IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コニカミノルタ株式会社の特許一覧

<>
  • 特許-異常診断システムおよび異常診断装置 図1
  • 特許-異常診断システムおよび異常診断装置 図2
  • 特許-異常診断システムおよび異常診断装置 図3
  • 特許-異常診断システムおよび異常診断装置 図4
  • 特許-異常診断システムおよび異常診断装置 図5
  • 特許-異常診断システムおよび異常診断装置 図6
  • 特許-異常診断システムおよび異常診断装置 図7
  • 特許-異常診断システムおよび異常診断装置 図8
  • 特許-異常診断システムおよび異常診断装置 図9
  • 特許-異常診断システムおよび異常診断装置 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】異常診断システムおよび異常診断装置
(51)【国際特許分類】
   G03G 21/00 20060101AFI20240509BHJP
   B41J 29/38 20060101ALI20240509BHJP
   H04N 1/00 20060101ALI20240509BHJP
   G16Y 20/20 20200101ALI20240509BHJP
   G16Y 40/20 20200101ALI20240509BHJP
【FI】
G03G21/00 510
G03G21/00
B41J29/38 301
B41J29/38 801
H04N1/00 002A
G16Y20/20
G16Y40/20
【請求項の数】 10
(21)【出願番号】P 2019224245
(22)【出願日】2019-12-12
(65)【公開番号】P2021092715
(43)【公開日】2021-06-17
【審査請求日】2022-11-17
(73)【特許権者】
【識別番号】000001270
【氏名又は名称】コニカミノルタ株式会社
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】小笠原 爽香
【審査官】藤井 達也
(56)【参考文献】
【文献】特開2018-147420(JP,A)
【文献】特開2008-090070(JP,A)
【文献】特開2019-159730(JP,A)
【文献】特開2016-107599(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03G 13/01
G03G 13/34
G03G 15/00
G03G 15/01
G03G 15/36
G03G 21/00
G03G 21/02
G03G 21/14
G03G 21/20
B41J 29/00-29/70
H04N 1/00
G06F 3/09- 3/12
G06F 11/07
G06F 11/28-11/36
G06Q 10/00-10/30
G06Q 30/00-30/08
G06Q 50/00-50/20
G06Q 50/26-99/00
G16Z 99/00
(57)【特許請求の範囲】
【請求項1】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、
前記画像処理装置における不具合への対応を行った作業情報を入力する設定手段と、
前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータと前記作業情報とから判断する機械学習手段と、を備え
前記機械学習手段は、
前記ログデータから不具合の第一原因を機械学習に基づいて判断する第一機械学習部と、
前記第一原因と前記作業情報とから前記第一原因よりもさらに詳細な第二原因を判断する第二機械学習部と、を備える、
ことを特徴とする異常診断システム。
【請求項2】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、
前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、を備え、
前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、
前記機械学習手段は、前記画像処理装置の動作状態毎の正常時の前記ログデータと異常時の前記ログデータとを用いて機械学習を行っており、
前記動作状態は、ウォームアップ動作、アイドリング動作およびプリント中動作の少なくとも一つである、
ことを特徴とする異常診断システム。
【請求項3】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、
前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、
前記不具合の真の原因を入力する入力手段と、を備え
前記機械学習手段は、前記真の原因を取得してさらに再学習する、
ことを特徴とする異常診断システム。
【請求項4】
前記機械学習手段は、不具合の対応を行った者の入力、不具合の情報を管理するデータサーバからの取得、対応完了後におけるログデータの取得によって真の原因を取得する、
ことを特徴とする請求項に記載の異常診断システム。
【請求項5】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、
前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、を備え、
前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、
前記機械学習手段は、時間経過に伴うログデータ、または当該時間経過に伴うログデータを加工してグラフ化したものから不具合の原因を判断する、
