IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立マクセル株式会社の特許一覧

<>
  • 特許-樹脂成形体 図1
  • 特許-樹脂成形体 図2
  • 特許-樹脂成形体 図3
  • 特許-樹脂成形体 図4
  • 特許-樹脂成形体 図5
  • 特許-樹脂成形体 図6
  • 特許-樹脂成形体 図7
  • 特許-樹脂成形体 図8
  • 特許-樹脂成形体 図9
  • 特許-樹脂成形体 図10
  • 特許-樹脂成形体 図11
  • 特許-樹脂成形体 図12
  • 特許-樹脂成形体 図13
  • 特許-樹脂成形体 図14
  • 特許-樹脂成形体 図15
  • 特許-樹脂成形体 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-05-01
(45)【発行日】2024-05-13
(54)【発明の名称】樹脂成形体
(51)【国際特許分類】
   B32B 5/18 20060101AFI20240502BHJP
   B29C 51/14 20060101ALI20240502BHJP
   B32B 27/36 20060101ALI20240502BHJP
   B29C 44/00 20060101ALI20240502BHJP
   C08J 9/12 20060101ALI20240502BHJP
【FI】
B32B5/18
B29C51/14
B32B27/36 102
B29C44/00 E
C08J9/12
【請求項の数】 6
(21)【出願番号】P 2023029271
(22)【出願日】2023-02-28
(62)【分割の表示】P 2023012445の分割
【原出願日】2023-01-31
【審査請求日】2023-02-28
【早期審査対象出願】
(73)【特許権者】
【識別番号】000005810
【氏名又は名称】マクセル株式会社
(74)【代理人】
【識別番号】100104444
【弁理士】
【氏名又は名称】上羽 秀敏
(74)【代理人】
【識別番号】100194777
【弁理士】
【氏名又は名称】田中 憲治
(72)【発明者】
【氏名】和田 竜弥
(72)【発明者】
【氏名】遊佐 敦
(72)【発明者】
【氏名】谷口 聡生
(72)【発明者】
【氏名】山本 智史
【審査官】脇田 寛泰
(56)【参考文献】
【文献】特開2012-030401(JP,A)
【文献】特開平09-048871(JP,A)
【文献】国際公開第2018/142971(WO,A1)
【文献】中国特許出願公開第115361891(CN,A)
【文献】米国特許出願公開第2019/0166947(US,A1)
【文献】特開2009-034934(JP,A)
【文献】特開平08-183054(JP,A)
【文献】特開平08-174780(JP,A)
【文献】特開2013-057023(JP,A)
【文献】特開2012-20544(JP,A)
【文献】特開2012-158387(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C44/00-44/60
49/00-49/46
49/58-49/68
49/72-51/28
51/42
51/46
67/20
B32B1/00-43/00
C08J9/00-9/42
(57)【特許請求の範囲】
【請求項1】
発泡層と前記発泡層の一方の主面に積層された第1非発泡層と前記発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形した樹脂成形体であって、
前記樹脂成形体は、ポリカーボネート樹脂を含み、
前記第1非発泡層及び第2非発泡層の樹脂材料は、前記発泡層と同じ樹脂材料であり、
前記樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含み、
前記最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上である、樹脂成形体。
【請求項2】
請求項1に記載の樹脂成形体であって、
前記第1比率(M1/M2)は、2.0以下である、樹脂成形体。
【請求項3】
請求項1に記載の樹脂成形体であって、
前記最薄肉部の厚みt1と最厚肉部の厚みt2の第2比率(t1/t2)は、0.4以上0.9以下である、樹脂成形体。
【請求項4】
請求項1~3のいずれか1項に記載の樹脂成形体であって、
前記樹脂成形体は、熱可塑性樹脂からなり、
前記樹脂成形体の密度は、1.0g/cm以下であり、
前記最薄肉部及び前記最厚肉部の各々の曲げ弾性率は、1000MPa以上である、樹脂成形体。
【請求項5】
請求項に記載の樹脂成形体であって、
前記第1比率と第2比率との比率(第1比率/第2比率)は、4.0以下である、樹脂成形体。
【請求項6】
請求項に記載の樹脂成形体であって、
前記第1比率と第2比率との比率(第1比率/第2比率)は、1.0より大きい、樹脂成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、発泡樹脂シートを賦形した樹脂成形体に関する。
【背景技術】
【0002】
近年、発泡樹脂は、樹脂成形体を軽量化することによって利便性を高めることができ、かつ、二酸化炭素排出量を削減することができるとして注目されている。発泡樹脂の成形方法には、物理発泡成形法と化学発泡成形法とがある。化学発泡成形法は、発泡剤として化学発泡剤を用いる。化学発泡剤は、環境負荷が高く、地球環境保護の観点から好まれない。一方で、物理発泡成形法は、発泡剤として窒素や二酸化炭素等といった物理発泡剤を用いる。物理発泡剤は、環境負荷が小さいため、地球環境保護の観点から好ましい。物理発泡成形法には、耐熱性が高いエンジニアリングプラスチック及びスーパーエンジニアリングプラスチックを発泡させる方法として、エンジニアリングプラスチック及びスーパーエンジニアリングプラスチックの溶融樹脂と高圧の超臨界流体とを剪断混錬して溶解させる方法がある。
