
ステップ806にて、プロセス800は、容認された分析物波長のリスト内で最高確信度を有する最大2個の飽和分析物の波長測定値を選択的に含む。
【0164】
ステップ808にて、プロセス800は、容認された分析物波長のリストに対して、リスト110からの元素に関連する非飽和分析物波長を選択的に含む。
【0165】
クエリステップ810にて、プロセス800は、ユーザが選択した任意の波長が、容認された分析物波長のリストに既に含まれていたかを判定する。含まれている場合、プロセス800はクエリステップ802に戻り、処理するために、リスト110から次の元素を取り出す。含まれていない場合、プロセス800は、容認された分析物波長のリストに対して、ユーザが選択した分析物波長を選択的に含む。典型的には、この場合、ユーザが選択した分析物波長は、以前に実行されたプロセスにおいて、関連する分析物元素に関して見出されたものとされると判定されなかった。しかしながら、ユーザが選択した分析物波長に関連する結果は、容認された分析物波長のリスト内で依然として表示することができる。
【0166】
通常、非文書化干渉の結果である任意の大雑把な外れ値を識別するために、任意の外れ値の結果について、容認された分析物波長のリスト内の分析物の波長(すなわち、標準発光波長及び干渉発光波長のリスト222内にない発光波長)をチェックするプロセス900が、ここで、図11を参照して説明される。
【0167】
ステップ902にて、容認された分析物波長のリスト内の分析物波長は、サンプル内の関連する分析物元素の測定濃度に基づいて順序付けされる。各分析物元素の濃度は、強度濃度曲線に基づいて決定される。
【0168】
クエリステップ904にて、各元素について3つ以上の分析物波長の結果が存在する場合、プロセス900はステップ906に進む。存在しない場合、プロセス900はステップ910に進む。
【0169】
ステップ906にて、四分位範囲(interquartile range)の計算が分析物波長に適用される。他の例において、1つ以上の異なる計算、例えば、Zスコア、修正Zスコア、対数正規分布(Lognormal Distribution)等を適用することができる。
【0170】
ステップ908にて、外れ値の結果に対応する各分析物波長について、分析物波長に関連する確信度ファクタが低減される。分析物波長は同様に、外れ値とされる。
【0171】
ステップ910にて、全ての分析物波長は、容認された分析物波長のリスト内に保持されるために選択される。
【0172】
ディスプレイデバイス104上で表示するために最良の分析物波長を選択し順序付けするプロセス1000は、ここで、図12を参照して説明される。プロセス1000において、閾値試験が、外れ値のチェックプロセス900からの容認された分析物波長結果に適用される。閾値試験を満足させるために、分析物波長の結果は、飽和結果に対応してはならず、また、容認可能な較正曲線を有しなければならない。
【0173】
容認可能な較正曲線を決定するメトリック(metric)は、最小二乗適合度相関係数(least square goodness of fit correlation coefficient)及びパーセンテージ相対標準誤差(RSE:relative standard error)を含むことができるが、それに限定されない。この較正曲線メトリックは、適切な所定の閾値に対して試験されることになる。分析物波長結果が試験を満足させなかった場合、較正された分析物波長結果を含むために、より緩い試験(relaxed test)が使用される。分析物波長結果が較正されない場合、全ての容認された分析物波長結果が使用される。最後に、所与の閾値試験に受かる分析物波長結果は、適切な重み付けに基づいて順序付けされる。
【0174】
重み付けファクタ計算の例は、限定はしないが、
・確信度ファクタを分析物波長の相対強度の平方根で掛けた値、
・分析物波長の確信度ファクタ、
・確信度ファクタを分析物波長の1次の次数(primary order number of)の平方根で割った値、
を含むことができる。
【0175】
最大重み付けを有する分析物波長結果は、元素についての半定量的(semi-quantitive)濃度を報告するために選択される。