ことを特徴とする異常診断システム。
【請求項6】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置、前記画像処理装置における不具合への対応を行った作業情報を入力する設定手段、ならびに、前記ログデータおよび前記作業情報の少なくとも何れか一方を蓄積する蓄積手段の一つまたは複数と通信可能であり、
不具合が発生している前記画像処理装置の前記ログデータおよび前記作業情報を取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータと前記作業情報とから判断する機械学習手段、を備え
前記機械学習手段は、
前記ログデータから不具合の第一原因を機械学習に基づいて判断する第一機械学習部と、
前記第一原因と前記作業情報とから前記第一原因よりもさらに詳細な第二原因を判断する第二機械学習部と、を備える、
ことを特徴とする異常診断装置。
【請求項7】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置または前記ログデータを蓄積する蓄積手段と通信可能であり、
不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え、
前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、
前記機械学習手段は、前記画像処理装置の動作状態毎の正常時の前記ログデータと異常時の前記ログデータとを用いて機械学習を行っており、
前記動作状態は、ウォームアップ動作、アイドリング動作およびプリント中動作の少なくとも一つである、
ことを特徴とする異常診断装置。
【請求項8】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置、不具合の真の原因を入力する入力手段、ならびに、前記ログデータおよび前記不具合の真の原因の少なくとも何れか一方を蓄積する蓄積手段の一つまたは複数と通信可能であり、
不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え
前記機械学習手段は、前記真の原因を取得してさらに再学習する、
ことを特徴とする異常診断装置。
【請求項9】
前記機械学習手段は、不具合の対応を行った者の入力、不具合の情報を管理するデータサーバからの取得、対応完了後におけるログデータの取得によって真の原因を取得する、
ことを特徴とする請求項8に記載の異常診断装置。
【請求項10】
制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置または前記ログデータを蓄積する蓄積手段と通信可能であり、
不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え、
前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、
前記機械学習手段は、時間経過に伴うログデータ、または当該時間経過に伴うログデータを加工してグラフ化したものから不具合の原因を判断する、
ことを特徴とする異常診断装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異常診断システムおよび異常診断装置に関する。
【背景技術】
【0002】
顧客先に設置してある複合機(以下では、「MFP(MultiFunction Printer)」と呼ぶ場合がある)で問題が発生した場合、問題の発生したMFPを設置する顧客先をサービスマンが訪問して処置することが行われている。サービスマンは、問題の発生したMFPの診断を行い、その診断結果を基にして処置を行う。そして、処置が適切であれば問題解決となる。サービスマンは、例えばMFPから出力されるエラー情報(例えば、不具合の種類に対応したコード)を参考にMFPの診断を行う。
【0003】
ここで、不具合の原因は様々であり、不具合によっては制御状態の波形観測を実施することが問題の原因究明として有効な場合がある。しかしながら、顧客先に測定器(例えば、電力計)を持ち込んで、測定器とMFPに内蔵される電子機器(例えば、センサ、基板、電源等)とを接続するなどして波形観測を実施することは基本的に難しい。そのため、その様な不具合の場合に、サービスマンは、MFPからログデータを取得し、そのログデータを解析することによって原因究明を行っている。ログデータは、膨大な数値情報で構成され、また、その解析ノウハウが一般化されていないため、解析者の力量によっては原因究明に時間がかかってしまったり、また原因究明を行えない場合があった。
【0004】
また、画像形成装置の故障を引き起こす原因をモデル化した故障診断モデルを用いることにより、当該画像形成装置の故障原因を特定するシステムが開発されている(例えば、特許文献1参照)。特許文献1に記載の技術では、画像欠陥の特徴量を抽出し、抽出した特徴量に関する情報と画像形成装置の内部情報とを故障診断モデルに入力している。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2007-074290号公報(段落0006~0008、図2
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に記載される技術では、画像欠陥の特徴量を入力としているので、画像欠陥が表れない不具合の原因究明を行うのが難しかった。つまり、前述したような波形観測が必要な不具合等の原因究明には不向きであった。
【0007】
