(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-07
(45)【発行日】2024-05-15
(54)【発明の名称】グリッドベースのアセットのための光ファイバ感知システム
(51)【国際特許分類】
G01H 17/00 20060101AFI20240508BHJP
G01K 11/3206 20210101ALI20240508BHJP
H01F 27/00 20060101ALI20240508BHJP
G01H 9/00 20060101ALI20240508BHJP
H01F 30/10 20060101ALI20240508BHJP
【FI】
G01H17/00 Z
G01K11/3206
H01F27/00 A
G01H9/00 E
H01F27/00 H
H01F30/10 K
(21)【出願番号】P 2020169286
(22)【出願日】2020-10-06
【審査請求日】2023-10-06
(32)【優先日】2019-10-24
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-01-27
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】504407000
【氏名又は名称】パロ アルト リサーチ センター,エルエルシー
(73)【特許権者】
【識別番号】390041542
【氏名又は名称】ゼネラル・エレクトリック・カンパニイ
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(72)【発明者】
【氏名】ピーター・キーゼル
(72)【発明者】
【氏名】アジェイ・ラガヴァン
(72)【発明者】
【氏名】トッド・カリン
(72)【発明者】
【氏名】キュシュ・チェン
(72)【発明者】
【氏名】マルコム・ジー・スミス・ジュニア
(72)【発明者】
【氏名】ロバート・ティー・スティンソン・四世
【審査官】岩永 寛道
(56)【参考文献】
【文献】米国特許出願公開第2017/0033414(US,A1)
【文献】特開2015-198085(JP,A)
【文献】特開2001-183257(JP,A)
【文献】特開2010-008409(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01H 1/00- 17/00
G01M 13/00- 13/045
G01M 99/00
G01K 11/32
(57)【特許請求の範囲】
【請求項1】
少なくとも1つの振動センサを含む1つ又は複数の光センサを有する少なくとも1つの光ファイバを含むセンサネットワークであって、前記少なくとも1つの振動センサが、電力グリッド電気デバイス内に配設され、前記電力グリッド電気デバイスの振動を感知するように構成されている、センサネットワークと、
前記少なくとも1つの振動センサからの光出力の時間変動に応答して電気的な時間領域信号を生成するように構成された少なくとも1つの検出器と、
分析器であって、
所定の連続時間の時間窓にわたって取得された前記電気的な時間領域信
号を、前記
時間窓のそれぞれについて複数の周波数領域信号に変換することと、
前記複数の周波数領域信号のそれぞれから前記時間領域信号の周波数成分を抽出することと、
抽出された前記周波数成分から1つ又は複数のスナップショット周波数成分信号を取得することであって、各スナップショット周波数成分信号が、データ取得期間にわたる前記時間領域信号の抽出された前記周波数成分の時間変動信号を含む、ことと、
前記スナップショット周波数成分信号に基づいて前記電力グリッド電気デバイスの状態の存在又は量を検出することと、を行うように構成されている、分析器と、を備える、センサシステム。
【請求項2】
前記少なくとも1つの振動センサ又は前記光ファイバが、前記電力グリッド電気デバイスの構成要素に堅固に取り付けられている、請求項1に記載のシステム。
【請求項3】
前記電力グリッド電気デバイスが、油入変圧器であり、
前記油入変圧器の前記構成要素が、前記油入変圧器のコア、油タンク壁、油タンク蓋、低電圧プレート、及びフレームの1つを含む、請求項2に記載のシステム。
【請求項4】
前記少なくとも1つの振動センサが、前記電力グリッド電気デバイスの2つの構成要素に取り付けられ、前記2つの構成要素の相対運動を感知するように構成されている、請求項2に記載のシステム。
【請求項5】
前記少なくとも1つの振動センサが前記電力グリッド電気デバイスの前記2つの構成要素の間に配設されるように、前記光ファイバが、前記電力グリッド電気デバイスの2つの構成要素に取り付けられている、請求項2に記載のシステム。
【請求項6】
前記電力グリッド電気デバイスが変圧器であり、前記2つの構成要素が、前記変圧器の第1のコア及び第2のコアである、請求項5に記載のシステム。
【請求項7】
前記電力グリッド電気デバイスが変圧器であり、前記2つの構成要素が、前記変圧器のコア及びフレームである、請求項5に記載のシステム。
【請求項8】
前記電力グリッド電気デバイスが変圧器であり、前記少なくとも1つの振動センサが、前記変圧器内の油中にあり、変圧器構成要素に堅固に取り付けられていない、請求項1に記載のシステム。
【請求項9】
前記センサネットワークが温度センサも含む、請求項1に記載のシステム。
【請求項10】
前記電力グリッド電気デバイスが油入変圧器であり、前記センサネットワークが、前記油入変圧器の油タンク壁に近接して位置付けられた少なくとも1つの温度センサを含む、請求項1に記載のシステム。
【請求項11】
前記電力グリッド電気デバイスが油入変圧器であり、前記センサネットワークが、前記油入変圧器内の油の上方のヘッドスペースに位置付けられた少なくとも1つの温度センサを含む、請求項1に記載のシステム。
【請求項12】
前記電力グリッド電気デバイスが油入変圧器であり、前記センサネットワークが、前記油入変圧器内の油の表面に近接して位置付けられた少なくとも1つの温度センサを含む、請求項1に記載のシステム。
【請求項13】
前記電力グリッド電気デバイスが油入変圧器であり、前記センサネットワークが、前記変圧器の油タンクの底部に近接して位置付けられた少なくとも1つの温度センサを含む、請求項1に記載のシステム。
【請求項14】
前記電力グリッド電気デバイスが変圧器であり、前記センサネットワークが、前記変圧器のコイルの頂部に近接して、前記コイルの中央部に近接して、及び/又は前記コイルの底部に近接して位置付けられた少なくとも1つの温度センサを含む、請求項1に記載のシステム。
【請求項15】
前記電力グリッド電気デバイスが油入変圧器であり、前記センサネットワークが油面センサを含む、請求項1に記載のシステム。
【請求項16】
前記センサネットワークが、前記電力グリッド電気デバイスの外部に配設された1つ又は複数の外部センサを含む、請求項1に記載のシステム。
【請求項17】
前記1つ又は複数の外部センサが環境センサを含む、請求項16に記載のシステム。
【請求項18】
前記光ファイバが、前記電力グリッド電気デバイスのケースの開口部を通って挿入されたロッドの上に又はその中に配設されている、請求項1に記載のシステム。
【請求項19】
前記光ファイバが、少なくとも1つの光温度センサ及び少なくとも1つの油面センサを含む、請求項18に記載のシステム。
【請求項20】
前記ロッドがポリカーボネートを含む、請求項18に記載のシステム。
【請求項21】
前記電力グリッド電気デバイスが変圧器であり、
前記ロッドが、前記変圧器の内部構成要素に取り付けられ、
前記光ファイバが、プラグ嵌合部を通って前記変圧器から出る、請求項18に記載のシステム。
【請求項22】
プラグが前記開口部内に配設され、
前記光ファイバが、プラグの孔を通って配設される、請求項21に記載のシステム。
【請求項23】
前記開口部が、アメリカ管用テーパねじ(NPT)開口部であり、前記プラグがNPTプラグである、請求項22に記載のシステム。
【請求項24】
前記プラグの前記孔を密封するように構成された密封部を更に備える、請求項22に記載のシステム。
【請求項25】
前記電力グリッド電気デバイスが油入変圧器を含み、前記油入変圧器が、
油を収容するように構成された変圧器ケースと、
前記変圧器ケース内に配設された1つ又は複数の油ダクトを含む絶縁材と、を含み、
前記少なくとも1つの光ファイバが、前記油ダクトのうちの少なくとも1つを少なくとも部分的に通って延在する、請求項1に記載のシステム。
【発明の詳細な説明】
【背景技術】
【0001】
変圧器及び電圧調整器などの電気デバイスアセットは、電気グリッドからの電力を調整及び送達する際の重要な構成要素である。寿命を予測する、及び/又はメンテナンンスをスケジュールするために、これらの電気デバイスアセットの性能及び健全性を監視することが有用である。光ファイバセンサは、過酷な環境で動作し、電気ノイズの影響を受けず、グリッド接続された電気アセットの内部及び外部パラメータを監視するのによく適している。
【発明の概要】
【0002】
いくつかの実施形態は、センサシステムを対象とする。センサシステムは、電気デバイスの振動を感知するように、かつ振動に応答して光出力の時間変動を生成するように構成されている1つ又は複数の光センサを有する少なくとも1つの光ファイバを含むセンサネットワークを含む。検出器が、センサネットワークの少なくとも1つの光センサの光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、スナップショット周波数成分信号を取得する。各スナップショット周波数成分信号は、データ取得期間にわたる時間領域信号の周波数成分の1つ又は複数の時間変動信号を含む。分析器は、スナップショット周波数成分信号に基づいて電気デバイスの状態を検出する。
【0003】