【0176】
ステップ1002にて、上記で論じた閾値試験が適用される。特に、プロセス1000は、分析物波長結果が飽和結果に対応するか、及び、分析物波長が、(例えば、30%よりも小さい相対標準誤差を有する)容認可能な較正曲線を有するかを判定する。
【0177】
クエリステップ1004にて、分析物波長が閾値試験を満足させる(例えば、飽和結果に関連せずかつ容認可能な較正曲線を有する)場合、プロセス1000はステップ1006に進む。満足させない場合、プロセス1000はステップ1008に進む。
【0178】
ステップ1006にて、分析物波長は、上記で論じた重み付けファクタ計算に基づいて順序付けされる。最大重み付けを有する分析物波長は、対応する分析物元素についての関連する濃度結果と共にディスプレイデバイス104上に表示するために選択される。
【0179】
ステップ1008にて、較正された分析物波長の試験(ステップ1002の閾値試験よりも下位の閾値試験)が適用される。例えば、較正曲線に対するブーリアンチェック(Boolean check:ブール代数検査)が、最小数の標準が満足されるかをチェックするために実施される。較正曲線は、容認可能な相関係数を含むこともできる。
【0180】
クエリステップ1010にて、較正された分析物結果が、ステップ1008の試験に基づいて存在する場合、プロセス1000はステップ1006に進む。存在しない場合、プロセス1000はステップ1012に進む。
【0181】
ステップ1012にて、容認された分析物波長のリスト内の全ての分析物波長が、ステップ1006の重み付けファクタ計算のために選択される。
【0182】
図13は、ディスプレイデバイス104によって表示するための、容認された分析物波長のリストからの結果1014のグラフィカル表現を示す。特に、図13は、サンプル4についてのサンプルスペクトルデータ1016を示す。システム100が、スペクトル1020の詳細ビューのためにスペクトルのセクション1018の選択を可能にし、スペクトル1012上での対応する場所における、容認された分析物波長のリストからの1つ以上の分析物波長及び関連する分析物元素のラベル付けを提供することが更に示される。
【0183】
実際には、ICP-OES技法は、任意の所与のサンプル溶液内の最大70個の異なる元素について定量化するために使用することができ、異なるサンプルは、これらの元素の変動性の高い組み合わせ及び濃度を含む場合がある。本発明の実施形態における自動化元素識別機能(automated element identification functionality)は、溶液の内容物についての知識が全くないユーザが、この溶液内に存在する元素成分を迅速に識別することを可能にする。これは、普通でない又は予期しないサンプル内容物が識別されることを可能にし、それらのサンプル内容物は、元素識別に対する手作業のアプローチ(manual approach)が採用される場合に、見落とされる場合がある。
【0184】
さらに、元素についてのICP-OES発光線(emission lines)は、しばしば、スペクトル干渉を受け、そのスペクトル干渉は、分析物波長が、別の元素又は分子からの発光によって部分的に又は完全にオーバーラップされるか又は非構造化背景放射によって違ったふうに影響を受けるときに起こる。スペクトル干渉の存在及び大きさは、同じ方法においてさえもサンプル依存性が高く、スペクトル干渉によって影響を受けた分析物波長の見え方は、干渉がない分析物波長とわずかに異なるだけである可能性がある。干渉物質による発光が分析物波長の発光からわずかに分離されるだけである場合、干渉が存在すると視覚的に識別することは可能でない場合がある。
【0185】
本発明の実施形態の干渉回避機能は、測定される各溶液についてのスペクトルデータの複数の成分を、ICP-OESが定量化することができる全ての元素についての既知の波長の場所と相互参照する。これは、これらの干渉物質波長と分析物波長との間にスペクトルの完全なオーバーラップがある場合でも、所与の分析物波長上に干渉が存在するインスタンス(instance:事例)の高速かつ自動化識別を可能にする。これは、干渉のインスタンスを識別するために、オペレータが、スペクトルの潜在的なオーバーラップ又は溶液の内容物の知識を有する必要性を排除する。
