(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】圧電薄膜共振子
(51)【国際特許分類】
H03H 9/17 20060101AFI20240509BHJP
【FI】
H03H9/17 F
(21)【出願番号】P 2022561883
(86)(22)【出願日】2021-11-05
(86)【国際出願番号】 JP2021040844
(87)【国際公開番号】W WO2022102545
(87)【国際公開日】2022-05-19
【審査請求日】2023-03-24
(31)【優先権主張番号】P 2020189201
(32)【優先日】2020-11-13
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】木村 哲也
【審査官】竹内 亨
(56)【参考文献】
【文献】特開2019-207910(JP,A)
【文献】特開2020-092322(JP,A)
【文献】特開2011-015148(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03H 9/00-9/76
(57)【特許請求の範囲】
【請求項1】
窒化アルミニウムを主成分としてスカンジウムが添加された圧電薄膜と、
第1電極と、
前記圧電薄膜を挟んで前記第1電極と対向するように設けられた第2電極と、
前記第1電極、前記第2電極および前記圧電薄膜を含む圧電素子を支持する基板とを備え、
前記圧電薄膜は、スカンジウムおよびアルミニウムの各々の含有濃度が前記第1電極側の方が前記第2電極側よりも高く、窒素の含有濃度が前記第1電極側の方が前記第2電極側よりも低くなるように構成されている、圧電薄膜共振子。
【請求項2】
前記圧電薄膜全体におけるスカンジウム含有濃度は、5atm%以上である、請求項1に記載の圧電薄膜共振子。
【請求項3】
前記圧電薄膜において、スカンジウム、アルミニウムおよび窒素は、前記圧電薄膜の厚み方向で濃度勾配を有して存在している、請求項1または請求項2に記載の圧電薄膜共振子。
【請求項4】
前記圧電薄膜の前記第1電極側の端部における含有濃度と前記第2電極側の端部における含有濃度との差の絶対値は、
スカンジウムが、1.3atm%以上5.0atm%以下、
アルミニウムが、8.8atm%以上11.3atm%以下、
窒素が、10.0atm%以上15.0atm%以下、
である、請求項1~請求項3のうちいずれか1項に記載の圧電薄膜共振子。
【請求項5】
前記圧電素子と前記基板との間に音響反射層をさらに備え、
前記音響反射層は、設けられた音響インピーダンスが異なる複数種類の層を積層して構成されている、請求項1~4のうちいずれか1項に記載の圧電薄膜共振子。
【請求項6】
前記圧電素子と前記基板との間に空隙を有する、請求項1~4のうちいずれか1項に記載の圧電薄膜共振子。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、圧電薄膜共振子に関する。
【背景技術】
【0002】
圧電薄膜共振子に用いられる圧電薄膜に関して、窒化アルミニウム膜にスカンジウムを添加することによって、圧電応答性が向上することが知られている(特開2009-10926号公報(特許文献1)、特開2013-128267号公報(特許文献2))。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2009-10926号公報
【文献】特開2013-128267号公報
【非特許文献】
【0004】
【文献】Robert Aigner et al., "Pushing BAW beyond ‘known’ Frontiers: Higher, Wider, Smaller, Cooler", Seventh International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, 2018年3月
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、非特許文献1によれば、窒化アルミニウム膜へのスカンジウムの添加量を増やすと、帯域幅は大きくなる一方で、共振特性を示すQ値が低下することが報告されている。
【0006】