【0003】
特許第6139038号公報(特許文献1)は、高圧の超臨界流体ではなく、比較的圧力の低い窒素や二酸化炭素等の物理発泡剤を用いた発泡成形体の製造方法を開示している。この方法によれば、特別な高圧装置を用いることなく低圧の物理発泡剤によって比較的簡便なプロセスで樹脂成型体に微細な発泡セルを形成することができる。また、特許文献1は、射出成形法及び押出成形法によって発泡成形体を成形する方法を開示している。
【0004】
射出成形法は、複雑な形状の発泡成形体を得ることができる。しかしながら、金型内を溶融樹脂の表層が冷却固化しながら流動する。その際、発泡成形体の表層には非発泡のスキン層が比較的薄く形成される。一方、押出成形法は、射出成形法よりも金型の大きさや負荷の制限が少なく、単一形状かつ単一厚みの発泡成形体を連続して作製するのに適している。また、押出成形法により得られるシート状の発泡成形体は、真空成形等を施すことにより、ある程度複雑な形状のもの又は比較的大きなサイズのもの等に賦形することができる。ただし、押出成形法は、溶融樹脂がダイス出口から吐出されて冷却固化される際、発泡成形体の表層にスキン層が形成されにくい。
【0005】
十分な厚みを有するスキン層を形成する方法として、特許第3654697号公報(特許文献2)は、熱可塑性樹脂発泡シートの製造方法を開示している。熱可塑性樹脂発泡シートの製造方法によれば、押出成形によって熱可塑性樹脂発泡シートの表面にスキン層を容易に形成できる。また、特開2000-52370号公報(特許文献3)は、多層積層成形体の製造方法を開示している。多層積層成形体は、共押出成形によって発泡樹脂からなるコア層及びスキン層を形成している。特許文献2の製造方法及び特許文献3の製造方法は、主な樹脂材料としてポリプロピレンまたはポリスチレン等の耐熱性及び機械強度が比較的小さい汎用プラスチックを用いており、耐熱性及び機械強度を目的としてスキン層を形成するものではない。
【0006】
特許第7100216号公報(特許文献4)は、真空成形等の熱賦形をする際に生じる表面の膨出や共押出シートの割れを抑制することができ、かつ、優れた軽量性及び機械強度を得ることができる共押出シートを開示している。共押出シートは、耐熱性又は強度に優れたエンジニアリングプラスチックであるポリカーボネート樹脂を含む。共押出シートは、発泡樹脂からなるコア層と、コア層の一方及び他方の主面の各々に積層されたスキン層とを含む。共押出シートは、その密度と、コア層及びスキン層の厚みの比率等を制御し、或いは、メルトボリュームレイト(MVR)等を制御することにより、機械強度と表面平滑性の向上を図っている。
【先行技術文献】
【特許文献】
【0007】
【文献】特許第6139038号公報
【文献】特許第3654697号公報
【文献】特開2000-52370号公報
【文献】特許第7100216号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ただし、特許文献4の共押出シートは、優れた機械強度と表面平滑性を得ることができるものの、真空成形後の樹脂成形体の形状、例えば、比較的厚みが小さく、機械強度を得にくい薄肉部においても優れた機械強度を確保する必要がある。すなわち、共押出シートを真空成形等した樹脂成形体において、より優れた機械強度を得るには未だ検討の余地が十分にある。
【0009】
本開示は、薄肉部を含み、発泡樹脂を賦形してなる偏肉の樹脂成形体であっても、優れた機械強度を有する樹脂成形体を提供することを課題とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本開示は次のような解決手段を講じた。すなわち、本開示に係る樹脂成形体は、発泡層と発泡層の一方の主面に積層された第1非発泡層と発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形してなる。樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含んでよい。最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上であってよい。
【発明の効果】
【0011】
本開示に係る樹脂成形体によれば、薄肉部を含み、発泡樹脂を賦形してなる偏肉の樹脂成形体であっても、優れた機械強度を得ることができる。
【図面の簡単な説明】
【0012】
図1図1は、発泡樹脂シートを示す斜視図である。
図2図2は、図1に示す発泡樹脂シートの拡大断面図である。
図3図3は、本実施形態の樹脂成形体の成形工程を示す断面図である。
図4図4は、本実施形態の樹脂成形体の成形工程を示す断面図である。
図5図5は、本実施形態の樹脂成形体の成形工程を示す断面図である。
図6図6は、本実施形態の樹脂成形体の成形工程を示す断面図である。
図7図7は、本実施形態の樹脂成形体を示す断面図である。
図8図8は、本実施形態の樹脂成形体を示す拡大断面図である。
図9図9は、本実施形態の樹脂成形体を示す断面図である。
図10図10は、金型を示す斜視図である。
図11図11は、実施例の試験体の成形工程を示す断面図である。
図12図12は、従来の樹脂成形品の成形工程を示す断面図である。
図13図13は、従来の樹脂成形品の成形工程を示す断面図である。
図14図14は、従来の樹脂成形品の成形工程を示す断面図である。
図15図15は、従来の樹脂成形品の成形工程を示す断面図である。
図16図16は、従来の樹脂成形品の成形工程を示す断面図である。
【発明を実施するための形態】
【0013】
