IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミヤワキの特許一覧

<>
  • 特許-診断装置 図1
  • 特許-診断装置 図2
  • 特許-診断装置 図3
  • 特許-診断装置 図4A
  • 特許-診断装置 図4B
  • 特許-診断装置 図5
  • 特許-診断装置 図6A
  • 特許-診断装置 図6B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】診断装置
(51)【国際特許分類】
   G01M 3/24 20060101AFI20240509BHJP
   F16T 1/48 20060101ALI20240509BHJP
【FI】
G01M3/24 A
F16T1/48 D
【請求項の数】 7
(21)【出願番号】P 2022171494
(22)【出願日】2022-10-26
【審査請求日】2022-10-26
(73)【特許権者】
【識別番号】000137889
【氏名又は名称】株式会社ミヤワキ
(74)【代理人】
【識別番号】100115381
【弁理士】
【氏名又は名称】小谷 昌崇
(74)【代理人】
【識別番号】100118049
【弁理士】
【氏名又は名称】西谷 浩治
(72)【発明者】
【氏名】吉川 成雄
【審査官】中村 圭伸
(56)【参考文献】
【文献】特開平03-220418(JP,A)
【文献】特開2022-129655(JP,A)
【文献】特開昭63-195498(JP,A)
【文献】特許第3390806(JP,B2)
【文献】実開昭62-174198(JP,U)
【文献】特開平07-139995(JP,A)
【文献】特開2003-130725(JP,A)
【文献】特開2001-050493(JP,A)
【文献】米国特許出願公開第2021/0041383(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F16T 1/00 - 1/48
G01F 1/00
G01M 3/00 - 3/40
G01H 1/00 - 17/00
G05B 23/00 - 23/02
(57)【特許請求の範囲】
【請求項1】
蒸気トラップの蒸気の漏洩量を出力する診断装置であって、
前記蒸気トラップは、第1蒸気トラップと、前記第1蒸気トラップと型式が異なる第2蒸気トラップと、を含み、
前記第2蒸気トラップの振動を示すアナログ信号を出力するセンサと、
前記センサの出力信号を増幅する増幅回路と、
前記第2蒸気トラップにおいて振動が飽和するときの振動値に対する前記第1蒸気トラップにおいて振動が飽和するときの振動値の比率と予め定められた基準ゲインとの積を、前記増幅回路が前記センサの出力信号を増幅するときのゲインとして設定する設定部と、
前記増幅回路の出力信号をデジタル信号に変換するAD変換器と、
前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換する変換部と、
前記第2蒸気トラップの蒸気の漏洩量を出力する出力部と、
を備える診断装置。
【請求項2】
前記設定部は、
前記第1蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第1漏洩量よりも前記第2蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第2漏洩量が小さい場合、前記第2漏洩量に対する前記第1漏洩量の比率の逆数と前記基準ゲインとの積を、前記ゲインとして設定する、
請求項1に記載の診断装置。
【請求項3】
前記センサは、更に、前記第1蒸気トラップの振動を示すアナログ信号を出力し、
前記設定部は、更に、前記センサが前記第1蒸気トラップの振動を示すアナログ信号を出力した場合、前記基準ゲインを前記ゲインとして設定し、
前記変換部は、更に、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を、前記第1蒸気トラップの蒸気の漏洩量に変換し、
前記出力部は、更に、前記第1蒸気トラップの蒸気の漏洩量を出力する、
請求項1に記載の診断装置。
【請求項4】
前記変換部は、前記第1蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第1振動特性に基づいて、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を前記第1蒸気トラップの蒸気の漏洩量に変換する、
請求項3に記載の診断装置。
【請求項5】
前記変換部は、前記第1蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第1振動特性を線形近似した関数を用いて、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を前記第1蒸気トラップの蒸気の漏洩量に変換する、
請求項3に記載の診断装置。
【請求項6】
前記変換部は、前記第2蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第2振動特性に基づいて、前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換する、
請求項1から5の何れか一項に記載の診断装置。
【請求項7】
前記変換部は、前記第2蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第2振動特性を線形近似した関数を用いて、前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換する、
請求項1から5の何れか一項に記載の診断装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸気トラップの蒸気の漏洩量を出力する技術に関する。
【背景技術】
【0002】
蒸気配管系を備えたプラント等においては、熱交換又は放熱等によって配管系内に復水(ドレン)が生じることがある。この復水を配管系内に滞留させると運転効率が低下する原因となる。このため、一般的には、配管系の適所に蒸気トラップを設置し、この蒸気トラップによって復水を配管系の外部に排出するようにしている。
【0003】
