IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フュエルセル エナジー, インコーポレイテッドの特許一覧

特許7485804二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理
<>
  • 特許-二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理 図1
  • 特許-二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理 図2
  • 特許-二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理 図3
  • 特許-二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-08
(45)【発行日】2024-05-16
(54)【発明の名称】二酸化炭素回収のための溶融炭酸塩型燃料電池アノード排気の後処理
(51)【国際特許分類】
   H01M 8/0662 20160101AFI20240509BHJP
   H01M 8/04 20160101ALI20240509BHJP
   H01M 8/04014 20160101ALI20240509BHJP
   B01D 53/047 20060101ALI20240509BHJP
【FI】
H01M8/0662
H01M8/04 J
H01M8/04014
B01D53/047
【請求項の数】 8
【外国語出願】
(21)【出願番号】P 2023011141
(22)【出願日】2023-01-27
(62)【分割の表示】P 2021043584の分割
【原出願日】2017-04-20
(65)【公開番号】P2023055803
(43)【公開日】2023-04-18
【審査請求日】2023-02-09
(31)【優先権主張番号】62/325,711
(32)【優先日】2016-04-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502197161
【氏名又は名称】フュエルセル エナジー, インコーポレイテッド
【氏名又は名称原語表記】FUELCELL ENERGY, INC.
(74)【代理人】
【識別番号】100076428
【弁理士】
【氏名又は名称】大塚 康徳
(74)【代理人】
【識別番号】100115071
【弁理士】
【氏名又は名称】大塚 康弘
(74)【代理人】
【識別番号】100112508
【弁理士】
【氏名又は名称】高柳 司郎
(74)【代理人】
【識別番号】100116894
【弁理士】
【氏名又は名称】木村 秀二
(74)【代理人】
【識別番号】100130409
【弁理士】
【氏名又は名称】下山 治
(72)【発明者】
【氏名】チェゼル-アヤゴー, オッセン
【審査官】大内 俊彦
(56)【参考文献】
【文献】特表2009-503789(JP,A)
【文献】米国特許出願公開第2004/0197612(US,A1)
【文献】特開平11-312527(JP,A)
【文献】特開2008-254942(JP,A)
【文献】特開2005-285698(JP,A)
【文献】特開2006-45374(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00-8/2495
B01D 53/047
(57)【特許請求の範囲】
【請求項1】
燃料電池システムであって、
アノードとカソードとを備え前記アノードはアノード排ガスを放出するように構成された燃料電池と、
前記アノード排ガスを受け取り、前記アノード排ガスに対して第1の温度で第1のCOシフト反応を実行し、第1のシフトガスを放出するように構成された第1のCOシフト反応器と、
前記第1のシフトガスを受け取って凝縮し、前記第1のシフトガスから水を分離して乾燥アノード排ガスを生成し、前記水と前記乾燥アノード排ガスとを別々に放出するように構成された凝縮器と、
前記乾燥アノード排ガスを受け取り、水素流および分離したCO流を放出するように構成された圧力スウィング吸着ユニットと、
前記圧力スウィング吸着ユニットからの前記水素流の第1の部分と空気源からの空気とを受け取り、酸化水素流を放出するように構成された酸化装置と、