上述の通り、発泡樹脂からなるコア層と、コア層の一方及び他方の主面に非発泡樹脂からなるスキン層とを積層した発泡樹脂シート10(図1及び図2を参照。詳細は後述する。)を真空成形等の熱賦形をして樹脂成形品1000を成形した場合、比較的厚みが小さくなる薄肉部において機械強度を確保しにくい。本発明者らはそのメカニズムを以下のように考察した。図12に示すように、従来、発泡樹脂シート10の真空成形をする場合、まず、発泡樹脂シート10の端部を治具1001で固定し、発泡樹脂シート10の両面をヒータ1002により樹脂材料のガラス転移温度以上に加熱する。このとき、図13に示すように、発泡樹脂シート10は、溶融状態となって自重に耐えられずに垂れ下がるように変形する。すなわち、発泡樹脂シート10の面積が増大して、その結果、発泡樹脂シート10の板厚が小さくなる。さらに、溶融状態の発泡樹脂シート10に含まれる気泡111は、図14に示すように、加熱により合一化し、或いは、膨張する。その後、上述のように垂れさがるように変形した発泡樹脂シート10は、図15に示すように、金型1003を用いて真空成形され、冷却固化される。その結果、図16に示すように、従来の樹脂成形品1000において、気泡111が不均一に肥大化することによって密度が低下し、且つ、薄肉部の曲げ弾性率が真空成形前の発泡樹脂シート10よりも低下する。これにより、薄肉部において機械強度が確保しにくいものと推察される。なお、非発泡樹脂のみからなるソリッドシートは、加熱により自重変形する。しかしながら、ソリッドシートの薄肉部の密度は変化せず、また、薄肉部における樹脂自体の基本物性に由来する曲げ弾性率は変化しない。
【0014】
本発明者らは、鋭意検討の結果、発泡樹脂シート10を真空成形等により賦形した樹脂成形体において、最も厚みが小さい最薄肉部における曲げ弾性率と最も厚みが大きい最厚肉部の曲げ弾性率との比率が所定の値を超えれば、偏肉の樹脂成形体であっても最薄肉部における優れた機械強度を確保できることを見出し、以下の通り、本発明を完成させた。
【0015】
(構成1)
本開示の実施形態に係る樹脂成形体は、発泡層と発泡層の一方の主面に積層された第1非発泡層と発泡層の他方の主面に積層された第2非発泡層とを含む発泡樹脂シートを賦形してなる。樹脂成形体は、最も厚みが小さい最薄肉部と、最も厚みが大きい最厚肉部とを含んでよい。最薄肉部の曲げ弾性率M1と最厚肉部の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上であってよい。
【0016】
これにより、最薄肉部を含む偏肉化した樹脂成形体1において、成形前の発泡樹脂シートに対する密度の変化を抑制して、樹脂成形体1の機械強度を向上させることができる。
【0017】
(構成2)
構成1の樹脂成形体であって、第1比率(M1/M2)は、2.0以下であってよい。
【0018】
(構成3)
構成1又は2の樹脂成形体であって、最薄肉部の厚みt1と最厚肉部の厚みt2の第2比率(t1/t2)は、0.4以上0.9以下であってよい。これにより、樹脂成形体1の厚みにムラが生じず、成形時のける破損、或いは、成形後の破損や穴開きを抑制することができ、かつ、真空成形性を向上させることができる。
【0019】
(構成4)
構成1~3のいずれか1つの樹脂成形体であって、樹脂成形体は、熱可塑性樹脂からなってよい。樹脂成形体の密度は、1.0g/cm以下であってよい。最薄肉部及び最厚肉部の各々の曲げ弾性率は、1000MPa以上であってよい。これにより、真空成形等の熱賦形により成形された樹脂成形体1の曲げ弾性率の低下を抑制することができ、かつ、軽量化を図ることができる。
【0020】
(構成5)
構成1~4のいずれか1つの樹脂成形体であって、樹脂成形体は、ポリカーボネート樹脂を含んでよい。これにより、真空成形等の熱賦形を容易にすることができ、かつ、外観意匠性及び機械強度に優れた樹脂成形体1を得ることができる。
【0021】
(構成6)
構成1~5のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、4.0以下であってよい。
【0022】
(構成7)
構成1~6のいずれか1つの樹脂成形体であって、第1比率と第2比率との比率(第1比率/第2比率)は、1.0より大きくてよい。これにより、最薄肉部及び最厚肉部の厚みによる強度変化を小さくすることができ、優れた機械強度を確保することができる。
【0023】
以下、本開示の樹脂成形体1の実施形態について、図1図9を用いて具体的に説明する。なお、図中同一及び相当する構成については同一の符号を付し、同じ説明を繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。
【0024】
まず、樹脂成形体1の材料、すなわち、真空成形等によって賦形をされる前の発泡樹脂シート10について説明する。
【0025】
発泡樹脂シート10は、真空成形等により賦形可能な樹脂材料からなる。発泡樹脂シート10は、真空成形等により賦形が可能な面積及び厚みを有していればよい。ただし、発泡樹脂シート10は、1~5mmの厚みを有していることが好ましい。これにより、真空成形等の熱賦形を容易にすることができる。発泡樹脂シート10の樹脂材料は、特に限定されないが、例えば、熱可塑性樹脂である。熱可塑性樹脂は、例えば、ポリプロピレン又はポリスチレン等の汎用プラスチック、100℃以上の耐熱性能を有するエンジニアリングプラスチック、或いは、150℃以上の耐熱性能を有するスーパーエンジニアリングプラスチックである。ただし、樹脂材料は、90℃以上の荷重たわみ温度を有することが好ましい。これにより、真空成形等の熱賦形時における成形性が向上し、熱賦形が容易になる。樹脂材料は、汎用プラスチック、エンジニアリングプラスチック及びスーパーエンジニアリングプラスチックからなる群から選ばれる少なくとも一種を含めばよいが、ポリカーボネート樹脂を主として、例えば、50重量%以上含むことが好ましい。ポリカーボネート樹脂は、加熱加工性に優れる。これにより、真空成形等の熱賦形、特に後述するような深絞りの熱賦形を容易にすることができ、かつ、外観意匠性及び機械強度に優れた樹脂成形体1を得ることができる。なお、本開示において、荷重たわみ温度は、ISO75-2B(1.81MPa荷重)に基づいて求められる。