経年劣化又は作動不良等によって蒸気トラップのシール性能が損なわれると、蒸気配管系内の蒸気が蒸気トラップを介して外部に漏出し、無駄な蒸気損失を招くこととなる。このため、従来から、一年に一回等の定期的に、特許文献1等に開示のような診断装置を用いて蒸気トラップの振動を測定し、その測定値と蒸気トラップの振動特性とに基づいて、各蒸気トラップの蒸気の漏洩量を診断する作業が行われている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2018-84418号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
蒸気トラップの振動特性は、弁の開閉方式(以降、型式)に応じて異なる。例えば、円盤状のディスクによって弁の開閉を行うディスク型の蒸気トラップと球状のフロートによって弁の開閉を行うフロート型の蒸気トラップとでは、蒸気トラップにおいて振動が飽和するときの振動値が異なる。蒸気トラップにおいて振動が飽和するとは、蒸気トラップの構造上、蒸気トラップの振動の振幅が最大になり、これ以上大きい振幅で振動できない状態になることを示す。
【0006】
しかし、従来は、代表的な型式の蒸気トラップの振動特性を用いて、蒸気トラップにおける蒸気の漏洩量の診断が行われていたに過ぎず、蒸気トラップの型式の相違を考慮した診断は行われていなかった。このため、代表的な型式とは異なる型式の蒸気トラップの振動を測定した場合に、蒸気の漏洩量を精度良く出力できないという問題があった。
【0007】
本発明は、このような事情に鑑みて成されたものであり、ある蒸気トラップと型式が異なる蒸気トラップにおける蒸気の漏洩量を精度良く出力することができる診断装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様に係る診断装置は、蒸気トラップの蒸気の漏洩量を出力する診断装置であって、前記蒸気トラップは、第1蒸気トラップと、前記第1蒸気トラップと型式が異なる第2蒸気トラップと、を含み、前記第2蒸気トラップの振動を示すアナログ信号を出力するセンサと、前記センサの出力信号を増幅する増幅回路と、前記第2蒸気トラップにおいて振動が飽和するときの振動値に対する前記第1蒸気トラップにおいて振動が飽和するときの振動値の比率と予め定められた基準ゲインとの積を、前記増幅回路が前記センサの出力信号を増幅するときのゲインとして設定する設定部と、前記増幅回路の出力信号をデジタル信号に変換するAD変換器と、前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換する変換部と、前記第2蒸気トラップの蒸気の漏洩量を出力する出力部と、を備える。
【0009】
本構成によれば、第2蒸気トラップにおいて振動が飽和するときの振動値に対する第1蒸気トラップにおいて振動が飽和するときの振動値の比率と基準ゲインとの積に設定されたゲインで、センサの出力信号が増幅される。そして、当該増幅された信号がデジタル信号に変換され、当該デジタル信号が示す第2蒸気トラップの振動値が、第2蒸気トラップの蒸気の漏洩量に変換される。
【0010】
このため、本構成は、センサに第1蒸気トラップの振動を示すアナログ信号を出力させて、当該アナログ信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第1蒸気トラップの振動値を蒸気の漏洩量に変換する場合と同じ精度で、第2蒸気トラップの振動値を蒸気の漏洩量に変換することができる。これにより、本構成は、センサの出力信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第2蒸気トラップの振動値を蒸気の漏洩量に変換する場合よりも、第2蒸気トラップの蒸気の漏洩量を精度良く出力することができる。
【0011】
上記態様において、前記設定部は、前記第1蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第1漏洩量よりも前記第2蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第2漏洩量が小さい場合、前記第1漏洩量に対する前記第2漏洩量の比率と前記基準ゲインとの積を、前記ゲインとして設定してもよい。
【0012】
本構成によれば、第1漏洩量よりも第2漏洩量が小さい場合、第1漏洩量に対する第2漏洩量の比率と基準ゲインとの積である、基準ゲインより小さいゲインで、センサの出力信号が増幅される。
【0013】
このため、本構成は、センサに第1蒸気トラップの振動を示すアナログ信号を出力させて、当該アナログ信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第1蒸気トラップの振動値を蒸気の漏洩量に変換する場合と同じ精度で、第2蒸気トラップの振動値を蒸気の漏洩量に変換することができる。これにより、本構成は、センサの出力信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第2蒸気トラップの振動値を蒸気の漏洩量に変換する場合よりも、第2蒸気トラップの蒸気の漏洩量を精度良く出力することができる。
【0014】
上記態様において、前記センサは、更に、前記第1蒸気トラップの振動を示すアナログ信号を出力し、前記設定部は、更に、前記センサが前記第1蒸気トラップの振動を示すアナログ信号を出力した場合、前記基準ゲインを前記ゲインとして設定し、前記変換部は、更に、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を、前記第1蒸気トラップの蒸気の漏洩量に変換し、前記出力部は、更に、前記第1蒸気トラップの蒸気の漏洩量を出力してもよい。
【0015】
本構成によれば、第1蒸気トラップにおける蒸気の漏洩量を精度良く出力することができる。
【0016】
上記態様において、前記変換部は、前記第1蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第1振動特性に基づいて、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を前記第1蒸気トラップの蒸気の漏洩量に変換してもよい。
【0017】
本構成によれば、第1振動特性に基づいて、AD変換器の出力信号が示す第1蒸気トラップの振動値を、当該振動値に対応する蒸気の漏洩量に変換できるので、第1蒸気トラップにおける蒸気の漏洩量を精度良く出力することができる。
【0018】
上記態様において、前記変換部は、前記第1蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第1振動特性を線形近似した関数を用いて、前記AD変換器の出力信号が示す前記第1蒸気トラップの振動値を前記第1蒸気トラップの蒸気の漏洩量に変換してもよい。