前記酸化水素流から熱を受け取り、前記カソードによって受け取られるカソード入口流に伝達するように構成された熱交換器と、
を備える、燃料電池システム。
【請求項2】
請求項1に記載の燃料電池システムであって、前記圧力スウィング吸着ユニットから前記CO流を受け取って液化するように構成された圧縮機をさらに備える燃料電池システム。
【請求項3】
請求項1に記載の燃料電池システムであって、前記アノードは、前記水素流の第2の部分を受け取るように構成される燃料電池システム。
【請求項4】
請求項1に記載の燃料電池システムであって、前記熱交換器は、第三の熱交換器であり、前記燃料電池システムは、さらに、
前記アノード排ガスを受け取って冷却して、第1の部分冷却ガスを放出するように構成された第1の熱交換器と、
前記第1のシフトガスを受け取って冷却して、第2の部分冷却ガスを放出するように構成された第2の熱交換器と、
前記第2の部分冷却ガスを受け取り、前記第2の部分冷却ガスに対して第2の温度で第2のCOシフト反応を実行し、第2のシフトガスを放出するように構成された第2のCOシフト反応器と
備え
前記第1のCOシフト反応器で受け取られる前記アノード排ガスは、前記第1の部分冷却ガスであり、
前記凝縮器で受け取られる前記第1のシフトガスは、前記第2のCOシフト反応器から放出された前記第2のシフトガスであり、
前記第1の温度は、前記第2の温度より高い、燃料電池システム。
【請求項5】
燃料電池排気を処理する方法であって、
第1のCOシフト反応器において、燃料電池のアノードからアノード排ガスを受け取り、前記アノード排ガスに対して第1の温度で第1のCOシフト反応を実行し、第1のシフトガスを放出することと、
凝縮器において、前記第1のシフトガスを受け取り、乾燥アノード排ガス流を放出し、それとは別に水流を放出することと、
第1の圧縮機において、前記乾燥アノード排ガス流を圧縮して、圧縮アノード排ガス流を放出することと、
圧力スウィング吸着(「PSA」)ユニットにおいて、前記圧縮アノード排ガス流を受け取り、水素流を放出し、それとは別にCO流を放出することと、
酸化装置において、前記水素流の第1の部分と空気源からの空気とを受け取り、酸化水素流を放出することと、
熱交換器において、カソードによって受け取られるカソード入口流に前記酸化水素流からの熱を伝達することと
を含む、方法。
【請求項6】
請求項5に記載の方法であって、第2の圧縮機において、前記PSAユニットから前記CO流を受け取り、液化COを放出することをさらに含む、方法。
【請求項7】
請求項5に記載の方法であって、前記熱交換器は、第三の熱交換器であり、前記方法は、さらに、
第1の熱交換器において、前記アノード排ガスを冷却して、第1の部分冷却ガスを放出することと、
第2の熱交換器において、前記第1のシフトガスを冷却して、第2の部分冷却ガスを放出することと、
第2のCOシフト反応器において、前記第2の部分冷却ガスに対して第2の温度で第2のCOシフト反応を実行し、第2のシフトガスを放出することと
含み
前記第1のCOシフト反応器で受け取られる前記アノード排ガスは、前記第1の部分冷却ガスであり、
前記凝縮器で受け取られる前記第1のシフトガスは、前記第2のCOシフト反応器から放出された前記第2のシフトガスであり、
前記第1の温度は、前記第2の温度より高い、方法。
【請求項8】
請求項5に記載の方法であって、熱交換器内で前記乾燥アノード排ガス流または前記圧縮アノード排ガス流の少なくとも一方を冷却することをさらに含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、直接溶融炭酸塩型燃料電池(「DFC」)内の二酸化炭素(CO)分離に関する。特に、本開示は、DFCからCOリッチアノード排気流を受け取り、隔離のためにCOを濃縮する電気化学水素分離装置(「EHS」)に関する。
【発明の概要】
【発明が解決しようとする課題】
【0002】
DFC用のCO分離システムでは、COリッチアノード排気流はさらに、水蒸気と、主に水素および一酸化炭素(CO)を含む未使用燃料とを含む。排気流を隔離または使用のためにCO回収(すなわち、分離)できる状態にするために、いくつかの処理または後処理が必要である。
【課題を解決するための手段】
【0003】
