IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーウェーブの特許一覧

特許7485921パッシブセンサ読み取り装置、および、物理量測定システム
<>
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図1
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図2
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図3
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図4
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図5
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図6
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図7
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図8
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図9
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図10
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図11
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図12
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図13
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図14
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図15
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図16
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図17
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図18
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図19
  • 特許-パッシブセンサ読み取り装置、および、物理量測定システム 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-09
(45)【発行日】2024-05-17
(54)【発明の名称】パッシブセンサ読み取り装置、および、物理量測定システム
(51)【国際特許分類】
   G01N 29/02 20060101AFI20240510BHJP
   G01K 7/32 20060101ALI20240510BHJP
【FI】
G01N29/02 501
G01K7/32 S
【請求項の数】 9
(21)【出願番号】P 2020076248
(22)【出願日】2020-04-22
(65)【公開番号】P2021173583
(43)【公開日】2021-11-01
【審査請求日】2023-02-14
(73)【特許権者】
【識別番号】501428545
【氏名又は名称】株式会社デンソーウェーブ
(74)【代理人】
【氏名又は名称】矢作 和行
(74)【代理人】
【識別番号】100121991
【弁理士】
【氏名又は名称】野々部 泰平
(74)【代理人】
【識別番号】100145595
【弁理士】
【氏名又は名称】久保 貴則
(72)【発明者】
【氏名】榎本 康平
【審査官】村田 顕一郎
(56)【参考文献】
【文献】特開2005-092355(JP,A)
【文献】特開2019-028822(JP,A)
【文献】実開昭56-002656(JP,U)
【文献】特開平07-229793(JP,A)
【文献】特表2018-503087(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 29/00-29/52
G01K 7/32
G01L 1/00
G06K 7/00-7/14
G08C 17/00-17/06
(57)【特許請求の範囲】
【請求項1】
パッシブセンサに向けて、前記パッシブセンサを動作させるための送信波(TW)を送信する送信部(30c)と、前記パッシブセンサが前記送信波に応答して送信する応答波(R)を受信する受信部(30d)とを備えたパッシブセンサ読み取り装置であって、
前記受信部が受信する受信信号の信号強度に基づいて、前記応答波とともに受信される残響波の信号強度が許容範囲内かどうかを判断する残響強度判断部(S22、S42、S52)と、
前記残響強度判断部が、前記残響波の信号強度が許容範囲を超えていると判断したことに基づいて、前記送信部において前記残響波を低減可能な予め設定された送信部特性を変更する特性変更部(S35、S31-1、S31-2)と、を備えるパッシブセンサ読み取り装置。
【請求項2】
請求項1に記載のパッシブセンサ読み取り装置であって、
前記特性変更部は、前記送信部が送信する周波数を変更する、パッシブセンサ読み取り装置。
【請求項3】
請求項1に記載のパッシブセンサ読み取り装置であって、
前記特性変更部は、前記送信部が備えるアンテナ(31)の特性を変更する、パッシブセンサ読み取り装置。
【請求項4】
請求項2に記載のパッシブセンサ読み取り装置であって、
前記特性変更部は、前記送信部が送信する電波の周波数、および、前記送信部が備えるアンテナ(31)の特性を変更する、パッシブセンサ読み取り装置。
【請求項5】
請求項3または4に記載のパッシブセンサ読み取り装置であって、
前記特性変更部が変更する前記アンテナの特性は、前記アンテナの電気長である、パッシブセンサ読み取り装置。
【請求項6】
請求項3または4に記載のパッシブセンサ読み取り装置であって、
前記アンテナを複数備え、
前記特性変更部は、前記送信波を送信する前記アンテナを、別の前記アンテナに変更する、パッシブセンサ読み取り装置。
【請求項7】
請求項3または4に記載のパッシブセンサ読み取り装置であって、
前記特性変更部は、前記送信部が送信する電波の送信電力を低下させる、パッシブセンサ読み取り装置。
【請求項8】
請求項2または4に記載のパッシブセンサ読み取り装置と前記パッシブセンサとを備えた物理量測定システムであって、
前記パッシブセンサは、互いに近接して配置される、伝播距離が異なる第1素子部(20a)と第2素子部(20b)とを備えた遅延型の弾性表面波素子(20)であって移動体(40)に取り付けられ、