【0019】
本構成によれば、第1振動特性を線形近似した関数を用いて、AD変換器の出力信号が示す第1蒸気トラップの振動値を、当該振動値に対応する蒸気の漏洩量に変換できるので、変換部を簡素化することができる。
【0020】
上記態様において、前記変換部は、前記第2蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第2振動特性に基づいて、前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換してもよい。
【0021】
本構成によれば、第2振動特性に基づいて、AD変換器の出力信号が示す第2蒸気トラップの振動値を、当該振動値に対応する蒸気の漏洩量に変換できるので、第2蒸気トラップにおける蒸気の漏洩量を精度良く出力することができる。
【0022】
上記態様において、前記変換部は、前記第2蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す第2振動特性を線形近似した関数を用いて、前記AD変換器の出力信号が示す前記第2蒸気トラップの振動値を、前記第2蒸気トラップの蒸気の漏洩量に変換してもよい。
【0023】
本構成によれば、第2振動特性を線形近似した関数を用いて、AD変換器の出力信号が示す第2蒸気トラップの振動値を、当該振動値に対応する蒸気の漏洩量に変換できるので、変換部を簡素化することができる。
【発明の効果】
【0024】
本発明によれば、ある蒸気トラップと型式が異なる蒸気トラップにおける蒸気の漏洩量を精度良く出力することができる診断装置を提供することが可能となる。
【図面の簡単な説明】
【0025】
図1】本発明の実施の形態に係る診断装置の構成を示すブロック図である。
図2】管理台帳の一例を示す図である。
図3】複数の型式の蒸気トラップの振動特性の一例を示す図である。
図4A】型式Iの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。
図4B】型式VIの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。
図5】型式IVの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。
図6A】型式Iの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の他の一例を示す図である。
図6B】型式VIの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の他の一例を示す図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態について、図面を用いて詳細に説明する。尚、異なる図面において同一の符号を付した要素は、同一又は相応する要素を示すものとする。図1は、本発明の実施の形態に係る診断装置1の構成を示すブロック図である。
【0027】
蒸気配管系を備えたプラント等においては、配管系内に生じた復水(ドレン)を配管系の外部に排出するために、配管系の適所に複数の蒸気トラップが設置されている。蒸気トラップは、1年に1回等の定期診断によって、その性能が診断される。定期診断の作業者は、診断装置1を携帯してプラント内を移動することにより、診断装置1によって各蒸気トラップの性能を順に診断する。尚、蒸気トラップの性能の診断は、定期診断に限らず、不定期な診断であっても良い。以下では、定期診断において、蒸気トラップにおける蒸気の漏洩量を診断する場合を例に取り説明する。
【0028】
プラント内へのノートパソコン等のデータ処理装置の持ち込みが許可されている場合には、作業者は、診断装置1とともに前記データ処理装置を携帯して、各蒸気トラップの蒸気の漏洩量を順に診断することもできる。この場合には、診断装置1は、前記データ処理装置及び公衆回線網等の任意の通信ネットワークを介して、クラウドサーバ等のサーバ装置に、各蒸気トラップの診断結果をリアルタイムで送信することができる。
【0029】
一方、プラント内への前記データ処理装置の持ち込みが禁止されている場合には、作業者は、営業車又は現場事務所等の待機場所に前記データ処理装置を保管し、診断装置1のみを携帯して各蒸気トラップの蒸気の漏洩量を順に診断する。この場合、各蒸気トラップの診断結果は、診断装置1内に保存される。作業者が待機場所に戻った後、診断装置1は、前記データ処理装置及び通信ネットワークを介して前記サーバ装置に、診断装置1内に保存した複数の蒸気トラップの診断結果を送信する。
【0030】
以下、診断装置1の構成について詳述する。図1に示すように、診断装置1は、探針19、振動センサ11(センサ)、増幅回路12、ゲイン切換回路18(設定部)、操作部13、表示部14(出力部)、記憶部15(出力部)、通信部16(出力部)、IF(インターフェイス)部17(出力部)及び制御部10を備えている。
【0031】
探針19は、先端が蒸気トラップに押し当てられる棒状の部材であり、所定の共振周波数で振動する。振動センサ22は、探針19の先端が蒸気トラップに押し当てられた場合に、探針19に伝達された蒸気トラップの振動を示すアナログ信号を増幅回路12へ出力する。
【0032】
増幅回路12は、後段のAD変換器20におけるアナログ信号からデジタル信号への変換精度を向上するために設けられている。増幅回路12は、振動センサ11の出力信号を増幅する。増幅回路12は、抵抗値が可変な抵抗素子を備え、当該抵抗素子の抵抗値を変更することで、振動センサ11の出力信号を増幅するときのゲインを調整可能に構成されている。
【0033】
ゲイン切換回路18は、増幅回路12が振動センサ11の出力信号を増幅するときのゲインを設定する。具体的には、ゲイン切換回路18は、増幅回路12を構成する抵抗素子の抵抗値を切り替えるスイッチ回路によって構成されている。ゲイン切換回路18は、増幅回路12を構成する抵抗素子の抵抗値を、後述するゲイン設定部40から指示されたゲインに対応する抵抗値に切り替える。これにより、ゲイン切換回路18は、ゲイン設定部40から指示されたゲインを、増幅回路12が振動センサ11の出力信号を増幅するときのゲインとして設定する。
【0034】
操作部13は、作業者が各種の情報を入力するための操作スイッチ等によって構成されている。表示部14は、液晶ディスプレイ又は有機ELディスプレイ等を用いて構成されている。但し、タッチパネル式ディスプレイを使用することにより、操作部13と表示部14とを一体として構成してもよい。表示部14は、制御部10による制御下で、種々の情報を表示する。例えば、表示部14は、変換部60によって変換された蒸気トラップの蒸気の漏洩量を表示(出力)する。
