(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-07
(45)【発行日】2024-05-15
(54)【発明の名称】照明装置
(51)【国際特許分類】
F21S 2/00 20160101AFI20240508BHJP
F21V 5/00 20180101ALI20240508BHJP
F21V 7/00 20060101ALI20240508BHJP
F21Y 115/10 20160101ALN20240508BHJP
【FI】
F21S2/00 340
F21V5/00 510
F21V7/00 510
F21V5/00 600
F21Y115:10
(21)【出願番号】P 2020072759
(22)【出願日】2020-04-15
【審査請求日】2023-04-11
(73)【特許権者】
【識別番号】502356528
【氏名又は名称】株式会社ジャパンディスプレイ
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール弁理士法人
(72)【発明者】
【氏名】長谷川 誠
(72)【発明者】
【氏名】鈴木 延幸
(72)【発明者】
【氏名】利部 憲
【審査官】當間 庸裕
(56)【参考文献】
【文献】特開2013-140318(JP,A)
【文献】特開2010-251785(JP,A)
【文献】米国特許出願公開第2016/0291235(US,A1)
【文献】中国特許出願公開第105911791(CN,A)
【文献】特開2010-230887(JP,A)
【文献】特開2016-057541(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F21S 2/00
F21V 5/00
F21V 7/00
F21Y 115/10
(57)【特許請求の範囲】
【請求項1】
光を出射する出射面と前記出射面と対向する底面を有する照明装置であって、
前記出射面と前記底面の間に、中央に孔を有する樹脂が存在し、
前記孔の前記出射面側には
光を反射する反射ブロックが存在し、
前記孔の前記底面側には光源であるLEDが存在し、
前記LEDと前記反射ブロックとの間には空間が存在し、
前記樹脂は、内側が反射面となっている容器に収容され
、
前記樹脂は、前記出射面側において、平面で視て円形である第1の面と、前記第1の面の内側に平面で視て円形である第2の面を有し、
前記第2の面は前記第1の面よりも前記底面側に存在し、
前記第1の面と前記第2の面は、傾斜面である第3の面によって接続され、
前記反射ブロックは前記第2の面の中央部にはめ込まれていることを特徴とする照明装置。
【請求項2】
前記孔は、平面で視て円形であり、
前記孔を構成する前記樹脂の内壁面は、断面で視て曲線であることを特徴とする請求項1に記載の照明装置。
【請求項3】
前記樹脂の外面は、平面で視て円形であり、断面で視て曲線であることを特徴とする請求項1に記載の照明装置。
【請求項4】
前記樹脂を収容する前記容器の内面は、平面で視て円形であり、断面で視て曲線であることを特徴とする請求項1に記載の照明装置。
【請求項5】
前記樹脂を収容する前記容器の厚さは、断面で視て、前記出射面側よりも前記底面側のほうが厚いことを特徴とする請求項1に記載の照明装置。
【請求項6】
前記反射ブロックの前記LED側の面は、曲面であることを特徴とする請求項1に記載の照明装置。
【請求項7】
前記反射ブロックの前記出射面側の面は、平面であることを特徴とする請求項1に記載の照明装置。
【請求項8】
前記反射ブロックは平面で視て円形であることを特徴とする請求項1に記載の照明装置。
【請求項9】
前記出射面の上には、第1の方向に延在し、第2の方向に配列した複数のレンズを有する、外形が円形である第1の液晶レンズが配置していることを特徴とする請求項1に記載の照明装置。
【請求項10】
前記第1の液晶レンズの上には、前記第2の方向に延在し、前記第1の方向に配列した複数のレンズを有する、外形が円形である第2の液晶レンズが配置していることを特徴とする請求項
9に記載の照明装置。
【請求項11】
前記第1の液晶レンズ及び前記第2の液晶レンズにおける液晶分子の初期配向はホモジニアス配向であることを特徴とする請求項
10に記載の照明装置。
【請求項12】
前記出射面の上には、同心円状に複数のレンズを有する、外形が円形である液晶レンズが配置しており、
前記液晶レンズにおける液晶分子の初期配向は、ホメオトロピックであることを特徴とする請求項1に記載の照明装置。
【請求項13】
前記出射面の上には、外形が円形で、第1の基板と第2の基板の間に液晶層が挟持された液晶レンズが配置し、
前記第1の基板には、同心円状の複数の第1の電極が形成され、
前記第2の基板には、平面状に形成された円形の電極が形成され、
前記液晶レンズは、前記複数の第1の電極に互いに異なる電圧を印加することによってレンズ作用を発現し、
前記液晶層における液晶分子の初期配向はホメオトロピックであることを特徴とする請求項1に記載の照明装置。
【請求項14】
前記液晶層に形成されたレンズの屈折率は、前記液晶レンズの端部において最も小さく、前記液晶レンズの中央部において最も大きいことを特徴とする請求項