いくつかの実施形態は、少なくとも1つの光センサを使用して電気デバイスの振動を光学的に感知することと、振動に応答して光センサからの光出力の時間変動を生成することと、を含む方法を含む。少なくとも1つの光センサの時間変動光出力を表す時間領域信号が生成される。データ取得期間にわたる時間領域信号の時間変動周波数成分を含む、少なくとも1つのスナップショット周波数成分信号が取得される。電気デバイスの状態が、スナップショット周波数成分信号に基づいて検出される。
【0004】
いくつかの実施形態によれば、センサシステムは、1つ又は複数の光センサを有する少なくとも1つの光ファイバを含むセンサネットワークを含む。光センサは、電気デバイスの1つ又は複数のパラメータを感知するように構成されている。少なくとも1つの検出器が、センサネットワークの少なくとも1つの光センサの光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、第1のデータ取得期間にわたる光センサの時間領域信号の分析に基づいて電気デバイスの第1のパラメータの変化を識別し、第1のデータ取得期間よりも短い第2のデータ取得期間にわたる光センサの時間領域信号の分析に基づいて電気デバイスの第2のパラメータの変化を識別する。
【0005】
いくつかの実施形態は、電気デバイスの振動を感知するように、かつ振動に応答して光センサからの光出力の時間変動を生成するように構成された少なくとも1つの光センサを有する少なくとも1つの光ファイバを含むセンサネットワークを含むセンサシステムを対象とする。検出器が、光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、時間領域信号で表される電気デバイスの固有振動数を識別し、固有振動数の変化に基づいて電気デバイスの状態を検出する。
【0006】
方法は、少なくとも1つの光センサを使用して電気デバイスの振動を光学的に感知することを含む。振動に応答して少なくとも1つの光センサの光出力の時間変動を表している時間領域が生成される。時間領域信号で表される電気デバイスの固有振動数が識別され、電気デバイスの状態を検出するために使用される。
【0007】
いくつかの実施形態によれば、センサシステムは、1つ又は複数の光センサを含む少なくとも1つの光ファイバのセンサネットワークを含む。1つ又は複数の光センサは、電力グリッド電気デバイス内に配設された少なくとも1つの振動センサを含む。振動センサは、電力グリッド電気デバイスの振動を感知し、振動に応答してセンサからの光出力の時間変動を生成する。検出器が、振動センサからの光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、データ取得期間にわたる時間領域信号の時間変動周波数成分を含む少なくとも1つのスナップショット周波数成分信号を取得するように構成されている。分析器は、スナップショット周波数成分信号に基づいて電力グリッド電気デバイスの状態を検出する。
【0008】
いくつかの実施形態は、感知方法を対象とする。電力グリッド電気デバイスの振動は、少なくとも1つの光センサを使用して感知される。光センサは、振動に応答して光センサからの光出力の時間変動を生成する。少なくとも1つの光センサからの光出力の時間変動を表す電気的な時間領域信号が生成される。時間領域信号で表される電力グリッド電気デバイスの1つ又は複数の固有振動数が識別され、電力グリッド電気デバイスの状態が固有振動数に基づいて検出される。
【0009】
センサシステムは、電力グリッド電気デバイス内に配設された少なくとも1つの振動センサを含む1つ又は複数の光センサを含む少なくとも1つの光ファイバを有するセンサネットワークを含む。振動センサは、電力グリッド電気デバイスの振動を感知し、振動に応答してセンサからの光出力の時間変動を生成する。検出器が、振動センサからの光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、データ取得期間にわたる時間領域信号の時間変動周波数成分を含む少なくとも1つのスナップショット周波数成分信号を取得する。分析器は、スナップショット周波数成分信号に基づいて電力グリッド電気デバイスの状態を検出する。
【0010】
いくつかの実施形態によれば、システムは、電力グリッド電気デバイスのケースを通って挿入されるように構成された感知ロッドを含む。感知ロッドは、支持ロッドと、支持ロッド内又は支持ロッド上に配設された少なくとも1つの光ファイバと、を含む。光ファイバは、複数の光センサを含む。
【0011】
油入電気デバイスは、油を収容するように構成されたケースを含む。1つ又は複数の油ダクトを含む絶縁材が、ケース内に配設されている。少なくとも1つの光ファイバが、油ダクトのうちの少なくとも1つを通って延在する。
【0012】
いくつかの実施形態によれば、センサシステムは、少なくとも1つの光ファイバを含むセンサネットワークを含む。光ファイバは、電力グリッド電気デバイスの振動を感知するように構成されている1つ又は複数の光振動センサを含み、各振動センサは、振動に応答して光出力の時間変動を生成する。検出器が、センサネットワークの少なくとも1つの光センサの光出力の時間変動に応答して電気的な時間領域信号を生成する。分析器が、時間領域信号で表される電気デバイスの固有振動数を識別し、固有振動数に基づいて電力グリッド電気デバイスの状態を検出する。
【図面の簡単な説明】
【0013】
【
図1】いくつかの実施形態による、光センサを使用して電気デバイスアセットを監視するように構成されたシステム100のブロック図である。
【
図2A】いくつかの実施形態による、
図1のシステムを動作させる方法を示すフロー図である。
【
図2B】いくつかの実施形態による、
図1のシステムを動作させる方法を示すフロー図である。
【
図3】いくつかの実施形態による、センサネットワーク、検出器、及び分析器の動作を示す図である。
【
図4A】いくつかの実施形態による、時間領域信号を周波数成分のスナップショットに変換する動作を示す。
【
図4B】いくつかの実施形態による、時間領域信号を周波数成分のスナップショットに変換する動作を示す。
【
図4C】いくつかの実施形態による、時間領域信号を周波数成分のスナップショットに変換する動作を示す。
【
図5A】いくつかの実施形態による、変圧器への負荷の接続又は切断を検出するために使用することができる時間領域振動信号の周波数成分の変動を示す。
【
図5B】いくつかの実施形態による、変圧器への負荷の接続又は切断を検出するために使用することができる時間領域振動信号の周波数成分の変動を示す。
【
図5C】いくつかの実施形態による、変圧器への負荷の接続又は切断を検出するために使用することができる時間領域振動信号の周波数成分の変動を示す。
【
図6A】いくつかの実施形態による、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図6B】いくつかの実施形態による、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図6C】いくつかの実施形態による、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図6D】いくつかの実施形態による、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図6E】いくつかの実施形態による、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図7A】変圧器が低負荷、中負荷、及び高負荷下にあるときの変圧器の固有振動数のシフトを示す。
【
図7B】変圧器が低負荷、中負荷、及び高負荷下にあるときの変圧器の固有振動数のシフトを示す。
【
図8】変圧器が低負荷、中負荷、及び高負荷下にあるときの変圧器の固有振動数のシフトを示す。
【
図9A】変圧器が外部振動の存在下で非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図9B】変圧器が外部振動の存在下で非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
【
図10】いくつかの実施形態による、振動センサの例示的な配置を示す油入変圧器の図である。
【
図11】いくつかの実施形態による、温度センサの例示的な配置を示す油入変圧器の図である。
【
図12A】層間にダクトを有する層で作製された絶縁体を概念的に示す断面図である。
【
図12B】いくつかの実施形態による、変圧器内の絶縁体のダクト内に挿入された光ファイバを有する変圧器を示す。
【
図13A】いくつかの実施形態による、感知ロッドが内部に挿入されている変圧器の正面断面図及び側面断面図をそれぞれ示す。
【
図13B】いくつかの実施形態による、感知ロッドが内部に挿入されている変圧器の正面断面図及び側面断面図をそれぞれ示す。
【
図14】いくつかの実施形態による、電気アセット内への光ファイバの設置を可能にするのに適しているプラグの断面図である。
【
図15】いくつかの実施形態による、プラグに取り付けられた支持ロッドを示す。
【
図16】いくつかの実施形態による、支持ロッド上に取り付けられた光ファイバセンサを示す。
【
図17】いくつかの実施形態による、支持ロッド上のノッチ内に配設された光ファイバセンサを示す。
【0014】
図面は、必ずしも縮尺どおりではない。図面に使用される同様の数字は、同様の構成要素を指す。しかしながら、所与の図の構成要素を指す数字の使用は、同じ数字でラベル付けされた別の図における構成要素を制限することを意図していないことが理解されるであろう。
【発明を実施するための形態】
【0015】