本開示は、このような課題を解決するためになされたものであって、その目的は、帯域幅の向上と共振特性の維持とを両立できる圧電薄膜共振子を提供することである。
【課題を解決するための手段】
【0007】
本開示に係る圧電薄膜共振子は、窒化アルミニウムを主成分としてスカンジウムが添加された圧電薄膜と、第1電極と、圧電薄膜を挟んで第1電極と対向するように設けられた第2電極と、第1電極、第2電極および圧電薄膜を含む圧電素子を支持する基板とを備える。圧電薄膜は、スカンジウムおよびアルミニウムの各々の含有濃度が第1電極側の方が第2電極側よりも高く、窒素の含有濃度が第1電極側の方が第2電極側よりも低くなるように構成されている。
【発明の効果】
【0008】
本開示によれば、帯域幅の向上と共振特性の維持とを両立できる圧電薄膜共振子を提供できる。
【図面の簡単な説明】
【0009】
【
図1】本実施の形態に係る圧電薄膜共振子の概略断面図である。
【
図3】試料番号1の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
【
図4】試料番号2の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
【
図5】試料番号3の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
【
図6】スカンジウムの原子濃度と規格化されたQ値との関係を示す図である。
【
図7】スカンジウムの平均原子濃度と比帯域幅との関係を示す図である。
【
図8】変形例にかかる圧電薄膜共振子の概略断面図である。
【発明を実施するための形態】
【0010】
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
【0011】
[圧電薄膜共振子の基本構成]
図1は、本実施の形態に係る圧電薄膜共振子の概略断面図である。圧電薄膜共振子100は、主な構成として、圧電素子10と、圧電素子10を支持する基板4とを備える。
【0012】
圧電素子10と基板4との間には、空隙20が形成されている。より具体的には、圧電素子10は、圧電素子10の縁部分が基板4に接するように基板4に支持されており、圧電素子10の中央部分が基板4から離れて設けられている。
【0013】
圧電素子10は、圧電薄膜1と、圧電薄膜1を介して互いに対向する位置に設けられた一対の電極(第一電極2および第二電極3)とを含む。
【0014】
第一電極2および第二電極3は、圧電薄膜1を介して互いに対向している。第一電極2と第二電極3との間に交流電界を印加することにより、圧電素子10の中央部分が励振される。圧電薄膜共振子100は、この励振により生じたバルク波を利用するものである。
【0015】
基板4は、高抵抗シリコン、ガラス、ヒ化ガリウム、セラミック焼結体、水晶などの任意の材料から構成されている。第一電極2および第二電極3は、チタン、モリブデン、ルテニウム、タングステン、アルミニウム、プラチナ、イリジウム、銅、クロム、スカンジウムなどの金属およびこれらの合金または積層体などの任意の材料から構成されている。
【0016】
圧電薄膜1は、窒化アルミニウムを主成分とした薄膜であり、スカンジウムが添加されている。なお、圧電薄膜1は、たとえば、不純物のような他の元素が含まれている場合があるものの、窒素、アルミニウム、スカンジウムからなる。ここで、圧電薄膜1の主成分とは、圧電薄膜1において、全ての成分に対する原子濃度(atm%:原子%)が50atm%より大きい成分を意味する。すなわち、本実施の形態に係る圧電薄膜1において、圧電薄膜1全体における窒素の原子濃度と、圧電薄膜1全体におけるアルミニウムの原子濃度との合計は、50atm%以上である。
【0017】
以下では、窒素(N)とアルミニウム(Al)とスカンジウム(Sc)との総量を100原子%としたときの各元素の原子数の百分率(atm%:原子%)を含有濃度とする。
【0018】
圧電薄膜1は、アルミニウムおよびスカンジウムの各々の含有濃度が第一電極2側の方が第二電極3側よりも高く、窒素の含有濃度が第一電極2側の方が第二電極3側よりも低くなるように構成されている。なお、圧電薄膜1は、アルミニウムおよびスカンジウムの各々の含有濃度が第二電極3側の方が第一電極2側よりも高く、窒素の含有濃度が第二電極3側の方が第一電極2側よりも低くなるように構成されていてもよい。