13に記載の照明装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、配光角度が小さく、薄型で、かつ、消費電力が小さい照明装置に関する。
【背景技術】
【0002】
照明装置として発光ダイオード(LED、Light Emitting Diode)が用いられるようになってきている。LEDは発光効率が良く、消費電力低減に有利である。しかし、LEDは、点光源なので、照明装置として用いるには面光源に変換する必要がある。また、スポットライトとして使用する場合は、配光角特性が問題になる。
【0003】
特許文献1には、光源にLEDを用い、該LEDを囲んでコリメータレンズを配置して光をコリメートし、さらに、出射側に液晶レンズを配置して、出射光の透過、拡散、偏向等を制御する構成が記載されている。
【0004】
特許文献2には、光源にLEDを用い、該LEDを囲んで集光レンズを配置し、さらに、出射側に出射光の向きを変える光学装置を配置することが記載されている。また、特許文献2には、出射光の向きを変える光学装置として液晶レンズを配置することが記載されている。
【0005】
特許文献3には、液晶レンズを用いて光ビーム形状を制御する構成が記載されている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2019-169435号公報
【文献】特開2012-69409号公報
【文献】US2019/0025657 A1
【発明の概要】
【発明が解決しようとする課題】
【0007】
照明装置でも、例えば、スポットライトとして使用したい場合等では、配光角度の小さい照明装置が要求される。このような照明装置には、従来は、放物面鏡を用いて平行光を形成する構成が用いられてきた。しかし、このような照明装置は、奥行きが必要であり小型化、あるいは、薄型化することが難しい。なお、特許文献1及び2等に記載の照明装置は、レンズを用いて光源からの光をコリメートために、ある程度の光路が必要であり、奥行きを小さくすることには限界がある。
【0008】
また、LEDは高温になると発光効率が低下する。したがって、発熱の小さい、すなわち、全体として消費電力の小さい光源であることが望ましい。また、光源からの発熱が小さければ、ヒートシンク等を別途配置する必要もなくなる。
【0009】
本発明の課題は、薄型で、かつ、比較的消費電力が小さく、かつ、配光角度の小さい表示装置を実現することである。
【課題を解決するための手段】
【0010】
本発明は上記課題を解決するものであり、主な具体的な手段は次のとおりである。
【0011】
(1)出射面と前記出射面と対向する底面を有する照明装置であって、前記出射面と前記底面の間に、中央に孔を有する樹脂が存在し、前記孔の前記出射面側には反射ブロックが存在し、前記孔の前記底面側には光源であるLEDが存在し、前記LEDと前記反射ブロックとの間には空間が存在し、前記樹脂は、内側が反射面となっている容器に収容されていることを特徴とする照明装置。
【0012】
(2)前記孔は、平面で視て円形であり、前記孔を構成する前記樹脂の内壁面は、断面で視て曲線であることを特徴とする(1)に記載の照明装置。
【0013】
(3)前記樹脂の外面は、平面で視て円形であり、断面で視て曲線であることを特徴とする(1)に記載の照明装置。
【0014】
(4)前記樹脂を収容する前記容器の内面は、平面で視て円形であり、断面で視て曲線であることを特徴とする(1)に記載の照明装置。
【0015】
(5)前記樹脂を収容する前記容器の厚さは、断面で視て、前記出射面側よりも前記底面側のほうが厚いことを特徴とする(1)に記載の照明装置。
【0016】
(6)前記反射ブロックの前記LED側の面は、曲面であることを特徴とする(1)に記載の照明装置。
【0017】
(7)前記出射面の上には、第1の方向に延在し、第2の方向に配列した複数のレンズを有する、外形が円形である第1の液晶レンズが配置していることを特徴とする(1)に記載の照明装置。
【0018】
(8)前記第1の液晶レンズの上には、前記第2の方向に延在し、前記第1の方向に配列した複数のレンズを有する、外形が円形である第2の液晶レンズが配置していることを特徴とする(7)に記載の照明装置。
【0019】
(9)前記第1の液晶レンズ及び前記第2の液晶レンズにおける液晶分子の初期配向はホモジニアス配向であることを特徴とする(7)又は(8)に記載の照明装置。
【0020】
(10)前記出射面の上には、同心円状に複数のレンズを有する、外形が円形である液晶レンズが配置しており、前記液晶レンズにおける液晶分子の初期配向は、ホメオトロピックであることを特徴とする(1)に記載の照明装置。
【0021】
(11)前記出射面の上には、外形が円形で、第1の基板と第2の基板の間に液晶層が挟持された液晶レンズが配置し、前記第1の基板には、同心円状の複数の第1の電極が形成され、前記第2の基板には、平面状に形成された円形の電極が形成され、前記液晶レンズは、前記複数の第1の電極に互いに異なる電圧を印加することによってレンズ作用を発現し、前記液晶層における液晶分子の初期配向はホメオトロピックであることを特徴とする(1)に記載の照明装置。
【0022】
(12)前記液晶層に形成されたレンズの屈折率は、前記液晶レンズの端部において最も小さく、前記液晶レンズの中央部において最も大きいことを特徴とする(11)に記載の照明装置。