変圧器及び電圧調整器を含む配電アセットなどの電気デバイスの内部及び/又は外部振動を監視することは、デバイスの状態を検出することを可能にすることができる。電気デバイスの経時的な状態の変化を判定することは、健全性を推定すること、残りの耐用年数を予測すること、及び/又は電気デバイスのメンテナンスをスケジュールすることを容易にすることができる。本明細書に記載される実施形態は、電気デバイス内に配設された光センサを使用して得られる振動信号の周波数成分の期間スナップショットに基づいて電気デバイスの状態を判定するためのシステム及び方法を対象とする。
【0016】
いくつかの実施形態では、電気デバイスは、電力グリッドネットワーク変圧器又は電力グリッド電圧調整器などの電力グリッド構成要素である。いくつかの実装形態では、電気デバイスは、本明細書で提供される実施例において油入デバイスとして例示される、流体充填デバイスであり得る。流体充填された変圧器、電圧調整器、及び他のそのようなデバイスが、電気グリッド内の多くの場所で使用される。これらのデバイス内では、油などの流体が、その高い絶縁耐力(よりコンパクトなフォームファクタを可能にする)とその伝熱及び放熱能力の両方のために使用される。デバイスの作動電気構成要素をより低い温度に維持するために、流体充填デバイスの外部流体タンク壁への伝熱が一般に必要とされる。構成要素によって発生した熱は、流体を介したタンク壁への直接熱伝導によって、及び/又は循環流体とタンク壁との間の熱対流によって、周囲流体内へ、次いでタンク壁へと伝達される。次いで、熱は、高放射性の放熱器表面を介して外部環境内へ放散することができる。タンクから環境への伝熱速度を増加させるために、タンク壁に熱的に結合された放熱器要素を使用することができる。変圧器タンク内の流体の対流、及び流体充填レベルは、電気デバイスの機械的構造の振動スペクトルに影響を及ぼす。
【0017】
いくつかの実施形態では、例えば、デバイス内に配設され、かつ/又は電気デバイスの異なる構成要素に取り付けられた、例えば、数個のセンサから数百個のセンサまでの範囲で、複数の振動センサが存在し得る。異なる位置での振動の監視は、輸送、設置、メンテナンス、及び/又は通常動作中に生じる機械的衝撃に関する情報を提供することができる。電気デバイスの機械的構造は、経時的に及び/又は構造の経年劣化に応じて変化し得る、衝撃(外部又は内部)によって励起され得る所定の固有振動数を有する。デバイス内の振動及び/又は温度を監視することは、ホットスポット、わずかな漏れ、及び/又は他の構成要素劣化(絶縁紙の経年劣化、コイル金属クリープ、並びに/又はデバイス内の油が汚染及び/若しくは経年劣化に起因する汚れ、沈殿物、腐食、及び/若しくは油粘度の変化による影響を受ける状況など)の早期検出を可能にし得る。外部衝撃は、電気デバイスの側を通過する車、トラック、又は列車などの車両、電気デバイスの輸送、設置、又はメンテナンス中の衝撃、落下物からの衝撃、及び他の発生源からの衝撃を含むことができる。振動信号は、比較的低い周波数の振動信号、例えば、<50Hzであってもよく、又は音響放出信号(例えば、50~200kHz)の範囲内の周波数を有してもよい。
【0018】
様々な実施形態では、光センサネットワークは、数ある可能な状態の中で特に、電気システムのACの性質によって駆動される振動、電気デバイスの機械的固有振動数、デバイス内部の温度、及び/又はデバイス内の油面の検出を容易にすることができる。少数又は多数のセンサを含むことができるセンサネットワークは、検出システムのスケーラビリティを提供する。光学的な感知は、振動、温度、油面などの複数の変数が、同じ座標及び時間(x、y、z、t)において測定されることを可能にする。過酷な環境に適しており、電磁干渉(EMI)に著しく耐性がある、このシステムは、高い空間的及び時間的分解能を提供する。したがって、本明細書に記載されるアプローチは、正確な物理モデル及び状態識別を可能にする。感知され得る状態は、動作イベント(perational events)(負荷状態変化又は排熱通風状態など)メンテナンスイベント(劣化など)を含む内部イベント、及び外部イベント(外部衝撃など)を含む。
【0019】
光学的感知は、センサが、油入電気デバイス内などの過酷な環境に、及び/又は電磁干渉(EMI)の著しい位置に配設される場合に特に有用である。
【0020】
図1は、いくつかの実施形態による、光センサを使用して電気デバイスアセットを監視するように構成されたシステム100のブロック図である。システム100は、電気デバイス110内に配設された1つ又は複数の内部光センサ141を有する少なくとも1つの光ファイバ140を含むセンサネットワーク130を含む。センサネットワークは、電気デバイス110の外側に配設された1つ又は複数の外部光センサ145を任意選択的に含み得る。センサ141、145のうちの少なくともいくつかは、振動を感知するように構成されている。外部センサは、例えば、振動、湿度、気体、温度、及び/又は他の環境パラメータを感知し得る。
【0021】
電気デバイス110の振動は、光センサ141のうちの少なくとも1つからの光出力において変動を引き起こす。システム100は、光信号を電気信号に変換することができる少なくとも1つの感光性デバイスを含む検出器120を含む。検出器120は、光センサ141の光出力に応答して時間領域電気振動信号を生成する。分析器150は、1つ又は複数のデータ取得期間にわたってそれぞれに時間領域信号の1つ又は複数の時間変動周波数成分を含むスナップショット周波数成分信号を取得する。スナップショット周波数成分信号は、時間領域信号の周波数成分を表す一群の時間変動信号である。例えば、スナップショット周波数成分信号は、時間領域信号の時間変動20Hz周波数成分、時間領域信号の時間変動60Hz周波数成分、及び時間領域信号の時間変動120Hz周波数成分などを含み得る。スナップショット周波数成分信号の一例として、20Hz、60Hz、120Hz、180Hz、及び300Hz成分信号を含む
図6Eを参照されたい。
【0022】
時間変動周波数成分は、複数のデータ取得期間、例えば、10秒及び1分の間隔にわたって取得され得る。変圧器への通電又は外部からの機械的衝撃のような、非常に短いイベントの周波数応答を決定するために、1秒以下の更により短い時間間隔が必要とされ得る。振動信号のより高次の高調波は、典型的には短く、異なる位相を有し得る。したがって、強いより高次の高調波信号は、より長いデータ取得期間(例えば、1分間の期間)にわたって積分されると、それ自体を相殺することができるため、異なるデータ取得期間にわたって取得された周波数成分は有用であり得る。分析器は、スナップショット周波数成分信号に基づいて電気デバイスの状態を検出し得る。いくつかの実施形態では、分析器は、周波数成分の振幅、振幅の比率、立ち上がり時間、立ち下がり、時間など、スナップショット周波数成分信号の1つ又は複数の特徴の傾向を作成し得る。
【0023】
時間領域信号の周波数成分を抽出するために、分析器150は、検出器120から得られた振動信号の時間領域から周波数領域への変換を実行することができる。例えば、分析器150は、ウェーブレット変換又はフーリエ変換を使用することによって、時間領域振動信号を周波数領域信号に変換し得る。
【0024】
いくつかの実施形態によれば、分析器150は、電気デバイスの異なる状態に対応する標準のライブラリを記憶するメモリを含む。分析器は、スナップショット周波数成分信号を標準と比較し、比較に基づいて状態が存在するかどうかを判定し得る。例えば、分析器は、スナップショット周波数成分信号の時間変動周波数成分のうちの1つ又は複数を標準と比較し得る。標準は、例えば、状態が発生した場合にデータ取得期間にわたって存在することが予想される時間変動周波数成分のテンプレートを含み得る。標準は、電気デバイスの特定の状態に対して予想される、データ取得期間にわたる周波数成分の振幅、振幅平均、振幅比、及び/又は他の計算値を含み得る。周波数成分は、変圧器動作自体、例えば、60Hz以上の高調波、並びに変圧器タンクからの他の構造的/機械的/電気機械的固有振動数、及び変圧器動作又は外部からの機械的衝撃によって刺激された成分に起因し得る。標準は、データ取得時間にわたる周波数成分信号の形態的特徴を含み得る。形態的特徴は、立ち上がり時間、立ち下がり時間、ピーク幅、ピーク高さなどを含むことができる。
【0025】
電気デバイスの特定の状態を識別するために、分析器150は、周波数成分の取得されたスナップショットを、デバイスの1つ又は複数の異なる状態を表す記憶された周波数成分テンプレートと比較し得る。例えば、分析器150は、十分に近い一致が得られるまでテンプレートを順次比較し得る。
【0026】
いくつかの実施形態では、分析器150は、スナップショットを通常動作のテンプレートと比較し、スナップショットが通常テンプレートと異なる場合に異常状態を識別し得る。
【0027】
いくつかの実施形態では、分析器150は、テンプレートデータポイントの全て又はいくつかをスナップショットデータポイントとポイントごとに比較することを伴う相互相関信号マッチング技術を使用して相関係数を計算し得る。分析器は、連続的に得られたスナップショットの相関がテンプレートとの相関に近づくことに基づいて、状態が将来発生する可能性が高いことを予測し得る。いくつかの実施形態では、分析器は、スナップショットデータポイントを通常動作テンプレートの全て又はいくつかと比較する相関係数を周期的に計算し得る。いくつかの実施形態では、分析器150は、スナップショットと通常テンプレートとの間の相関の変化に基づいて、電気デバイスの動作が通常動作から逸脱することを予測し得る。
【0028】
分析器150は、スナップショット信号の任意の形態的特徴に基づいて傾向を作成し得る。テンプレート自体は、単一の時点ではなく傾向を表し得る。いくつかの実施形態では、傾向は、周波数成分の振幅比、周波数成分の立ち上がり又は立ち下がり時間など、計算値に基づくことができる。テンプレート又は異常傾向に十分に近いスナップショットが識別された場合、分析器150は、電気デバイスの通常状態又は異常状態を示す出力、並びに場合によっては、異常状態が更に悪化し得る及び/又は注意を必要とし得る予想期間の予測を返す。