【0186】
本発明の例示的な実施形態によるシステム及び方法の例示的な適用は、ここで、以下で説明される。
【0187】
[実施例1:ICP-OESのための迅速サンプル評価及び支援された方法開発]
ICP-OES分析において、スペクトル干渉及び不正確なサンプル調製は、誤った結果の最も一般的な原因のうちの2つである。スペクトル干渉は、サンプルごとに著しく変動する可能性があり、鉄(Fe)又はチタン(Ti)等の高濃度のスペクトルリッチ(spectrally-rich)な元素を含むサンプルにおいて特に広く認められる。これらの干渉は、特に、経験の浅いオペレータによって見過ごされる可能性があり、干渉によって影響を受ける元素について異常に高い濃度として報告される結果としてしばしば現れる。サンプル調製エラー(sample preparation errors)は、検出するのが同様に難しい可能性があり、また、結果に影響を及ぼすことになり、その影響は、特定のエラー及び使用される調製方法(preparation method)に依存する。
【0188】
ICP-OESのための本発明の実施形態によるシステムと方法は、全てのサンプルについて全スペクトルデータを収集し解釈し、各分析に数秒だけ加える。解釈の背後にあるアルゴリズムは、ユーザから要求される入力がない状態で、各サンプルの元素成分及び一般的な分析物波長上でのスペクトル干渉の存在を自動的に識別する。以下の実験結果は、ヒ素(As)に対するランタン(La)干渉、マンガン(Mn)に対する鉄(Fe)干渉、及びバナジウム(V)に対するチタン(Ti)干渉を含む、標準的な方法HJ781-2016によって調製された固形廃棄物サンプルにおけるいくつかの測定に影響を及ぼす有意のスペクトル干渉(図14参照)を識別するときの方法及びシステムの使用を実証する。それぞれの場合に、干渉及び疑わしい原因は、ソフトウェアユーザインタフェースにおいて明確にかつ自動的にフラグ付けされ、分析物元素の各波長において分析物ピークの品質を表すために曖昧でない等級付けシステム(rating system)を使用する。意図的に困難なサンプル行列をこれらの実験のために選択し、最も雑音の多いスペクトルの場合でさえも、スペクトル干渉識別技法の頑健性が成功裏に実証された。
【0189】
本発明の実施形態によって提供される干渉情報は、ユーザの側での方法開発又は元素選択についての必要性なしに、迅速にかつ容易に取得することができる。いくつかの実施形態において、方法106は、各サンプル内でサンプルごとに検出する全ての元素についての結果を自動的に報告する。この情報を取得するために方法開発が必要とされないだけでなく、情報自身は、ユーザのサンプル内に存在する場合がある干渉をユーザに警告し、検出された各元素についての他の波長の品質に関して明確な推奨を与えることによって、後続の方法開発における価値ある第1のステップを提供することができる。干渉物質情報は、干渉補正技法の選択を支援するために使用することさえでき、これらの補正が適切に適用され、測定されるサンプル内に本当に存在する干渉物質を補償することを保証するのに役立つ。
【0190】
いくつかの実施形態において、一般的なサンプル調製エラー(酸分解に対する塩酸の不十分な添加)の識別が可能であることが示され、コア機能に対するアドオンは高スループットスクリーニング適用を目的とする。サンプル内の塩素(Cl)の半定量化は、好都合で、リアルタイムで、条件付きのフォーマッティング及びフィルタリングツールと共に異常に低い塩素含有量を有するサンプルの即座の識別を可能にする(図15参照)。有利には、ユーザインタフェースは、経験の浅い機器オペレータでも、このサンプルの洞察を迅速にかつ容易に取得することができることを保証することができる。
【0191】
ユーザインタフェースは、測定される各溶液の内容物を可視化するために好都合な一連のグラフィカルツールを提供することができる。いくつかの実施形態において、作り付けのカラーコード化周期表ヒートマップグラフィクス(inbuilt colour-coded periodic table heatmap graphics)(図16a及び図16b参照)を使用して、ユーザが自分のサンプルの内容物を瞬時に認識することを可能にする。典型的には、各元素についてのカラーコード化は、カスタマイズ可能であり、かつ、各サンプル内で検出される元素の濃度に関連し、ユーザが、サンプル間の容易な元素含有量の定性的比較を行うことを可能にする(図15にも示される)。いくつかの実施形態において、可視化を、サンプル報告事後分析にエキスポートする又は包含することができる。