【図面の簡単な説明】
【0023】
【
図3】放物面鏡を用いてコリメート光を照射する照明装置を示す平面図である。
【
図16A】実施例2及び実施例3の液晶レンズを用いた場合の照度分布の例である。
【
図16B】出射面を分割した領域に液晶レンズを配置した場合の各領域に対応する照度分布の例である。
【
図16C】実施例2及び実施例3の液晶レンズの作用を示すために、出射面を領域に分割した概念を示す断面図である。
【
図19】第1液晶レンズの第2基板の平面図である。
【
図20】第1液晶レンズの第1基板の平面図である。
【
図21】第2液晶レンズの第3基板の平面図である。
【
図22B】液晶レンズの動作を示す他の断面図である。
【
図22C】液晶レンズの動作を示すさらに他の断面図である。
【
図24】液晶レンズの他の形状の例を示す断面図である。
【
図25】液晶レンズの他の形態を示す断面図である。
【
図27】液晶レンズの作用を示す断面模式図である。
【
図28】
図27の効果を生じさせる第1電極への印加電圧の例を示す平面図である。
【
図29A】TN液晶を用いて液晶レンズを構成する場合の動作を示す断面図である。
【
図29B】TN液晶を用いて液晶レンズを構成する場合の動作を示す他の断面図である。
【
図30A】櫛歯電極間に電圧を印加して液晶レンズを構成する動作を示す断面図である。
【
図30B】櫛歯電極間に電圧を印加して液晶レンズを構成する動作を示す他の断面図である。
【
図30C】櫛歯電極間に電圧を印加して液晶レンズを構成する動作を示すさらに他の断面図である。
【
図31】第1の電極である櫛歯電極間に電圧を印加して液晶レンズを構成する場合の第1電極の形状を示す平面図である。
【
図32】実施例2及び3の液晶レンズによる照度分布への作用を示す模式断面図である。
【
図36A】
図35のJ-J断面に相当する液晶レンズの動作を示す断面図である。
【
図36B】
図35のJ-J断面に相当する液晶レンズの動作を示す他の断面図である。
【
図36C】
図35のJ-J断面に相当する液晶レンズの動作を示すさらに他の断面図である。
【
図37】実施例4の液晶レンズにおける第1基板の平面図である。
【
図38】実施例4の液晶レンズにおける第2基板の平面図である。
【
図39】実施例4の液晶レンズの動作を示す断面図である。
【
図40】実施例4の液晶レンズの動作を示す他の断面図である。
【発明を実施するための形態】
【0024】
図1はスポットライトに使用される照明装置10の例である。この照明装置10からの光は、コリメートされており、出射面110から、被表示面120にスポット状の光130が照射される。スポット状の光130を得るために、出射光の配光角度は例えば12度程度となっている。
【0025】
図2は、配光角度の定義を示す図である。
図2は、例えば天井に配置された出射面110から床面に向けて光スポットを照射した場合の図である。出射面110の法線方向の光強度が最も大きく、極角が大きくなるにしたがって、光の強度は小さくなる。法線方向の光の強度を100%とし、光強度が50%となるときの極角をθとした場合、配向角は2θである。一般的なコリメート光において要求される配光角度は12度以下である。
【0026】
このようなコリメート光を得るためには、従来はいわゆる放物線ミラー200が使用されていた。
図3は、放物線ミラー200を用いた照明装置10の平面図であり、
図4は、該照明装置10の断面図である。
図3において、放物線ミラー200の中央にLED20が配置している。LED20は、例えば、LED用基板30に配置している。LED20は、高輝度LEDであり、高温になるため、ヒートシンク300の上に配置している。
図3において、放物線ミラー200の背面にヒートシンク300の一部が見えている。
【0027】
図4は
図3のA-A断面図である。
図4において、放物線ミラー200の底面にLED20が配置している。LED20から出射した光は、直上に向かう光の他は、放物線ミラー200において反射し、光軸に平行な光となる。しかし、放物線ミラー200を十分に機能させるためには、放物線ミラー200の高さh1が必要となる。配光角度12度程度を得るためには、放物線ミラーの高さh1は、60mm程度は必要である。実際には、これに、ヒートシンクの高さh2、例えば20mm程度が加わるので、照明装置全体の厚さは80mm以上必要になる。また、
図3、4に示す照明装置は、光源を構成する1個のLEDに大きなパワーを供給する必要があるので、LEDの発熱が大きく、ヒートシンクが必須になる。
【0028】
図5乃至
図10は、
図3及び
図4における問題点を対策する構成として、発明者が検討した構成である。
図5及び
図6は、光源であるLEDと出射面との間にレンズ作用を構成することによって、コリメート光を得る構成である。
図5は、平面図であり、
図6は
図5のB-B断面図である。
図5において、内壁がミラーになっている容器15内にレンズ作用を有する樹脂11が充填されている。
図6に示すように、樹脂11内には空間12が形成され、この空間12内の底部に光源としてのLED20が配置している。LED20からの光は、空間12と樹脂11の間で屈折した後、容器15の内壁で反射して出射する。