特定の実施形態では、燃料電池システムは、第1のアノードと第1のカソードとを有する第1の燃料電池を含み、第1のアノードは、第1のアノード排ガスを放出するように構成される。該システムはさらに、第1のアノード排ガスと第1の空気源からの空気とを受け取り、第1のアノード排ガスと空気とを選択的酸化反応で反応させて、酸化ガスを放出するように構成された第1の酸化装置を含む。該システムはさらに、電気化学水素分離装置(「EHS」)として機能するように構成された第2の燃料電池を含む。第2の燃料電池は、第1の酸化装置から酸化ガスを受け取り、第2のアノード排ガスを放出するように構成された第2のアノードと、水素流を放出するように構成された第2のカソードとを含む。該システムはさらに、第2のアノード排ガスを受け取り、水とCOとを分離するように構成された凝縮器を含む。
【0004】
他の実施形態では、燃料電池排気を処理する方法は、第1の酸化装置において、第1の燃料電池の第1のアノードからの第1のアノード排ガスと第1の空気源からの空気とを受け取り、第1の酸化装置から酸化ガスを放出するステップを含む。該方法はさらに、第2のアノードと第2のカソードとを有する第2の燃料電池において、第2のアノードで酸化ガスを受け取り、酸化ガス中の水素を電気化学的に分離し、第2のカソードから水素流を放出し、第2のアノードから第2のアノード排ガスを放出するステップをさらに含む。
【0005】
他の実施形態では、燃料電池システムは、アノードとカソードとを有する燃料電池を含み、アノードは、アノード排ガスを放出するように構成される。該システムはさらに、アノード排ガスを受け取って凝縮し、アノード排ガスから水を分離して乾燥アノード排ガスを生成し、水と乾燥アノード排ガスとを別々に放出するように構成された凝縮器を含む。該システムはさらに、乾燥アノード排ガスを受け取り、水素流および分離したCO流を放出するように構成された圧力スウィング吸着ユニットを含む。
【0006】
他の実施形態では、燃料電池排気を処理する方法は、凝縮器において、燃料電池のアノードからアノード排ガスを受け取り、乾燥アノード排ガス流を放出し、それとは別に水流を放出するステップを含む。該方法はさらに、第1の圧縮機において、乾燥アノード排ガス流を圧縮して、圧縮アノード排ガス流を放出するステップを含む。該方法はさらに、圧力スウィング吸着(「PSA」)ユニットにおいて、圧縮アノード排ガス流を受け取り、水素流を放出し、それとは別にCO流を放出するステップを含む。
【0007】
上記の利点および他の利点は、本開示および図面を精査すれば明らかになるであろう。
【図面の簡単な説明】
【0008】
図1】例示的な一実施形態に係る、電気化学水素分離装置を使用するCO隔離サブシステムを含む燃料電池システムの概略図である。
図2】別の例示的な実施形態に係る、電気化学水素分離装置を使用するCO隔離サブシステムを含む燃料電池システムの概略図である。
図3】例示的な一実施形態に係る、圧力スウィング吸着ユニットを使用するCO隔離サブシステムを含む燃料電池システムの概略図である。
図4】別の例示的な実施形態に係る、圧力スウィング吸着ユニットを使用するCO隔離サブシステムを含む燃料電池システムの概略図である。
【発明を実施するための形態】
【0009】
全般的に図面を参照すると、本明細書に開示されているのは、燃料電池アノード排ガスを後処理してCO隔離を行うための燃料電池サブシステムである。
【0010】
通常、アノード排ガス中の可燃性物質は、酸化装置内で反応し得る。空気中の窒素はアノード排ガス中のCOを希釈し得るので、空気ではなく酸素が酸化装置に供給される。酸化装置に必要な酸素を供給するために、空気分離サブシステムが組み込まれなければならない。しかしながら、酸素を使用するときに、酸化装置を所望の温度レベルで維持するために(例えば、触媒の過熱を避けるために)、冷却剤として水が酸化装置内に注入される。酸化装置は、少なくとも水とCOとを含む酸化装置排気を発生させる。酸化装置内で生成された熱は、その後、カソードの入口流を予熱するのに使用される。復熱交換の後、アノード排気/酸化装置排気流は、水を除去するために凝縮器内で冷却される。酸化装置の下流側にある凝縮器は、注入された水と排気流中に存在する任意の他の水とを分離して除去し、隔離可能なより高濃度のCOを含む酸化装置排気を発生させる。一実施例では、微粉炭(「PC」)ボイラ蒸気サイクル発電所からの温室効果ガス(「GHG」)を使用して燃料電池システム内の酸化装置に酸素を供給する場合、隔離のためのCO流は、燃料利用率74%で、およそ89%のCOと10%の水とを含む。酸素でなく空気が酸化装置に供給された場合、CO含有量はおよそ58%まで減少する。