【0029】
いくつかの実施形態によれば、分析器150は、時間領域信号で表された固有振動数を識別し、固有振動数の変化に基づいて電気デバイスの状態を判定し得る。更に、分析器150は、固有振動数の経時的な傾向を作成し、固有振動数の傾向に基づいて電気デバイスの状態の存在及び/又は量を検出又は予測し得る。
【0030】
分析器150は、スナップショット周波数成分信号の変化の経時的な傾向を作成し、傾向に基づいて状態の存在又は量の変化を検出し得る。いくつかの実施形態では、分析器は、異なる感知点での振動信号(又は他の感知された信号)の間の相関を作成し、相関の変化に基づいて状態の存在又は量の変化を検出する。分析器150は、2つ以上(twor or more)の異なるパラメータ、例えば、振動と温度との間の相関を作成し、異なるパラメータ間の相関の変化に基づいて状態の存在及び/又は量の変化を検出し得る。
【0031】
図2Aは、いくつかの実施形態による、センサシステム100を動作させる方法を示すフロー図である。センサネットワークは、少なくとも1つの光センサを使用して電気デバイスの振動を光学的に感知する(210)。振動は、光センサの歪みに変動を引き起こし、結果として、センサからの光出力に時間変動をもたらす。時間変動光出力は、検出器によって時間領域電気信号に変換される(220)。分析器が、データ取得期間にわたる時間領域信号の周波数成分のスナップショットを取得する(230)。分析器は、周波数成分のスナップショットを、電気デバイスの状態に対応する既知の周波数成分テンプレートと比較する(240)。比較に基づいて、分析器は、状態の存在及び/又は量を判定する(250)。いくつかの実施形態では、分析器250は、異常が更に悪化する及び/又は注意を必要とする期間を判定し得る。状態が検出された場合、又は状態(例えば、腐食)の量が許容可能なレベルを超えていると判定された場合、電気デバイスの修理、メンテナンス、及び/又は交換など、いくつかの措置が任意選択的に講じられ得る(260)。
【0032】
図2Bのフロー図に示すように、いくつかの実施形態では、分析器は、時間領域信号で表された電気デバイスの固有振動数を識別し得る(235)。分析器は、固有振動数の変化に基づいて、電気デバイスの様々な状態の存在及び/又は量を検出することができる(255)。例えば、固有振動数の変化は、パルス状衝撃時の振幅、周波数、及び/又は減衰特性の変化を含み得る。
【0033】
センサシステムは、電気デバイスの様々な位置に配設された複数のセンサを含むことができる。センサのうちの少なくともいくつかは振動センサであり得るが、センサシステムはまた、他のパラメータを感知するように構成されたセンサ、例えば、油面センサ又は温度センサも含み得る。例えば、1つ又は複数の温度センサが、油入変圧器の油面に近接して、及び/又は油タンクの底部に近接して(例えば、1~10mm以内)、位置付けられ得る。少なくとも1つの温度センサは、変圧器のコイルの頂部に近接して、コイルの中央部に近接して、及び/又はコイルの底部に近接して位置付けられ得る。本明細書でより詳細に説明されるように、異なる時間スケールにわたって取得される、電気デバイスの異なるパラメータを感知するために、同じセンサが使用され得ることに留意されたい。
【0034】
電気デバイスの状態の変化は、振動信号の周波数成分を変化させる。振動信号の周波数成分は、電気デバイスの外部又は内部のイベントに起因して変化し得る。例えば、周波数成分は、デバイスの外側への機械的衝撃、又は電気デバイスの外部にある機器によって引き起こされた振動に起因して変化し得る。また、デバイス内の内部状態も、例えば、コイル及びコアなどの変圧器構成要素の取り付けの一体性が損なわれる場合に、振動信号の周波数成分を変化させ得る。
【0035】
いくつかの構成では、電気デバイスは油入デバイスである。振動信号の周波数成分は、デバイス内の油に変化(タンクに漏れがあるとき又は油試料が採取されたときに発生し得る圧力の変化など)があるときに変化し得る。周波数成分は、油の温度、圧力、又は劣化における変化に応答して変化し得る。変圧器タンク内の油の対流、及び油充填レベルは、変圧器内の振動に影響を及ぼし得る。
【0036】
時間の経過と共に、電気デバイスのボルト及び/又は他の部品が緩み、振動信号の周波数成分に変化を引き起こす場合がある。電気デバイスの機械的取り付けは、経時的に変化し得る。取得された振動信号の周波数成分を、以前に取得した周波数成分テンプレートと比較することによって、電気デバイスの緩んだ部品、緩んだボルト、及び/又は損なわれた機械的取り付けの状態が検出され得る。
【0037】
例えば、電気デバイスが変圧器であるシナリオを考えてみる。変圧器ケース(例えば、油入変圧器ケース)への変圧器コイル又はコアの機械的取り付けは、振動信号の周波数成分において検出可能である、経時的な変化を呈し得る。
【0038】
腐食は、電気デバイスの劣化及び/又は早期破損につながり得る化学プロセスである。デバイスの腐食の存在及び/又は進行は、振動信号の周波数成分の変化に基づいて検出され得る。
【0039】
電気デバイスの通電又は通電停止、変圧器コイルの磁化又は消磁、負荷の印加又は除去、特定のタイプの負荷の印加又は除去(例えば、デバイスの誘導性回路、容量性又は抵抗性回路、過負荷回路、短絡又は開回路)などのイベントは、振動信号の周波数成分に基づいた検出可能な状態の例である。経時的な振動信号周波数成分の変化を監視することは、電気デバイスの劣化及び/又は経年劣化と一致する電気デバイスの変化を示すことができる。また、外部衝撃(例えば、側を通過する車又は列車)に起因する周波数スペクトルの特性応答は、変圧器構成要素及び/又は変圧器タンクの構造的一体性が変化すると、急激に又は経時的に変化することができる。
【0040】
図3は、センサネットワーク、検出器、及び分析器の動作を示す図である。センサ131、135は、ファイバブラッググレーティング(FBG)センサ及び/又はエタロン若しくはファブリペロー(FP)センサを含む、任意のタイプ(又は複数のタイプ)の光センサを含み得る。FBGセンサ及びエタロン/FPセンサの両方は、本明細書において光センサ又は光ファイバセンサと総称される。本明細書で提供されるいくつかの実施例は、FBGセンサに基づいているが、他のタイプの光センサが、本明細書で論じられる様々な実施形態において代替的に又は追加的に使用され得ることは理解されるであろう。
【0041】
光ファイバセンサは、それらの電気的対応物よりも優れた多くの利点を提供し得る。これらは、細くて(典型的には直径約100~200μm)、軽量、かつ高感度であり、過酷な環境に対して堅牢であり、EMIへの耐性がある。光ファイバセンサは、長い光ファイバケーブル上での多重化(muxed)構成で複数のパラメータを高感度で同時に測定することができる。光ファイバセンサは、ダウンホール感知で示されるように、長期間(5年超)の油浸環境への曝露を含む、様々な過酷な環境に対する堅牢性を示してきた。最も一般的な光ファイバ材料はシリカであり(シリカは耐腐食性である)、5年超にわたって1GPaの張力に耐え、-200℃~800℃で存在し続けることができ、470kV/mmを超える絶縁破壊耐力を有する。また、様々な種類のプラスチックも、光ファイバ及び光センサに有用である。FBGセンサなどの光ファイバセンサは、衝撃及び振動に対して機械的に堅牢である。したがって、変圧器内の埋込式光ファイバセンサは、関連するパラメータを確実に測定及び監視するための魅力的な解決策を提供する。加えて、光ファイバケーブルのEMI及び無線周波数干渉(RFI)への耐性は、光ファイバケーブルを、変電所内の高電圧動作環境に対して、かつグリッドを横切る長距離にわたって、特に好適な通信及び/又は感知媒体にする。したがって、光ファイバケーブルの多機能性は、電力システムにおける感知機能、通信機能、遮蔽機能、及び防雷機能を組み合わせるために利用することができる。
【0042】
FBGセンサは、光ファイバのコアの有限長(典型的には数mm)に沿った屈折率の周期的変調によって形成することができる。いくつかの実施形態では、周期的変調は、フェムト秒レーザーを用いた直接書き込みによって光ファイバに刻むことができる。変調パターンは、FBGセンサの屈折率プロファイルの周期性によって決定される波長(ブラッグ波長と呼ばれる)を反射する。実際には、センサは、典型的には、ブラッグ波長を中心とする狭い帯域の波長を反射する。外部刺激の特性値又はベース値におけるブラッグ波長はλと示され、ピーク、中心、又は重心波長λ(及びλ付近の狭い帯域の波長)を有する光は、センサが所定のベース状態にあるときにセンサから反射される。例えば、ベース状態は、振動によるゼロ歪みに対応し得る。センサが、歪みの変化を引き起こす振動又は他の刺激にさらされると、振動により、グレーティングの周期性及びFBGの屈折率が変化し、それによって、反射光が、ベース波長λとは異なるピーク、中心、又は重心波長λsを有するように変化する。
【0043】
FBGセンサは、例えば、屈折率n、歪みε1、及び周囲温度変化ΔTの変化に敏感であり得る。屈折率nは、センサ素子領域上で光ファイバクラッドをストリッピングすることによって、及び/又はこの感知領域に適切なコーティングを付加することによって、センサの化学的環境に敏感にすることができる。いくつかの実施態様では、歪み及び温度によって(設計又は実装に起因して)異なる影響を受ける複数のFBGセンサ、二重ファイバ又は特別なFBGセンサをデータ評価アルゴリズムと組み合わせて使用することにより、波長シフトに対する歪み及び温度からの影響を分離することができる。例えば、歪み及び温度は、変圧器に取り付けられた一対の隣接するFBGを異なる波長で使用して分離することができる。2つの隣接するFBGのうちの1つは、熱的に敏感なペーストを使用して、又は機械的な歪みの影響を回避するために特別な管材若しくはダクト内に封入することによって、熱歪みのみに敏感であるように構成することができる。管材内の「基準」FBGセンサの測定された波長シフトは、温度補償のために、隣接するFBG歪みセンサの総波長シフトから減算することができる。