前記送信部は、前記弾性表面波素子に向けて、第1周波数(f1)と、前記第1周波数よりも高い第2周波数(f2)でバースト信号を逐次送信し、
前記送信部が逐次送信した2種類の周波数の電波に対するそれぞれの前記応答波の位相差である2周波位相差(Δθ)を算出する2周波位相差算出部(S13、S14)と、
前記2周波位相差と物理量との予め設定されている関係と、前記2周波位相差算出部が算出した前記2周波位相差とに基づいて絶対物理量(T)を決定する物理量決定部(S15)とを備え、
前記2周波位相差算出部は、2種類の周波数の電波について、それぞれ、前記第1素子部からの前記応答波の位相と前記第2素子部からの前記応答波の位相との位相差である2素子位相差(Δφ)を算出し、かつ、2つの前記2素子位相差の周波数による位相差を、前記2周波位相差として算出し、
前記残響強度判断部は、前記第1周波数で前記バースト信号を送信したときの前記受信信号の信号強度、および、前記第2周波数で前記バースト信号を送信したときの前記受信信号の信号強度、それぞれに基づいて、前記残響波の影響が許容範囲内かどうかを判断し、
前記特性変更部は、前記残響強度判断部が前記第1周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、前記第1周波数および前記第2周波数を高周波側に変更し、前記残響強度判断部が前記第2周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、前記第1周波数および前記第2周波数を低周波側に変更する、物理量測定システム。
【請求項9】
請求項8に記載の物理量測定システムであって、
前記送信部は、前記第1周波数と前記第2周波数を設定できる設定可能周波数帯域において連続的に周波数を変化させて前記バースト信号を送信でき、
前記設定可能周波数帯域の全範囲に渡り周波数を変化させつつ前記送信部に前記バースト信号を送信させ、前記残響波の信号強度を検出する周波数探索処理を実行する周波数探索処理部(S2、S32)と、
前記周波数探索処理部において得た前記残響波の信号強度に基づいて、連続して前記残響波の強度が前記許容範囲内となった周波数帯域のうちで最も広い周波数帯域を、使用帯域に決定し、前記第1周波数と前記第2周波数との間の周波数帯域が、前記使用帯域の中心になるように前記第1周波数と前記第2周波数とを決定する、初期周波数決定部(S3、S33)を備える、物理量測定システム
【発明の詳細な説明】
【技術分野】
【0001】
パッシブセンサから信号を読み取るパッシブセンサ読み取り装置、および、その装置を備えた物理量測定システムに関する。
【背景技術】
【0002】
特許文献1には、弾性表面波センサが開示されている。特許文献1に開示された弾性表面波センサは、センシング装置から弾性表面波素子に無線によりバースト信号を送信する。弾性表面波素子は、そのバースト信号を受信して、無線により応答波をセンシング装置に送信する。
【0003】
また、特許文献1に記載された弾性表面波センサは、遅延線タイプの弾性表面波素子を備え、周波数の異なる2種類のバースト信号を弾性表面素子に入力し、バースト信号が弾性表面波素子により遅延して出力される出力信号の位相角を算出する。そして、2種類の出力信号の位相角の差をもとに温度などの物理量を算出する。このように、周波数の異なる2種類の出力信号の位相角の差をもとに物理量を算出することで、測定可能な物理量範囲を広くすることができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第5942656号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1において、素子は、バースト信号により動作するパッシブセンサであると言える。パッシブセンサと、そのパッシブセンサが検出した物理量を読み取る読み取り装置とを無線により接続すれば、パッシブセンサおよび読み取り装置のそれぞれの設置の自由度が向上する。たとえば、パッシブセンサを、高温になる炉において加熱される部品の温度測定に用いることなどが容易になる。
【0006】
炉は金属製である。したがって、炉の中にパッシブセンサが設置される場合、パッシブセンサは、電波を反射する筐体内に配置されていることになる。
【0007】
パッシブセンサの周囲に、電波を反射する部材が閉空間あるいはそれに近い空間を形成しており、かつ、読み取装置が送信波を送信してからパッシブセンサが応答波を送信するまでの時間が短い場合、送信波の残響が問題になる。送信波の残響が応答波の送信時刻においても大きな信号レベルで残っていると、応答波の検出精度が低下してしまう。
【0008】
本開示は、この事情に基づいて成されたものであり、その目的とするところは、残響の影響を低減してパッシブセンサから応答波を検出できるパッシブセンサ読み取り装置、および、物理量測定システムを提供することにある。
【課題を解決するための手段】
【0009】
上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は更なる有利な具体例を規定する。特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、開示した技術的範囲を限定するものではない。
【0010】
上記目的を達成するためのパッシブセンサ読み取り装置に係る1つの開示は、
パッシブセンサに向けて、パッシブセンサを動作させるための送信波(TW)を送信する送信部(30c)と、パッシブセンサが送信波に応答して送信する応答波(R)を受信する受信部(30d)とを備えたパッシブセンサ読み取り装置であって、
受信部が受信する受信信号の信号強度に基づいて、応答波とともに受信される残響波の信号強度が許容範囲内かどうかを判断する残響強度判断部(S22、S42、S52)と、
残響強度判断部が、残響波の信号強度が許容範囲を超えていると判断したことに基づいて、送信部において残響波を低減可能な予め設定された送信部特性を変更する特性変更部(S35、S31-1、S31-2)と、を備える。
【0011】
このパッシブセンサ読み取り装置は、残響強度判断部を備えており、残響波の信号強度が許容範囲内かどうかを判断することができる。そして、残響波の信号強度が許容範囲を超えている場合には、送信部において残響波を低減可能な予め設定された送信部特性を変更する。送信部特性を変更することで、残響波の影響を低減してパッシブセンサからの応答波を検出できる。
【0012】
送信部特性には周波数がある。すなわち、特性変更部は、送信部が送信する周波数を変更する態様とすることができる。
【0013】
送信部特性にはアンテナの特性がある。すなわち、送信部が備えるアンテナの特性を変更してもよい。
【0014】
また、周波数とアンテナの特性の両方を変更してもよい。すなわち、特性変更部は、送信部が送信する電波の周波数、および、送信部が備えるアンテナ(31)の特性を変更してもよい。
【0015】