【0192】
有利には、コンピュータ実施される方法106は、モジュール式であり、かつ、機器102とインタフェースするために他のソフトウェアモジュールと互換性があるものとすることができる。本発明の実施形態は、分光分析の知識を必要とせずかつ最小限のセットアップ(setup:設定)のみを必要としながら、ユーザのサンプルの内容物へのハイレベルの洞察をユーザに提供する。実際には、サンプルの元素組成及び上記段落で説明した全ての情報は、15秒で取得することができる(適切なサンプル取り込み及び立ち上がり遅延を包含する)。60個のサンプルの全ラックのスクリーニングを、たった15分で実施することができる。
【0193】
[実施例2:DTPA抽出土壌サンプルについての合理化した方法開発]
土壌サンプルが中国HJ-804法による分析のために調製された。8つの生物学的に利用可能な元素が、AVS 6弁システム及びSPS 4オートサンプラを装備したアジレント5800 VDV ICP-OESを使用して、DTPA抽出土壌サンプルにおいて測定された。
【0194】
サンプルスクリーニングが、本発明の実施形態に従って行われ、方法開発を支援するために使用され、その結果、高品質な結果がもたらされ、サンプル再測定は必要とされなかった。本発明の実施形態によって提供される報告ツールは、半定量的分析を容易にするために定量的なワークシートを生成し、定量的データを補完するためにサンプルの洞察を提供した。
【0195】
方法開発は、退屈で時間がかかる可能性がある。不十分に開発された方法は、不正確なデータが報告されること、及び、費用がかかる再測定につながる可能性がある。本発明の1つの例示的な実施形態による方法開発は、以下の3つのステップを含むことができる。
【0196】
[ステップ1:サンプルを実行する]
方法106によるサンプルスクリーニングは、セットアップするのが迅速かつ容易である。いずれの元素又は波長を選択する必要はない。スクリーニングは、ほぼ15秒で全波長範囲からデータを取り込み、自動元素発見アルゴリズムは、オペレータのために元素及び波長を選択する。
【0197】
[ステップ2:定量的方法に推奨波長を追加する]
スクリーニングは、サンプルのそれぞれにおいて検出された全ての元素について推奨波長のリストを提案する。
【0198】
このアプリケーションの場合、スクリーニングプロセスによって選択された全ての波長は、HJ-804によって調節された方法においても提案され、方法106のアルゴリズムの信頼性を示した。
【0199】
Mnを例として使用して(図17参照)、方法106によるスクリーニングは、五つ星の確信度等級を有する複数の波長を識別し、これらの波長が、定量的な方法に適する可能性が高いことを示した。
【0200】
図17に示す出力は、Mn257.610を、分析物ピークの品質及び干渉がないことに基づいて、最高等級の分析物波長として推奨した。HJ-804法は、Mn257.610、及び同様に、高確信度等級に関連する出力分析物波長に対応するMn293.305を推奨した。
【0201】
星が少ない等級波長の隣のクエスチョンマークは、2つの1次Mn線に関する問題を示す。Mn259.372線についてのポップアップボックスは、強いFe干渉による結果における非常に弱い確信度を述べる。Mn294.921線は、方法106が示すように、Fe干渉によって同様に影響を受けた。これらのサンプル洞察に基づいて、両方の波長は、定量的方法から排除した。
【0202】
[ステップ3:定量的方法を実行する]
上記スクリーニングによって推奨された波長を使用して定量的分析を実行し、半定量的データを収集する。このアプローチは、図18に示すように、サンプル内に存在する可能性がある最大70個の元素について半定量的データを同様に採取しながら、調節された方法が実行されることを可能にする。
【0203】