【0044】
上述のように、光ファイバセンサは、温度及び歪みを感知するのに有用である。振動は、動的な歪み変動として検出することができる。好適なコーティング及び構成を使用した場合、FBG及び/又は他の光センサは、電流、電圧、化学的環境、及び腐食を監視するのに有用であり得る。例えば、対象のいくつかのパラメータは、対象のパラメータに応答して、典型的には線形関係で、歪みを受ける特別なコーティングを介して、FBG上の歪み信号にマッピングすることができる。1つ又は複数の直接隣接する光センサが、高い忠実度で対象のパラメータを復元するために、温度及び/又は振動の影響など、交絡パラメータの影響を補償するために使用され得る。
【0045】
いくつかの実施態様では、好適なコーティングを使用して、及び/又は腐食により引張歪みを受ける構造的構成要素にセンサ若しくはセンサコーティングを接着することによって、腐食及び/又は水分を歪み信号に変換することができる。
【0046】
別の例として、対象の化学種の変化する濃度に反応して歪みを受ける特定の化学的に敏感なコーティングを堆積させることによって、化学的感知を達成することができる。例えば、パラジウム(Pd)コーティングは、水素含有気体に反応して可逆歪みを受ける。変圧器の油及びセルロースの両方は、水素に富む炭素系分子構造を有する。油及びセルロースの分解は、可燃性気体及び不燃性気体を含む、多数の副生成物を形成する。水素は、それらの化合物のほとんどの中に天然に存在する。最大0.05体積%のH2及び短鎖炭化水素の気体濃度は、健全な変圧器として許容可能なレベルであり得る。Pdコーティングを有する光センサは、水素系気体を検出するのに有用である。自由空気中でのFBGによる水素気体感知は、PdコーティングされたFBGが、熱的影響を考慮せずに、約5分の応答時間を伴う1体積%のH2気体濃度変化に対して約7ピコメートル(pm)の波長シフト応答を有し得ることを示唆する。同様の又はより大きい応答感度が炭化水素に対して達成され得る。検出ユニット分解能が50フェムトメートル(fm)である場合、熱的影響を考慮した後、自由空気中で0.01~0.02%のH2の分解能が達成され得る。同様の分解能レベルが、油中の溶解したH2又はH含有気体に対して達成され得、約250ppmの溶解気体検出の標的分解能を可能にし得る。
【0047】
いくつかの実施形態では、本明細書に開示されるシステムは、音響放出を、例えば、50~200kHzの周波数範囲で検出するために使用することができる。音響放出は、電気デバイスの絶縁体内の部分放電イベントを示すことができる。本明細書で論じられるアプローチによって可能となる高周波モニタリング能力により、部分放電音響放出からの高速(最大1MHz)動的歪み信号(最大1.45fm/√Hz)の音響放出検出が達成され得、部分放電の発生及び/又は重大度を検出するために使用され得る。
【0048】
図1のブロック図に示される実施形態では、センサ141は、電気デバイス110内に部分的に埋め込まれている単一の光ファイバ140上に配設されている。電気デバイスの外部にあるセンサ145もまた、任意選択的に光ファイバ上に配設される。センサ141、145のそれぞれは、光ファイバ140上の他のセンサとは異なる波長帯域内で動作し得る。例えば、センサ141-1は、波長λ1を中心とする第1の波長帯内で動作し得、センサ141-2は、λ2を中心とする第2の波長帯内で動作し得、センサ141-3は、λ3を中心とする第3の波長帯内で動作し得る。各波長帯域λ1、λ2、λ3は、他のセンサの波長帯域と実質的に重ならないように選択され得る。
【0049】
図3に示すように、システムは、任意選択的に入力光源360を含み得る。検出器320は、光デマルチプレクサ321及び感光性素子322を含み得る。光センサ341-1、341-2、341-3は、入力光源360に光学的に連結されている。光源360は、光センサ341-1、341-2、341-3の動作波長帯域にわたる広い波長帯域にわたって入力励起光を供給する広帯域光源であり得る。光センサ341-1、341-2、341-3からの出力光は、光ファイバ340及び342上で検出器320に搬送される。いくつかの実施形態では、検出器320は、
図3に示すように光デマルチプレクサ321及び感光性素子322を含む。
【0050】
例えば、検出器320は、光の波長に従って光ファイバ342からの出力光を空間的に分散させる波長領域光デマルチプレクサ321を含み得る。様々な実施態様では、光デマルチプレクサ321は、直線的に可変の伝送構造体及び/若しくは配列された導波路グレーティング、又は他の光学的分散素子を含み得る。
【0051】
デマルチプレクサ321からの分散された光は、1つ又は複数の光検出器を含み得る感光性素子322に光学的に連結することができる。各光検出器は、光検出器の感光面に当たる光に応答して電気信号を生成するように構成されている。感光性素子322の光検出器によって生成された電気信号は、センサ341-1、341-2、341-3によって感知された振動(又は他のパラメータ)を表す。感光性素子322と共に使用される光デマルチプレクサ321は、センサ341-1、341-2、341-3のそれぞれからのセンサ信号が個別に検出されることを可能にする。検出器320によって生成された電気信号は、電気デバイス(
図1に示す110)の状態の存在及び/又は量若しくは進行を判定するために、分析器350によって分析することができる。
【0052】
広帯域光は、例えば、発光ダイオード(LED)又はスーパールミネッセントレーザーダイオード(SLD)を含み得る、光源360によって送られる。広帯域光のスペクトル特性(強度対波長)は、差し込みグラフ391によって示される。光は、光ファイバ340を介して第1のFBGセンサ341-1に送られる。第1のFBGセンサ341-1は、中心又はピーク波長λ1を有する第1の波長帯域内にある光の部分を反射する。第1の波長帯域以外の波長を有する光は、第1のFBGセンサ341-1を通って第2のFBGセンサ341-2に送られる。第2のFBGセンサ341-2に送られる光のスペクトル特性は、差し込みグラフ392に示され、λ1を中心とする第1の波長帯域にノッチを呈しており、この波長帯域内にある光が第1のセンサ341-1によって反射されることを示している。
【0053】
第2のFBGセンサ341-2は、中心又はピーク波長λ2を有する第2の波長帯域内にある光の部分を反射する。第2のFBGセンサ341-2によって反射されない光は、第2のFBGセンサ341-2を通って第3のFBGセンサ341-3に送られる。第3のFBGセンサ341-3に送られる光のスペクトル特性は、差し込みグラフ393に示され、λ1及びλ2を中心とするノッチを含んでいる。
【0054】
第3のFBGセンサ341-3は、中心又はピーク波長λ3を有する第3の波長帯域内にある光の部分を反射する。第3のFBGセンサ341-2によって反射されない光は、第3のFBGセンサ341-2を通って送られる。第3のFBGセンサ341-3を通って送られる光のスペクトル特性は、差し込みグラフ394に示され、λ1、λ2、及びλ3を中心とするノッチを含んでいる。
【0055】
中心波長λ1、λ2、及びλ3を有する波長帯域381、382、383内の光(差し込みグラフ395に示される)は、それぞれ、第1、第2、又は第3のFBGセンサ341-1、341-2、341-2によってFOケーブル342に沿って検出器320に反射される。振動は、センサによって反射される波長を時間と共に変化させる。検出器は、センサ341-1、341-2、341-3によって反射された光の波長の変動に応答して時間領域振動信号を生成する。いくつかの実施形態では、分析器350は、時間領域信号のスナップショットの周波数成分を判定し、スナップショット周波数成分を、電気デバイスの既知の状態に対応する周波数成分テンプレートと比較する。分析器350は、比較に基づいて状態の存在及び/又は量を検出する。いくつかの実施形態では、分析器は、デバイスの固有振動数を識別し、固有振動数の変化に基づいてデバイスの状態の変化を検出する。いくつかの実施形態では、分析器350は、デバイスの周波数成分及び/又は固有振動数の変化に基づいて、異常が生じる、デバイスの状態が悪化する、及び/又はデバイスが点検を必要とする期間を推定し得る。
【0056】
場合によっては、広帯域光を放射する代わりに、光源は、波長範囲を走査し、光ファイバ340上に配設された様々なセンサが敏感である狭い波長帯域の光を放射し得る。反射光は、狭帯域光の放射に対して時限される複数の感知期間中に感知される。例えば、341-1、341-2、341-3が光ファイバ340上に配設されているシナリオを考えてみる。センサ341-1は波長帯域(WB1)に敏感であり、センサ341-2は波長帯域WB2に敏感であり、センサ341-3はWB3に敏感である。光源は、期間1の間にWB1を有する光を放射し、期間1に重なる期間1aの間に反射光を感知するように制御され得る。期間1aの後、光源は、期間2の間にWB2を有する光を放射し、期間2に重なる期間2aの間に反射光を感知し得る。期間2aの後、光源は、期間3の間にWB3を有する光を放射し、期間3に重なる期間3aの間に反射光を感知し得る。このバージョンの光時間領域多重化を使用すると、センサのそれぞれが、別個の期間中に問い合わせされ得る。
【0057】
本明細書で論じられるように電気デバイスを監視するために使用される光ファイバ340は、シングルモード光ファイバを含んでもよく、又はマルチモード光ファイバを含んでもよい。シングルモード光ファイバケーブルは、より解釈しやすい信号を提供するが、より広い適用性及びより低い製造コストを達成するために、マルチモードファイバが使用されてもよい。