【0029】
このような構成の場合は、配光角は、例えば5度、というように、必要に応じて大幅に改善することが出来るが、レンズの屈折作用を利用しているので、ある程度の光路は必要であり、
図6に示す照明装置10の高さh1は60mm程度となる。したがって、照明装置10の高さh1という点においては、
図4の場合と比べて大幅な改善にはならない。なお、この場合の照明装置10の出射面の径ddは、例えば、89mm程度である。
【0030】
図7は、高さh1を小さくすることが出来る構成の照明装置10の平面図であり、
図8は
図7のC-C断面図である。
図7及び
図8に示すように、光源であるLED20及びLED基板30を出射面110側に配置し、内壁がミラーになっている容器15で光を反射させてコリメート光を得るものである。
【0031】
図7及び
図8に示す構成は、照明装置10の高さh1を小さくすることが出来るが、照明装置10の出射面の径ddが例えば110mm程度と、大きくなる傾向にある。また、この構成は、十分なコリメート光を得ることが比較的難しく、配光角は13度程度になる。
【0032】
図9及び
図10は、発明者による第3の検討結果による照明装置10の構成であり、
図9は平面図、
図10は
図9のD-D断面図である。
図9及び
図10に示すように、容器15内には、樹脂11が充填しており、容器15の底には光源としてのLED20が配置している。
図10に示すように、LED20と対向して金属で形成された曲面反射板16が樹脂11内に埋め込まれている。
【0033】
LED20から出た光は、矢印で示すように、曲面反射板16で反射して、反射面となっている容器15の内面に向かい、容器15の内面で反射して出射面110から出射する。この構成は、曲面反射板16によって、光を一度光源20方向に戻すので、必要な光路を確保しやすい。したがって、照明装置10の高さを大きくしなくとも、コリメート光を得ることが出来る。この場合の照明装置の高さh1は35mm程度にすることが出来る。また、外形ddも75mm程度と小さく抑えることが出来る。このような構成において、配光角は10度程度とすることが可能である。
【実施例1】
【0034】
図11乃至
図13は、発明者によって検討された
図5乃至
図10の構成を踏まえた、実施例1による照明装置10である。
図11は、実施例1の斜視図である。
図11において、出射面は、レンズ作用を有する樹脂11で構成されている。出射面は平面で視て円形である。出射面の周辺には、容器15の最上部が見えている。出射面側の樹脂11は、周辺部分を構成する第1の面と、凹部となっている中央部分の第2の面が存在している。第1の面と第2の面は、傾斜面である第3の面によって接続されている。このように、凹部を形成するのは、出射光の配光角度を制御するためである。樹脂11の凹部には、その中央付近に金属で形成された反射ブロック13がはめ込まれている。反射ブロック13は、平面で視て円形である。
【0035】
図12は
図11のE-E断面図である。
図12において、表示装置10の底部にLED20が配置し、LED20と対向して反射ブロック13が配置している。反射ブロック13はアルミニウム等の反射率の高い金属で形成されている。あるいは、反射ブロック13を樹脂で形成して、LED20と対向する側の表面を反射率の高い金属膜で覆ってもよい。
【0036】
反射ブロック13の、光源と対向する側は曲面であり、反対側、すなわち、出射面側は平面である。曲面は、球面であれば、製造は容易である。しかし、理想的には、樹脂11の内壁を構成する内曲面、樹脂の外側の反射面の曲面との関係で決めるのがよい。
【0037】
容器15は、
図6、8、10等の容器15と異なり、下部分が厚くなっている。これは、反射面を最も効率よく、あるいは、配光角を小さくすることが可能なように、曲面を柔軟に設計し、加工することが出来るようにするためである。容器15の底部は孔が空いており、この部分は、LED20とLED用基板30によって塞がれている。
【0038】
LED20と反射ブロック30との間は、樹脂11が存在しない空間12となっている。なお、この空間12は、樹脂11に形成された孔である。この孔は、平面で視て円である。この空間12は、反射ブロック13の下曲面と樹脂11の内壁とによって囲まれている。樹脂11の内壁は、平面で視て円であり、断面で視て曲線となっている。LED20から出射した光は、反射ブロック13の下曲面(以後単に曲面)によって反射し、樹脂11の内壁に入射する。樹脂11の内壁に入射した光は、内壁の曲面と光の入射角及び樹脂11の屈折率によって規定される方向に屈折する。
【0039】
樹脂11の外面は、平面で視て円であり、断面で視て曲線となっている。容器15の内面は、樹脂11の外面に沿うように形成されている。樹脂11に入射した光は、容器15の内面で反射し、出射面である樹脂11の上表面に向かう。容器15の内面は、入射した光をコリメートしやすいような反射曲面となっている。すなわち、容器15の反射面は、反射ブロック13の曲面及び樹脂の内曲面との関係で、最適な曲面が設定される。このような、曲面を自由に形成できるように、容器15は、断面で視て、出射面側よりも底部側が厚くなるような構成となっている。このような容器は、例えばAl等の金属で形成されるが、ダイキャスト法を用いて製造することが出来る。