アンテナの特性には、アンテナの電気長がある。したがって、特性変更部が変更するアンテナの特性は、アンテナの電気長とすることができる。
【0016】
また、アンテナの特性には、アンテナの位置がある。アンテナの位置を変更するために、アンテナを複数備え、特性変更部は、送信波を送信するアンテナを変更してもよい。
【0017】
また、アンテナの特性には、アンテナが送信する電波の電力がある。すなわち、特性変更部は、送信部が送信する電波の送信電力を低下させてもよい。
【0018】
上記目的を達成するための物理量測定システムに係る1つの開示は、
特性変更部が周波数を変更する上記パッシブセンサ読み取り装置とパッシブセンサとを備えた物理量測定システムであって、
パッシブセンサは、互いに近接して配置される、伝播距離が異なる第1素子部(20a)と第2素子部(20b)とを備えた遅延型の弾性表面波素子(20)であって移動体(40)に取り付けられ、
送信部は、弾性表面波素子に向けて、第1周波数(f1)と、第1周波数よりも高い第2周波数(f2)でバースト信号を逐次送信し、
送信部が逐次送信した2種類の周波数の電波に対するそれぞれの応答波の位相差である2周波位相差(Δθ)を算出する2周波位相差算出部(S13、S14)と、
2周波位相差と物理量との予め設定されている関係と、2周波位相差算出部が算出した2周波位相差とに基づいて絶対物理量(T)を決定する物理量決定部(S15)とを備え、
2周波位相差算出部は、2種類の周波数の電波について、それぞれ、第1素子部からの応答波の位相と第2素子部からの応答波の位相との位相差である2素子位相差(Δφ)を算出し、かつ、2つの2素子位相差の周波数による位相差を、2周波位相差として算出し、
残響強度判断部は、第1周波数でバースト信号を送信したときの受信信号の信号強度、および、第2周波数でバースト信号を送信したときの受信信号の信号強度、それぞれに基づいて、残響波の影響が許容範囲内かどうかを判断し、
特性変更部は、残響強度判断部が第1周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、第1周波数および第2周波数を高周波側に変更し、残響強度判断部が第2周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、第1周波数および第2周波数を低周波側に変更する。
【0019】
この物理量測定システムでは、弾性表面波素子が移動体に取り付けられている。移動体の物理量を測定するので、距離の変化による位相変化を相殺するために、弾性表面波素子は、互いに伝播距離が異なる第1素子部と第2素子部を備える。そして、2素子位相差を算出する。
【0020】
加えて、広い範囲で温度を測定するために、2つの周波数でバースト信号を送信し、2種類の周波数について、2素子位相差を算出する。そして、これら2素子位相差の周波数による位相差から絶対物理量を決定する。
【0021】
さらに、このように移動体の絶対物理量を広い範囲で測定するために必要な構成を活用して、第1周波数と第2周波数を、残響波の影響を低減できる周波数に迅速に変更する。
【0022】
すなわち、第1周波数と第2周波数でバースト信号を送信する必要があることを利用し、第1周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、第1周波数と第2周波数を高周波側に変更する。一方、第2周波数での残響波の信号強度が許容範囲を超えたと判断したことに基づいて、第1周波数と第2周波数を低周波側に変更する。このようにすることで、第1周波数と第2周波数を、高周波側に変更するか低周波側に変更するかを決定できるので、第1周波数と第2周波数を、残響波の大きさが許容範囲内になるに周波数に迅速に変更できる。
【0023】
また、上記物理量測定システムは、以下のように構成することができる。
【0024】
送信部は、第1周波数と第2周波数を設定できる設定可能周波数帯域において連続的に周波数を変化させてバースト信号を送信でき、
設定可能周波数帯域の全範囲に渡り周波数を変化させつつ送信部にバースト信号を送信させ、残響波の信号強度を検出する周波数探索処理を実行する周波数探索処理部(S2、S32)と、
周波数探索処理部において得た残響波の信号強度に基づいて、連続して残響波の強度が許容範囲内となった周波数帯域のうちで最も広い周波数帯域を、使用帯域に決定し、第1周波数と第2周波数との間の周波数帯域が、使用帯域の中心になるように第1周波数と第2周波数とを決定する、初期周波数決定部(S3、S33)を備える。
【0025】
このようにすることで、第1周波数および第2周波数における残響波の信号強度が許容範囲を超えてしまうまでの時間を長くできる。
【図面の簡単な説明】
【0030】
図1】第1実施形態の温度測定システム10の使用状態を説明する図。
図2】複数の測定対象物40が仕切り板43により仕切られている状態を示す図。
図3】弾性表面波素子20の構成を示す図。
図4】温度測定装置30の構成を示す図。
図5】演算部30bが実行するメイン処理を示す図。
図6】残響波REVの影響がない場合に送信波TWと応答波Rの概念図。
図7】設定可能周波数帯域における残響レベルの変動を示す図。
図8図5のS7のセンサ情報取得の詳細処理を示す図。
図9図5のS8のセンサ情報取得判断の詳細処理を示す図。
図10】残響波REVの影響を説明する図。
図11図9の周波数制御の詳細処理を示す図。
図12】周波数fと残響波REVの大きさの関係を示す図。
図13】第2実施形態で実行するセンサ情報取得判断処理を示す図。
図14】時刻tb、tcにおける受信信号の信号強度を説明する図。
図15】第3実施形態で実行するセンサ情報取得判断処理を示す図。
図16】第3実施形態において応答波Rの信号強度を推定する方法を説明する図。
図17】第4実施形態で実行するセンサ情報取得判断処理を示す図。
図18】第5実施形態における温度測定装置30が備えるアンテナ31を示す図。
図19】第5実施形態で実行する周波数制御を示す図。
図20】周期的に変動する応答波Rの信号強度を示す図。
【発明を実施するための形態】
【0031】
以下、実施形態を図面に基づいて説明する。実施形態では、物理量として温度を測定する。つまり、第1実施形態の物理量測定システムは温度測定システム10である。図1は、第1実施形態の温度測定システム10の使用状態を説明する図である。温度測定システム10は、弾性表面波素子20、温度測定装置30、操作端末50を備えている。弾性表面波素子20は、温度を測定する測定対象物40に取り付けられている。測定対象物40は、ベルト41により図1に示す矢印の方向に移動する。つまり、測定対象物40は移動体である。測定対象物40はベルト41により搬送されて炉42の中に導入される。測定対象物40は、炉42の中でロウ付け等が行われる。
【0032】
ベルト41の移動速度は、たとえば、数cm/sであり、この移動速度は、1回の測定間隔よりも十分に長い。測定間隔は、送信波TWの送信間隔であり、これはたとえば数μsである。