【0035】
記憶部15は、フラッシュメモリ等の書き換え可能な半導体メモリ等を用いて構成されている。記憶部15には、制御部10によって種々の情報が記憶される。図2は、管理台帳91の一例を示す図である。例えば、図2に示すように、記憶部15には、診断対象の複数の蒸気トラップを管理するための管理台帳91が記憶される。
【0036】
管理台帳91は、前記データ処理装置において作成される。具体的には、管理台帳91は、診断対象の複数の蒸気トラップの各々に関する、絶対位置情報I1、識別情報I2、属性情報I3及び特性情報I4を含む。
【0037】
絶対位置情報I1は、各蒸気トラップの設置位置を示す情報である。図2の管理台帳91は、絶対位置情報I1として、プラントを複数のエリアに区画したときの各蒸気トラップが設置されたエリアを示す座標が記述された例を示している。
【0038】
識別情報I2は、各蒸気トラップを識別するための情報である。図2は、識別情報I2として、各蒸気トラップを識別するためのトラップナンバーT1~T9が記述された例を示している。
【0039】
属性情報I3は、各蒸気トラップの属性を示す情報である。図2は、属性情報I3として、各蒸気トラップの製造メーカ名、機種及び型式が記述された例を示している。機種には、蒸気トラップの機種を特定する情報(例えばAB111)が記述される。プラント内に設置され得る複数の蒸気トラップは、弁の開閉方式によって複数の型式の蒸気トラップに分類される。型式には、蒸気トラップにおける弁の開閉方式を特定する情報(例えばI)が記述される。尚、属性情報I3には、蒸気トラップのその他の属性を示す情報が含まれていてもよい。
【0040】
特性情報I4は、各蒸気トラップの性能の診断に用いられる、各蒸気トラップの種々の特性に関する情報である。図2は、特性情報I4として、各蒸気トラップにおける蒸気の漏洩量の診断に用いられる振動特性情報及びゲイン情報が記述された例を示している。
【0041】
振動特性情報は、各蒸気トラップの振動特性を示す情報である。振動特性とは、蒸気トラップにおける蒸気の漏洩量と振動値との関係を示す。蒸気トラップの振動特性は、型式に応じて異なる。
【0042】
例えば、図2は、型式Iに分類される2個のトラップナンバーT1、T4の蒸気トラップに対応する振動特性情報として、型式Iの蒸気トラップの振動特性G11を示す情報が記述された例を示している。また、図2は、型式IVに分類される1個のトラップナンバーT6の蒸気トラップに対応する振動特性情報として、型式IVの蒸気トラップの振動特性G41を示す情報が記述された例を示している。振動特性情報の詳細については後述する。
【0043】
ゲイン情報は、増幅回路12が振動センサ11の出力信号を増幅するときのゲインを決定するために用いられる情報である。ゲイン情報は、各蒸気トラップの振動特性及び基準型式の蒸気トラップの振動特性に基づいて設定される。基準型式の蒸気トラップとは、複数の型式I~VIの蒸気トラップの中で、平均的な振動特性を示す型式の蒸気トラップを示す。本実施の形態では、基準型式は、型式IVであるものとする。
【0044】
例えば、図2は、型式Iの蒸気トラップの診断時に用いるゲインを示すゲイン情報が「C1」に設定された例を示している。同様に、図2は、型式II、III、V、VIの蒸気トラップの診断時に用いるゲインを示すゲイン情報が「C2」、「C3」、「1/C5」、「1/C6」に設定された例を示している。また、図2は、型式IVの蒸気トラップの診断時に用いるゲインを示すゲイン情報が「1」に設定された例を示している。ゲイン情報の詳細については後述する。
【0045】
尚、図2の管理台帳91では、複数の蒸気トラップの並び順は、診断順序となっている。しかし、管理台帳91における複数の蒸気トラップの並び順は、これに限らず、トラップナンバーの降順又は昇順等であっても良い。
【0046】
通信部16は、Bluetooth(登録商標)等の任意の通信方式に対応した通信回路を用いて構成されている。通信部16は、前記データ処理装置等の外部装置との間で通信を行うことにより、種々の情報を外部装置から受信する。通信部16は、受信した情報を制御部10に出力する。また、通信部16は、制御部10による制御の下、前記データ処理装置等の外部装置との間で通信を行うことにより、種々の情報を外部装置へ送信(出力)する。
【0047】
例えば、プラント内への前記データ処理装置の持ち込みが許可されている場合、通信部16は、前記データ処理装置から管理台帳91を受信し、当該管理台帳91を制御部10に出力する。この場合、制御部10は、通信部16から入力された管理台帳91を記憶部15に記憶する。また、制御部10は、通信部16を制御して、各蒸気トラップの診断結果を追記した管理台帳91を前記サーバ装置に送信することを要求する指示を、前記データ処理装置に送信する。
【0048】
IF部17は、SDカード又はUSBメモリ等のフラッシュメモリ7が着脱自在に接続される入出力端子等によって構成されている。IF部17は、自身にフラッシュメモリ7が接続された状態で、当該フラッシュメモリ7と制御部10との間で情報を入出力する。
【0049】
例えば、プラント内への前記データ処理装置の持ち込みが禁止されている場合、IF部17は、フラッシュメモリ7に記憶されている管理台帳91を読み出し、当該読み出した管理台帳91を制御部10に出力する。この場合、制御部10は、IF部17から入力された管理台帳91を記憶部15に記憶する。また、制御部10は、IF部17を制御して、各蒸気トラップの診断結果を追記した管理台帳91を、フラッシュメモリ7に出力する(書き込む)。この場合、定期診断の作業者は、待機場所に戻った後、前記データ処理装置にフラッシュメモリ7を接続する。そして、作業者は、前記データ処理装置において、当該フラッシュメモリ7から更新後の管理台帳91を取得し、取得した更新後の管理台帳91を前記サーバ装置に送信する操作を行う。
【0050】
制御部10は、所定の演算処理を実行する不図示のCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたEEPROM等の不図示の不揮発性メモリと、データを一時的に記憶するための不図示のRAM(Random Access Memory)と、こららの周辺回路と、を備えたマイクロコンピュータによって構成されている。
【0051】
制御部10は、前記周辺回路として、AD変換器20を備えている。AD変換器20は、増幅回路12の出力信号をデジタル信号に変換する。
【0052】