スクリーニングで使用される同じ自動元素発見アルゴリズムは、全てのサンプルについて収集された半定量的データを評価する。ソフトウェアは、サンプル内の全ての他の元素のおおよその濃度を計算し、スペクトル干渉の存在を自動的に識別する。
【0204】
結果における更なる確信度について、方法106からの出力データは、全定量的な結果を検証するために使用することができる。以下の表に示すように、半定量的濃度は、全定量的結果の±25%以内であり、本発明の実施形態に従って生成された結果における満足のいく確信度を実証した。
【0205】
【表1】
【0206】
[説明]
本明細書は、特許請求の範囲を含み、以下の通りに解釈されることを意図される。
【0207】
本明細書において説明する実施形態又は実施例は、発明の範囲を制限することなく、本発明を例証することを意図される。本発明は、当業者が容易に思いつくような種々の修正及び追加と共に実施されることが可能である。したがって、本発明の範囲が、説明されるか又は示される厳密な構成及び動作に限定されるのではなく、添付の特許請求の範囲によってのみ限定されることが理解される。
【0208】
本明細書内の方法ステップ又は生成物元素の単なる開示は、そうであるように明示的に述べられるか又は特許請求の範囲で明示的に挙げられる場合を除いて、本明細書において特許請求される発明に絶対必要であると解釈されるべきでない。
【0209】
特許請求の範囲内の用語は、基準日(relevant date)時点で当業者によって与えられるであろう最も広い範囲の意味を有する。
【0210】
用語「一つの("a" and "an")」又は「或る("a" and "an")」は、別段に明示的に指定されない限り、「1つ以上(one or more)」を意味する。
【0211】
本出願の発明の名称も要約書も、特許請求される発明の範囲ほどに限定するものと決して解釈してはならない。
【0212】
特許請求の範囲のプリアンブルは、特許請求される発明の目的、利益、又は考えられる使用を述べるが、その目的、利益、又は考えられる使用のみを有することに、特許請求される発明を制限しない。
【0213】
特許請求の範囲を含んで、本明細書において、用語「備える」、「含む」、又は「有する」(comprise、comprises、comprising)等の用語の変形は、別段に明示的に指定されない限り、又は、コンテキスト若しくは使用において、用語の排他的解釈が必要とされない限り、「含むが、それに限定されない(including but not limited to)」を意味するために使用される。
【0214】
本明細書において参照される任意の文書の開示は、本開示の一部としてではあるが、単に文書化した記述及び実施可能性のために、本特許出願に参照によって組み込まれ、また、本出願の任意の用語を制限する、規定する、又は別様に解釈するために決して使用されるべきでなく、本出願は、そのような参照による組み込みがなくとも、確認可能な意味を必ず提供する。いずれの参照による組み込みも、それ自体は、任意の組み込まれた文書に含まれる任意の陳述、意見、又は議論を支持するものでも承認するものでもない。
【0215】
本明細書における任意の背景技術又は従来技術に対する参照は、そのような背景技術又は従来技術が、関連分野の通常の一般的知識を構成する、又は、特許請求の範囲の有効性に関連する別様に容認可能な従来技術であることを認めるものではない。
なお、出願当初の特許請求の範囲の記載は以下の通りである。
請求項1:
サンプルからサンプルスペクトルデータを取得するステップと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するステップであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、ステップと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するステップと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定するステップと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定するステップと、