【0033】
パッシブセンサ読み取り装置である温度測定装置30は、炉42の長手方向中央に固定されている。温度測定装置30は、弾性表面波素子20にバースト信号を送信し、応答波Rを受信する。弾性表面波素子20は、この応答波Rの位相φに基づいて弾性表面波素子20の温度を測定する。この温度は、測定対象物40の温度とみなすことができる。操作端末50は、温度測定装置30を操作するためにユーザが操作する端末であり、温度測定装置30と接続されている。操作端末50は、ユーザが操作するスイッチなどを備えた操作部51、温度測定装置30による測定結果などが表示される表示部52を備える。
【0034】
図1では省略しているが、図2に示すようにベルト41には、複数の仕切り板43が固定されている。炉42の中が高温になるので、ベルト41および仕切り板43は金属製である。また、炉42の外壁も金属製である。
【0035】
複数の仕切り板43は、互いに同じ形状であり等間隔に配置されている。仕切り板43は、ベルト41の幅方向における長さが、ベルト41の幅方向長さと同じであり、ベルト41から垂直に立ち上がる平板状の部材である。
【0036】
また、図2に示すように、仕切り板43と仕切り板43の間に、1つずつ、測定対象物40が配置され、各測定対象物40の上に弾性表面波素子20が配置されている。
【0037】
〔弾性表面波素子20の構成〕
図3に、弾性表面波素子20の構成を示す。弾性表面波素子20は、圧電体基板21に、バースト信号の入力により弾性表面波(surface acoustic wave、以下、SAW)を生じさせる櫛形電極22と、SAWを反射する2つの反射器23、24を備える。また、バースト信号を受信して櫛形電極22に入力するアンテナ25を備える。櫛形電極22は、2つの櫛形の電極が対になった構成であり、対になった電極のうち1つの電極は接地され、他方の電極がアンテナ25に接続されている。
【0038】
反射器23、24は、櫛形電極22と同一の材料であって、SAWの進行方向と垂直な方向に延びた複数本の電極が所定のピッチで並んだ構成である。櫛形電極22にバースト信号が入力されると、圧電体基板21に横波のSAWが発生し、櫛形電極22から反射器23、24に向かって進行いていく。そして、SAWは、反射器23、24により反射され、櫛形電極22に戻ることによって、応答波Rがアンテナ25から送信される。
【0039】
反射器23と反射器24は、櫛形電極22からの距離が互いに異なるように配置されている。櫛形電極22と反射器23との間の距離と、櫛形電極22と反射器24との間の距離は、それらの反射器23、24からSAWが櫛形電極22に届く時間が重ならないように設計されている。温度変化を考慮しても、反射器23、24からSAWが櫛形電極22に届く時間が重ならないようにしつつ、反射器23および反射器24から櫛形電極22までの距離はできるだけ短くすることが好ましい。距離が長くなると、反射器23と反射器24の温度が同じとみなしにくくなるからである。
【0040】
櫛形電極22から反射器23、24で反射して櫛形電極22に届くSAWの伝播距離の長さは、櫛形電極22における実効的なSAWの発生位置から、反射器23、24における実効的なSAWの反射位置まで長さの2倍である。アンテナ25は、温度測定装置30が送信する周波数fの電波を受信可能な電気長になっている。
【0041】
この構成により、弾性表面波素子20は、1つのバースト信号を受信して、送信時間が互いに異なる2つの応答波Rを送信する。よって、弾性表面波素子20は、互いに近接して配置された第1素子部20aと第2素子部20bを備えた構成と見ることができる。第1素子部20aと第2素子部20bは、櫛形電極22、アンテナ25を共有している共有していない部材として、第1素子部20aは反射器23を備え、第2素子部20bは反射器24を備える。
【0042】
〔温度測定装置30の構成〕
図4に温度測定装置30の構成を示す。温度測定装置30は、無線部30aと演算部30bを備える。無線部30aは、アンテナ31、送信回路32、カプラ33、アンテナ共用器34、直交復調器35、バンドパスフィルタ36i、36q、ADコンバータ37i、37qを備えている。
【0043】
アンテナ31は、バースト信号を電波として弾性表面波素子20に送信し、弾性表面波素子20からの応答波Rを受信する。アンテナ31が送受信する電波の周波数fは、本実施形態では第1周波数f1と第2周波数f2の2種類である。第1周波数f1の一例は916.8MHzであり、第2周波数f2の一例は923.4MHzである。これらの周波数fは、無線タグにて広く用いられている周波数fである。ただし、本実施形態では、第1周波数f1、第2周波数f2は逐次変更可能である。
【0044】
送信回路32は、弾性表面波素子20に向けて送信するバースト信号を生成して出力する。バースト信号は、時間的には短時間の信号である。一例としては、バースト信号の時間幅は500nsである。弾性表面波素子20に向けて送信する信号を時間幅の短い信号としている理由は、1つは、位相φの算出精度を高くするためである。もう一つは、反射器23からのSAWが櫛形電極22に届く時刻と、反射器24からのSAWが櫛形電極22に届く時刻とが重ならないようにするためである。
【0045】
送信回路32は、発振回路を備えており、発信回路にて設定可能周波数帯域の全範囲に渡り、所定の周波数ピッチで信号を発生させる。設定可能周波数帯域は、第1周波数f1と第2周波数f2とを設定可能な周波数帯域である。設定可能周波数帯域は、法規により電波の送受信が許可されている周波数帯域である。また、設定可能周波数帯域は、弾性表面波素子20が備えるアンテナ25が受信可能な周波数帯域である。
【0046】
バースト信号は、カプラ33により分岐されて、アンテナ共用器34および直交復調器35に向かう。アンテナ共用器34は、送信回路32からの信号はアンテナ31に出力し、アンテナ31が受信した受信波を表す信号は、直交復調器35に出力する。アンテナ31は、バースト信号を空中に放射し、弾性表面波素子20からの応答波Rを受信する。送信回路32からアンテナ31までの構成が、無線部30aにおいて送信に関わる送信部30cであり、残りの構成が受信部30dである。なお、アンテナ31については、送信部30cと受信部30dに共通の構成である。
【0047】
アンテナ31が受信した応答波Rが電気信号(以下、応答信号)として、直交復調器35に入力される。直交復調器35は、移相器351と、2つのミキサ352i、352qを備えている。移相器351には、カプラ33で分岐したバースト信号が入力される。一方のミキサ352iには、応答信号とバースト信号とが入力される。応答信号とバースト信号とがミキサ352iで混合されると、ベースバンド信号の同相成分であるI信号が得られる。他方のミキサ352qには、応答信号と、バースト信号が移相器351により位相φが90度移相された信号が入力される。このミキサ352qからは、ベースバンド信号の直交成分であるQ信号が得られる。