【0040】
容器15の内面で反射した光は、出射面において、さらに屈折して出射する。出射光は所定の配向角度を持つように、設計される。ここで、最終的に出射光の配向角度を制御できるように、実施例1では、出射面に凹部と傾斜面を設け、これによって、出射光の配光角度を制御できるようにしている。凹部の径、深さ、凹部を形成するための傾斜面の角度等は任意に選定することが出来る。凹部の中央部分には、反射ブロック13がはめ込まれている。
【0041】
ところで、LED20は、高温になるので、熱を放散する必要がある。
図3及び
図4では、フィンを有するヒートシンク300を配置して熱を放散している。実施例1の構成では、LED20の近傍には、比較的厚くなっている金属で形成された容器15が存在しているので、これをヒートシンクとして作用させることも出来る。
【0042】
このような、照明装置は、次のような順で製造することが出来る。ダイカストによって、アルミニウムによって容器15を形成し、その中に射出成型で形成した樹脂11を載置する。樹脂の中央部分には、平面が円形で、断面が曲線となっている孔が形成されている。樹脂11の中央部分に形成された孔に反射ブロック13となるアルミニウムブロックを嵌め込む。一方、容器15の下部には孔が空いており、この部分はLED20及びLED用基板30によって塞がれる。その結果、光源であるLED20と反射ブロック13との間に、所定の間隔が形成されることになる。
【0043】
図11、
図12で説明したような構成とすることによって、例えば、表示装置の厚さh1が30mm程度、出射面の径ddが90mm程度であり、配光角度が10度の照明装置を実現することが出来る。
【0044】
図13は実施例1の平面図である。
図13は大部分が出射面を構成する樹脂11で占められているが、出射面の凹部の中央部分には、反射ブロック13がはめ込まれている。すなわち、出射面の中央部分からは光は出射しない。したがって、出射面では、輝度むらが生じている。
【0045】
しかし、光スポットが照射される面では、反射ブロックの影響はほとんど生じない。例えば、
図14に示すように、照明装置から2000mm離れた被照射面120の照度は、
図15に示すようになっている。
図15の中央の、等高線が記載されたグラフは、照度の等高線であり、数字はW(ワット)/ステラジアンである。このグラフにおいて、横軸は、水平方向の極角(度)、縦軸は垂直方向の極角(度)である。
図15の下側のグラフは、水平方向の照度の分布を示すグラフであり、横軸は極角(度)、縦軸は照度(W(ワット)/ステラジアン)である。
図15の右側のグラフは、垂直方向の照度の分布を示すグラフであり、縦軸は極角(度)、横軸は照度(W(ワット)/ステラジアン)である。
図15に示すように、照射面120では、中央に配置された反射ブロックの影響は実質的にはないといえる。
【0046】
実施例1の構成では、例えば、樹脂11として、アクリルのような光透過率の高い樹脂を用い、かつ、反射率の高い、反射ブロック13、反射容器15を用いれは、光の損失は非常に少ない。したがって、外形がコンパクトであり、光の利用効率が高く、また、配光角度の小さい照明装置を実現することが出来る。
【0047】
以上の説明では、樹脂11で形成される出射面、樹脂11の中央部に存在する孔の平面形状、反射ブロック13の平面形状等は円であるとして説明したが、この円は、正確な円でなくとも、楕円の場合にも適用することが出来る。ただし、楕円の場合は、短軸方向と長軸方向の径が大きく異なる場合は、短軸方向と長軸方向とで配向角度が異なることになる。
【0048】
以上で説明したように、本実施例の構成を用いることによって、奥行きが小さく、また、配光角度が小さく、かつ、光の利用効率の高い照明装置を形成することが出来る。
【実施例2】
【0049】
実施例2は照明装置の出射面に液晶レンズを配置することによって、出射光を制御する構成に関する。
図16A乃至
図16Cは、液晶レンズを作用させるための概念を示す図である。
図16Cは照明装置10の断面図である。
図16Cにおいて、出射面110を各領域A、B、C等に分割する。各領域からは、所定の配光角をもって光が出射する。
【0050】
図16Bは、
図16Cにおける出射面からdz離れた場所における照度の例を示す。
図16Bの縦軸は各領域A、B、C等からの光の照度である。Ad、Bd、Cdは照度分布であり、例えば、正規分布に近い形をしている。
図16Aは、
図14Bに示す各領域からの光量を合計した場合の照度である。
図16Aの縦軸は、出射面110の各領域からの照度の合計である。
図16Aでは、照明装置の出射面110からdz離れた位置、すなわち被照射面120における全体としての照度分布は、台形であることを示している。
【0051】
実施例2は、出射面110に液晶レンズを配置することによって、所定の距離dzにおける各領域A、B、C等からの照射される光の照度分布、すなわち、
図16Bにおける照度分布Ad、Bd、Cd等を変化させることによって、被照射面120における照度分布を制御するものである。
【0052】
図17は実施例2の照明装置10の断面図である。
図17に対応する平面図は、
図13において、照明装置10の最表面が、液晶レンズのための上偏光板70になっているだけなので、省略する。