本発明は、前記した問題点に鑑みてなされたものであり、本発明の目的は、様々な不具合の原因を広く究明することができる異常診断システムおよび異常診断装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明の上記目的は、下記の手段によって達成される。
【0009】
(1)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、前記画像処理装置における不具合への対応を行った作業情報を入力する設定手段と、前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータと前記作業情報とから判断する機械学習手段と、を備え、前記機械学習手段は、前記ログデータから不具合の第一原因を機械学習に基づいて判断する第一機械学習部と、前記第一原因と前記作業情報とから前記第一原因よりもさらに詳細な第二原因を判断する第二機械学習部と、ことを特徴とする異常診断システム。
【0010】
(2)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、を備え、前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、前記機械学習手段は、前記画像処理装置の動作状態毎の正常時の前記ログデータと異常時の前記ログデータとを用いて機械学習を行っており、前記動作状態は、ウォームアップ動作、アイドリング動作およびプリント中動作の少なくとも一つである、ことを特徴とする異常診断システム。
【0011】
(3)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、前記不具合の真の原因を入力する入力手段と、を備え、前記機械学習手段は、前記真の原因を取得してさらに再学習する、ことを特徴とする異常診断システム。
【0012】
(4)前記機械学習手段は、不具合の対応を行った者の入力、不具合の情報を管理するデータサーバからの取得、対応完了後におけるログデータの取得によって真の原因を取得する、ことを特徴とする上記(3)に記載の異常診断システム
【0013】
(5)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置と、前記画像処理装置における不具合の原因を機械学習に基づいて前記ログデータから判断する機械学習手段と、を備え、前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、前記機械学習手段は、時間経過に伴うログデータ、または当該時間経過に伴うログデータを加工してグラフ化したものから不具合の原因を判断する、ことを特徴とする異常診断システム。
【0014】
(6)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置、前記画像処理装置における不具合への対応を行った作業情報を入力する設定手段、ならびに、前記ログデータおよび前記作業情報の少なくとも何れか一方を蓄積する蓄積手段の一つまたは複数と通信可能であり、不具合が発生している前記画像処理装置の前記ログデータおよび前記作業情報を取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータと前記作業情報とから判断する機械学習手段、を備え、前記機械学習手段は、前記ログデータから不具合の第一原因を機械学習に基づいて判断する第一機械学習部と、前記第一原因と前記作業情報とから前記第一原因よりもさらに詳細な第二原因を判断する第二機械学習部と、を備える、ことを特徴とする異常診断装置。
【0015】
(7)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置または前記ログデータを蓄積する蓄積手段と通信可能であり、不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え、前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、前記機械学習手段は、前記画像処理装置の動作状態毎の正常時の前記ログデータと異常時の前記ログデータとを用いて機械学習を行っており、前記動作状態は、ウォームアップ動作、アイドリング動作およびプリント中動作の少なくとも一つである、ことを特徴とする異常診断装置。
【0016】
(8)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置、不具合の真の原因を入力する入力手段、ならびに、前記ログデータおよび前記不具合の真の原因の少なくとも何れか一方を蓄積する蓄積手段の一つまたは複数と通信可能であり、不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え、前記機械学習手段は、前記真の原因を取得してさらに再学習する、ことを特徴とする異常診断装置。
【0017】
(9)前記機械学習手段は、不具合の対応を行った者の入力、不具合の情報を管理するデータサーバからの取得、対応完了後におけるログデータの取得によって真の原因を取得する、ことを特徴とする上記(8)に記載の異常診断装置。
【0018】
(10)制御に関する情報をログデータとして記憶する記憶部を備える画像処理装置または前記ログデータを蓄積する蓄積手段と通信可能であり、不具合が発生している前記画像処理装置の前記ログデータを取得し、当該画像処理装置における不具合の原因を機械学習に基づいて取得した前記ログデータから判断する機械学習手段、を備え、前記ログデータは、数値情報および文字情報の一方または双方によって表現されており、前記機械学習手段は、時間経過に伴うログデータ、または当該時間経過に伴うログデータを加工してグラフ化したものから不具合の原因を判断する、ことを特徴とする異常診断装置。