【0048】
ミキサ352iで得られた信号はバンドパスフィルタ36i、ADコンバータ37iを介して演算部30bに入力され、ミキサ352qで得られた信号はバンドパスフィルタ36q、ADコンバータ37qを介して演算部30bに入力される。
【0049】
演算部30bは、CPU、ROM、RAM等を備えたコンピュータであり、CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの記録媒体に記憶されているプログラムを実行することで、図5以下にフローチャートで示す処理を実行する。図5以下に示す処理を実行することは、プログラムに対応する方法が実行されることを意味する。なお、演算部30bが備える機能ブロックの一部又は全部は、一つあるいは複数のIC等を用いて(換言すればハードウェアとして)実現してもよい。また、演算部30bが備える機能の一部又は全部は、CPUによるソフトウェアの実行とハードウェア部材の組み合わせによって実現されてもよい。
【0050】
〔演算部30bの処理〕
演算部30bは、弾性表面波素子20の温度を測定するために、図5に示す処理を実行する。図5に示す処理は、ユーザによる測定開始操作により開始される。測定開始操作は、操作部51に対する操作でもよいし、温度測定装置30の電源オンが測定開始操作でもよい。
【0051】
ステップ(以下、ステップを省略)S1では、初期周波数決定済みか否かを判断する。初期周波数は、第1周波数f1と第2周波数f2の最初の周波数fである。ここでの最初は、残響波REVの強度を判断する前という意味である。
【0052】
S1の判断結果がNO、すなわち、初期周波数を決定していない場合にはS2へ進む。S2は周波数探索処理部に相当する。S2では、周波数探索処理を実行する。周波数探索処理では、設定可能周波数帯域の全帯域に渡り、予め設定した周波数間隔で周波数fを変化させつつ送信部30cにバースト信号を送信させる。そして、受信信号をもとに残響波REVのレベルを測定する。本実施形態では、図6に示す時刻tbにおける信号強度Vを、残響波REVのレベルであるとする。時刻tbは送信波TWを送信し終えた後、かつ、応答波Rが検出される前の時刻である。なお、時刻taは、送信波TWのピークが検出される時刻である。
【0053】
時刻tbは、送信波TWを送信した時刻を基準とすると、事前に設定することができる。 S3では初期周波数決定処理を実行する。S3が初期周波数決定部に相当する。S3の処理は、具体的にはS4~S6を実行する処理である。
【0054】
S4では、使用可能帯域UABを決定する。使用可能帯域UABは、S2で決定した残響レベルが、事前に設定した閾値THn以下の周波数帯域である。図7には、使用可能帯域UABを例示している。図7の例では、3つの使用可能帯域UAB1、UBD2、UBD3が決定できている。
【0055】
S5では、S4で決定した使用可能帯域UABのうちで最も広い周波数帯域を、実際に送信波TWを送信する周波数帯域(以下、使用帯域UB)に決定する。図7の例では、使用可能帯域UAB2を、使用帯域UBに決定する。
【0056】
S6では、温度測定に使用する周波数f1、f2を決定する。決定方法は、周波数f1、f2との間の周波数帯域が、S5で決定した使用帯域UBの中心になるように、周波数f1、f2を決定する。図7には、このようにして決定した周波数f1、f2も示している。
【0057】
S7では、センサ情報取得処理を実行する。センサ情報取得処理は図8に示す。センサ情報取得処理は、温度測定のために弾性表面波素子20から応答波Rを受信して温度を測定する処理である。
【0058】
図8においてS11では、第1周波数f1と第2周波数f2で、それぞれ、n/2回ずつ応答波Rの位相φを測定する。この位相φを算出するために、第1周波数f1、第2周波数f2でそれぞれn/2回、バースト信号を送信する。
【0059】
nは、必要なSN比を確保するために実験等に基づいて決定する。SN比を高くするためには、nが大きいほうがよいが、nが大きいほど測定に時間がかかる。周期的に温度を測定するために、一度の温度測定にかけることができる時間には上限がある。
【0060】
応答波Rの位相φは式1から算出する。式1において、AはQ信号の振幅であり、AはI信号の振幅である。なお、本実施形態では、位相φは-180度~180度の値として算出するものとする。
【0061】
(式1) φ=tan-1(A/A
位相φは、周波数fを特定しない場合の記載とする。第1周波数f1で送信した応答波Rの位相φである場合は位相φ(f1)と記載し、第2周波数f2で送信した応答波Rの位相φである場合は位相φ(f2)と記載する。
【0062】
また、応答波Rは、反射器23からの応答波R1と反射器24からの応答波R2の2種類ある。第1周波数f1で送信したバースト信号の応答波R1の位相φを、位相φ(f1R1)とし、第1周波数f1で送信したバースト信号の応答波R2の位相φを、位相φ(f1R2)とする。S71では、4種類の位相φ(f1R1)、φ(f1R2)、φ(f2R1)、位相φ(f2R2)を測定する。
【0063】
S12では、S11で周波数別に測定したn/2回分の測定データをそれぞれ、周波数別に平均する。S13、S14は2周波位相差算出部に相当する。S13では、第1周波数f1の2素子位相差Δφ1、および、第2周波数f2の2素子位相差Δφ2を算出する。第1周波数f1の2素子位相差Δφ1は、位相φ(f1R1)と位相φ(f1R2)の差である。第2周波数f2の2素子位相差Δφ2は、位相φ(f2R1)と位相φ(f2R2)の差である。
【0064】
S14では、S13で2種類の周波数fに対してそれぞれ算出した2つの2素子位相差Δφ1、Δφ2の位相差(以下、2周波位相差)ΔθをΔφ1-Δφ2により算出する。この2周波位相差Δθは、特許文献1に記載のものと同じである。2周波位相差Δθは、絶対温度Tとの関係が予め設定されて記憶されている。
【0065】
S15は物理量決定部に相当する。そのS15では、2周波位相差Δθと絶対温度Tとの予め設定された関係と、S14で算出した2周波位相差Δθとから、絶対温度Tを決定する。なお、絶対温度Tは絶対物理量の一例である。
【0066】
説明を図5に戻す。センサ情報取得処理(S7)を実行した場合には図5の処理を終了する。図5の処理を終了した場合、予め設定された温度測定周期が経過した後に、再び、図5の処理を開始する。次にS1を実行する場合には、S1の判断結果がYESになる。S1の判断結果がYESになった場合にはS8に進む。
【0067】
S8ではセンサ情報取得判断処理を実行する。センサ情報取得判断処理は図9に示す。図9においてS21では、受信信号を取得する。本実施形態では、第1周波数f1および第2周波数f2でそれぞれ送信波TW1、TW2を送信し、受信信号を取得する。2つの周波数fで受信信号を取得する理由は、後述する周波数制御において必要だからである。
【0068】