また、制御部10は、前記不揮発性メモリに記憶されている制御プログラムを実行することで、ゲイン設定部40(設定部)及び変換部60として機能する。
【0053】
ゲイン設定部40は、記憶部15に記憶されている管理台帳91(図2)を参照し、診断対象の蒸気トラップに対応付けられているゲイン情報を取得する。ゲイン設定部40は、取得したゲイン情報を用いて、増幅回路12が振動センサ11の出力信号を増幅するときのゲインを決定する。当該ゲインの決定方法の詳細については後述する。ゲイン設定部40は、決定したゲインを、増幅回路12が用いるゲインとして設定するようゲイン切換回路18に指示する。
【0054】
変換部60は、記憶部15に記憶されている管理台帳91(図2)を参照し、診断対象の蒸気トラップに対応付けられている振動特性情報を取得する。変換部60は、当該振動特性情報が示す振動特性に基づいて、AD変換器20の出力信号が示す蒸気トラップの振動値を、当該蒸気トラップの蒸気の漏洩量に変換する。変換部60の詳細は後述する。
【0055】
以下、管理台帳91(図2)に設定される振動特性情報、管理台帳91(図2)に設定されるゲイン情報、ゲイン設定部40による増幅回路12が用いるゲインの決定方法及び変換部60の詳細について説明する。
【0056】
図3は、複数の型式の蒸気トラップの振動特性の一例を示す図である。図3において、横軸は、蒸気トラップにおける蒸気の漏洩量を示し、縦軸は、蒸気トラップの振動値(振動レベル)を示している。振動特性G11は、型式Iの振動特性である。振動特性G21は、型式IIの振動特性である。振動特性G31は、型式IIIの振動特性である。振動特性G41は、型式IVの振動特性である。振動特性G51は、型式Vの振動特性である。振動特性G61は、型式VIの振動特性である。以下、説明の便宜上、6つの振動特性G11、G21、G31、G41、G51、G61を、振動特性G11~G61と略記する。振動特性G11~G61は、各型式の蒸気トラップを用いた実験値等に基づき導出される。
【0057】
振動値「L40」は、型式IV、V、VIの蒸気トラップの振動が飽和するときの振動値である。蒸気トラップの振動が飽和するとは、蒸気トラップの構造上、蒸気トラップの振動の振幅が最大になり、これ以上大きい振幅で振動できない状態になることを示す。振動値「L10」、「L20」、「L30」は、それぞれ、型式I、II、IIIの蒸気トラップの振動が飽和するときの振動値である。
【0058】
振動特性G11~G61が示すように、各型式の振動特性は、蒸気の漏洩量が多い程、振動値が二次関数的に又は指数関数的に大きくなる特性を有する。管理台帳91(図2)の振動特性情報には、各蒸気トラップの型式の振動特性G11~G61を示す二次関数又は指数関数が記述される。
【0059】
増幅回路12が用いるゲインの初期値(以降、基準ゲイン)は、基準型式IVの振動特性G41に基づいて予め定められている。以降、基準型式IVの蒸気トラップを第1蒸気トラップと記載する。
【0060】
具体的には、基準ゲインは、第1蒸気トラップを診断する場合に、AD変換器20(図1)の出力信号が示す第1蒸気トラップの振動値の範囲が、基準型式IVの振動特性G41(第1振動特性)が示す振動値の範囲(「0」~「L40」)と一致するように定められている。
【0061】
このため、第1蒸気トラップを診断する場合、基準ゲインが、増幅回路12が用いるゲインとして設定される。したがって、管理台帳91(図2)における第1蒸気トラップ(基準型式IVの蒸気トラップ)に対応するゲイン情報には、基準ゲインに対する増幅回路12が用いるゲインの比率「1」を示す情報が記述される。
【0062】
そこで、第1蒸気トラップを診断する場合、ゲイン設定部40は、管理台帳91(図2)を参照し、第1蒸気トラップ(基準型式IVの蒸気トラップ)に対応するゲイン情報「1」を取得する。ゲイン設定部40は、取得したゲイン情報が示す前記比率「1」と基準ゲインとの積を、増幅回路12が用いるゲインとして決定する。ゲイン設定部40は、決定したゲインを、増幅回路12が用いるゲインとして設定するよう、ゲイン切換回路18に指示する。
【0063】
第1蒸気トラップを診断する場合、変換部60は、記憶部15に記憶されている管理台帳91(図2)を参照し、第1蒸気トラップに対応付けられている振動特性情報を取得する。この場合、変換部60は、AD変換器20の出力信号が示す第1蒸気トラップの振動値(例えば、L1)を、当該振動特性情報が示す振動特性G41を示す二次関数又は指数関数に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B41)に変換する。
【0064】
一方、基準型式IVとは異なる型式Iの蒸気トラップ(第2蒸気トラップ)を診断する場合にも、増幅回路12が用いるゲインを基準ゲインに設定するとする。この場合、変換部60には、「0」から「L40」までの範囲の振動値を示す信号が入力可能であるにも関わらず、型式Iの振動特性G11が示す「0」から「L10」までの範囲の振動値を示す信号しか入力されない。
【0065】
ここで、例えば、振動値「L40」が400dBであり、振動値「L10」が40dBであるとする。また、変換部60が、前記CPUの性能上、400通りの振動値を400通りの蒸気の漏洩量に変換可能であるとする。
【0066】
この場合、第1蒸気トラップを診断するときは、変換部60に入力される信号が示す振動値の範囲が0dBから400dBまでの範囲であるので、変換部60は、1dB単位で、400通りの振動値を400通りの蒸気の漏洩量に変換可能である。これに対し、型式Iの蒸気トラップを診断するときは、変換部60に入力される信号が示す振動値の範囲が0dBから40dBまでの範囲に縮小する。このため、変換部60は、1dB単位で、40通りの振動値を40通りの蒸気の漏洩量にしか変換できないことになる。
【0067】
このように、増幅回路12において振動センサ11の出力信号を基準ゲインで増幅し、変換部60において、AD変換器20の出力信号が示す型式Iの蒸気トラップの振動値を蒸気の漏洩量に変換すると、変換部60における変換の精度が、第1蒸気トラップを診断する場合よりも悪くなる。このため、型式Iの蒸気トラップを診断する場合に増幅回路12が用いるゲインは、変換部60における変換の精度が、第1蒸気トラップを診断する場合と同じになるように設定される。
【0068】