【発明の効果】
【0021】
本発明によれば、様々な不具合の原因を広く究明することができる。
【図面の簡単な説明】
【0022】
図1】本発明の第1実施形態に係る異常診断システムの概略構成図である。
図2】第一機械学習部における学習方法のイメージ図である。
図3】各時刻のログデータの内容を示したものである。
図4】各時刻のログデータの内容を波形化(グラフ化)したものである。
図5】発生原因報告画面の一例である。
図6】本発明の第1実施形態に係る異常診断システムを用いた修理の工程を示すフローチャートの例示である。
図7】本発明の第2実施形態に係る異常診断システムの概略構成図である。
図8】作業情報の入力画面の一例である。
図9】第二機械学習部における診断方法のイメージ図である。
図10】本発明の第2実施形態に係る異常診断システムを用いた修理の工程を示すフローチャートの例示である。
【発明を実施するための形態】
【0023】
以下、本発明の実施するための形態を、適宜図面を参照しながら詳細に説明する。各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
【0024】
[第1実施形態]
≪第1実施形態に係る異常診断システムの構成≫
図1を参照して、第1実施形態に係る異常診断システム1Aの構成を説明する。図1は、第1実施形態に係る異常診断システム1Aの概略構成図である。
【0025】
異常診断システム1Aは、装置の不具合の原因を推定するシステムである。不具合を診断する対象の装置は特に限定されない。そのため、異常診断システム1Aは、種々の装置の不具合を診断する様々な場面で使用することができる。診断対象の装置は、例えばプリンタ、複写機、複合機(MFP)などの画像処理装置である。ここでは、装置として複合機(MFP)を想定して説明する。なお、「正常」の状態に対して何らかの不具合が発生した状態を「異常」と表現する場合がある。
【0026】
異常診断システム1Aは、ユーザによるMFP3の修理を支援するサービスを提供するものであり、ユーザからの問いに対してMFP3の異常の原因を推定して回答する。ここでのユーザは、例えば顧客先に設置してあるMFP3の故障を修理するサービスマンである。サービスマンは、担当するエリアが予め決められており、担当するエリアにあるMFP3の修理を行う。なお、異常の原因に代えて、または原因とともに対処方法を提供してもよい。
【0027】
異常診断システム1Aは、異常診断装置2Aと、一台以上のMFP3と、ユーザ端末4と、修理報告書管理DB5とを備える。異常診断装置2AとMFP3とは通信可能であり、また、異常診断装置2Aとユーザ端末4とは通信可能である。また、修理報告書管理DB5は、異常診断装置2Aやユーザ端末4から接続可能である。MFP3は、例えば顧客先に設置してある。また、ユーザ端末4は、例えば予めユーザに配布してある。また、異常診断装置2Aおよび修理報告書管理DB5は、例えばMFP3を管理する者のデータセンタなどに設置されている。異常診断装置2Aおよび修理報告書管理DB5は、クラウドシステムとして構成されてもよい。
【0028】
図1に示すMFP3は、プリント、コピー、スキャナ、ファックスなどの機能が一つの装置にまとめられている装置である。MFP3は、印刷媒体(例えば用紙)に画像を印刷する印刷部を有している。印刷部は、例えば、帯電、露光、現像、転写、および定着の各工程を含む電子写真方式の作像プロセスを用いて、各種データに基づく画像を用紙上に形成する。印刷部は、例えば、各色成分のトナー像を形成する複数の画像形成ユニット、各色成分のトナー像が順次転写されるとともにこのトナー像を保持する中間転写ベルト、中間転写ベルト上のトナー像を用紙に一括転写する二次転写装置、用紙上に二次転写された画像を定着させる定着装置などを備える。なお、作像プロセスは、電子写真方式以外のものであってもよく、インパクト方式、熱転写方式、及びインクジェット方式等の他の方式であってもよい。
【0029】
また、MFP3は、制御に関する情報をログデータ(ログファイルとも呼ばれる)として記憶する記憶部を有している。なお、図1では、ログデータを「Log」と表記しており、以降ではログデータを省略して「ログ」と呼ぶ場合がある。MFP3は、通信機能を有しており、例えばユーザの操作によってログデータ(異常に関連する情報のみであってもよい)を異常診断装置2Aに送信する。
【0030】
ログデータには、MFP3に関する様々な情報が含まれていてよい。また、ログデータの形式や構造は特に限定されない。ログデータは、例えばMFP3の制御情報を数値情報(数値の羅列)や文字情報(文字の羅列)として表現したものであってよい。また、ログデータは、例えば制御対象ごとに領域が分割されて構成されていてもよい(つまり、カテゴライズされて表現されていてもよい)。
【0031】
ログデータには、タイムスタンプが含まれている。タイムスタンプは、日付、時刻の情報である。また、ログデータは、動作状態を特定できるように、動作状態と制御情報とが対応付けて構成されているのがよい。ここでの動作状態は、例えば、ウォームアップ動作、アイドリング動作、プリント中動作などである。これにより、後記する機械学習において、ログデータを動作状態ごとに収集することができ、機械学習を動作状態単位で行うことができる。
【0032】
ログデータには、例えば、用紙情報、定着制御状態、定着目標温度、定着検出温度、ヒーター点灯状態、ヒーター点灯Duty、定着圧着状態などが含まれる。なお、ログデータは、これらの内の少なくとも一つを含むものであってもよい。
【0033】