分析物波長の前記改定リストに適用される基準のセットに基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定するステップと
を含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータ実施される方法。
請求項2:
前記サンプルスペクトルデータは、サンプルスペクトル範囲内の波長に対応する発光強さの強度を示すデータを含み、
分析物波長の前記リストを決定する前記ステップは、元素のそれぞれの所定の発光波長のそれぞれに対応する前記サンプルスペクトル範囲の関心領域を分析することと、飽和結果が前記関心領域内の位置に特定されるかを判定することと、飽和結果が前記関心領域内の位置に特定されないと判定すると、前記発光強さの強度のピークが前記関心領域内の位置に特定されるかを判定することとを含む、請求項1に記載のコンピュータ実施される方法。
請求項3:
分析物波長の前記リストを決定する前記ステップは、前記飽和結果がフラットトップを有する前記発光強さの強度のピークを示すかを判定することを更に含む、請求項2に記載のコンピュータ実施される方法。
請求項4:
分析物波長の前記リストを決定する前記ステップは、前記発光強さの強度のピークが、閾値試験に基づいて前記関心領域内で識別されたという確信度のレベルを決定することを更に含む、請求項2又は3に記載のコンピュータ実施される方法。
請求項5:
前記発光強さの強度のピークが、前記関心領域内で識別されたという確信度のレベルを決定することは、前記ピークに最も近い発光強さの強度の標準偏差を計算することであって、それにより、確信度ファクタを決定する、計算することを含む、請求項4に記載のコンピュータ実施される方法。
請求項6:
前記ピークに関連する元素は、前記確信度ファクタが所定の閾値よりも大きい場合に識別されたものとされる、請求項5に記載のコンピュータ実施される方法。
請求項7:
分析物波長のそれぞれの前記対応するスペクトルピークが、干渉発光波長によって影響を受ける可能性を有するかを判定する前記ステップは、
分析物波長のそれぞれに関連するクリーンな干渉発光波長を決定することと、
前記クリーンな干渉発光波長が前記サンプルスペクトルデータのスペクトルピークに対応するかを判定することと
を含む、請求項1~6のいずれか一項に記載のコンピュータ実施される方法。
請求項8:
クリーンな干渉発光波長を決定する前記ステップは、スペクトル干渉によって影響を受ける可能性が最も小さい干渉発光波長を決定することを含む、請求項7に記載のコンピュータ実施される方法。
請求項9:
スペクトル干渉によって影響を受けるスペクトルピークに対応する分析物波長のそれぞれについて前記スペクトル干渉の有意性を、
前記クリーンな干渉発光波長に対応するスペクトルピークと前記関連する分析物波長に対応するスペクトルピークとの間の距離と、
前記クリーンな干渉発光波長に対応するスペクトルピークと前記関連する分析物波長に対応するスペクトルピークとの比と、
前記クリーンな干渉発光波長に対応する発光強さの強度と前記関連する分析物波長に対応する発光強さの強度との比と
のうちの1つ以上に基づいて決定することを更に含む、請求項7又は8に記載のコンピュータ実施される方法。
請求項10:
1つ以上の元素が前記サンプル内に存在するという確信度レベルを決定するための基準の前記セットは、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次分析物波長が第1の閾値よりも大きいか、
分析物波長の前記改定リスト内の元素のそれぞれに対応する複数の検出された1次及び2次の分析物波長が第2の閾値よりも大きいか
の一方又は両方を含み、
元素についての1次分析物波長は、高ピークスペクトル強度を有する発光波長に対応し、元素についての2次分析物波長は、1次分析物波長の場合よりも低いピークスペクトル強度を有する発光波長に対応する、請求項1~9のいずれか一項に記載のコンピュータ実施される方法。
請求項11:
前記第1の閾値は、少なくとも3つの1次分析物波長を有する元素の場合には、2であり、2以下の1次分析物波長を有する元素の場合には、1であり、