S22は残響強度判断部に相当する。S22では、図6に示した時刻tbでの信号強度Vが閾値TH1以上であるか否かを判断する。時刻tbは、送信波TWも応答波Rもない時刻である。したがって、この時刻tbに検出できる信号は残響波REVであると推定できる。閾値TH1は、残響波REVの影響が大きいかどうかを判断する閾値である。時刻tbでの信号強度Vが閾値TH1よりも小さければ、残響波REVの信号強度Vが許容範囲内であるとする。閾値TH1の大きさは実験等に基づいて決定する。
【0069】
図10には、時刻tbにおける信号強度Vが閾値TH1を超えている例を示している。このような例では、十分なSN比で応答波Rを検出することができない。第1周波数f1の受信信号と、第2周波数f2の受信信号のいずれかにおいて、時刻tbでの信号強度Vが閾値TH1以上であればS22の判断結果をYESとする。S22の判断結果がYESであればS23に進む。S23では、読み取り不可であると決定する。
【0070】
続くS24では周波数制御処理を実行する。周波数制御処理は図11に示す。図11において、S31では、第1周波数f1の残響レベルと第2周波数f2の残響レベルが、ともに閾値THnよりも大きいか否かを判断する。なお、図9のS22では時刻tbにおける信号強度Vが閾値TH1以上であるか否かを判断しているのに対して、このS31では、応答波Rに重なる残響レベルを判断している。いずれも、残響波REVの大きさを判断している点では同じである。なお、このS31の判断基準をS22と同じ判断基準としてもよい。また、反対に、S22の判断基準をS31の判断基準と同じにしてもよい。
【0071】
S31の判断結果がYESであればS32に進む。S32では、S2と同じ処理を実行する。したがって、S32も周波数探索処理部に相当する。S33では、S3と同じ処理を実行する。したがって、S33も初期周波数決定部に相当する。S32とS33を実行することで、第1周波数f1と第2周波数f2を再設定する。続くS34では、センサ情報取得処理を実行する。このS34は、図8に示したセンサ情報取得処理と同じであり、絶対温度Tを決定する。
【0072】
S31の判断結果がNOであればS35に進む。S31の判断結果がNOになるのは、第1周波数f1の残響レベルおよび第2周波数f2の残響レベルのいずれか一方が閾値THnよりも小さい場合である。
【0073】
S35の処理は、具体的にはS36~S38を実行する処理である。S35は特性変更部に相当する。S36では、閾値THnを超えた周波数fは第1周波数f1であるか第2周波数f2であるかを判断する。S36の判断結果が第1周波数f1である場合にはS37に進む。S37では、第1周波数f1、第2周波数f2を、それぞれ、高周波側へ予め設定した周波数変更量Δfだけシフトさせる。
【0074】
一方、S36の判断結果が第2周波数f2である場合にはS38に進む。S38では、第1周波数f1、第2周波数f2を、それぞれ、低周波側へ周波数変更量Δfだけシフトさせる。
【0075】
S36からS38のように処理する理由を説明する。図12には、信号取得時刻t1、t2における、周波数fと残響波REVの大きさの関係を示している。信号取得時刻tは、温度測定周期ごとに到来する時刻である。
【0076】
図12に示す例では、残響波REVが低周波側にシフトしていることが分かる。本実施形態では、仕切り板43が等間隔で配置されているため、各測定対象物40は、仕切り板43で仕切られる1つの閉空間に位置する。そして、この閉空間が温度測定装置30に対して相対的に移動する。その結果、残響波REVの大きさが周期的に変動する。この理由により、周波数fに対する残響波REVの大きさに時間変化が生じるのである。
【0077】
この時間変化は、ランダムではなく周期性がある。図12にも示すように、残響波REVが低周波側にシフトしている場合には、第2周波数f2における残響波REVが第1周波数f1における残響波REVよりも先に大きくなる。この場合、第1周波数f1、第2周波数f2も低周波数側にシフトさせれば、再び、第1周波数f1における残響レベル、第2周波数f2における残響レベルとも、閾値THn以下にすることができる。そこで、S38を実行するのである。
【0078】
これとは反対に、残響波REVが高周波側にシフトしている場合には、第1周波数f1における残響波REVが第2周波数f2における残響波REVよりも先に大きくなる。この場合、第1周波数f1、第2周波数f2も高周波数側にシフトさせれば、再び、第1周波数f1における残響レベル、第2周波数f2における残響レベルとも、閾値THn以下にすることができる。そこで、S37を実行するのである。
【0079】
このように、送信部30cが送信する周波数fを変更すると、残響波REVのレベルを低減することができる。したがって、送信部30cが送信する周波数fは、残響波REVを低減可能な送信部特性の1つである。
【0080】
S37またはS38を実行した後はS39に進む。S39では、センサ情報取得処理を実行する。このセンサ情報取得処理は、測定回数以外は図8と同じである。各周波数fにおける測定回数はm1/2回であり、m1>nである。つまり、S39では、S34よりも測定回数が多い。
【0081】
測定回数を多くできる理由は、S37、S38は、周波数fを全探索しないので、変更後の周波数fを迅速に決定できるからである。m1は、周波数fを変更する時間を短縮できる時間で測定可能な回数だけ、nよりも多くできる。S39、S34を実行後は、図5に戻る。図5に戻った場合、初期値設定済みであるのでS8に進む。
【0082】
説明を図9に戻す。S22の判断結果がNOであればS26に進む。S26では時刻tcの信号強度Vが、図6に示す閾値TH2以上であるかどうかを判断する。時刻tcは、応答波Rが検出されると予測される時刻である。
【0083】
時刻tcは次のようにして決定する。応答波Rが検出される時刻は、送信波TWを送信した時刻を基準とすると、アンテナ31から弾性表面波素子20までの距離と、弾性表面波素子20の温度に依存する。後者は、本実施形態では逐次測定しており、また、温度測定の開始前であっても、弾性表面波素子20の温度は室温と近似することができる。このようにして温度を測定あるいは推定すれば、温度による遅延時間は計算できる。
【0084】
そして、測定対象物40が炉42に入る前であれば、残響の影響は少ない。そのとき、応答波Rのピーク、すなわち、時刻tcは確認できる。
【0085】
ピークを確認できれば、送信波TWを送信してから応答波Rのピークを検出するまでの時間差と、電波の速度とをもとに、アンテナ31から弾性表面波素子20までの距離を推定できる。一度、距離を推定できれば、ベルト41の移動速度が既知であるので、その後も、アンテナ31から弾性表面波素子20までの距離を推定できる。したがって、一度、距離を推定できれば、その後も、時刻tcを逐次決定できる。
【0086】
また、カメラを備えておき、カメラにより弾性表面波素子20の位置を検出し、検出した位置に基づいて、時刻tcを推定してもよい。なお、各周波数につき、複数回、送信波TWを送信して残響レベルの平均値を算出してもよい。