【0026】
図1及び図2に示すように、発泡樹脂シート10は、発泡層(以下、コア層という。)11と、コア層11の一方の主面に積層された非発泡層(以下、スキン層という。)12と、コア層11の他方の主面に積層されたスキン層13とを有している。
【0027】
コア層11は、発泡樹脂からなる。コア層11は、溶融した樹脂材料を物理発泡成形することにより形成することができる。物理発泡剤は、例えば、窒素、二酸化炭素、空気、アルゴン等の不活性ガスである。なお、本開示のコア層11は、比較的圧力の低い窒素や二酸化炭素等の物理発泡剤を用いて発泡成形されるのが好ましく、そのうち窒素がより好ましい。これにより、物理発泡剤の圧力を比較的低い1~6MPaに設定することができ、微細な気泡を多数形成することができる。これにより、真空成形時に高温且つ熱した際の膨出等をより確実に抑制することができる。気泡の平均気泡径は、0.1mm以上とするのがよく、1.0mm以下、好ましくは0.3mm以下とするのがよい。図2に示すように、コア層11は、多数の気泡111を有する。多数の気泡は、押出成形時の押出方向に沿う方向で厚み方向に切断した断面視において、押出方向に伸長した略楕円形状を有している。コア層11に含まれる多数の気泡のうち、コア層11の厚み方向中心近傍に含まれる気泡は、コア層11の厚み方向端部近傍に含まれる気泡111に比べて大きい気泡径を有する。多数の気泡111の気泡径は、コア層11の厚み方向中心から厚み方向端部に向かうにつれて徐々に小さくなる。
【0028】
図2に示すように、スキン層12は、非発泡樹脂からなる。すなわち、スキン層12は、発泡成形されていない。スキン層12は、共押出成形法により、非発泡の状態でダイス出口より押し出され、コア層11と一体的に積層されてもよい。或いは、コア層11を形成した後に、スキン層12をコア層11の一方の主面に接着又は溶着等によって固着させてもよい。なお、本開示において、非発泡とは、空孔率が5%未満であることをいう。また、発泡とは、空孔率が5%以上であることをいう。空孔率は、より具体的に、以下のようにして算出される。まず、発泡樹脂シート10の一部を切り出し、平面視において20mm×20mmの正方形となるシート片を作製する。高出力マイクロX線CTシステム(株式会社島津製作所製、型番「inspeXio SMX-225CTS」)を用いて、シート片をCTスキャンし、平面視においてシート片の中心点と所定の一辺の中点とを通る線に沿って厚み方向に切断したCT断面画像を得る。詳細な測定条件は、印加160kV、pixelサイズ0.105mm/voxel、pixel数512×512×512、ビュー数1200、XY方向の視野53.5mm、及び、Z方向の視野48.9mmである。発泡樹脂シート10の断面視において、スキン層12とコア層11の界面が明確な場合、明確な界面のうち目視で気泡数が少ない層をスキン層12、多い層をコア層11とする。また、スキン層12とコア層11の界面の場合、多数存在する気泡のうち、発泡樹脂シート10の断面を幅方向に16等分した際の各々の仮想境界線上における、樹脂シート1の表面に近い気泡を15個選定し、そのうち発泡樹脂シート10の表面に最も近い気泡を確認する。この最も近い気泡の上端を通り、かつ、厚み方向に直交する仮想線を引く。仮想線よりも厚み方向内方をコア層11とし、厚み方向外方をスキン層12とする。続いてコア層11及びスキン層12の断面を撮影したCT断面画像において、コア層11を厚み方向に20等分、かつ、同一直線状にスキン層12を厚み方向に5等分するように正方形の区画(よって、1区画の1辺の長さは発泡樹脂シート10の厚みに依存する。)を規定し、コア層11の厚み方向に沿って20個の区間が並び、かつ、スキン層12の厚み方向に沿って5個の区画が並ぶ列を、5列抽出する。次に、画像処理ソフト「Image J(アメリカ国立衛生研究所製)」を用いて気泡と気泡壁を二値化する。このとき、二値化処理の閾値は、大津法によって得られた濃度ヒストグラムから求められる。そして、得られた二値化画像の白色部分を気泡壁、黒色部分を気泡とし、各列の各々の区画に含まれる独立気泡の断面積を算出する。このようにして各々の区画に含まれる独立気泡の断面積を算出し、各々の区画の断面積で除することにより、各列に含まれる各々の区画の空孔率を算出する。また、抽出された5つの列は各々、コア層11とスキン層12の断面画像において、幅方向の中央、幅方向の一方の端部、幅方向の他方の端部、幅方向の中央と幅方向の一方の端部との間における中央、及び、幅方向の中央と幅方向の他方の端部との間における中央に位置付けて抽出されている。
【0029】
スキン層12は、コア層11と良好に接着できる熱可塑性樹脂を用いればよい。より具体的に、スキン層12の樹脂材料は、コア層11と同じ樹脂材料であることが特に好ましい。また、スキン層12は、スキン層12を強化するために、本開示の効果を損なわない程度で無機フィラーを含有する強化樹脂、或いは、難燃剤や発泡核剤等の添加剤を含有する樹脂から構成することができる。これらスキン層12の構成により、効率よく強度を向上させながら、軽量化と強度の向上を図ることができる。無機フィラーは、例えば、ガラス繊維、炭素繊維、アラミド繊維、タルク及びマイカ等である。
【0030】