【0019】
すなわち、圧電薄膜1の厚み方向であってアルミニウムおよびスカンジウムの含有濃度が低下する方向に窒素の含有濃度が上昇するように、圧電薄膜1は形成されている。
【0020】
本実施の形態にかかる圧電薄膜共振子100は、アルミニウムおよびスカンジウムの含有濃度が低下する方向に窒素の含有濃度が上昇するように圧電薄膜1を形成することで、スカンジウムの含有量を増やしたとしても、共振特性の低下を抑えつつ帯域幅を向上でき、帯域幅の向上と共振特性の維持とを両立できる。
【0021】
スカンジウム、アルミニウムおよび窒素は、圧電薄膜1の厚み方向で濃度勾配を有して存在している。圧電薄膜1の厚み方向で濃度勾配を有しているとは、厚み方向で濃度が連続的に変化していることを意味する。
【0022】
なお、圧電薄膜1は、スカンジウム、アルミニウムおよび窒素の含有濃度が互いに異なる複数の膜を積層させて構成されていてもよい。
【0023】
本実施の形態にかかる圧電薄膜1は、一例として、スパッタリングまたはCVD(Chemical Vapor Deposition)などの任意の方法で形成される。たとえば、アルミニウムからなるターゲットと、スカンジウムからなるターゲットとを用いて、窒素ガス雰囲気中でスパッタリングを行い、スパッタリングに際しての条件(電力、ガス圧、ガス流量)を時間的に変化させることで、厚み方向に濃度勾配を有する圧電薄膜が形成される。なお、2つのターゲットを利用する例を示したが、ターゲットを一つにした一元スパッタリング法により形成してもよい。この場合、一例として、スカンジウムとアルミニウムとからなる合金がターゲットとして用いられる。
【0024】
[圧電薄膜の特性]
図2~
図7を参照して、本実施の形態にかかる圧電薄膜を用いることで、スカンジウムの含有量を増やしたとしても、共振特性の低下を抑えつつ帯域幅を向上できることについて説明する。
【0025】
3種類の圧電薄膜共振子が用意された。
図2は、圧電素子の断面の模式図である。透過型電子顕微鏡-エネルギー分散型X線分析(TEM-EDX)で、窒素(N)とアルミニウム(Al)とスカンジウム(Sc)との総量を100原子%として、
図2に示した圧電薄膜1上の3つの領域(T,M,B)の各々に含まれる各元素の原子濃度が測定された。表1に、TEM-EDXで測定した結果を示す。
【0026】
なお、表1中のスカンジウムの平均原子濃度は、3つの領域(T,M,B)の各々で測定したスカンジウムの原子濃度の平均値であって、圧電薄膜全体におけるスカンジウムの含有濃度に相当する。なお、圧電薄膜全体におけるスカンジウムの含有濃度は、厚み方向に位置が異なる2つ以上の領域の各々で含有濃度を測定して平均をとることで求められる。スカンジウム、アルミニウムおよび窒素の含有濃度が互いに異なる複数の膜を積層させて圧電薄膜を形成する場合、圧電薄膜全体におけるスカンジウムの含有濃度は、一例として、各層に含まれるスカンジウムの含有濃度の平均をとることで求められる。
【0027】
【0028】
図3は、試料番号1の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
図4は、試料番号2の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
図5は、試料番号3の圧電薄膜の断面をTEM-EDXで分析した結果を示す図である。
【0029】
表1、および
図3~
図5に示すように、試料番号1~試料番号3の各圧電薄膜は、いずれも、圧電薄膜の厚み方向であってアルミニウムおよびスカンジウムの含有濃度(原子濃度)が低下する方向に窒素の含有濃度(原子濃度)が上昇するように形成されている。
【0030】
圧電薄膜の厚み方向における変化量の比率(傾き)を算出した結果を表2に示す。傾きは、圧電薄膜の厚み方向における変化量の比率であって、圧電薄膜の第一電極2に接する表面の位置を0、第二電極3に接する表面の位置を1、領域Tの位置を0.1、領域Mの位置を0.5、領域Bの位置を0.9として算出した。すなわち、傾きは、第一電極2側の圧電薄膜の端部における含有濃度(原子濃度)と第二電極3側の圧電薄膜の端部における含有濃度(原子濃度)との差に相当する。
【0031】
【0032】