【0058】
図4A~
図4Cは、いくつかの実施形態による、時間領域信号から周波数成分のスナップショットへの変換を示す。検出器は、光センサからの光出力の変動を、
図4Aに示すような時間変動信号に変換する。約10秒の期間中、電気デバイス(この例では変圧器である)は、約2.5秒時にオンにされる。
図4Bは、60、120、180、及び240Hzにおける10秒のスナップショットの周波数成分量の変動を示す。
図4Cは、60、120、180、及び240Hzにおける10秒の期間の周波数成分量の変動を、バーの陰影が対象の周波数における信号の振幅を示す棒グラフとして示す。変圧器の通電状態又は通電停止状態は、2.5秒から始まる期間中の周波数成分の振幅の変動を、スイッチオンが発生する前の0~2.5秒中の前の振幅と比較することによって、検出することができる。
【0059】
本明細書で論じられるアプローチは、上記の
図4A~
図4Cに示されるような変圧器が通電又は通電停止されたときのシグネチャ、及び経年劣化によるシグネチャの変化を検出するために使用することができる。
図5A~
図5Cは、変圧器への負荷の接続又は切断を検出するために使用することができる時間領域振動信号の周波数成分の変動を示す。周波数成分はまた、接続及び切断された負荷の種類を示すこともできる。
図5Aは、変圧器が電源オンされ、誘導性負荷(モータ)が変圧器に接続又はそれから切断されたときの0~10秒の期間中の周波数成分の振幅の時間変動を示す。
図5B及び
図5Cは、変圧器が電源オンされ、抵抗性負荷(ヒートガン(
図5B)及びランプ(
図5C))が変圧器に接続され及びそれから切断されたときの0~10秒の期間中の周波数成分の振幅の時間変動を示す。分析器は、変圧器の状態を判定するために、関連する期間にわたる周波数成分の振幅を、
図4及び
図5に関連して説明されるものなどの様々な状態を表す周波数成分振幅のテンプレートと比較するように、構成することができる。
【0060】
いくつかの実施形態によれば、分析器は、デバイスの固有振動数のシフトに基づいて電気デバイスの状態を検出し得る。任意の時点において、デバイスは固有振動数と呼ばれる特徴的な固有の共振振動周波数を有する。固有振動数は、センサから取得された周波数領域信号の高振幅成分としてはっきりと表れる。周波数領域信号は、検出器からの時間変動信号を時間領域から周波数領域に変換することによって得られる。デバイスの状態が変化すると、デバイスの固有振動数及び/又は固有振動数での信号の振幅もまたシフトし得、それにより、分析器は、固有値の変化に基づいて状態の存在及び/又は量を識別することが可能になる。
【0061】
図6A~
図6Eは、変圧器が非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
図6Aは、変圧器が通電されていない10秒の時間窓にわたって変圧器の内部にある14個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット601~614を提供する。センサは、プロット601~614及び621~634の左側に示されるように、異なる公称中心波長1527.97nm、1531.47nm、1536.09nmなどで動作する。
図6Bは、変圧器が通電されている10秒の時間窓にわたって同じ14個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット621~634を提供する。60Hz以上の周波数での固有振動数、例えば、120Hz、240Hzなどでの高調波周波数の振幅の変化が、通電イベント中に明確に見られる。
図6Cは、変圧器が通電される前の1つのセンサの周波数領域信号の60Hz付近の詳細図を示す、プロット611の拡大図である。
図6Dは、変圧器が通電された後の1つのセンサの周波数領域信号の60Hz付近の詳細図を示す、プロット631の拡大図である。加えて、センサ信号のうちのいくつかには、18.4、20Hzにおいてより低い周波数が存在する。
図6C及び
図6Dのプロットの比較は、通電イベントによって引き起こされた、20Hz及び60Hzの固有振動数での振幅の変化を明らかにする。
図6Eは、20Hz、60Hz、120Hz、180Hz、及び300Hzにおける周波数成分の、データ取得期間にわたる周波数成分信号のスナップショットである。これらの図に見られるように、20Hz成分の振幅は、約150秒において発生する通電イベントの前及び後に時間と共に変化している。60Hz、120Hz、180Hz、及び300Hz成分の振幅は、比較的一定かつ小さいが、通電イベントが発生すると、振幅は著しく変化する。
【0062】
図7A、
図7B、及び
図8は、変圧器が低負荷、中負荷、及び高負荷下にあるときの変圧器の固有振動数のシフトを示す。
図7Aは、変圧器が低負荷下にある10秒の時間窓にわたって変圧器の内部にある15個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット701~715を提供する。センサは、
図7A、
図7B、及び
図8のプロットの右側に示されるように、異なる公称中心波長1590.47nm、1513.32nm、1517.06nmなどで動作する。
図7Bは、変圧器が中負荷下にある10秒の時間窓にわたって同じ14個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット721~735を提供する。
図8は、変圧器が高負荷下にある10秒の時間窓にわたって同じ14個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット741~755を提供する。低負荷状態及び中負荷状態のプロットを比較すると、固有振動数成分の振幅の差はわずかに変化する。中負荷及び高負荷でのプロットを比較すると、固有振動数成分の振幅の差は、容易に観察可能な変化を示す。
【0063】
図9A及び
図9Bは、フォークリフトが変圧器の側を通過している間の10sの時間間隔にわたる変圧器の周波数振動スペクトルを示す。
図9Aでは、プロット901~907は、7つの光振動センサによって感知された時間領域信号から取得された周波数領域プロットである。
図9Bでは、プロット911~917は、同じ7つの光振動センサによって感知された時間領域信号から取得された周波数領域プロットである。
図9Aは、変圧器が通電されていないときにセンサから得られた振動スペクトルを示し、一方、
図9Bは、変圧器が通電されている時間の間の振動スペクトルを示す。いずれの場合でも、フォークリフトからの衝撃によって励起された変圧器の特徴的な(固有)振動周波数スペクトルを見ることができる(例えば、10Hz、50Hz、及び80Hzの前後に広い周波数ピークを示すプロット905を参照)。
図9Bでは、変圧器動作からの追加の60、120、180、240Hzの周波数成分も見ることができる。変圧器タンク、下にある土台、及び/又は変圧器内部の変圧器構成要素の取り付けの構造的一体性が変化すると、振動固有振動数、及び固有振動数での振幅が変化する。これらの変化は、独立して、かつ通常の変圧器動作によって刺激される特性周波数(60、120Hzなど)の潜在的な変化に加えて、観察及び特性評価することができる。
【0064】
固有振動数の変化は、振動センサに影響を及ぼす他の要因の存在下でさえも識別可能であり得る。
図9A及び
図9Bは、変圧器が外部振動の存在下で非通電状態から通電状態に遷移するときの変圧器の固有振動数のシフトを示す。
図9Aは、変圧器が通電されていない10秒の時間窓にわたって変圧器の内部にある7個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット901~907を提供する。センサは、プロット901~907及び911~917の左側に示された異なる公称中心波長で動作する。
【0065】
図9Bは、変圧器が通電されている10秒の時間窓にわたって同じ7個のセンサから取得された時間領域信号をフーリエ変換して得られた周波数領域信号のプロット911~917を提供する。
図9A及び
図9Bのプロットの時間の間、変圧器の近くにあるフォークリフトが、7個のセンサによって拾われる振動を生じさせる。変圧器による振動は、周波数において901~907及び911~917のプロットにはっきりと表れている。60Hz以上の周波数での固有振動数、例えば、120Hz、240Hzなどでの高調波周波数における変化が、変圧器の非通電状態から通電状態への遷移後に明確に見られる。
【0066】
いくつかの実施形態では、光センサを含むセンサシステムは、異なる時間スケールを有する複数のデータ取得期間にわたって電気デバイスの複数のパラメータを感知するように構成することができる。いくつかの実施態様では、複数のデータ取得システムは重なり合っていてもよい。これらの実施形態は、第1のパラメータが、比較的低い周波数において光センサの光出力の変化を引き起こす第2のパラメータと比較して、比較的高い周波数においてセンサの光出力の変化を引き起こす場合に、適用可能である。一例として、第1のパラメータは、センサの光出力において比較的高い周波数の変化を引き起こす振動であり得、第2のパラメータは、センサの光出力において比較的低い周波数の変化を引き起こす温度又は機械的応力であり得る。検出器は、光出力の比較的高い周波数の変動及び低い周波数の変動を、やはり比較的高い周波数成分及び低い周波数成分を含む電気信号に変換する。第1パラメータの変化は、比較的高い周波数成分に基づいて判定され、第2のパラメータの変化は、電気信号内の比較的低い周波数成分に基づいて判定される。
【0067】
再び