用紙情報は、印刷中の用紙に関する情報である。用紙情報には、例えば、用紙サイズ、坪量、用紙種類、銘柄、トレイ設定などが含まれる。なお、用紙情報は、これらの内の少なくとも一つを含むものであってもよい。用紙サイズは、用紙のサイズ(A判、B判など)に関する情報である。坪量は、用紙の重さに関する情報である。用紙種類は、用紙の種類の情報である。銘柄は、用紙の名称の情報である。トレイ設定は、給紙元となるトレイに関する情報である。
【0034】
定着制御状態は、定着装置の制御状態(例えば、加熱中、冷却中等)である。定着目標温度は、定着装置の目標となる温度である。定着目標温度は、例えば定着制御状態に基づいて設定される。定着検出温度は、センサで検出した定着装置の検出温度である。ヒーター点灯状態は、ヒーターの点灯を示す情報(ON、OFF)である。ヒーター点灯Dutyは、PWM(Pulse Width Modulation)制御での1周期「High(ON)+Low(OFF)」における「High(ON)」の時間の割合である。ここで、PWM制御は、電力を制御する方式の一つであり、「ON」と「OFF」を繰り返し切り替えることで出力される電力を制御するものである。ヒーター点灯Dutyを変化させることによって、入力電圧を変えずに制御に使う実際の電圧(実電圧)を制御できる。定着圧着状態は、定着時に用紙に対して係る圧力の状態を示す情報である。
【0035】
また、ログデータには、例えば、高圧の出力値、カラーレジストレーション補正動作時の制御情報、画像安定化補正動作時の制御情報、用紙搬送時の制御情報などが含まれる。なお、ログデータは、これらの内の少なくとも一つを含むものであってもよい。
【0036】
高圧の出力値は、印刷部を構成する構成要素(例えば、ドラム)の電圧値の情報である。カラーレジストレーション補正動作時の制御情報は、カラーレジストレーションに関するパラメータ情報である。カラーレジストレーションは、タンデム方式における各色のトナー像の重ね合わせのことであり、ここでの制御情報は、例えば走査線の位置や曲がりなどのずれを補正するための情報である。画像安定化補正動作時の制御情報は、連続印刷時における画像(例えば、色再現)の安定化に関するパラメータ情報である。用紙搬送時の制御情報は、搬送部を構成する構成要素(例えば、ローラやセンサ)の制御に関する情報である。
【0037】
図1に示すユーザ端末4は、ユーザが所持する端末であり、例えばタブレット型コンピュータである。ユーザ端末4は、通信機能を有しており、異常診断装置2Aとの間で通信が可能である。また、ユーザ端末4は、入出力機能を有しており、ユーザによるデータ入力およびユーザに対するデータ出力が可能である。ユーザ端末4は、例えばタッチパネルディスプレイを備えている。ユーザ端末4は、特許請求の範囲の「設定手段」、「入力手段」の一例である。
【0038】
図1に示す修理報告書管理DB5には、MFP3の修理を行ったユーザが作成した報告書が格納されている。報告書は、関係者(例えば、ユーザが所属する組織の者や顧客先)に対して、MFP3の修理に関する情報を提供することを目的とした文書であり、データの形式は特に限定されない。報告書は、例えば文書作成ソフトウェアによって作成された文書データであってもよいし、紙媒体に手書きしたものをスキャンした画像データであってもよい。報告書には、例えば修理を行った日時、場所、不具合の原因、修理に関する情報(例えば、交換部品、作業内容、調整値)等が含まる。ユーザは、MFP3の修理が完了した後で、例えばユーザ端末4や図示しない端末(ユーザ端末4以外の端末)を用いて報告書を作成する。
【0039】
図1に示す異常診断装置2Aは、装置の不具合(異常)の原因を推定する装置である。異常診断装置2Aは、主に、異常診断DB(Data Base)11Aと、機械学習手段12Aとを備える。なお、異常診断DB11Aは、異常診断装置2Aの外部に配置されていてもよい。
【0040】
異常診断DB11Aには、MFP3の異常の診断に関連する様々な情報が格納されている。異常診断DB11Aには、例えば機械学習手段12Aを機械学習させるための情報(学習データ)が格納されている。機械学習手段12Aを機械学習させるための情報は、例えばMFP3のログデータやログデータを加工したものであってよい。また、異常診断DB11Aには、不具合の真の原因が格納されている。不具合の真の原因は、例えば、MFP3を修理したユーザによって入力される。不具合の真の原因は、機械学習手段12Aが再学習するために使用される。
【0041】
機械学習手段12Aは、MFP3における不具合の原因を機械学習に基づいてログデータから判断する。以降では、機械学習手段12Aによって推定された原因を「推定原因」と呼ぶ場合がある。機械学習手段12Aは、第一機械学習部121を有する。図2ないし図4を参照して、第一機械学習部121における学習方法および異常の診断方法について説明する。ここでは、定着のウォームアップが完了しない場合を例示して説明する。
【0042】
図2は、第一機械学習部121における学習方法のイメージ図である。図3は、各時刻のログデータの内容を示したもの(つまり、時間経過に伴うログデータの内容)である。図4は、各時刻のログデータの内容を波形化(グラフ化)したものである。図4の横軸(X軸)は時刻であり、縦軸(Y軸)は温度(℃)やON/OFF状態である。図3および図4は、定着のウォームアップが完了しないときの電源ONからウォームアップまでの定着関連の情報(ここでは、ヒーター点灯状態、センサ検出温度、センサ目標温度)を示している。
【0043】