表2に示すように、スカンジウムの平均原子濃度が4.9atm%(表1参照)である試料番号1の圧電薄膜において、第一電極側の圧電薄膜の端部における含有濃度と第二電極側の圧電薄膜の端部における含有濃度との差の絶対値は、窒素で10.0atm%、アルミニウムで8.8atm%、スカンジウムで1.3atm%である。同様に、スカンジウムの平均原子濃度が8.3atm%(表1参照)である試料番号2において、含有濃度の差の絶対値は、窒素で13.8atm%、アルミニウムで11.3atm%、スカンジウムで2.5atm%である。スカンジウムの平均原子濃度が19.5atm%(表1参照)である試料番号3において、含有濃度の差の絶対値は、窒素で15.0atm%、アルミニウムで11.3atm%、スカンジウムで5.0atm%である。
【0033】
図6は、スカンジウムの原子濃度と規格化されたQ値との関係を示す図である。規格化されたQ値とは、スカンジウムが含有されていない試料(Scの含有率が0atm%の試料)のQ値を1として規格化したものであって、圧電薄膜共振子の共振特性を示す。
【0034】
図6において、比較例として、非特許文献1の
図5に示されたQ値とスカンジウム含有率との関係が破線で示されている。
図6において、本願の実施例として、試料番号1~試料番号3の試料のQ値と、試料番号1~試料番号3の試料のスカンジウムの平均原子濃度との関係が実線で示されている。
【0035】
図6の破線で示すように、一般的に、スカンジウムの含有量が増えると、規格化Q値は一次関数的に低下する。これに対して、圧電薄膜の厚み方向であってアルミニウムおよびスカンジウムの含有率が低下する方向に窒素の含有率が上昇するように圧電薄膜を形成することで、規格化Q値の低下を抑えることができる。
【0036】
特に、
図6に示すように、スカンジウムの平均原子濃度、換言すると、圧電薄膜全体におけるスカンジウムの含有濃度が5%以上のときに、規格化Q値の低下を顕著に抑えることができる。
【0037】
図7は、スカンジウムの平均原子濃度と比帯域幅との関係を示す図である。スカンジウム濃度が高くなるにつれて、共振子の帯域幅は広くなることが知られている。
図7に示すように、圧電薄膜の厚み方向であってアルミニウムおよびスカンジウムの含有率が低下する方向に窒素の含有率が上昇するように圧電薄膜を形成したとしても、スカンジウム濃度が高くなるにつれて、共振子の帯域幅は広くなるという性質は維持される。
【0038】
また、上記の表2に示したように、試料番号1~試料番号3の圧電薄膜において、第一電極側の圧電薄膜の端部における含有濃度と第二電極側の圧電薄膜の端部における含有濃度の差の絶対値は、窒素で10.0atm%~15.0atm%、アルミニウムで8.8atm%~11.3atm%、スカンジウムで1.3atm%~5.0atm%である。
【0039】
すなわち、第一電極側の圧電薄膜の端部における含有濃度と第二電極側の圧電薄膜の端部における含有濃度の差の絶対値が、スカンジウムで1.3atm%以上5.0atm%以下、アルミニウムで8.8atm%以上11.3atm%以下、窒素で10.0atm%以上15.0atm%以下となる圧電薄膜を用いることが好ましい。この場合、帯域幅の向上と共振特性の維持とを両立しやすい圧電薄膜共振子を提供できる。
【0040】
[圧電薄膜共振子の変形例]
図8は、変形例にかかる圧電薄膜共振子の概略断面図である。圧電薄膜共振子100aは、圧電素子10と基板4との間に空隙20が形成されていない代わりに、音響反射層5が設けられている。なお、その他の点は、
図1に示した圧電薄膜共振子100と共通するため、説明を省略する。
【0041】
音響反射層5は、相対的に高い音響インピーダンス層5a,5cと、相対的に低い音響インピーダンス層5b,5dとを交互に積層した構造を有する。このような音響反射層5を有する圧電薄膜共振子100aにおいても、圧電薄膜共振子100と同様に、圧電薄膜1の厚み方向であってアルミニウムおよびスカンジウムの含有率が低下する方向に窒素の含有率が上昇するように形成された圧電薄膜1を用いることにより、帯域幅の向上と共振特性の維持とを両立できる。
【0042】
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0043】
1 圧電薄膜、2 第一電極、3 第二電極、4 基板、5 音響反射層、10 圧電素子、20 空隙、100,100a 圧電薄膜共振子。