【0011】
図1を参照すると、例示的な実施形態に係る後処理システムが示されている。該プロセスは、必要な熱をカソード入口流に供給した後に過剰水素が副産物として分離されるように、水素を回収するステップを含む。別の例示的な実施形態によれば、過剰水素は、補助燃料としてDFCアノードへと再循環される。
【0012】
燃料電池システム1は、カソード12(すなわち、第1のカソード)とアノード14(すなわち、第1のアノード)とを有する第1の燃料電池10を含む。例示的な一実施形態によれば、第1の燃料電池10は、DFCであり得る。アノード14は、少なくともCOと水素とCOとを含むアノード排ガスを放出する。第1の熱交換器20は、DFCからアノード排ガスを受け取り、アノード排ガスを部分的に冷却する。第1の熱交換器20は、その後、第1の部分冷却ガスを放出する。第1の部分冷却ガスは、第1のシフト反応器21内の高温(「HT」)COシフト反応(例えば、水ーガスシフト反応)によって変換されて、第2の熱交換器22によって受け取られる第1のシフトガスが生成される。第1のシフト反応器21は、およそ310℃~450℃の第1の温度で動作するように構成される。第1のシフト反応器21は、第1のシフトガスが第1の部分冷却ガスより高濃度のCOと水素とを有するように、COと水をCOと水素に変換するように構成され得る。第2の熱交換器22は、第1のシフトガスを部分的に冷却し、第2の部分冷却ガスを放出する。第2の部分冷却ガスは、第2のシフト反応器23内の低温(「LT」)COシフト反応によって変換されて、第3の熱交換器24によって受け取られる第2のシフトガスが生成される。第2のシフト反応器23は、第1の温度が第2の温度より高くなるように、およそ200℃~250℃の第2の温度で動作するように構成される。第2のシフト反応器23は、第2のシフトガスが第2の部分冷却ガスより高濃度のCOと水素とを有するように、COと水をCOと水素に変換するように構成され得る。第3の熱交換器24は、第2のシフトガスを所望の温度まで冷却して、冷却ガスを放出する。例示的な一実施形態によれば、冷却ガスの温度は、第3の熱交換器24の下流側にある酸化装置30によって受け入れ可能な温度範囲に基づいている。
【0013】
冷却ガスは、酸素ではなく、空気源26(すなわち、第1の空気源、制御空気源など)によって供給される(すなわち、注入される)空気と混合されて、混合ガスが生成される。例示的な一実施形態によれば、空気源26は、冷却ガスを構成するCO、水素、水、および/またはCOのいずれか1つに対する空気の好適な比率を確立するように制御され得る。この好適な比率は、酸化装置の要件に基づき得る。混合ガスは、その後、COをCOに変換するために、選択的酸化反応を実行するように構成された酸化装置30に供給される。選択的酸化は、COを除去するための化学プロセスである。このプロセスは、低温シフト反応器(例えば、第2のシフト反応器23と同様のシフト反応器)を使用した後に、貴金属触媒(例えば、白金、パラジウムーコバルト、パラジウムー銅、金など)の存在下で酸素を使用してCOを酸化するために段階的な選択的酸化装置を使用する。酸化装置30は、隔離のためのCOを含む酸化ガスを放出し、反応により熱を発生させる。第4の熱交換器32は、酸化装置30から酸化ガスを受け取り、酸化ガスを冷却して少なくとも部分的にアノード入口流34を生成する。例示的な一実施形態によれば、酸化装置30は、COを含む酸化ガスから分離した排気を生成する。酸化装置30からの排気は放出される酸化ガス部分を構成しないので、酸化装置のために空気が使用され得、空気分離ユニットおよび/または水注入(例えば、酸化装置の温度制御のため)の必要がなくなる。
【0014】