【0087】
閾値TH2は、閾値TH1よりも大きい値である。閾値TH1はノイズレベルを判断するための閾値であるのに対して、閾値TH2は信号レベルを判断するための閾値だからである。
【0088】
S26の判断結果がYESであればS27に進む。S27では、センサ情報取得処理を実行する。このS27でのセンサ情報取得処理は、測定回数以外は図8と同じである。各周波数fにおける測定回数はm2/2回であり、m2>nである。つまり、S27でも、S34よりも測定回数が多くなる。周波数探索のための時間を省略できるからである。なお、m1とm2は同じでもよいし異なっていてもよい。
【0089】
〔第1実施形態のまとめ〕
以上、説明した本実施形態では、残響波REVの信号強度Vが許容範囲内かどうかを判断している。そして、残響波REVの信号強度Vが閾値TH1以上である場合には、送信部30cが送信する周波数fを変更する(S35)。周波数fを変更することで、残響波REVの影響を低減して、弾性表面波素子20からの応答波Rを検出できる。
【0090】
また、本実施形態では、弾性表面波素子20は移動する測定対象物40に設置されている。移動する物体の温度を測定する場合、距離の変化による位相変化を相殺するために弾性表面波素子20は第1素子部20aと第2素子部20bを備える。そして、2素子位相差Δφを算出する(S13)。
【0091】
加えて、広い範囲で絶対温度Tを測定するために、2つの周波数f1、f2でバースト信号を送信し、2種類の周波数f1、f2について、2素子位相差Δφ1、Δφ2を算出する(S13)。そして、これら2素子位相差Δφの周波数fによる位相差Δθから絶対温度Tを決定する(S14、S15)。
【0092】
さらに、本実施形態では、このように、移動する物体の絶対温度Tを広い範囲で測定するために必要な構成を活用して、残響波REVの影響を低減できる周波数fに迅速に変更できる。
【0093】
すなわち、第1周波数f1と第2周波数f2でバースト信号を送信する必要があることを利用し、第1周波数f1の残響レベルと第2周波数f2の残響レベルをそれぞれ判断する。そして、第1周波数f1が閾値THnを超えた場合には第1周波数f1と第2周波数f2を高周波側へシフトし(S37)、第2周波数f2が閾値THnを超えた場合には第1周波数f1と第2周波数f2を低周波側へシフトする(S38)。このようにすることで、設定可能周波数帯域を全探索するよりも、第1周波数f1、第2周波数f2を、残響波REVの大きさが許容範囲内になるに周波数fに迅速に変更できる。
【0094】
さらに、周波数fを迅速に変更できることから、その後のセンサ情報取得処理(S39)において、測定回数を多くできる。そして、測定回数が多くなれば平均化(S12)した後のノイズをより小さくできるので、SN比向上、ひいては絶対温度Tの精度を向上させることができる。
【0095】
また、本実施形態では、設定可能周波数帯域を全探索して第1周波数f1と第2周波数f2を設定する場合には、使用可能帯域UABのうちで最も広い周波数帯域を使用帯域UBに決定する(S5)。第1周波数f1と第2周波数f2は、それら第1周波数f1と第2周波数f2との間の帯域が使用帯域UBの中心になるように決定する。このようにすることで、第1周波数f1および第2周波数f2の残響レベルが閾値THnを超えるまでの時間を長くできる。
【0096】
<第2実施形態>
次に、第2実施形態を説明する。この第2実施形態以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、 構成の他の部分については先に説明した実施形態を適用できる。
【0097】
第2実施形態では、図9に示したセンサ情報取得判断処理に代えて、図13に示すセンサ情報取得判断処理を実行する。
【0098】
S41は、S21と同じであり、第1周波数f1および第2周波数f2でそれぞれ送信波TW1、TW2を送信し、受信信号を取得する。
【0099】
S42は第2実施形態における残響強度判断部に相当する。S42では、時刻tcにおける信号強度Vcから時刻tbにおける信号強度Vbを引いた値が、閾値THvよりも大きいか否かを判断する。図14には、信号強度Vc、Vbを例示している。
【0100】
Vc-VbはSN比に相関する値である。閾値THvは、要求されるSN比に基づいて事前に決定する。したがって、S42の判断は、SN比が許容範囲内であるか否か、換言すれば、残響波REVの信号強度Vが許容範囲内かどうかを判断している。
【0101】
第1周波数f1の受信信号と、第2周波数f2の受信信号のいずれかにおいて、Vc-VbがTHv以下であればS42の判断結果をNOとする。S42の判断結果がNOであればS43に進む。S43では、読み取り不可であると決定する。続くS44は、S24と同じであり、図11に示す周波数制御を実行する。S42の判断結果がYESであればS45に進む。S45はS27と同じであり、センサ情報取得処理を実行する。
【0102】
この第2実施形態のように、Vc-Vbの大きさをもとに、残響波REVの信号強度Vが許容範囲内かどうかを判断することもできる。
【0103】
<第3実施形態>
次に、第3実施形態を説明する。第3実施形態では、図9に示したセンサ情報取得判断処理に代えて、図15に示すセンサ情報取得判断処理を実行する。
【0104】
S51は、S21と同じであり、第1周波数f1および第2周波数f2でそれぞれ送信波TW1、TW2を送信し、受信信号を取得する。
【0105】
S52では、具体的にはS53~S55を実行する処理である。S52は残響強度判断部に相当する。S53では、時刻tcにおけるノイズの強度を推定する。本実施形態では、時刻tcの前後の時刻tであって、応答波Rが検出されると推定される前後の時刻tの信号強度Vから、時刻tcにおけるノイズの強度を推定する。図16には、時刻tcにおけるノイズの強度を推定する時刻tとして、時刻tb、td、teを示している。Vb、Vd、Veはそれらの時刻tの受信信号の強度である。これらの時刻tは事前に決定する。
【0106】
推定手法には、受信信号の傾きから推定する方法、カルマンフィルタ、パーティクルフィルタ、最小二乗法、スパース推定など、種々の手法を用いることができる。
【0107】
続くS54では、応答波Rのピークの強度であるVcから、S53で推定したノイズの強度を引くことで、応答波Rの強度を推定する。S55では、S54で推定した応答波Rの強度とS53で推定したノイズの強度の比であるSN比が、事前に設定した閾値THsnよりも大きいか否かを判断する。
【0108】
S55の判断結果がNOであればS56に進む。S56では、読み取り不可であると決定する。続くS57は、S24と同じであり、図11に示す周波数制御を実行する。S55の判断結果がYESであればS58に進む。S58はS27と同じであり、センサ情報取得処理を実行する。
【0109】