図1を参照すると、複数のパラメータが感知される実施形態によれば、センサ141、145のうちの少なくとも1つは、振動、音響放出、温度、化学変化など、複数のパラメータを感知することができる。振動及び音響放出は、センサの光出力において比較的高い周波数の変化を引き起こすパラメータであり、温度は、センサの光出力において比較的低い周波数の変化を引き起こすパラメータである。検出器120は、センサからの光出力の高い周波数の変動と低い周波数の変動の両方に応答して電気的な時間領域信号を生成する。分析器150は、第1のデータ取得期間にわたる光センサの時間領域信号の分析に基づいて、高い周波数の変動を引き起こす第1のパラメータ(例えば、電気デバイスの振動)の変化を識別するように構成することができる。第1のデータ取得期間は、例えば、約1~10秒又は最大1分程度であり得る。分析器は、第2のデータ取得期間にわたる光センサの時間領域信号の分析に基づいて第2のパラメータ(例えば、電気デバイスの温度)の変化を識別するように構成されている。第2のデータ取得期間は、例えば、約0.5~約30分程度であり得る。
【0068】
このシナリオの一例は、変圧器動作によって引き起こされる振動であって、例えば、周波数領域において明確に区別することができる
図9A及び
図9Bに示されるような機械的衝撃に起因するより低い周波数の振動と対比した60Hz以上の高調波での振動である。
【0069】
いくつかの実施形態によれば、センサネットワークは、電気デバイス内に配設された多数のセンサを含み得る。分析器は、感知されたパラメータ、例えば、デバイス内の温度の分布を作成することが可能であり得る。例えば、温度分布を判定し、温度分布の変化を追跡することは、電気デバイス内の熱対流及び伝熱を識別するのに有用であり得る。変圧器タンク内の油の対流、及び油充填レベルは、変圧器の振動に影響を及ぼす。分析器は、電気デバイスの状態についての判定を行うために、複数のパラメータ、例えば、振動、温度、油充填レベルなどからの情報を使用し得る。
【0070】
内部又は外部光センサの適切な配置は、電気デバイスの様子又は状態を判定するための良好な情報を得ることを容易にする。振動を検出することができるセンサの場合、センサは、電気デバイスの1つ又は複数の構成要素に堅固に取り付けられ得る。例えば、
図10に示すように、一シナリオでは、電気デバイスは、フレーム1060内に配設された4つのコア1001、1002、1003、1004及び3つのコイル1005、1006、1007を含む油入変圧器1010である。フレーム1060は、油タンク1070(本明細書では、ケースとも呼ばれる)内に収容された油1071内に少なくとも部分的に沈められる。変圧器の低電圧プレート1080は、
図10において油タンク1070の内部かつフレーム1060の上方に配置される。
【0071】
この例では、センサネットワークは、2つの光ファイバ1041、1042を含む。光ファイバ1041は、8つの光振動センサ1041-1~1041-8を含む。光センサ1041-1は、油タンク1070の壁1072の内面に取り付けられ、光センサ1041-2は、第4のコア1004に取り付けられ、光センサ1041-3は、第3のコア1003に取り付けられ、光センサ1041-5は、第2のコア1002に取り付けられ、光センサ1041-7は、第1のコア1001に取り付けられ、光センサ1041-4は、第2のコア1002と第3のコア1003との間に取り付けられ、光センサ1041-6は、第1のコア1001と第2のコア602との間に取り付けられ、光センサ1041-8は、フレーム1060の外面に取り付けられている。
【0072】
光ファイバ1042は、8つの光振動センサ1042-1~1042-8を含む。光センサ1042-1は、低電圧プレート1080に取り付けられ、光センサ1042-2は、第4のコア1004の頂部に取り付けられ、光センサ1042-3は、第3のコア1003に取り付けられ、光センサ1042-5は、第2のコア1002に取り付けられ、光センサ1042-7は、第1のコア601に取り付けられ、光センサ1042-4は、第2のコア1002と第3のコア1003との間に取り付けられ、光センサ1042-6は、第1のコア1001と第2のコア1002との間に取り付けられ、光センサ1042-8は、フレーム1060の外面に取り付けられている。
【0073】
2つの構成要素の間の相対運動を感知するために、振動センサは、センサ1041-4、1041-6、1042-4、及び1042-6に対して示されるように、2つの構成要素に堅固に取り付けられ得る。例えば、ある光センサの第1の端部は第1の構成要素に堅固に取り付けることができ、この光センサの反対側の第2の端部は第2の構成要素に堅固に取り付けることができる。あるいは、振動センサが配置される光ファイバを、振動センサが2つの構成要素の間に配設されるように2つの構成要素に堅固に取り付けてもよい。相対運動を感知するためのこれらの技術のいずれか1つを使用して、構成要素間の、例えば、変圧器の2つのコアの間の、又はコアとフレームとの間の相対運動を感知することができる。相対運動を感知することは、構成要素の取り付けボルトが時間と共に緩んでいるかどうかを判定するのに特に有用である。
【0074】
図10は、ごく少数の振動感知点が2つの光ファイバに沿って存在する状況を例示しているが、本明細書で論じるような光学的感知が単一の光ファイバに沿った多数の感知点、例えば、数百個の光センサを可能にし得ることは理解されるであろう。他の場合(例えば、より小さい変圧器)では、より少ない数(1つ又は複数)の感知点であっても十分であり得る。
【0075】
電気デバイス内の温度は、電気デバイスの状態を判定するために、単独で、又は他の感知されたパラメータ、例えば、振動、油面などと併せて使用することができる。
図11は、フレーム1160内に3つのコイル1105、1106、1107及び4つのコア1101、1102、1103、1104を含む配電変圧器1110内の対象の様々な温度感知点を示す図である。
図11のセンサネットワークは、単独で、又は、例えば、
図10に例示される振動センサと共に使用され得る。この例のセンサネットワークは、変圧器1110の温度を感知するように構成されたセンサを含む2つの光ファイバ1141、1142を含む。温度センサは、対象の構成要素に緩く若しくは堅固に取り付けられてもよく、又は特定の構成要素の近くに位置するが取り付けられなくてもよい。例えば、センサは、油中で構成要素の近くに浮遊し得る。これは、これらのセンサが静的歪みの変化による影響を受けないという利点を有する。任意のシナリオでは、温度センサは、電気デバイスの構成要素又は領域の温度変化を感知することができるように、電気デバイスの構成要素又は領域に十分に熱的結合される。
【0076】
光ファイバ1141は、特にコイル1105に沿って、電気デバイス1110の内部温度及び外部温度を感知するように構成された7つの光センサ1141-1~1141-7を含む。光センサ1141-1は、油タンク1170の蓋1173の内面の近くに位置するか、又はその内面に取り付けられ、光センサ1141-2は、油1171の上方で変圧器のヘッドスペース1174内に位置し、光センサ1141-3は、油1171の表面に位置し、光センサ1141-4は、第2のコイル1106の頂部に又はその近くに位置し、光センサ1141-5は、第2のコイル1106の中央部に又はその近くに位置し、光センサ1141-6は、油タンク1170の底部に又はその近くに位置し、光センサ1141-7は、変圧器1110の外部に位置する。
【0077】
光ファイバ1142は、電気デバイス1110の内部温度及び外部温度を感知するように構成された7つの光センサ1142-1~1142-7を含む。光センサ1142-1は、変圧器1110の外部に位置する。光センサ1142-2は、油タンク1170の蓋1173の内面の近くに位置するか、又はその内面に取り付けられ、光センサ1142-3は、油1171の上方で変圧器のヘッドスペース1174内に位置し、光センサ1142-4は、油1171の表面に位置し、光センサ1142-5は、第1のコイル1105の頂部に又はその近くに位置し、光センサ1142-6は、第1のコイル1105の中央部に又はその近くに位置し、光センサ1142-7は、油タンク1170の底部に又はその近くに位置する。
図10に関して前述したように、
図11もまた、ごく少数の温度感知点を例示しているが、追加の感知点がいくつかの実施態様で使用され得ることは理解されるであろう。
【0078】
腐食は、多くのグリッドアセットにとって重要な故障原因である。温度感知及び/又は振動感知は、変圧器油タンク及び/又は他の構成要素の腐食を検出するのに特に有用であり得る。変圧器タンク及びその構成要素の腐食は、多くのグリッドアセットの故障の一番の発生原因である。日常のメンテナンス時に定期点検が行われるが、主要都市にある多数の変圧器室に起因して、これらの点検の間にかなりの量の腐食が起こる可能性がある。また、腐食の程度は、多くの場合、目視検査によって定量化することは困難であり、そのため、故障の予測は困難になっている。変圧器タンク内の温度分布を監視する、油面を精密に監視する、及び/又は変圧器構成要素の振動スペクトルを監視するために光ファイバ感知を使用することは、重大な故障が発生する前に措置を講じることができるように、変圧器室内で生じる腐食の量をリアルタイムで遠隔監視するための複数の手段を可能にする。
【0079】
変圧器壁上の及び/又は異なる変圧器構成要素からの異なる感知点における、例えば、変圧器コアの機械的衝撃又は磁化/消磁からの振動スペクトルの詳細は、変圧器の構造的一体性が腐食による影響を受けると変化する。振動スペクトルの変化は、構造的一体性が損なわれたときのデバイスの機械的固有振動数の変化から生じる。異なる構成要素にわたる振動分布は、構成要素の取り付け又はタンクの構造的一体性が腐食によって損なわれると変化する。油入変圧器の構造的一体性の劣化を識別することにより、油がタンクから漏出し始めるはるか前であっても、腐食を早期に示すことが可能になる。