図2に示すように、第一機械学習部121は、正常時のログデータと異常発生時のログデータを教師ありの学習データとして読み込み、機械学習を行って異常診断モデルを構築する。異常発生時のログデータにおける解答(正解)は不具合の真の原因である。異常診断モデルの構築は、異常診断を行う前に予め行われる。正常時のログデータと異常発生時のログデータは、多数用意しておくことが望ましく、複数のMFP3から収集したものであってよい。第一機械学習部121は、例えば、図3に示すような時間変化に伴うログデータ(文字列や数字の羅列)を学習データとして入力して学習を行ってもよいし、図4に示す時間変化に伴うログデータをさらに波形化(グラフ化)したもの(画像データ)を学習データとして入力して学習を行ってもよい。つまり、ログデータの読み込み方法は特に限定されず、ログデータを画像として読み込んでもよい。なお、第一機械学習部121は、動作状態毎に機械学習を行ってもよい。動作状態は、例えば、ウォームアップ動作、アイドリング動作、プリント中動作などである。
【0044】
次に、第一機械学習部121による診断方法のイメージについて説明する。定着のウォームアップが完了しない場合、考えられる原因としてヒーターの故障やセンサの故障がある。例えば、図4に示す分布を参照すると、ウォームアップ状態のときにヒーターは点灯しており、センサ検出温度が開始からほとんど変化していないことからセンサの故障の可能性が高いと考えられる。第一機械学習部121は、例えばこのようなことを学習して異常の原因を推定する。推定原因は、MFP3やユーザ端末4を介してユーザ(例えばサービスマン)に通知され、ユーザは、通知された推定原因に基づいて修理を行う。
【0045】
また、第1実施形態では、ユーザ(例えばサービスマン)は、不具合対応が完了した際に、MFP3のパネルに表示される発生原因報告画面50(図5参照)から、今回発生した不具合の真の原因(発生原因)を入力する。発生原因報告画面50は、発生原因入力エリア51および報告ボタン52を有し、ユーザは、発生原因入力エリア51への発生原因の入力を行った後で右下の報告ボタン52を押す。これにより、MFP3は、入力された発生原因を異常診断装置2Aに送信し、異常診断DB11Aに格納される。なお、発生原因のフィードバック方法は、ここで説明したMFP3を用いる以外の方法であってもよい。例えば、ユーザ端末4から異常診断装置2Aに送信されてもよいし、修理報告書管理DB5から異常診断装置2Aに送信されてもよい。
【0046】
≪第1実施形態に係る異常診断システムの動作≫
図6(適宜、図1ないし図5)を参照して、第1実施形態に係る異常診断システム1Aを用いた修理の工程を説明する。図6は、第1実施形態に係る異常診断システム1Aを用いた修理の工程を示すフローチャートの例示である。
【0047】
MFP3で不具合が発生した場合、サービスマンに修理の依頼が伝えられる(ステップS11)。サービスマンは、不具合が発生したMFP3が設置される顧客先を訪問し、MFP3からログデータを取得する(ステップS12)。
【0048】
続いて、サービスマンは、異常診断装置2Aの機械学習手段12Aでログデータを解析するか否か(つまり、異常診断装置2Aによって提供される支援を受けるか否か)を検討する(ステップS13)。機械学習手段12Aでログデータを解析しない場合(ステップS13で“No”)、異常診断システム1Aを用いた修理の工程は終了する。ログデータを解析しない場合とは、例えばサービスマンが自力でログデータを解析可能な場合であり、その場合にはサービスマンは自身の解析結果に基づいてMFP3を修理する。なお、サービスマンが機械学習手段12Aでログデータを常に解析するように運用されてもよい。
【0049】
一方、機械学習手段12Aでログデータを解析する場合(ステップS13で“Yes”)、サービスマンは、MFP3を操作して機械学習手段12Aにログデータを送信する(ステップS14)。機械学習手段12Aは、MFP3から受信したログデータを第一機械学習部121に入力することでログデータを解析し、第一機械学習部121から推定原因が出力される(ステップS15)。
【0050】
続いて、異常診断装置2Aの機械学習手段12Aは、サービスマンに推定原因をフィードバック(通知)する(ステップS16)。機械学習手段12Aは、MFP3に推定原因を送信することによってサービスマンに推定原因をフィードバックしてもよいし、ユーザ端末4に推定原因を送信することによってサービスマンに推定原因をフィードバックしてもよい。サービスマンは、通知された推定原因に従ってMFP3を修理する(ステップS17)。
【0051】
MFP3の修理が完了した後で、サービスマンは、MFP3やユーザ端末4を操作して、発生した不具合の真の原因(発生原因)を機械学習手段12Aにフィードバック(通知)する(ステップS18)。サービスマンは、例えば、図5に示す画面を介して発生原因を入力する。機械学習手段12Aは、原因の推定を行ったログデータとフィードバックされた発生原因とを対応付けて新たな教師ありの学習データを作成し、作成した教師ありの学習データを異常診断DB11Aに格納する。そして、機械学習手段12Aの第一機械学習部121は、異常診断DB11Aに格納される教師ありの学習データを用いて再学習する。これにより、異常の原因を推定する精度が向上する。再学習を行うタイミングは特に限定されず、任意のタイミングであってよい。なお、修理後の正常な状態のログデータを取得し、修理後のログデータを用いて再学習を行ってもよい。
【0052】
以上のように構成された本発明の第1実施形態に係る異常診断システム1A(および異常診断装置2A)は、以下のようの作用効果を奏する。
つまり、異常診断システム1Aでは、不具合の原因を機械学習に基づいてログデータから判断する。そのため、画像欠陥が表れない不具合を含めた様々な不具合の原因を広く究明することができる。また、再学習を繰り返し行うことにより、異常の原因を推定する精度が向上する。