また、スキン層12は、本開示の効果を損なわない程度で、塗料又は顔料等を塗布することにより着色されてもよい。また、スキン層12の外側面、すなわち、コア層11の一方の主面と対向する面とは反対側の面に対して接着又はラミネート法によって加飾フィルムを設けてもよい。これにより、発泡樹脂シート10を真空成形等の熱賦形をしたのち、樹脂成形体1の外観意匠性を向上させることができる。このように、スキン層12、コア層11及びスキン層13からなる3層構造に加え、スキン層12又はスキン層13の外方面に他の機能を有する層を設けてもよい。これにより、発泡樹脂シート10及び樹脂成形体1を多機能に形成することができる。
【0031】
スキン層13は、コア層11の他方の主面に積層されている点を除き、スキン層12と同じである。そのため、スキン層13の具体的な説明は省略する。
【0032】
本開示の樹脂成形体1は、上述の発泡樹脂シート10を真空成形等の熱賦形をすることにより得ることができる。以下、図3~7を用いて、樹脂成形体1の成形方法を具体的に説明する。なお、ここでは、真空成形を用いた成形方法を説明するが、樹脂成形体1の成形方法は特に限定されない。
【0033】
まず、図3に示すように、まず、発泡樹脂シート10を治具101により固定する。図4に示すように、発泡樹脂シート10の上方及び下方にグラファイトからなる加熱板102を配置する。加熱板102は、予め高周波誘導加熱装置によりガラス転移温度よりも高温に加熱されている。グラファイトは、銅の2~3倍の高熱伝導率を有し、軽量である。また、グラファイトは、撥水性に優れるため、溶融樹脂に接着しにくい。これにより、グラファイトからなる加熱板102は、発泡樹脂シート10の厚みを均一に規制して加熱することに好適である。すなわち、本開示の樹脂成形体1の成形工程おいて、発泡樹脂シート10は、その厚みが全面的に均一になるように加熱されることが好ましい。上方に位置する加熱板102と下方に位置する加熱板102との間における隙間は、発泡樹脂シート10の厚みに対して104%の幅Wを有する。これにより、発泡樹脂シート10の厚みが均一になるように加熱し易くなる。隙間の幅Wは、発泡樹脂シート10の厚みを均一になるように加熱するという観点から、発泡樹脂シート10の厚みの104%以内とするのがよりよい。なお、隙間の幅Wは、特に図示はしないが、上方の加熱板102と下方の加熱板102との間に配置されたスペーサによって調整されてよい。
【0034】
このように厚みが均一になるように規制されて加熱された発泡樹脂シート10は、図2で示した加熱前の発泡樹脂シート10と同様の気泡構造を有するものと推察される。すなわち、加熱後の発泡樹脂シート10は、気泡が合一化せずに発泡樹脂シート10の表面に膨れが生じるのを抑制し易い構造になっている。このように加熱された発泡樹脂シート10は、ガラス転移温度よりも高温に達したとき、金型103の直上に移動される。なお、発泡樹脂シート10の温度は、発泡樹脂シート10の末端において温度センサーにより計測される。その後、図5に示すように、上方の加熱板102及び下方の加熱板102を発泡樹脂シート10から除去し、溶融状態の発泡樹脂シート10を金型103の上面に密着させ、発泡樹脂シート10を収容する空間が気密になるようにシールする。その直後、図6に示すように、金型103に設けられた吸引孔104を介して吸引し、発泡樹脂シート10の真空成形をする。その後、成形された発泡樹脂シート10を冷却固化させ、離型する。このように成形された発泡樹脂シート10のうち余分な箇所等をトリミングすることにより、図7に示すような樹脂成形体1を得ることができる。
【0035】
図8に示すように、このような製法で得られた樹脂成形体1に含まれる気泡111は、樹脂成形体1が成形時に薄肉化するのに伴って、厚み方向に押し潰されるようにして厚みに対して鉛直方向に伸長し、楕円盤状になる。このように伸長された気泡を含む樹脂成形体1は、密度が高くなり、非発泡構造に似た構造に変化する。これにより、樹脂成形体1は、薄肉部における曲げ弾性率の低下を抑制し、機械強度の向上を図ることができ、また、成形性を向上させることができる。なお、樹脂成形体1は、真空成形に限られず圧空成形又はプレス成形などによって熱賦形されてもよく、発泡樹脂シート10を賦形できればその方法は限定されない。圧空成形は、真空の負圧よりも大気圧との差圧の高い正圧を用いる。そのため、加熱により肥大化した気泡を潰す効果により強度低下を抑制しやすい。あるいは、気泡肥大化を抑制しつつ厚みと強度を金型で制御する方法としてはプレス成形を用いることができる。金型の構成や成形のプロセス上、真空成形、圧空成形又は真空圧空成形は、片面分の金型で成形可能であるため、大型部品を安価に生産するという観点において好適である。また、金型103は、公知の賦形方法に用いられるものであればいかなる形状であってもよく、金属製又は木製等のいかなる材質を用いてよい。
【0036】
なお、上述した製法で作製した樹脂成形体1は、曲率を有する場合や屈曲している場合、或いは、比較的小さな場合であっても同じように、成形時に薄肉化するとともに、気泡が潰れて一部伸長され、非発泡構造に似た構造に変化するため、密度が高くなる。すなわち、上述した製法で作製した樹脂成形体1であれば、薄肉部における曲げ弾性率の低下を抑制し、機械強度の向上を図ることができ、また、成形性を向上させることができる。
【0037】
このように成形された樹脂成形体1について、図9を用いて具体的に説明する。
【0038】
樹脂成形体1は、最も厚みが小さい最薄肉部2と最も厚みが大きい最厚肉部3とを有する。最薄肉部2は0.5mm以上の厚みを有し、最厚肉部3は5.0mm以下の厚みを有する。最薄肉部2の厚みが小さ過ぎると樹脂成形体1の剛性が低下し得る。また、真空成形時に発泡樹脂シート10に破れ等の不良を引き起こし得る。最厚肉部3の厚みが大き過ぎると成形性が低下し、樹脂成形体1の重量が増す。すなわち、樹脂成形体1の剛性及び成型性を確保し、かつ、軽量化を図るという観点から、最薄肉部2の厚みは、好ましくは1mm以上、より好ましくは1.5mm以上とするのがよく、最厚肉部3の厚みは、好ましくは4.5mm以下、より好ましくは4.0mm以下とするのがよい。