図1に示されているように、システム1はさらに、EHS40(第2の燃料電池とも呼ばれる)を含む。EHS40は、カソード42(すなわち、第2のカソード)、アノード44(すなわち、第2のアノード)、およびカソード42とアノード44との間に配置されたプロトン交換膜(「PEM」)46を含む。アノード44は、第4の熱交換器32から冷却アノード入口流34を受け取る。アノード44において、アノード入口流34中に存在する水素の少なくとも一部が、正電荷を持つ水素イオン(H)になるように選択的に酸化され、その後、これがPEM46を通ってカソード42へと移動される。例示的な一実施形態によれば、酸化装置30、空気源26、および熱交換器32は、PEMとして150℃を超えて動作する高温膜(「HTM」)(例えば、PBIまたは固体酸膜)を組み込むことによって、図1に示すシステム1から除外され得る。さらに図1を参照すると、カソード42では、酸化剤が存在しないことにより、Hは気体水素に還元される。したがって、EHS40は、アノード入口流34から選択的に水素流50を生成し、放出する。水素流50は、副産物として生成され、システム1内で使用され得るか、または排出され得る。例示的な一実施形態によれば、シフト反応器21、23の各々は、対応する高温シフト反応器および低温シフト反応器内での水素回収を最大化して、EHS触媒の一酸化炭素中毒を防止するように構成される。別の例示的な実施形態によれば、水素流50は、比較的小さいエネルギー入力によって(電気化学的に)圧縮され得る。有利には、PEM46を介する移動は、最小エネルギー入力を利用し、可動部品は全く必要でない。例示的な一実施形態によれば、EHS40は、第1の燃料電池10からのアノード排ガスから、およそ95%の水素を回収し得る。
【0015】
EHS40のアノード44は、第2のアノード排ガスを生成する。第2のアノード排ガスは、凝縮器60に供給され得、凝縮器60は、第2のアノード排ガスをCO流61と水流(すなわち、凝縮水)66とに分離する。凝縮器60からのCO流61は、その後、CO流61の少なくとも一部を液化するためにCO圧縮機62を通り、隔離および/または使用場所(例えば、食品加工用)への排出(すなわち、輸送)に適した高濃度のCO供給64を生成する。例示的な一実施形態によれば、凝縮器60内の水を水流66へと移した後、CO流61は、およそ89%のCOとおよそ9%の水とを含む。
【0016】
図2に示されているように、別の例示的な実施形態によれば、水素流50の少なくとも一部は、空気を使用して酸化され、熱を発生させ得る。EHS40のカソード42によって生成された水素流50の第1の部分51は、酸化装置52(すなわち、第2の酸化装置)に供給され、空気源54(すなわち、第2の空気源)からの空気によって酸化される。酸化は、少なくとも熱と水とを含む酸化水素流53を生成し、第5の熱交換器56を通して供給される。第5の熱交換器56は、酸化水素流53からの熱を移送して、第1の燃料電池10の第1のカソード12によって受け取られるカソード入口流36(例えば、石炭燃料発電所からの脱硫GHG)を予熱する。別の例示的な実施形態によれば、酸化水素流53は、EHS40のカソード42または任意の他のカソードによって受け取られるカソード入口流を予熱するのに使用され得る。酸化水素流53は、その後、システム1から排出され得る。
【0017】
図2に示されている実施形態では、カソード入口流36を加熱するのに使用される水素流50の第1の部分51は、カソード42によって生成された水素のおよそ45%を含む。残りの第2の部分55(例えば、水素流50のおよそ55%)は、副産物として生成され、システム1内で使用され得るか、または排出され得る。各々の部分51、55を形成する水素流50の割合は、他の例示的な実施形態に応じて異なり得る。例示的な一実施形態によれば、水素流50の第1の部分51は、カソード入口流36の所望レベルの予熱を行うのに必要な量に限定され得る。別の例示的な実施形態によれば、水素流50の第2の部分55(例えば、カソード入口流36を予熱するために第2の酸化装置52に供給されない水素)は、第1の燃料電池10の第1のアノード14に再循環(例えば、供給)され得、その結果、第1の燃料電池10を作動させるのに必要な天然ガス燃料投入量を低減することができる。
【0018】
図3を参照すると、別の例示的な実施形態に係る後処理システムが示されている。このシステムにおいて、先の例示的な実施形態と同様に、アノード排ガス中に存在する水素が分離されて回収される。
【0019】