【0053】
[第2実施形態]
≪第2実施形態に係る異常診断システムの構成≫
図7を参照して、第2実施形態に係る異常診断システム1Bの構成を説明する。図7は、第2実施形態に係る異常診断システム1Bの概略構成図である。以降では、第1実施形態に係る異常診断システム1A(図1参照)との相違点について主に説明する。
【0054】
異常診断システム1Bは、異常診断装置2Bと、一台以上のMFP3と、ユーザ端末4と、修理報告書管理DB5とを備える。異常診断システム1Bにおける通信形態は、第1実施形態に係る異常診断システム1A(図1参照)と同様である。
【0055】
図7に示す異常診断装置2Bは、装置の不具合(異常)の原因を推定する装置である。異常診断装置2Bは、主に、異常診断DB11Bと、機械学習手段12Bとを備える。なお、異常診断DB11Bは、異常診断装置2Bの外部に配置されていてもよい。
【0056】
異常診断DB11Bには、MFP3の異常の診断に関連する様々な情報が格納されている。異常診断DB11Bには、例えば機械学習手段12Bを機械学習させるための情報(学習データ)が格納されている。機械学習手段12Bを機械学習させるための情報は、例えばMFP3のログデータ(ログデータを加工したものであってよい)およびMFP3に対して行った作業情報である。また、異常診断DB11Bには、不具合の真の原因が格納されている。不具合の真の原因は、例えば、MFP3を修理したユーザによって入力される。不具合の真の原因は、機械学習手段12Bが再学習するために使用される。
【0057】
機械学習手段12Bは、MFP3における不具合の原因を機械学習に基づいてログデータおよび作業情報から判断する。つまり、機械学習手段12Bは、第1実施形態に係る機械学習手段12Aと比較して入力データに作業情報が追加されている。以降では、機械学習手段12Bによって推定された原因を「推定原因」と呼ぶ場合がある。
【0058】
図7に示すように、機械学習手段12Bは、ログデータのみを学習する第一機械学習部121とサービスマンの作業情報を追加の入力データとして学習する第二機械学習部122とから構成される。第一機械学習部121および第二機械学習部122は、例えば、其々動作状態毎に学習し、解析結果をサービスマンにフィードバックする。フィードバックした結果を基にサービスマンが解析を行い、その解析結果と発生していた不具合の真の原因とが一致していたかを機械学習手段12Bにフィードバックすることによって機械学習手段12Bの精度を向上させていく。解析結果のフィードバック方法はMFP3を通して報告する場合もあれば、ユーザ端末4によって報告される場合もある。また、発生原因のフィードバック方法はMFP3を通して報告する場合もあれば、修理報告書管理DB5の情報を基に報告する場合と、ユーザ端末4によって報告される場合とがある。
【0059】
図8を参照して、作業情報の入力方法について説明する。図8は、作業情報の入力画面の一例である。図8に示す入力画面60は、交換部品選択エリア61と、作業内容入力エリア62と、調整値入力エリア63とを備える。
【0060】
修理を行うユーザ(例えば、サービスマン)は、不具合の解析時において交換部品に関する作業情報を入力するとき、入力画面60の左下に配置される交換部品のタブ64を押す。これにより、交換部品に関する交換部品選択エリア61が表示され、ユーザは、交換部品に対応する内容を選択する。交換部品は、ユーザが交換した部品であり、例えば感光体、現像器などである。
【0061】
また、ユーザは、不具合の解析時において作業内容に関する作業情報を入力するとき、入力画面60の下部中央に配置される作業内容のタブ65を押す。これにより、作業内容に関する作業内容入力エリア62が表示され、ユーザは、作業内容の入力を行う。作業内容は、部品の交換やパラメータの調整以外を広く含み、例えば清掃方法、清掃箇所などである。
【0062】
また、ユーザは、不具合の解析時において調整値に関する作業情報を入力するとき、入力画面60の右下に配置される調整値のタブ66を押す。これにより、調整値に関する調整値入力エリア63が表示され、ユーザは、変更後の調整値の入力を行う。調整値は、各種のパラメータの値であり、例えばループ量、レジスト量、高圧の出力値、エアの風量などである。
【0063】
図9を参照して、第二機械学習部122における学習方法および診断方法について説明する。第1実施形態で説明した通り、定着のウォームアップが完了しない場合、考えられる原因としてヒーターの故障やセンサの故障がある。ログデータを基にして第一機械学習部121が推定原因をセンサの故障と判定した場合、センサの故障といってもセンサ自体が故障しているのか、束線が切れているのか、基板が故障しているのか、センサが汚れているのか等の様々な原因がさらに考えられる。
【0064】
そこで、第2実施形態では、ユーザが実際に行った作業の情報(作業情報)を入力し(ここでは「センサの交換」を想定)、第二機械学習部122に送信する。第二機械学習部122では第一機械学習部121の推定原因(ここでは「センサの故障」)とユーザによって入力された作業情報(ここでは「センサの交換」)からさらなる推定原因を判断する。例えば、図9に示すように、「束線の故障」がさらなる推定原因と判断したとする。そして、その判断した結果をユーザにフィードバックすることで発生原因を早期に発見することが可能となる。つまり、第二機械学習部122では、ユーザから作業情報を取得することによって原因を絞り込みやすくなっており、消去法のイメージでさらなる推定原因を判断することができる。その結果、ユーザは、第一機械学習部121の推定原因に関連する修理を全て行わずに済み、過剰な修理を抑制できる。
【0065】