具体的には、型式Iの蒸気トラップを診断する場合、増幅回路12が用いるゲインは、型式Iの蒸気トラップの振動が飽和するときの振動値「L10」に対する、基準型式IVの蒸気トラップの振動が飽和するときの振動値「L40」の比率「C1(=L40/L10)」と基準ゲインとの積に設定される。したがって、管理台帳91(図2)において型式Iの蒸気トラップに対応するゲイン情報には、基準ゲインに対する乗数である前記比率「C1」を示す情報が記述される。
【0069】
そこで、型式Iの蒸気トラップを診断する場合、ゲイン設定部40は、管理台帳91(図2)を参照し、型式Iの蒸気トラップに対応するゲイン情報「C1」を取得する。ゲイン設定部40は、取得したゲイン情報が示す前記比率「C1」と基準ゲインとの積を、増幅回路12が用いるゲインとして決定する。ゲイン設定部40は、決定したゲインを、増幅回路12が用いるゲインとして設定するよう、ゲイン切換回路18に指示する。
【0070】
図4Aは、型式Iの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。図4Aに示すように、増幅回路12が用いるゲインが前記比率「C1」と基準ゲインとの積に設定された場合、変換部60に入力されるAD変換器20の出力信号が示す振動値の最大値は、型式Iの蒸気トラップの振動が飽和するときの振動値「L10」となる。つまり、変換部60は、型式Iの蒸気トラップを診断する場合に、基準型式IVの蒸気トラップを診断するときの「1/C1」の単位で、AD変換器20の出力信号が示す400通りの振動値を400通りの蒸気の漏洩量に変換可能となる。
【0071】
上記の例では、変換部60は、0.1(=1/C1=L10/L40=40/400)dBの単位で、AD変換器20の出力信号が示す400通りの振動値を400通りの蒸気の漏洩量に変換可能となる。これにより、型式Iの蒸気トラップを診断する場合の変換部60における変換の精度が、第1蒸気トラップを診断する場合と同じ精度となる。
【0072】
型式Iの蒸気トラップを診断する場合、変換部60は、記憶部15に記憶されている管理台帳91(図2)を参照し、診断対象の型式Iの蒸気トラップに対応付けられている振動特性情報を取得する。変換部60は、AD変換器20の出力信号が示す型式Iの蒸気トラップの振動値(例えば、L2)を、当該振動特性情報が示す振動特性G11を示す二次関数又は指数関数に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B12)に変換する。
【0073】
尚、上記と同様に、基準型式IVとは異なる型式IIの蒸気トラップを診断する場合、増幅回路12が用いるゲインは、型式IIの蒸気トラップの振動が飽和するときの振動値「L20」(図3)に対する、基準型式IVの蒸気トラップの振動が飽和するときの振動値「L40」の比率「C2(=L40/L20)」と基準ゲインとの積に設定される。
【0074】
また、基準型式IVとは異なる型式IIIの蒸気トラップを診断する場合、増幅回路12が用いるゲインは、型式IIIの蒸気トラップの振動が飽和するときの振動値「L30」に対する、基準型式IVの蒸気トラップの振動が飽和するときの振動値「L40」の比率「C3(=L40/L30)」と基準ゲインとの積に設定される。
【0075】
次に、基準型式IVとは異なる型式VIの蒸気トラップ(第2蒸気トラップ)を診断する場合について説明する。この場合、上記と同様に、増幅回路12が用いるゲインを基準ゲインに設定すると、変換部60には「0」から「L40」までの範囲の振動値を示す信号が入力される。しかし、変換部60は、「0」から「B40」までの範囲の蒸気の漏洩量を示す信号を出力可能であるにも関わらず、型式VIの振動特性G61が示す「0」から「B60」までの範囲の蒸気の漏洩量を示す信号しか出力しないことになる。
【0076】
ここで、説明の便宜上、例えば、振動値「L40」が400dBであり、蒸気の漏洩量「B40」が400トン/年であり、蒸気の漏洩量「B60」が200トン/年であるとする。また、変換部60が、上記と同様に、前記CPUの性能上、400通りの振動値を400通りの蒸気の漏洩量に変換可能であるとする。
【0077】
この場合、第1蒸気トラップを診断するときは、変換部60から出力される信号が示す蒸気の漏洩量の範囲が0トン/年から400トン/年までの範囲である。これに対し、型式VIの蒸気トラップを診断するときは、変換部60から出力される信号が示す蒸気の漏洩量の範囲が0トン/年から200トン/年までの範囲に縮小する。このため、変換部60は、400通りの振動値を、1トン/年単位の200通りの蒸気の漏洩量にしか変換できないことになる。
【0078】
このように、基準型式IVとは異なる型式の蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量(第2漏洩量)(例えば「B60」)が、基準型式IVの蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量(第1漏洩量)「B40」よりも小さい場合に、増幅回路12が用いるゲインを基準ゲインに設定すると、変換部60における変換の精度は、第1蒸気トラップを診断する場合よりも悪くなる。このため、振動が飽和するときの蒸気の漏洩量が、基準型式IVの蒸気トラップの振動が飽和するときの蒸気の漏洩量よりも小さい型式の蒸気トラップを診断する場合も、増幅回路12が用いるゲインは、変換部60における変換の精度が、第1蒸気トラップを診断する場合と同じになるように設定される。
【0079】
具体的には、型式VIの蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量「B60」は、基準型式IVの蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量「B40」よりも小さい。このため、型式VIの蒸気トラップを診断する場合、増幅回路12が用いるゲインは、型式VIの蒸気トラップの振動が飽和するときの蒸気の漏洩量「B60」に対する、基準型式IVの蒸気トラップの振動が飽和するときの蒸気の漏洩量「B40」の比率「C6(=B40/B60)」の逆数「1/C6(=B60/B40)」と基準ゲインとの積に設定される。したがって、管理台帳91(図2)において型式VIの蒸気トラップに対応するゲイン情報には、基準ゲインに対する乗数である、前記比率「C6」の逆数「1/C6」を示す情報が記述される。
【0080】
そこで、型式VIの蒸気トラップを診断する場合、ゲイン設定部40は、管理台帳91(図2)を参照し、型式VIの蒸気トラップに対応するゲイン情報「1/C6」を取得する。ゲイン設定部40は、取得したゲイン情報が示す前記逆数「1/C6」と基準ゲインとの積を、増幅回路12が用いるゲインとして決定する。ゲイン設定部40は、決定したゲインを、増幅回路12が用いるゲインとして設定するよう、ゲイン切換回路18に指示する。