【0039】
樹脂成形体1の厚み分布は、磁気式厚さ計、超音波厚さ計又は3Dスキャナを用いて測定することができる。これにより、樹脂成形体1を破壊することなく樹脂成形体1の厚み分布を測定することができる。本開示において、樹脂成形体1の厚み分布は、例えば、3Dスキャナ型三次元測定機(株式会社キーエンス製、型番「VL-500」)を用いて測定することができる。このように測定された厚み分布のうち、最も厚みが小さい箇所を最薄肉部2と定義し、最も厚みが大きい箇所を最厚肉部3と定義することができる。
【0040】
最薄肉部2の曲げ弾性率M1と最厚肉部3の曲げ弾性率M2との比率M1/M2(以下、比率Yと称する場合がある。)は、0.7以上とするのがよい。これにより、薄肉化した樹脂成形体1における成形前の発泡樹脂シート10からの密度の変化に伴う機械強度の低下を抑止し、樹脂成形体1の機械強度を向上させることができる。比率Yは、1.0以上とするのが好ましい。これにより、さらに樹脂成形体1の機械強度を向上させることができる。なお、比率Yの上限は特に限定されるものではないが、例えば、2.0以下である。
【0041】
曲げ弾性率M1及びM2は、3点曲げ試験にて評価された値である。3点曲げ試験は、具体的には以下のように実施される。まず、最薄肉部2を含む平面状の最薄肉片と最厚肉部3を含む平面状の最厚肉片を樹脂成形体1から打ち抜き機を用いて切り出す。最薄肉片及び最厚肉片は各々、10mmの幅と80mmの長さを有する平面視長方形状である。最薄肉片及び最厚肉片の各々において、最薄肉部2及び最厚肉部3は、平面視長方形状の対角線の交点に位置付けられる。最薄肉片及び最厚肉片の各々に対し、長さ方向の中央から長さ方向両端に向かって16mmの各々のポイントを支点として、最薄肉部2及び最厚肉部3に対して荷重を掛けることにより、3点曲げ試験を実施する。本開示において、3点曲げ試験は、例えば、精密型万能試験機(株式会社島津製作所製、型番「AGS-J」)を用いて実施することができる。なお、最薄肉部2又は最厚肉部3が樹脂成形体1の端部又は段差等に位置し、3点曲げ試験を実施できない場合がある。その場合、最薄肉部2及び最厚肉部3は各々、3点曲げ試験が可能な箇所、すなわち、上述の平面視長方形状の最薄肉片及び最厚肉片の切り出しが可能な部位で、かつ、最も厚みが小さい箇所及び最も厚みが大きい箇所と定義することができる。
【0042】
なお、最薄肉部2又は最厚肉部3の周囲が曲率を有する形状である場合、上述の最薄肉片及び最厚肉片が曲率を有する場合、10mmの幅と80mmの円弧長さを有する円弧状の最薄肉片及び最厚肉片を切り出す。例えば、円弧状の最薄肉片及び最厚肉片の曲率が30m-1以下である場合、上述の平面状の最薄肉片及び最厚肉片と同様に3点曲げ試験を実施することができる。ただし、3点曲げ試験時に最薄肉片及び最厚肉片がズレ動くなどして正確な測定ができない場合、最薄肉部2及び最厚肉部3は各々、曲率が30m-1以下である最薄肉片及び最厚肉片の切り出しが可能な部位で、かつ、最も厚みが小さい箇所及び最も厚みが大きい箇所と定義することができる。
【0043】
なお、最薄肉片及び最厚肉片の密度は各々、以下のように算出することができる。まず、最薄肉片及び最厚肉片の各々の幅をマイクロメータを用いて測定し、また、長さをノギスを用いて測定する。これらの幅、長さ及び上述の平均厚みから体積を算出する。最薄肉片及び最厚肉片の各々の平均厚みは、最薄肉片及び最厚肉片の各々を長さ方向に等間隔に10点の厚みを測定し、これら10点の厚みの算術平均値とすることができる。また、電子天秤を用いて最薄肉片及び最厚肉片の各々の重量を測定する。最薄肉片及び最厚肉片の密度は、各々の重量を体積で除することにより算出することができる。
【0044】
最薄肉部2の厚みt1と最厚肉部3の厚みt2との比率t1/t2(以下、比率Xと称する場合がある。)は、0.4以上とするのがよい。これにより、樹脂成形体1の厚みにムラが生じない。すなわち、樹脂成形体1の一部が極端に薄い場合における成形時の加熱による破損、或いは、成形後の破損や穴開きを抑制することができる。また、比率Xは、0.7以上とするのがよい。これにより、比率Yを1.0以上にし易くなり、最薄肉部2の強度を向上させることができる。比率Xは、少なくとも1よりも小さければよいが、例えば、0.9以下としてもよい。これにより、真空成形等の熱賦形時における成形性を向上させることがる。
【0045】
最薄肉部2及び最厚肉部3の各々は、1000MPa以上の曲げ弾性率を有してもよい。これにより、樹脂成形体1を構成する樹脂の曲げ弾性率の低下を抑制することができる。最薄肉部2及び最厚肉部3の各々の曲げ弾性率は、真空成形等の熱賦形における成形容易性の観点から、2800MPa以下とするのがよく、或いは、上述のように発泡樹脂シート10のスキン層12及びスキン層13に無機フィラーを含有させた場合であっても3500MPa以下とするのがよい。
【0046】
樹脂成形体1は1.0g/cm以下の密度を有してもよい。これにより、樹脂成形体1の軽量化を図ることができる。
【0047】
上述の比率Y(M1/M2)と比率X(t1/t2)との比率Y/X(以下、比率Zと称する場合がある。)は、1.0よりも大きくすることが好ましい。比率Zが1.0以下になると、すなわち、比率Xが比率Yよりも大きいと、最薄肉部2及び最厚肉部3の厚みによる強度変化が大きくなり、最薄肉部2の強度が低下し得る。すなわち、比率Yと比率Xのバランスを考慮することにより、樹脂成形体1の優れた機械強度を確保することができる。比率Zの上限は特に限定されないが、4.0以下とすることが好ましい。比率Zを1.0よりも大きく、且つ、4.0以下とすることにより、真空成形等の熱賦形における成形容易性を確保することができる。
【0048】