≪第2実施形態に係る異常診断システムの動作≫
図10(適宜、図7ないし図9)を参照して、第2実施形態に係る異常診断システム1Bを用いた修理の工程を説明する。図10は、第2実施形態に係る異常診断システム1Bを用いた修理の工程を示すフローチャートの例示である。
【0066】
ステップS21,S22は第1実施形態におけるステップS11,S12と同様である。つまり、MFP3で不具合が発生した場合、サービスマンに修理の依頼が伝えられる(ステップS21)。サービスマンは、不具合が発生したMFP3が設置される顧客先を訪問し、MFP3からログデータを取得する(ステップS22)。
【0067】
続いて、サービスマンは、異常診断装置2Bの機械学習手段12Bでログデータを解析するか否か(つまり、異常診断装置2によって提供される支援を受けるか否か)を検討する(ステップS23)。機械学習手段12Bでログデータを解析しない場合(ステップS23で“No”)、異常診断システム1Bを用いた修理の工程は終了する。ログデータを解析しない場合とは、例えばサービスマンが自力でログデータを解析可能な場合であり、その場合にはサービスマンは自身の解析結果に基づいてMFP3を修理する。なお、サービスマンが機械学習手段12Bでログデータを常に解析するように運用されてもよい。
【0068】
一方、機械学習手段12Bでログデータを解析する場合(ステップS23で“Yes”)、サービスマンは、作業情報を入力するか否かを検討し、必要に応じて作業情報を入力する(ステップS24)。作業情報を入力しない場合(ステップS24で“No”)、処理はステップS25Aに進む。一方、作業情報を入力する場合(ステップS24で“Yes”)、処理はステップS25Bに進む。
【0069】
作業情報を入力しない場合(ステップS24で“No”)、サービスマンは、MFP3を操作して機械学習手段12Bにログデータを送信する(ステップS25A)。機械学習手段12Bは、MFP3から受信したログデータを第一機械学習部121に入力することでログデータを解析し、第一機械学習部121から推定原因が出力される(ステップS26A)。ステップS25A,S26Aの処理は、第1実施形態のS14,S15(図6参照)の処理と同様である。
【0070】
作業情報を入力する場合(ステップS24で“Yes”)、サービスマンは、MFP3を操作して機械学習手段12Bにログデータおよび作業情報を送信する(ステップS25B)。機械学習手段12Bは、図9で説明した方法によってMFP3から受信したログデータおよび作業情報を解析し、推定原因が出力される(ステップS26B)。
【0071】
続いて、異常診断装置2Bの機械学習手段12Bは、サービスマンに推定原因をフィードバック(通知)する(ステップS27)。機械学習手段12Bは、MFP3に推定原因を送信することによってサービスマンに推定原因をフィードバックしてもよいし、ユーザ端末4に推定原因を送信することによってサービスマンに推定原因をフィードバックしてもよい。サービスマンは、通知された推定原因に従ってMFP3を修理する(ステップS28)。
【0072】
MFP3の修理が完了した後で、サービスマンは、MFP3やユーザ端末4を操作して、発生した不具合の真の原因(発生原因)を機械学習手段12Bにフィードバック(通知)する(ステップS29)。サービスマンは、例えば、図5に示す画面を介して発生原因を入力する。機械学習手段12Bは、原因の推定を行ったログデータおよび作業情報とフィードバックされた発生原因とを対応付けて新たな教師ありの学習データを作成し、作成した教師ありの学習データを異常診断DB11Bに格納する。そして、機械学習手段12Bは、異常診断DB11Bに格納される教師ありの学習データを用いて再学習する。これにより、異常の原因を推定する精度が向上する。再学習を行うタイミングは特に限定されず、任意のタイミングであってよい。なお、修理後の正常な状態のログデータを取得し、修理後のログデータを用いて再学習を行ってもよい。
【0073】
以上説明した第2実施形態に係る異常診断システム1B(および異常診断装置2B)によっても、第1実施形態と略同等の効果を奏することができる。
また、第2実施形態に係る異常診断システム1Bは、ユーザから作業情報を取得することによって原因を絞り込みやすくなっており、消去法のイメージでさらなる推定原因を判断することができる。その結果、ユーザは、第一機械学習部121の推定原因に関連する修理を全て行わずに済み、過剰な修理を抑制できる。
【0074】
上述した各実施形態に係る異常診断装置2A,2Bにおける各種処理を行う手段および方法は、専用のハードウエア回路、またはプログラムされたコンピュータのいずれによっても実現することが可能である。上記プログラムは、例えば、フレキシブルディスクやCD-ROM等のコンピュータで読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピュータで読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク(HDD)等の記憶部に転送されて記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、装置の一機能としてその装置のソフトウエアに組み込まれてもよい。
【符号の説明】
【0075】
1A,1B 異常診断システム
2A,2B 異常診断装置
3 MFP(画像処理装置)
4 ユーザ端末(設定手段、入力手段)
5 修理報告書管理DB
11A,11B 異常診断DB
12A,12B 機械学習手段
121 第一機械学習部
122 第二機械学習部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10