図17において、LED20から樹脂11の上面までの構成は
図12と同じなので説明を省略する。樹脂11の上に、液晶レンズのための下偏光板60が配置し、その上に下液晶レンズ40が配置し、その上に上液晶レンズ50が配置し、その上に上偏光板70が配置している。
【0053】
図18は下液晶レンズ40と上液晶レンズ50の断面図である。下液晶レンズ40において、第1基板41と第2基板42が周辺でシール材45によって接着し、内部に液晶43が封止されている。上液晶レンズ50において、第3基板51と第4基板52が周辺でシール材55によって接着し、内部に液晶53が封止されている。
【0054】
図19は下液晶レンズ40の第2基板42に形成された第2電極421の形状を示す平面図である。
図20は、第1基板41に形成された第1電極411を示す平面図である。
図20において、第1電極411はy方向に延在してx方向に配列している。
【0055】
図21は、第2液晶レンズ50の第3基板51に形成された第3電極511の形状を示す平面図である。第3電極511はx方向に延在してy方向に配列している。第2液晶レンズ50の第4基板52に形成された第4電極は、
図18に示す、第1液晶レンズ40の第2電極421と同じである。液晶レンズ40、50に形成される第1電極から第4電極はすべてITO(Indium Tin Oxide)等の透明導電膜によって形成されている。
【0056】
図22A乃至
図22Cは液晶レンズの動作を説明する断面図であり、例えば、
図20のH-H断面に相当する。
図22A乃至
図22Cは第1液晶レンズ40を例にとって説明しているが、第2液晶レンズ50の場合も同じである。
図22Aにおいて、第1基板41には、櫛歯状の電極411が形成され、第2基板42には、平面状の電極421が形成されている。これらの電極間に電圧が印加されなければ液晶分子431は、基板と平行に配向している。
【0057】
図22Bは、第1基板41の櫛歯電極411と第2基板42の平面電極421との間に電圧を印加した場合の電気力線LFの例である。
図22Cは、第1電極411に電圧を印加した場合の液晶分子431の配向を示す断面図である。
図21Cにおいて、液晶分子431が電気力線LFに沿って配向し、液晶層内において、屈折率に分布が生じ、液晶レンズが形成される。このようなレンズは、屈折率分布型GRIN(Gradient Index)レンズとよばれている。
【0058】
図23は屈折率分布型レンズの例を示す図である。
図23の縦軸は屈折率である。屈折率は、第1電極411である櫛歯電極上で最も小さく、櫛歯電極411と櫛歯電極411の中間地点で最も大きい。
図23に示すように、屈折率の分布曲線GIはきれいな2次曲線となっているが、屈折率の分布は、第1電極411と第2電極412間の印加電圧、第1電極411である櫛歯電極の間隔、液晶43の層厚等によって大きく変化させることが出来る。以上の動作は、第2液晶レンズ50の場合も同様である。ただし、第1液晶レンズと第2液晶レンズでは、レンズの作用が互いに直角方向となっている。
【0059】
液晶レンズのピッチは、出射面の分割数によって決められることが多い。一方、液晶レンズにおける液晶の層厚gは制限がある場合が多い。
図23は、櫛歯電極411の間隔sが液晶の層厚gに比べてかなり大きい場合における液晶分子431の配向方向と屈折率分布を示す図である。
図24において、縦軸は液晶レンズ内の各位置における平均屈折率であり、Δneffは液晶レンズにおける屈折率の差である。
図24のレンズでは、櫛歯電極411の付近において、曲率半径の小さなレンズが形成され、櫛歯電極411と櫛歯電極411の中間付近では、比較的大きな曲率半径を有するレンズが形成される。
【0060】
図24に示すような、曲率を有するレンズを使用する場合もあるが、レンズの曲率が、2次曲線のような分布をした液晶レンズが必要な場合もある。
図25は、レンズのピッチ、あるいは、液晶の層厚を変えずに、レンズ形状を2次曲線、あるいは滑らかな曲線にする構成の例を示す断面図である。
図25では、1つのレンズを7個の電極411によって形成し、各電極411に異なった電圧を印加することによって、屈折率が2次曲線に近い形になるように液晶分子413の配向を制御した例である。
図25においては、V1>V2>V3>V4のような電圧印加をしている。
図26は、
図25に対応する櫛歯電極411の平面図である。
図26における領域Bは、例えば
図16Cにおける領域Bに対応している。
【0061】
照明装置10からの出射光の向きを出射面110に垂直な方向ではなく、ある方向に向けて出射したい場合がある。
図27は、各領域A、B、Cから、出射面110に対して垂直方向ではなく、角度φの方向に光を出射させる場合の例である。このような作用は、各領域に配置した液晶レンズの形状を非対称とすることによって可能である。
【0062】
図28は、レンズを非対称とするために、印加電圧を非対称にした場合を示す櫛歯電極411の平面図である。
図28に示すように、印加電圧は、V1>V2>V3>V4であり、かつ、V1>V5≠V3およびV1>V6≠V2である。これによって、
図25に示すような液晶レンズの断面図において、非対称な液晶レンズを形成するように、液晶分子431を配向させることが出来る。