【0081】
図4Bは、型式VIの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。図4Bに示すように、増幅回路12が用いるゲインが前記逆数「1/C6」と基準ゲインとの積に設定された場合、変換部60の出力信号が示す蒸気の漏洩量の最大値は、型式VIの蒸気トラップの振動が飽和するときの蒸気の漏洩量「B60」となる。つまり、変換部60は、型式VIの蒸気トラップを診断する場合に、AD変換器20の出力信号が示す400通りの振動値を、基準型式IVの蒸気トラップを診断するときの「1/C6」倍の単位の400通りの蒸気の漏洩量に変換可能となる。
【0082】
上記の例では、変換部60は、AD変換器20の出力信号が示す400通りの振動値を、0.5(=1/C6=B60/B40=200/400)トン/年の単位の400通りの蒸気の漏洩量に変換可能となる。これにより、型式VIの蒸気トラップを診断する場合の変換部60における変換の精度が、第1蒸気トラップを診断する場合と同じ精度となる。
【0083】
型式VIの蒸気トラップを診断する場合、変換部60は、記憶部15に記憶されている管理台帳91(図2)を参照し、診断対象の型式VIの蒸気トラップに対応付けられている振動特性情報を取得する。変換部60は、AD変換器20の出力信号が示す型式VIの蒸気トラップの振動値(例えば、L3)を、当該振動特性情報が示す振動特性G61を示す二次関数又は指数関数に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B63)に変換する。
【0084】
型式VIの蒸気トラップと同様に、型式Vの蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量は、図3に示すように、基準型式IVの蒸気トラップの振動が飽和するときの蒸気の漏洩量「B40」よりも小さい。このため、型式Vの蒸気トラップを診断する場合も、型式VIの蒸気トラップを診断する場合と同様に、増幅回路12が用いるゲインは、型式Vの蒸気トラップの振動が飽和するときの蒸気の漏洩量に対する、基準型式IVの蒸気トラップの振動が飽和するときの蒸気の漏洩量「B40」の比率「C5」の逆数「1/C5」と基準ゲインとの積に設定される。
【0085】
尚、型式II、III、Vの蒸気トラップを診断する場合も、変換部60は、記憶部15に記憶されている管理台帳91(図2)を参照し、診断対象の蒸気トラップに対応付けられている振動特性情報を取得する。そして、変換部60は、AD変換器20の出力信号が示す診断対象の蒸気トラップの振動値を、当該振動特性情報が示す振動特性を示す二次関数又は指数関数に代入して、当該振動値に対応する蒸気の漏洩量に変換する。
【0086】
本実施の形態の構成によれば、第1蒸気トラップと型式が異なる対象蒸気トラップ(例えば、型式Iの蒸気トラップ)において振動が飽和するときの振動値(例えば、L10)に対する第1蒸気トラップにおいて振動が飽和するときの振動値(例えば、L40)の比率と基準ゲインとの積に設定されたゲインで、振動センサ11の出力信号が増幅される。そして、当該増幅された信号がデジタル信号に変換され、当該デジタル信号が示す対象蒸気トラップの振動値が蒸気の漏洩量に変換される。
【0087】
このため、変換部60は、振動センサ11に第1蒸気トラップの振動を示すアナログ信号を出力させて、当該アナログ信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第1蒸気トラップの振動値を蒸気の漏洩量に変換する場合と同じ精度で、対象蒸気トラップの振動値を蒸気の漏洩量に変換することができる。これにより、本構成は、振動センサ11の出力信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す対象蒸気トラップの振動値を蒸気の漏洩量に変換する場合よりも、対象蒸気トラップの蒸気の漏洩量を精度良く出力することができる。
【0088】
また、本実施の形態の構成によれば、第1蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第1漏洩量よりも、対象蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第2漏洩量が小さい場合、第1漏洩量に対する第2漏洩量の比率と基準ゲインとの積である、基準ゲインより小さいゲインで、振動センサ11の出力信号が増幅される。
【0089】
このため、変換部60は、振動センサ11に第1蒸気トラップの振動を示すアナログ信号を出力させて、当該アナログ信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す第1蒸気トラップの振動値を蒸気の漏洩量に変換する場合と同じ精度で、対象蒸気トラップの振動値を蒸気の漏洩量に変換することができる。これにより、本構成は、振動センサ11の出力信号を基準ゲインで増幅した信号をデジタル信号に変換し、当該デジタル信号が示す対象蒸気トラップの振動値を蒸気の漏洩量に変換する場合よりも、対象蒸気トラップの蒸気の漏洩量を精度良く出力することができる。
【0090】
以下、診断装置1を用いた定期診断の作業手順について説明する。定期診断の作業者は、診断装置1(及び許可されている場合には前記データ処理装置)を携帯してプラント内を移動することにより、診断装置1によって各蒸気トラップの蒸気の漏洩量を順に診断する。
【0091】
その際、作業者による操作部13の操作により、制御部10は、記憶部15に記憶した管理台帳91を表示部14に表示する。これにより、作業者は、プラント内に設置された複数の蒸気トラップの診断順序と、各蒸気トラップの絶対位置情報I1、識別情報I2、及び属性情報I3を認識することができる。
【0092】
作業者は、表示された管理台帳91から認識できる診断順序及び絶対位置に従って、今回の診断対象である対象蒸気トラップの設置箇所に移動する。作業者は、操作部13の操作によって、管理台帳91に含まれている複数の対象蒸気トラップの中から、今回の診断対象である一の対象蒸気トラップを選択する。これにより、今回の診断対象として、当該一の対象蒸気トラップを選択したことを示す情報(以降、選択情報)が、操作部13から制御部10に入力される。
【0093】
制御部10に選択情報が入力されると、ゲイン設定部40は、管理台帳91から当該選択情報が示す対象蒸気トラップに対応するゲイン情報を取得し、当該ゲイン情報が示す前記比率と基準ゲインとの積を、増幅回路12が用いるゲインとして設定する。