燃料電池システム100は、カソード112とアノード114とを有する燃料電池110を含む。例示的な一実施形態によれば、燃料電池110は、第1の燃料電池10と実質的に同じDFCであり得る。アノード114は、少なくともCOと水素とCOとを含むアノード排ガスを放出する。第1の熱交換器120は、DFCからアノード排ガスを受け取り、アノード排ガスを部分的に冷却する。第1の熱交換器120は、その後、第1の部分冷却ガスを放出する。第1の部分冷却ガスは、第1のシフト反応器121内の高温COシフト反応によって変換されて、第2の熱交換器122によって受け取られる第1のシフトガスが生成される。第1のシフト反応器121は、およそ310℃~450℃の第1の温度で動作するように構成される。第1のシフト反応器121は、第1のシフトガスが第1の部分冷却ガスより高濃度のCOと水素とを有するように、COと水をCOと水素に変換するように構成され得る。第2の熱交換器122は、第1のシフトガスを部分的に冷却し、第2の部分冷却ガスを放出する。第2の部分冷却ガスは、第2のシフト反応器123内の低温COシフト反応によって変換されて、凝縮器160によって受け取られる第2のシフトガスが生成される。第2のシフト反応器123は、第1の温度が第2の温度より高くなるように、およそ200℃~250℃の第2の温度で動作するように構成される。第2のシフト反応器123は、第2のシフトガスが第2の部分冷却ガスより高濃度のCOと水素とを有するように、COと水をCOと水素に変換するように構成され得る。凝縮器160は、第2のシフトガスを、少なくともCOと水素とを含む乾燥(例えば、脱水)アノード排ガス流161と、分離した水流(すなわち、凝縮水)166とに分離する。例えば、乾燥アノード排ガス流161を形成する際に、水の実質的に全てがアノード排ガス流から除去される。凝縮器160からの乾燥アノード排ガス流161は、その後、圧縮機162に供給されて、圧縮アノード排ガス流を形成し、その後、圧縮アノード排ガス流をさらに冷却するために第3の熱交換器163に供給される。別の例示的な実施形態によれば、第3の熱交換器163は、圧縮機162の上流側(例えば、凝縮器160と圧縮機162との間)に配置され、乾燥アノード排ガス流161を冷却するように構成される。
【0020】
システム100は、圧力スウィング吸着(「PSA」)ユニット170を含む。PSAユニット170は、第3の熱交換器163からの圧縮アノード排ガス流を受け取り、圧縮アノード排ガス流を水素流150とCO流165とに分離するように構成される。PSAユニット170において、水素以外のガス(例えば、主としてCOといくらかの水)は、高圧下で吸着床媒体によって吸着され、純粋な水素流150は、PSAユニット170で受け取られる圧縮アノード排ガス流の入口圧力に近い(例えば、実質的に同じ)圧力で、PSAユニット170から放出される。水素流150は、副産物として生成され、システム100内で使用され得るか、または排出され得る。PSAユニット170内の吸着床媒体は、最大吸着容量に達した後、CO流165を生成する吸着ガスを除去するようにパージされる。このパージは、およそ20psiaの大気圧近くまで圧力を下げることによって行われる脱着によって生じる。CO流165は、その後、CO流165の少なくとも一部を液化するためにCO圧縮機167に供給されて、隔離CO供給164を生成する。
【0021】
例示的な一実施形態によれば、システム100は、図2に示されている水素流50と同じ方法で、水素流150の一部を変換し得る。例えば、図4に示されているように、PSAユニット170によって生成された水素流150の第1の部分151は、酸化装置152に供給されて、空気源154からの空気によって酸化される。酸化は、少なくとも熱と水とを含む酸化水素流153を生成し、第4の熱交換器156を通して供給される。第4の熱交換器156は、酸化水素流153からの熱を移送して、第1の燃料電池110の第1のカソード112によって受け取られるカソード入口流136(例えば、石炭燃料発電所からの脱硫GHG)を予熱する。酸化水素流153は、その後、システム100から排出され得る。図2と同様に、水素流50の第1の部分151は、カソード入口流136の所望レベルの予熱を行うのに必要な量に限定され得る。別の例示的な実施形態によれば、水素流150の残りの第2の部分155(例えば、カソード入口流136を予熱するために酸化装置152に供給されない水素)は、燃料電池110のアノード114に再循環(例えば、供給)され得、その結果、燃料電池110を作動させるのに必要な天然ガス燃料投入量を低減することができる。