【0063】
液晶レンズは、
図22Aあるいは
図25等で示したような、ホモジニアス配向の場合の液晶だけではなく、種々の方式の液晶装置で実現することが出来る。
図29Aおよび
図29Bは、TN(Twisted Nematic)方式の液晶によって、液晶レンズを構成した例である。TN方式は、第1基板41と第2基板42の間において、液晶分子431の配向方向が90度回転する。
【0064】
図29Aは、第1電極411と第2電極421の間に電圧が印加されていない場合である。この場合、液晶分子431は、第1基板41あるいは第2基板42と平行方向に配向しているが、第1基板41付近と第2基板42付近では、方向が90度回転している。
図29Bは第1電極411と第2電極421の間に電圧を印加した場合である。この場合、第1電極411である櫛歯電極の直上では、液晶分子431が基板41に対して垂直方向に配向するので、光は遮断される。しかし、櫛歯電極411と櫛歯電極411との中間地点では、液晶分子431は、電界の影響を受けず、基板41と平行方向において、90度の回転を維持しているので、透過率は変化を受けない。
【0065】
図29Bの構成をレンズとして評価すると、櫛歯電極411の直上は屈折率が最も小さく、櫛歯電極411と櫛歯電極411の中間は、屈折率が最も大きい。したがって、屈折率分布型GRIN(Gradient Index)レンズが形成される。液晶レンズをTN型液晶で構成する場合も、
図25あるいは、
図28のような電極配置とすることによって種々のレンズ形状を構成することが出来る。
【0066】
図30A乃至
図30Cは、櫛歯状の第1電極411間に電圧を印加することによって液晶レンズを構成する場合の例を示す断面図である。
図30Aにおいて、第1基板41には、櫛歯状電極411が形成されている。一方、第2基板42には、電極は存在していない。すなわち、第1電極411である、櫛歯電極間に電圧を印加することによって、液晶分子を配向させて液晶レンズを構成するので、第2電極421は必ずしも必要ではない。第2電極421はITO(Indium Tin Oxide)等の透明導電膜で形成するが、透明導電膜といっても、ある程度光を反射、吸収するので、第2電極421が存在しないということは、レンズの透過率という面からは有利である。ただし、レンズ形状を変化させたいというような場合は、第2基板42に第2電極421を形成してもよい。
【0067】
図30Bは、櫛歯電極411間に電圧を印加した場合に発生する電気力線LFを示す。すなわち、電気力線LFは、櫛歯電極411の直上では基板41に対して垂直方向に向かい、櫛歯電極411と櫛歯電極411の間では、基板41と平行方向に向かう。液晶分子431は、この電気力線LFに沿って配向することになる。
【0068】
図30Cは、
図30Bのような電界に沿って液晶分子431が配向した状態を示す断面図である。
図30Cにおいて、櫛歯電極411の直上の屈折率が最も小さく、櫛歯電極411と櫛歯電極411の中間が最も屈折率が大きい。したがって、この場合も、屈折率分布型GRIN(Gradient Index)レンズが形成される。
【0069】
図31は、第1基板41に形成される第1電極411の平面図である。
図31において、第1の櫛歯電極411と第2の櫛歯電極411が入れ子になって配置している。第1の櫛歯電極411と第2の櫛歯電極411の間に電圧を印加することによって
図30Cに示すような液晶レンズが形成される。この場合も、液晶層の厚さg、櫛歯電極間の距離s、櫛歯電極間の電圧Vを変化させることによって種々の形状の液晶レンズを形成することが出来る。
【0070】
このように、液晶レンズは、レンズを構成する電極間距離、液晶層の層厚、印加電圧のみでなく、液晶レンズの方式によっても、種々の作用を持つレンズを形成することが出来る。
図32に液晶レンズを用いて照度分布を変化させる場合の例を示す。
図32は、
図16B、
図16Cと同じ構成であるが、領域Aからの出射光のみ記載している。
図32は、領域Aからの出射光の分布を、領域Aに配置された液晶レンズによって、いろいろな形状に変えることが出来ることを示している。
【0071】
Ad1は照度分布が正規分布に近い形状であり、Ad2は正規分布に近いが、より集光された形となっている。Ad3は、液晶レンズを発散レンズのようにすることによって、台形に近い照度分布とした場合であり、Ad3は、液晶レンズを非対称にして照度分布の中心をずらせた場合である。
【0072】
図16A乃至
図16Cで説明したように、スクリーンにおける光の照度分布は、照明装置の出射面の各領域からの光を集積したものになる。つまり、被照射体120に投射される光の照度分布は、出射面の領域A、B、C等からの照度分布を変えることによって、任意に変えることが出来る。
【実施例3】
【0073】
図33は、実施例3を示す断面図である。実施例3は、液晶レンズの作用を円の半径方向に作用させる構成としたものである。
図33において、液晶レンズ80は1枚のみであり、他の構成は、
図12あるいは
図17と同じである。半径方向へ作用する液晶レンズを構成するために、液晶は、VA(Vertical Alignment)タイプのもの、つまり、ホメオトロピック配向のものを用いる。VAであれば、ラビング方式、あるいは、光配向方式を用いて、液晶分子431を配向膜に沿って配向させるための処理は不要だからである。