樹脂成形体1は、真空成形等の熱賦形により、用途に応じて種々の形状に成形されている。樹脂成形体1は、真空成形等の熱賦形により成形可能な形状であれば、どのような形状に形成されてもよい。樹脂成形体1は、例えば、箱型、三角柱型又は円筒型等に成型される。
【0049】
所定の製品及び部品として活用される樹脂成形体1は、樹脂使用量を削減することができる。その結果、本実施形態に係る樹脂成形体1は、資源利用効率の向上、運送負担の軽減、エネルギー使用量の削減及びCO排出量の削減に寄与することができる。樹脂成形体1を社会へ提供することにより、国際連合が制定する持続可能な開発目標(SDGs)の17の目標のうち、目標7(エネルギーをみんなにそしてクリーンに)、目標9(産業と技術革新の基盤をつくろう)及び目標11(住み続けられるまちづくりを)の達成に貢献することができる。また、本実施形態に係る樹脂成形体1を溶融させて再利用することが可能であることから、目標12(つくる責任、つかう責任)の達成に貢献することができる。
【0050】
以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0051】
[実施例]
実施例1~5並びに比較例1及び2において、各々発泡樹脂シートを成形した樹脂成形体を作製し、各々の最薄肉部及び最厚肉部に対して上述した3点曲げ試験を行って曲げ弾性率を測定した。なお、下記の表1において、発泡樹脂シートの平均厚みは、以下のように算出した。発泡樹脂シートを幅方向に沿って厚み方向に切断した断面を幅方向に等間隔となるように10点の厚みを測定し、これら10点の厚みの算術平均値を発泡樹脂シートの平均厚みとした。
【0052】
【表1】
【0053】
(実施例1)
実施例1では、ポリカーボネート樹脂を樹脂材料として共押出成形によって200mmの幅及び400mmの長さを有する発泡樹脂シートを作製した。したがって、コア層及びスキン層の樹脂材料は同じである。コア層は、上述した低圧の物理発泡剤(窒素)を用いて発泡した。なお、ポリカーボネート樹脂は、帝人製パンライトL―1225Y(密度:1.2g/cm、荷重たわみ温度:143℃、曲げ弾性率2400MPa)であり、溶融張力を向上させて気泡を微細化させる目的で発泡核剤を微量添加した。より具体的には、まず、短軸スクリュシリンダ内部(図示しない)において、コア層を形成する溶融樹脂を窒素を用いて加圧した。次に窒素を溶融樹脂を短軸スクリュシリンダから吐出したのち、ギヤポンプで加圧して発泡を抑制しつつ押し出した。そして、コア層用樹脂と同一圧力に調整されたスキン層用の溶融樹脂をコア層をサンドイッチする形で合流させた。マニホールドからコートハンガーダイにて層流を形成したのち、ダイ先端から発泡樹脂シートに押し出し、冷却ロールにて固化させた。その結果、平均厚み2.5mm、密度0.60g/cm、曲げ弾性率1330MPaの発泡樹脂シートが得られた。
【0054】
次に、このように作製した発泡樹脂シートを上述の方法により、発泡樹脂シートを190℃に加熱して真空成形し、実施例1の試験体(樹脂成形体)を得た。なお、上方の加熱板と下方の加熱板との間の隙間の幅は、発泡樹脂シートの厚みの104%となるように調整し、発泡樹脂シートの末端表面の温度が170℃に達したところで発泡樹脂シートを金型の直上に移動させた。また、図10に示すような100mmの幅L1、200mmの長さL2及び40mmの深さL3を有する箱型形状の金型103を用いた。
【0055】
このようにして得られた試験体について、上述の方法により、最薄肉部と最厚肉部とを決定し、最薄肉部と最厚肉部の各々の厚みを測定した。また、上述の通り、密度を測定するとともに、上述の3点曲げ試験により、最薄肉部と最厚肉部の各々の曲げ弾性率を測定した。なお、3点曲げ試験は、卓上形精密万能試験機(株式会社島津製作所製、型番「AGS-J」)を用いて、試験速度10mm/min、支点間距離32mmの条件で実施した。結果、最薄肉部の曲げ弾性率M1は1400MPaとなり、最厚肉部の曲げ弾性率M2は1800MPaとなり、真空成形前の発泡樹脂シートの曲げ弾性率よりも向上していた。これは、気泡が合一化せずに潰れ、その結果、密度が大きくなったためと推察される。また、比率Yは、0.78であった。このように、上述の方法により真空成形された樹脂成形体は、機械強度を向上させることができた。なお、表1において、最薄肉部及び最厚肉部の密度とは、上述した最薄肉片及び最厚肉片の密度である。
【0056】
(実施例2)
実施例2の試験体は、真空成形時の金型の深さを60mmとして深絞り成形した以外は、実施例1と同様の方法により、作製された。深絞り成形によって厚みの変化が大きくなり、密度の上昇が抑制された。最薄肉部の曲げ弾性率M1は1250MPaであり、最厚肉部の曲げ弾性率M2は1300MPaとなり、発泡樹脂シートの曲げ弾性率と同等であった。また、比率Yは0.96であり、最薄肉部における強度低下が小さく、さらに、比率Zは1.66であり、1.0よりも十分大きく、深絞り成形においても厚み変化と機械強度の低下が抑制されていることを確認できた。
【0057】
(実施例3)
実施例3の試験体は、2.5mmの平均厚みを有する発泡樹脂シートを加熱時に3.0mmとより厚くなるように成形した以外は、実施例1と同様に成形された。具体的には、まず、図11に示すように、上方の加熱板102と下方の加熱板102との間の隙間の幅Wを3.0mmに調整し、2.5mmの平均厚みを有する発泡樹脂シート10が加熱により膨張して3.0mmとなるように、すなわち、厚みが均一に0.5mm厚くなるようにした。上方の加熱板102、下方の加熱板102及び厚みが膨張した発泡樹脂シート10を金型103の直上に移動させた。このとき、図2に示す発泡樹脂シート10と対比して、気泡が膨張するのに伴って発泡樹脂シート10の厚みが大きくなっているものと推察される。その後、上方の加熱板102及び下方の加熱した104を除去し、真空成形を行った。このようにして得られた実施例3の試験体は、気泡が大きくなるとともに、表1に示すように厚みの薄肉化を抑制できた。