【0080】
任意選択的に、感知ネットワークは、油面が決定的に低くなるかなり前であっても変圧器内のわずかな油漏れを識別するように、油面の非常に小さい変化(mm)を検出するために使用することができる液面センサを含み得る。例えば、油面センサは、センサネットワークの光ファイバ上に1つ又は複数の光センサを含み得る。
【0081】
また、油面が油漏れにより既に低下している腐食後期の段階では、振動スペクトルにおける特徴は影響を受けた状態であり、腐食は、単独の又は温度感知及び/若しくは油面感知と組み合わせた振動感知に基づいて検出することができる。内容全体を参照によって本明細書に引用したものとする、2019年10月24日出願の米国特許出願第16/662,655号及び2019年10月24日出願の米国特許出願第16/662,726号に記載されるように、変圧器タンク内の温度分布もまた、腐食の指標である。前述したように、より長い時間スケールにわたって温度分布の変化を検出するために使用されるセンサのうちの少なくともいくつかはまた、より短い時間スケールにわたって振動を検出することにも使用され得る。したがって、同じセンサが、最初に、振動に基づいて変圧器状態の変化を検出するために使用され、その後、温度に基づいて変圧器状態の変化を確認し得る。逆の動作も可能であり、変圧器状態が最初に温度感知に基づいて検出され、同じセンサが、振動感知に基づいて変圧器状態を確認するために使用される。
【0082】
製造プロセス中に変圧器及び/若しくは他の電気デバイスに光ファイバを挿入すること、又は既存の電気デバイスに光ファイバを後付けすることは困難であり得る。ダクトは、コイルに近接した油対流を可能にすることによってコイルを冷却するためによく使用される。以下で論じられるいくつかの実施形態によれば、光ファイバは、製造プロセス中に変圧器内のダクトを通って誘導することができる。いくつかの実施形態によれば、変圧器は、1つ又は複数の感知点を有する1つ又は複数の光ファイバセンサを含む光ファイバ感知ロッドを最初に装着されるか、若しくは後付けされることができ、又は代替的に、感知ロッドは製造プロセス中に挿入され得る。いくつかの実施形態によれば、電力グリッド電気デバイスは変圧器であり、ロッドは変圧器の内部構成要素に取り付けられている。光ファイバは、プラグ嵌合部を通って変圧器から出ている。
【0083】
変圧器は、一般に、一次巻線と二次巻線との間に絶縁体を含む。
図12Aは、層1281と層1282との間にダクト1283を有する層1281、1282で作製された絶縁体1280を概念的に示す断面図である。層1281、1282には、典型的には、紙が使用されるが、多くの他の電気絶縁性材料も好適である。
【0084】
図12Bは、一次巻線1202、ニ次巻線1203、及びコア1201を含む変圧器1210を示す。ダクト1283を有する絶縁体1280は、一次巻線1202と二次巻線1203との間に配設されている。ダクト1283は、対流及びエネルギー散逸を向上させる。
【0085】
絶縁体1280内のダクト1283は、
図12Bに示すように、光ファイバ1241を挿入するための便利な構造を提供する。光ファイバは、温度及び/又は他の変圧器パラメータを感知するように構成された複数の光センサ1241-1、1241-2、1241-3を含み得る。巻線間のダクトの使用は、変圧器コイルに近接した変圧器の温度分布を監視すること、及び油対流の効率を監視することを可能にする。
【0086】
図13A及び
図13Bは、製造中にグリッド電気アセット内に設置され得るか、又はネットワーク変圧器若しくは電圧調整器などの古い既存のグリッドアセットのための後付けとして挿入され得る、感知ロッド1380を示す。
図13A及び
図13Bは、感知ロッド1380が内部に挿入されている変圧器1310の正面断面図及び側面断面図をそれぞれ示す。感知ロッド1380は、1つ又は複数の光センサ1341-1~1341-4が上に配設されている少なくとも1つの光ファイバ1341を支持する支持ロッド1381を含む。支持ロッド1381は、変圧器1310の内部構成要素に取り付けることができる。一部の光センサ1341-1、1341-2は、変圧器ケース1370の外側に位置付けられ得、他の光センサ1341-3、1341-4は、変圧器ケース1370の内側に位置付けられ得る。光センサは、光ファイバの一部、例えば、FBGセンサであり、感知ドットは、光ファイバ上の感知点を示すことに留意されたい。光ファイバ1341は、図示のように支持ロッド1381の外面に巻き付けられ得るか、又は支持ロッド1381の内部に埋め込まれ得る。いくつかの実施形態では、支持ロッドは管であってもよく、光ファイバはこの管に通される。
【0087】
支持ロッド1381は、ヘッドスペース1374及び油1371を通って変圧器ケース1370内に延在し、場合によっては、ケース1370の底部に向かってコイル1305、1306、1307及びコア1301~1304を越えて延在する。ロッドは、いくつかの実施態様では変圧器1310を通って距離の大部分に延在し得る。支持ロッド1381は、剛性又は可撓性であり得る。支持ロッド1381は、任意の好適な材料、好ましくは電気絶縁性材料で作製することができる。いくつかの構成では、支持ロッド1381は、ポリカーボネートで作製される。
【0088】
光センサ1341-1~1341-4は、例えば、温度、振動、及び/又は液面を感知するために、支持ロッド1381に沿って分配し、使用することができる。この例では、光センサ1341-1~1341-4は、電気デバイスにも電気デバイス自体の構成要素(例えば、タンク、コア、コイルなど)にも直接取り付けられていない。
【0089】
感知ロッド1380は、アメリカ管用ねじ(NPT)又は他のタイプのプラグなど、電気デバイス内のプラグ1382を通って挿入することができる。好都合には、多くのグリッドアセットは、2インチ、1インチ又は1/2インチのNPTプラグを有し、感知ロッドは、これを通ってタンク内へ挿入することができる。
図14は、電気アセット内への光ファイバの設置を可能にするのに適しているプラグ1482の断面図である。プラグ1482は、光ファイバ1441用のフィードスルー1085を含むように修正又は形成され得る。光ファイバ1441をプラグ1482内のフィードスルー1485に通して挿入した後、フィードスルー1485は、ファイバ1441の周囲で、例えば、エポキシを使用して、密封され得る。光ファイバケーブルの典型的な直径は約100~250マイクロメートルであるので、プラグ内の光ファイバを密封することは簡単である。
【0090】
プラグ1482は、プラグの取り付け中に光ファイバが捻れることを回避するために、フィードスルー1485を封止する前にケース蓋1473内へ挿入することができる。あるいは、フィードスルー1485は、プラグを取り付ける前に封止され得る。取り付けは、固定されたケース内へ挿入される光ファイバの部分を保持しながら、プラグ1482を複数回逆回転させることを必要とし得る。この逆回転は、ケース蓋にプラグを取り付ける回転方向とは反対の方向である。逆回転の後に、プラグ1482は、ケース蓋1473にねじ込まれ得る。プラグ1482が逆回転される回数は、プラグ1482を蓋1473に取り付けるために必要とされる回転数とほぼ等しい。
【0091】
いくつかの実施形態では、支持ロッド1581は、
図15に示すようにプラグ1582に取り付けられ得る。支持ロッドは、その上に配設されたセンサ1541-1、1541-2を有する少なくとも1つの光ファイバ1541を支持する。光ファイバ1541は、プラグ1582の開口部1588を通って挿入される。プラグ1582は、電気デバイスのケース蓋1573の開口部にねじ込まれる。
【0092】
上述したように、いくつかの興味深い特定の温度感知点は、タンクの外側(環境)の温度、変圧器壁の近く/変圧器壁での温度、ヘッドスペース内の油面上方の温度、表面の近くの、コイルの真上の、コイルの中央部に近接した、及びタンクの底部に近接したコイル下方の油の温度である。この実施形態では、振動センサは、コア、低電圧プレートなどに直接取り付けることはできないが、外部からの衝撃、又は異なる変圧器構成要素によって(例えば、コアの磁化(消磁)によって)内部に生成される振動によって、異なる影響を受けるように、異なる位置でロッドに取り付けられ得る。支持ロッドのサイズ、寸法、及び材料、並びに適用された取り付け技術に応じて、振動センサは、変圧器構成要素によって生成された、又は外部から変圧器に伝達された、特定の周波数を適度に拾い上げることができる。
【0093】
図16及び17は、感知ファイバをロッドに取り付けるための異なる構成を示す。これらの感知構成は、感知点が、感知ロッドの振動に敏感であること、又は周囲の油からの振動に敏感であることを可能にする。
図16に示すように、光ファイバ1641は、支持ロッド1681に直に接着する又は取り付けることができる。この構成では、振動センサ1641-1は、変圧器構成要素又はタンクからロッド1681に伝達された振動を拾い上げる。
図17に示すように、光ファイバ1741はまた、支持ロッド1781内のノッチ1782に接着することもできる。この構成では、光センサ1741-1は、変圧器の油自体の振動に直接曝露される。所望の共振周波数を達成するために、曝露されるファイバの特定の張力及び/又は長さを選択することができる(ギター弦と同様)。
【0094】
上述した実施形態の様々な修正及び変更は当業者には明らかであり、本開示は、本明細書に記載される例示的な実施形態に限定されないことを理解されたい。読み手は、開示された一実施形態の特徴が、別途記載のない限り、全ての他の開示された実施形態にも適用することができるものと仮定するべきである。本明細書で参照される全ての米国特許、特許出願、特許出願公開、並びに他の特許及び非特許文献は、それらが前述の開示と矛盾しない範囲で、参照により組み込まれることも理解されたい。