【0074】
図34は液晶レンズ80の断面図であり、
図35は、液晶レンズ80の第1基板81に形成された第1電極811の平面図である。
図34は、
図35のI-I断面に相当する。
図34の液晶レンズは、第2基板82には電極は形成されておらず、第1基板81に形成されたリング状の第1電極811間に電圧を印加することによって液晶レンズを構成する。
【0075】
図35において、第1電極81が、リング状でかつ同心円状に、複数形成されている。リング状の電極81の各々には、独立して電圧が印加できるようになっている。
図36A乃至
図36Cは、
図35のJ-J断面に相当し、本実施例のレンズ作用を説明する断面図である。
図36Aは、第1電極811に電圧が印加されていない状態を示す断面図である。本実施例における液晶は、ホメオトロピック配向であるから、液晶分子431は、第1基板81及び第2基板82に対して垂直方向に配向している。
【0076】
図36Bは、第1電極811間に電圧を印加した場合の電気力線の例を示す。すなわち、電気力線LFは、櫛歯電極811の直上では基板81に対して垂直方向に向かい、櫛歯電極811と櫛歯電極811の間では、基板41と平行方向に向かう。液晶分子431は、この電気力線LFに沿って配向することになる。
【0077】
図36Cは、
図36Bのような電界に沿って液晶分子431が配向した状態を示す断面図である。
図35Cにおいて、櫛歯電極811の直上の屈折率が最も小さく、櫛歯電極811と櫛歯電極811の中間が最も屈折率が大きい。したがって、この場合も、屈折率分布型GRIN(Gradient Index)レンズが形成される。
【0078】
この場合に形成される各レンズは、リング状電極811、あるいは、円形の第1基板81、第2基板82の半径方向に形成される。しかし、各レンズの照明装置における作用は、
図16Aから
図16C、
図32等で説明したのと同じである。
【実施例4】
【0079】
本実施例は、外形が円形の液晶レンズ全体として1個のレンズを形成する場合の例である。
図37乃至
図40はこの例を示す。なお、実施例4の照明装置全体としての断面図は
図33と、同じである。また、下偏光板60、上偏光板70も
図32等と同じものを使用することが出来る。
図37は、円形の第1基板81に形成された第1電極811の例を示す。第1電極811は、複数の同心円状のリングで構成されている。リングの幅は、
図35の場合よりも大きい。なお、
図37では、引き出し線は省略されている。
【0080】
図38は、円形の第2基板82に形成された第2電極821の例である。第2電極821は円形で平面状に形成されている。第1基板81と第2基板82の間に液晶を挟持して液晶レンズを構成する。
図39及び
図40は、第1基板81と第2基板82を組み立てた後の、
図36のK-K断面に相当する断面図である。
【0081】
図39は、円形で平面状の第2電極821とリング状の第1電極811との間に電圧が印加されていない状態を示す断面図である。
図39において、液晶はホメオトロピック配向であるから、液晶分子431は第1基板81および第2基板82の主面に対して垂直に配向している。
図39においてr方向は、円の半径方向を示す。
【0082】
図40はリング状の複数の第1電極811に異なる電圧を印加した状態を示す断面図である。
図40において、第2電極821に印加する電圧はV1であり、第1電極811には、リング状電極の外側からV1、V2、V3、V4、V5の電圧が印加され、V1<V2<V3<V4<V5である。電圧が大きくなるにしたがって、液晶分子431の傾きが大きくなり、第1基板81の中央付近では、液晶分子431はほぼ第1基板81に平行になっている。
【0083】
図40を液晶レンズとしてみると、第1電極811にV5が印加されており、液晶分子431が第1基板81と平行になっている中央付近における屈折率が最も大きく、第1電極81にV1が印加されており、液晶分子431が第1基板81の主面と垂直になっている周辺付近において、屈折率が最も小さい。したがって、液晶レンズの周辺か中央にかけて、屈折率分布型GRIN(Gradient Index)レンズが形成される。このようにして形成される液晶レンズは、複数形成されたリング状の第1電極811への印加電圧、リング状電極の数、液晶の層厚g等によって任意に変化させることが出来る。
【符号の説明】
【0084】
10…照明装置、 11…レンズ(樹脂)、 12…空間、 13…反射ブロック、 15…容器、 16…曲面反射板、 20…LED、 30…LED用基板、 40…下液晶レンズ、 41…第1基板、 42…第2基板、 43…液晶、 45…シール材、 50…上液晶レンズ、 51…第3基板、 52…第4基板、 53…液晶、 55…シール材、 60…下偏光板、 70…上偏光板、 80…液晶レンズ、 81…第1基板、 82…第2基板、 110…出射面、 120…被照射面、 130…照射スポット、 200…放物線鏡、 300…ヒートシンク、 411…第1電極、 412…第2電極、 431…液晶分子、 511…第3電極、 521…第4電極、 811…第1電極、 812…第2電極