【0058】
実施例3の試験体において、真空成形後の薄肉化が抑制された一方は密度が低下している箇所が存在した。また、最薄肉部の曲げ弾性率M1は1200MPaであり、最厚肉部の曲げ弾性率M2は1100MPaとなった。比率Yは、1.09であった。すなわち、最薄肉部の曲げ弾性率M1は、最厚肉部の曲げ弾性率M2よりも大きい。曲げ弾性率M1及びM2は、発泡樹脂シートの曲げ弾性率よりも低下していたものの、全体的に厚みの低下を抑止したことで実施例1の試験体よりも剛性に優れると考えられる。比率Zは、1.39であり、1.0よりも大きくなっていた。実施例3において、加熱時に発泡樹脂シートの厚みを膨張させる成形方法によって、試験体の厚み及び密度の変化を抑制し、その結果、機械強度の向上を図れることが分かった。
【0059】
(実施例4)
実施例4の試験体は、発泡樹脂シートの平均厚みを3.0mmとした以外は、実施例2と同様に深絞り成形により成形された。実施例4の発泡樹脂シートの厚みを実施例2の発泡樹脂シートの厚みよりも大きくしたことにより、真空成形後の厚みの変化を抑制できた。また、最薄肉部の曲げ弾性率M1は1600MPaとなり、最厚肉部の曲げ弾性率M2は1100MPaとなった。すなわち、比率Yは、1.0よりも大きい1.45となっていた。比率Zは1.73であり、2.0に近づいた。すなわち、非発泡樹脂の真空成形品に近い値となり、機械強度の向上が図れていることが示唆された。
【0060】
(実施例5)
実施例5の試験体は、箱型形状の金型の深さを80mmとした以外は、実施例1の試験体と同様に真空成形された。さらに深絞りとなったことで厚みに変化が生じたが、実施例5の試験体の密度は、実施例1の試験体の密度と同程度であった。また、最薄肉部の曲げ弾性率M1は1630MPaとなり、最厚肉部の曲げ弾性率M2は1470MPaとなった。すなわち、比率Yは、1.11となり、最厚肉部の曲げ弾性率よりも最薄肉部の曲げ弾性率の方が大きくなった。比率Zは2.71であり、2.0を大きく上回っていた。実施例5の試験体を詳細に観察すると最薄肉部がより非発泡樹脂からなる樹脂成形品の構造に近似するようになっており、機械強度の向上が図れていることが示唆された。
【0061】
(比較例1)
比較例1の試験体は、上述の従来の製法により成形された。すなわち、図13に示すように、加熱時に発泡樹脂シート10が自重により垂れ下がり、真空成形後には気泡が合一化して密度が低下した。比較例1の試験体は、厚みの変化が大きく密度が大きく低下していた。また、最薄肉部の曲げ弾性率M1は450MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、曲げ弾性率M1及びM2は、発泡樹脂シートの曲げ弾性率よりも大幅に低下していた。また、比率Yは0.52と小さく、最薄肉部における強度低下が大きくなった。さらに、比率Zは1.00であり、真空成形後の厚み変化に伴う強度低下が大きくなっていることが示唆された。
【0062】
(比較例2)
比較例2の試験体は、実施例2と同様に深絞りの金型を使用し、かつ、発泡樹脂シートの厚みを3.0mmとした以外は、比較例1と同様に真空成形された。比較例2の試験体は、発泡樹脂シートの厚みが厚くなり、かつ、深絞りの金型を使用したことにより、最薄肉部の密度や機械強度がより低下したものと推察される。また、最薄肉部の曲げ弾性率M1は350MPaとなり、最厚肉部の曲げ弾性率M2は860MPaとなった。すなわち、比率Yは0.41となり、比較例1よりも小さくなっていた。比率Zは0.74であり、試験体の剛性も低下していた。このように、比較例2の試験体は、機械強度と厚みのバランスが悪化していることが示唆された。
【0063】
なお、上述の実施例及び比較例では、ポリカーボネート樹脂を樹脂材料として試験体を作製したが、PAR及びPPS等のスーパーエンジニアリングプラスチック、並びに、ポリカーボネート樹脂とPAR或いはPPSとのアロイ等、他の樹脂を用いても、同様の結果を得ることが出来た。
【0064】
実施例1の試験体及び比較例1の試験体に対して、10kgの重りを乗せた際の変形の様子を確認した。比較例1の試験体では、最薄肉部となる箱形状部の立壁側面部が折れ曲がって試験体全体が破壊された。一方で、実施例1の試験体は元の形状を保っていた。この結果より、比率Yが0.7以上であれば、樹脂成形体が強い衝撃強度を有することが確認された。すなわち、実施例2~5の試験体を用いた場合であっても同様の結果が得られると考えられる。
【符号の説明】
【0065】
1 樹脂成形体、2 最薄肉部、3 最厚肉部、10 発泡樹脂シート、11 コア層(発泡層)、12 スキン層(非発泡層)、13 スキン層(非発泡層)、111 気泡、t1 最薄肉部の厚み、t2 最厚肉部の厚み、M1 最薄肉部の曲げ弾性率、M2 最厚肉部の曲げ弾性率、X 比率、Y 比率、Z 比率、W 幅
【要約】
【課題】薄肉部を含み、発泡樹脂を賦形してなる偏肉の樹脂成形体であっても、優れた機械強度を有する樹脂成形体を提供する。
【解決手段】樹脂成形体1は、コア層11とコア層11の一方の主面に積層されたスキン層12と他方の主面に積層されたスキン層13とを含む発泡樹脂シート10を賦形されている。最薄肉部は、0.5mm以上の厚みを有する。最厚肉部は、5.0mm以下の厚みを有する。樹脂成形体1は、最も厚みが小さい最薄肉部2と、最も厚みが大きい最厚肉部3とを含む。最薄肉部2の曲げ弾性率M1と最厚肉部3の曲げ弾性率M2の第1比率(M1/M2)は、0.7以上である。
【選択図】図9
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16