この第3実施形態のように、SN比をもとに、残響波REVの信号強度Vが許容範囲内かどうかを判断することもできる。
【0110】
<第4実施形態>
次に、第4実施形態を説明する。第4実施形態では、図11に示した周波数制御に代えて、図17に示す周波数制御を実行する。図17では、S31の判断結果がYESである場合、S31-1を実行する。S31-1も特性変更部としての処理である。
【0111】
S31-1では、アンテナ31の特性を変更する。具体的には、アンテナ31の電気長を変更する。アンテナ31に可変インピーダンス回路を接続しておき、その回路のインピーダンスを変更することで、アンテナ31の電気長を変更する。電気長は、たとえば、予め設定した電気長可変範囲内で往復するように、一定ピッチずつ変更する。S31-1を実行後は、S32に進む。
【0112】
アンテナ31の電気長を変更することでも、応答波Rに与える残響波REVの影響が変化する。したがって、この第4実施形態のようにしても、残響波REVの影響を低減して応答波Rを検出できる。
【0113】
<第5実施形態>
図18に、第5実施形態における温度測定装置30が備えるアンテナ31を示す。第5実施形態では、アンテナ31を複数、具体的には、アンテナ31を3つ備える。なお、3つは一例であり、2つ、あるいは、4つ以上のアンテナ31を備えてもよい。
【0114】
第5実施形態では、図17に示した周波数制御に代えて、図19に示す周波数制御を実行する。図19では、S31-1の後にS31-2を実行する。S31-2も特性変更部としての処理である。
【0115】
S31-2では、送受信に用いるアンテナ31を、それまでとは別のアンテナ31に変更する。アンテナ31の変更順序は、事前に決定しておく。送受信するアンテナ31を変更することで、送受信するアンテナ31の位置が変更になる。アンテナ31の位置が変更になれば、共振条件が変化するので、残響波REVの影響も変化する。S31-2を実行後は、S32に進む。
【0116】
送受信するアンテナ31の位置を変更することでも、応答波Rに与える残響波REVの影響が変化する。したがって、この第5実施形態のようにしても、残響波REVの影響を低減して応答波Rを検出できる。
【0117】
加えて、第5実施形態では、複数のアンテナ31を備えており、送受信に用いないアンテナ31にも、残響波REVが受信され、これにより、アンテナ31が1つである場合よりも、残響波REVが早く減衰する。
【0118】
<第6実施形態>
第6実施形態では、初期周波数が決定されている場合あっても、図5のS2とS3を実行する場合がある。仕切り板43が一定間隔で配置されているベルト41が一定速度で移動するので、炉42の中では、電波遮蔽状態が周期的に変化する。
【0119】
電波遮蔽状態が周期的に変化するので、一定周期で、同じ送信電力で送信波TWを送信したとしても、図20に概念的に示すように、応答波Rの信号強度Vは周期的に増減する。応答波Rの信号強度Vが低い時間帯では、十分なSN比を確保することが困難な場合も多い。そこで、本実施形態では、応答波Rの信号強度Vが、周期的に変動する変動範囲において最低となる時間帯を推定する。信号強度Vが最低となる時間帯は、信号強度Vの極小値を中心とする前後一定時間とする。
【0120】
信号強度Vが最低となる時間帯は、たとえば、応答波Rのピークの周期から推定する。反対に、応答波Rを検出できない時間帯から、信号強度Vが最低となる時間帯を推定してもよい。また、炉42を制御している制御装置から仕切り板43の位置情報を取得できる場合には、その位置情報をもとに、信号強度Vが最低となる時間帯を推定してもよい。
【0121】
信号強度Vが最低となる時間帯を推定した後は、信号強度Vが最低となる時間帯でも、周波数探索処理(S2)と、初期周波数決定処理(S3)を実行する。
【0122】
これらの処理を実行することで、第1周波数f1と第2周波数f2を、再び、最も広い使用可能周波数帯域の中央に設定し直すことができる。これにより、SN比を高くできるセンサ情報取得処理(S27)を多く実行することができる。
【0123】
以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。
【0124】
<変形例1>
特性変更部が変更するアンテナ31の特性として、実施形態で説明した特性の他に、アンテナ31の送信電力がある。したがって、特性変更部の処理として、送信部30cが送信する電波の送信電力を低下させてもよい。低下させる程度は、予め設定した一定値、あるいは、一定割合とすることができる。また、残響波REVが大きいほど、低下量あるいは低下割合を大きくしてもよい。送信電力を低下させれば、残響波REVを小さくできる。
【0125】
<変形例2>
第1実施形態のS36、S37では、第1周波数f1、第2周波数f2を、周波数fを周波数変更量Δfだけシフトしていた。しかし、周波数fを探索する範囲を、高周波側とするか低周波側とするかを決定するのみを決定し、その決定した側において周波数fを探索してもよい。このようにしても、設定可能周波数帯域を全探索するよりも、第1周波数f1、第2周波数f2を、残響波REVの大きさが許容範囲内になるに周波数fに迅速に変更できる。
【0126】
<変形例3>
実施形態では、変更する送信部特性を、周波数fあるいは周波数fとアンテナ特性としていた。しかし、アンテナ特性のみを変更してもよい。
【0127】
<変形例4>
実施形態では、温度測定装置30と操作端末50が別体であったが、温度測定装置30と操作端末50が一体となった温度測定装置としてもよい。
【0128】
<変形例5>
実施形態では、物理量として温度を例示した。しかし、圧力など温度以外の物理量を測定してもよい。
【符号の説明】
【0129】
10:温度測定システム 20:弾性表面波素子(パッシブセンサ) 20a:第1素子部 20b:第2素子部 21:圧電体基板 22:櫛形電極 23:反射器 24:反射器 25:アンテナ 30:温度測定装置 30a:無線部 30b:演算部 30c:送信部 30d:受信部 31:アンテナ 32:送信回路 33:カプラ 34:アンテナ共用器 35:直交復調器 36i:バンドパスフィルタ 36q:バンドパスフィルタ 37i:ADコンバータ 37q:ADコンバータ 40:測定対象物(移動体) 41:ベルト 42:炉 43:仕切り板 50:操作端末 51:操作部 52:表示部 351:移相器 352i:ミキサ 352q:ミキサ f1:第1周波数 f2:第2周波数 R:応答波 REV:残響波 T:絶対温度(絶対物理量) TW:送信波 UAB:使用可能帯域 UB:使用帯域 V:信号強度 Δφ:2素子位相差 S22、S42、S52:残響強度判断部 S35、S31-1、S31-2:特性変更部 S13、S14:2周波位相差算出部 S15:物理量決定部 S2、S32:周波数探索処理部 S3、S33:初期周波数決定部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20