【0022】
システム1およびシステム100のいずれに関しても、別の例示的な実施形態によれば、COを隔離するプロセスは、酸化装置内で全ての水素および他の可燃性物質を消費するステップと、カソード入口流を予熱するためにエネルギー容量を利用するステップとを含み得る。
【0023】
特定の実施形態では、燃料電池システムは、アノードとカソードとを有する燃料電池、酸化装置、および電気化学水素分離装置を含む。酸化装置は、アノードからのアノード排ガスと制御された空気源からの空気とを受け取り、アノード排ガスと空気とを選択的酸化反応で反応させるように構成される。分離装置は、酸化装置から酸化ガスを受け取り、残りのガスから分離した水素流とCO流とを形成するように構成される。凝縮器は、酸化装置からCO流を受け取り、CO流を凝縮して水を分離し、COを液化するように構成される。
【0024】
他の実施形態では、燃料電池システムは、アノードとカソードとを有する燃料電池、凝縮器、および圧力スウィング吸着ユニットを含む。凝縮器は、アノードからアノード排ガスを受け取り、凝縮して、残りの凝縮ガスから水流を分離するように構成される。圧縮機は、残りの凝縮ガスを受け取って圧縮し、圧縮ガスを圧力スウィング吸着ユニットに供給する。圧力スウィング吸着ユニットは、水素流とCO流とを分離する。CO流は、COを液化するように構成された第2の圧縮機によって受け取られる。
【0025】
用語「およそ」、「約」、「実質的に」および同様の用語は、本明細書で使用される場合、本開示の主題に関連する当業者に一般的に認められた語法に即した広い意味を有するものとする。本開示を考察する当業者であれば、これらの用語は、記載され請求される特定の特徴を設定された正確な数値範囲に制限せずに説明できるように意図されていることを理解されたい。したがって、これらの用語は、記載され請求される主題の非実質的または重要でない修正または変更は、添付の請求項に記載されているように本発明の範囲内にあるものと見なされると解釈すべきである。
【0026】
用語「結合される」、「接続される」などは、本明細書で使用される場合、2つの部材を互いに直接または間接的に接合することを意味する。このような接合は、固定式(例えば、永久的)または可動式(例えば、取り外し可能または解除可能)であり得る。このような接合は、2つの部材または2つの部材と任意の追加の中間部材とを互いに単一本体として一体形成することによって、または2つの部材または2つの部材と任意の追加の中間部材とが互いに取り付けられることによって実現され得る。
【0027】
本明細書において、要素の位置(例えば、「上部」、「底部」、「~の上」、「~の下」など)の参照は、図面内の様々な要素の配向を説明するためにのみ使用されている。様々な要素の配向は他の例示的な実施形態に応じて異なり得ること、およびこのような差異は本開示の範囲内にあることが意図されていることに留意されたい。
【0028】
様々な例示的な実施形態の構造および配置は例示に過ぎないことに留意することが重要である。本開示では少しの実施形態しか詳細に説明されていないが、本開示を考察する当業者であれば、本明細書に記載されている主題の新奇な技術および利点から著しく逸脱せずに、多くの修正(例えば、サイズ、寸法、構造、様々な要素の形状および比率、パラメータ値、取付方法、材料の使用、色、配向などの変化)が可能であることを容易に理解するであろう。例えば、一体形成された要素として示されている要素は複数の部品または要素から構成され得、要素の位置は逆の位置またはそれ以外の異なる位置であり得、個々の要素もしくは位置の性質または数は変更され得る、または異なり得る。任意のプロセスもしくは方法ステップの順序またはシーケンスは、代替の実施形態に応じて異なり得る、または並べ替えられ得る。本発明の範囲から逸脱せずに、様々な実施形態の設計、動作条件、および設備において、他の置換、修正、変更および省略がなされてもよい。例えば、熱回収式熱交換器は、さらに最適化されてよい。
【0029】
[関連出願の相互参照]
本願は、2016年4月21日に出願された米国仮特許出願第62/325,711号の優先権を主張するものであり、これにより、この特許の内容全体を参照によって本願明細書に引用したものとする。
図1
図2
図3
図4