前記第2の閾値は、少なくとも1つの1次分析物波長及び1つの2次分析物波長である、請求項10に記載のコンピュータ実施される方法。
請求項12:
前記決定された確信度のレベルに基づいて、識別された元素のリストに1つ以上の元素を付加することを更に含む、請求項1~11のいずれか一項に記載のコンピュータ実施される方法。
請求項13:
識別された元素の前記リスト内の元素のそれぞれについて妥当性を検証することであって、それにより、分析物波長に関連する前記サンプルスペクトルデータのスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いかを判定する、妥当性を検証することと、
識別された元素の前記リスト内の対応する元素を有する分析物波長が、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性が高いと判定すると、対応する元素を識別された元素の前記リストから除去することと
を更に含む、請求項12に記載のコンピュータ実施される方法。
請求項14:
選択基準に基づいて、識別された元素の前記リスト内の元素のそれぞれに対応する分析物波長を選択的に表示することを更に含み、
前記選択基準は、
前記分析物波長が飽和結果に関連するかと、
対応する元素のそれぞれについて表示する最大数の分析物波長と、
前記分析物波長がユーザ選好に関連するかと
のうちの1つ以上を含む、請求項12又は13に記載のコンピュータ実施される方法。
請求項15:
識別された元素の前記リスト内の元素のそれぞれの濃度を計算することを更に含み、
元素のそれぞれの前記濃度を計算する前記ステップは、前記対応する元素に関連するスペクトルピークの発光強さの強度を測定し、背景発光を補正することを含む、請求項12~14のいずれか一項に記載のコンピュータ実施される方法。
請求項16:
外れ値の分析物波長を識別することと、
前記外れ値の分析物波長に関連する測定に基づいて、対応する元素が前記サンプル内に存在するという確信度のレベルを下げることと
を更に含む、請求項1~15のいずれか一項に記載のコンピュータ実施される方法。
請求項17:
サンプルからサンプルスペクトルデータを取得する発光分光分析装置と、
請求項1~16のいずれか一項に記載のコンピュータ実施される方法を実施するプロセッサと
を含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するシステム。
請求項18:
請求項1~16のいずれか一項に記載のコンピュータ実施される方法を実施するためのコンピュータ実行可能命令を有する、1つ以上の有形の非一時的なコンピュータ可読媒体。
請求項19:
サンプルからサンプルスペクトルデータを取得するサンプルデータ取り出しモジュールと、
発光分光分析によって定量可能な周期表内の元素のそれぞれについて、1つ以上の所定の発光波長のリストを取得するための波長データ取り出しモジュールであって、所定の発光波長のそれぞれは1つ以上の潜在的な干渉発光波長のリストに関連する、波長データ取り出しモジュールと、
発光波長の前記リストに基づいて前記サンプルスペクトルデータ内のスペクトルピークに対応する1つ以上の分析物波長のリストを決定するピーク探索モジュールと、
分析物波長のそれぞれについて、前記分析物波長に対応する1つ以上の潜在的な干渉発光波長の前記リストに基づいて、前記対応するスペクトルピークが、スペクトル干渉を引き起こす干渉発光波長によって影響を受ける可能性を有するかを判定する干渉探索モジュールと、
干渉発光波長によって影響を受ける可能性を有するスペクトルピークに対応する分析物波長を分析物波長の前記リストから除去することによって、1つ以上の分析物波長の改定リストを決定する波長処理モジュールと、
分析物波長の前記改定リストに適用される一組の基準に基づいて、1つ以上の元素が前記サンプル内に存在するという確信度のレベルを決定する元素識別モジュールと
を含む、発光分光分析によってサンプル内の1つ以上の元素の存在を自動的に識別するコンピュータシステム。
図1a
図1b
図2a
図2b
図2c
図3
図4
図5a
図5b
図5c
図5d
図6
図7a
図7b
図7c
図7d
図8
図9
図10
図11
図12
図13
図14
図15
図16a
図16b
図17
図18