【0094】
次に、作業者は、診断装置1の探針19(図1)を今回の診断対象である対象蒸気トラップに押し当てる。これにより、対象蒸気トラップの振動値が対象蒸気トラップの蒸気の漏洩量に変換される。このとき、制御部10は、対象蒸気トラップの蒸気の漏洩量の表示指示を表示部14に出力する。表示部14は、当該表示指示に従って、対象蒸気トラップの蒸気の漏洩量を示す情報を表示する(出力する)。
【0095】
また、制御部10は、対象蒸気トラップの蒸気の漏洩量を示す情報を、管理台帳91における、前記選択情報が示す対象蒸気トラップに対応する箇所に追記する。制御部10は、当該追記後の管理台帳91の記憶指示を記憶部15に出力する。記憶部15は、当該記憶指示に従って、対象蒸気トラップの蒸気の漏洩量を示す情報が追記された管理台帳91を記憶する(出力する)。これにより、制御部10は、記憶部15に記憶されている管理台帳91を更新する。
【0096】
尚、作業者は、前記データ処理装置を携帯していない場合に、対象とする全ての蒸気トラップの診断を終了すると、IF部17にフラッシュメモリ7を接続する。制御部10は、記憶部15に記憶されている管理台帳91を取得し、当該管理台帳91の記憶指示をIF部17に出力する。IF部17は、当該記憶指示に従って、当該管理台帳91をフラッシュメモリ7に記憶(出力)する。
【0097】
一方、作業者が前記データ処理装置を携帯している場合に、対象とする全ての蒸気トラップの診断が終了したとする。この場合、制御部10は、記憶部15に記憶されている更新後の管理台帳91を取得し、当該管理台帳91を前記サーバ装置に送信する指示を、通信部16を介して前記データ処理装置に送信する。前記データ処理装置は、当該指示に従って、更新後の管理台帳91を前記サーバ装置に送信する(出力する)。
【0098】
尚、管理台帳91に記憶する振動特性情報は、各蒸気トラップの振動特性を示す二次関数又は指数関数を示す情報に限らず、各蒸気トラップの振動特性を線形近似した関数を示す情報であってもよい。
【0099】
図5は、型式IVの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の一例を示す図である。上記に合わせて、基準型式IVの第1蒸気トラップを診断するときに、変換部60が、図5に示すように、AD変換器20の出力信号が示す第1蒸気トラップの振動値(例えば、L1)を、振動特性情報が示す振動特性G41を線形近似した関数G411に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B411)に変換するようにしてもよい。
【0100】
図6Aは、型式Iの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の他の一例を示す図である。同様に、基準型式IVとは異なる型式Iの蒸気トラップを診断するときには、変換部60が、図6Aに示すように、増幅回路12の出力信号が示す型式Iの蒸気トラップの振動値(例えば、L2)を、振動特性情報が示す振動特性G11を線形近似した関数G111に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B121)に変換するようにしてもよい。
【0101】
図6Bは、型式VIの蒸気トラップの振動値を蒸気の漏洩量に変換する処理の他の一例を示す図である。同様に、基準型式IVとは異なる型式VIの蒸気トラップを診断するときには、変換部60が、図6Bに示すように、増幅回路12の出力信号が示す型式VIの蒸気トラップの振動値(例えば、L3)を、振動特性情報が示す振動特性G61を線形近似した関数G611に代入して、当該振動値に対応する蒸気の漏洩量(例えば、B631)に変換するようにしてもよい。
【0102】
同様に、基準型式IVとは異なる型式II、III、Vの蒸気トラップを診断するときには、変換部60が、AD変換器20の出力信号が示す型式II、III、Vの蒸気トラップの振動値を、振動特性情報が示す振動特性G21、G31、G51を線形近似した関数に代入して、当該振動値に対応する蒸気の漏洩量に変換するようにしてもよい。
【0103】
上記実施の形態では、第1蒸気トラップとは異なる型式の対象蒸気トラップの診断を行う場合に、第1蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第1漏洩量よりも、対象蒸気トラップにおいて振動が飽和するときの蒸気の漏洩量である第2漏洩量が小さいときは、第1漏洩量に対する第2漏洩量の比率と基準ゲインとの積を、増幅回路12が用いるゲインとして設定する例について説明した。
【0104】
しかし、第1蒸気トラップとは異なる型式の対象蒸気トラップの診断を行う場合に、第1漏洩量よりも第2漏洩量が小さいときは、第1蒸気トラップを診断する場合と同様に、増幅回路12が用いるゲインを基準ゲインに設定するようにしてもよい。具体的には、管理台帳91(図2)において、型式V、VIの蒸気トラップに対応するゲイン情報には、基準型式IVの蒸気トラップに対応するゲイン情報と同様に、基準ゲインに対する増幅回路12が用いるゲインの比率「1」を示す情報を記述するようにしてもよい。
【符号の説明】
【0105】
1 :診断装置
11 :振動センサ(センサ)
12 :増幅回路
14 :表示部(出力部)
15 :記憶部(出力部)
16 :通信部(出力部)
17 :IF部(出力部)
18 :ゲイン切換回路(設定部)
20 :AD変換器
40 :ゲイン設定部(設定部)
60 :変換部
【要約】
【課題】ある蒸気トラップと型式が異なる蒸気トラップにおける蒸気の漏洩量を精度良く出力する。
【解決手段】診断装置1は、蒸気トラップの蒸気の漏洩量を出力する診断装置であって、第1蒸気トラップと型式が異なる第2蒸気トラップの振動を示すアナログ信号を出力するセンサ11と、センサ11の出力信号を増幅する増幅回路12と、第2蒸気トラップにおいて振動が飽和するときの振動値に対する第1蒸気トラップにおいて振動が飽和するときの振動値の比率と予め定められた基準ゲインとの積を、増幅回路12がセンサ11の出力信号を増幅するときのゲインとして設定する設定部18、40と、増幅回路12の出力信号をデジタル信号に変換するAD変換器20と、AD変換器20の出力信号が示す第2蒸気トラップの振動値を、第2蒸気トラップの蒸気の漏洩量に変換する変換部60と、第2蒸気トラップの蒸気の漏洩量を出力する出力部14~17と、を備える。
【選択図】図1
図1
図2
図3
図4A
図4B
図5
図6A
図6B