(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-10
(45)【発行日】2024-05-20
(54)【発明の名称】生体内誘電分光装置
(51)【国際特許分類】
G01N 22/00 20060101AFI20240513BHJP
【FI】
G01N22/00 K
G01N22/00 S
G01N22/00 Y
(21)【出願番号】P 2021539459
(86)(22)【出願日】2020-01-06
(86)【国際出願番号】 US2020012356
(87)【国際公開番号】W WO2020142766
(87)【国際公開日】2020-07-09
【審査請求日】2023-01-04
(32)【優先日】2019-01-04
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-01-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521295398
【氏名又は名称】ホッジス ジョン ダブリュ
(73)【特許権者】
【識別番号】521295402
【氏名又は名称】リッペン マーク イー
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100128428
【氏名又は名称】田巻 文孝
(72)【発明者】
【氏名】ホッジス ジョン ダブリュ
(72)【発明者】
【氏名】リッペン マーク イー
【審査官】嶋田 行志
(56)【参考文献】
【文献】特表2003-509692(JP,A)
【文献】特開2010-046181(JP,A)
【文献】特開2004-200941(JP,A)
【文献】特表2018-531386(JP,A)
【文献】国際公開第2018/213495(WO,A1)
【文献】特表2020-520717(JP,A)
【文献】特表2009-500096(JP,A)
【文献】米国特許出願公開第2008/0319285(US,A1)
【文献】米国特許出願公開第2017/0229763(US,A1)
【文献】特表平04-506404(JP,A)
【文献】米国特許出願公開第2006/0184009(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 22/00-G01N 22/04
G01N 27/02
A61B 5/05
JSTPlus/JMEDPlus/JST7580(JDreamIII)
JSTChina(JDreamIII)
PubMed
Science Direct
ACS PUBLICATIONS
(57)【特許請求の範囲】
【請求項1】
生体の電気透過率の生体内検出のためのマイクロストリップ導波路構造体であって、前記生体の前記電気透過率は、既知の透過率成分および未知の透過率成分を含み、前記マイクロストリップ導波路構造体は、
第1の側部および前記第1の側部と反対側の第2の側部を備えた誘電複合体を有し、前記誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有し、前記第2の誘電領域は、前記第1の誘電領域および前記
第3の誘電領域の電気透過率とは異なる異方性電気透過率を有し、前記第2の誘電領域の前記異方性電気透過率は、前記生体の前記電気透過率の前記既知の透過率成分に実質的に等しいよう選択され、
前記誘電複合体の前記第1の側部上に形成されたマイクロストリップ送信線を有し、前記マイクロストリップ送信線は、前記第1の誘電領域上に形成された入力区分、前記第2の誘電領域上に形成されたラジエータ部分、および前記第3の誘電領域上に形成された出力部分を有し、
前記誘電複合体の前記第2の側部上に形成されたグラウンドプレーンを有する、マイクロストリップ導波路構造体。
【請求項2】
前記第1の誘電領域の前記電気透過率は、前記第3の誘電領域の前記電気透過率と同等である、請求項1記載のマイクロストリップ導波路構造体。
【請求項3】
前記マイクロストリップ送信線の前記ラジエータ部分は、平面巻線として形成されている、請求項1記載のマイクロストリップ導波路構造体。
【請求項4】
前記平面巻線は、交互曲折体として形成されている、請求項3記載のマイクロストリップ導波路構造体。
【請求項5】
前記平面巻線は、平面螺旋体として形成されている、請求項3記載のマイクロストリップ導波路構造体。
【請求項6】
前記誘電複合体は、湾曲している、請求項1記載のマイクロストリップ導波路構造体。
【請求項7】
前記第2の誘電領域の誘電率は、25~55である、請求項1記載のマイクロストリップ導波路構造体。
【請求項8】
前記第2の誘電領域の誘電率は、2~3である、請求項1記載のマイクロストリップ導波路構造体。
【請求項9】
前記第2の誘電領域の誘電率は、偏差±10%の400である、請求項1記載のマイクロストリップ導波路構造体。
【請求項10】
前記誘電複合体の厚さは、前記生体の高さの半分未満である、請求項1記載のマイクロストリップ導波路構造体。
【請求項11】
前記第2の誘電領域の前記誘電率は、100kHz~220MHzの周波数範囲において、前記生体の前記電気透過率の前記既知の透過率成分に実質的に等しいよう選択されている、請求項1記載のマイクロストリップ導波路構造体。
【請求項12】
前記第1および前記第3の誘電領域のうちの少なくとも一方は、異方性誘電率を有する、請求項1記載のマイクロストリップ導波路構造体。
【請求項13】
生体の成分の生体内測定のための誘電分光システムであって、前記生体は、第1の誘電率を有する第1の組をなす成分、および測定されるべき誘電率を備えた第2の組をなす成分を有し、前記システムは、
センサを有し、前記センサは、
第1の側部および前記第1の側部と反対側の第2の側部を備えた誘電複合体を有し、前記誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有し、前記第2の誘電領域は、前記第1の誘電領域および前記
第3の誘電領域の電気透過率とは異なる異方性電気透過率を有し、前記第2の誘電領域の前記異方性電気透過率は、前記生体の前記電気透過率の前記既知の透過率成分に実質的に等しいよう選択され、
前記誘電複合体の前記第1の側部上に形成されたマイクロストリップ送信線を有し、前記マイクロストリップ送信線は、前記第1の誘電領域上に形成された入力区分、前記第2の誘電領域上に形成されたラジエータ部分、および前記第3の誘電領域上に形成された出力部分を有し、
前記誘電複合体の前記第2の側部上に形成されたグラウンドプレーンを有し、
前記入力区分に結合されていて、複数の互いに異なる周波数で信号を提供するよう構成された信号発生器を有し、
前記入力区分に結合されていて、前記センサからの反射信号を検出するカップラを有し、
送信信号を受信するよう前記センサの前記出力区分に結合された受信器を有する、誘電分光システム。
【請求項14】
前記第1の誘電領域の前記電気透過率は、前記第3の誘電領域の前記電気透過率と同等である、請求項13記載の誘電分光システム。
【請求項15】
前記マイクロストリップ送信線の前記ラジエータ部分は、平面巻線として形成されている、請求項13記載の誘電分光システム。
【請求項16】
生体の生体内検出のための誘電分光センサであって、
第1の側部および前記第1の側部と反対側の第2の側部を備えた誘電複合体を有し、前記誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有し、前記第2の誘電領域は、前記第1の誘電領域と前記第3の誘電領域との間に位置し、かつ前記第1の誘電領域および前記
第3の誘電領域の電気透過率とは異なる異方性電気透過率を有し、
前記誘電複合体の前記第1の側部上に形成されたマイクロストリップ送信線を有し、前記マイクロストリップ送信線は、前記第1の誘電領域上に形成された入力区分、前記第2の誘電領域上に形成されたラジエータ部分、および前記第3の誘電領域上に形成された出力部分を有し、
前記誘電複合体の前記第2の側部上に形成されたグラウンドプレーンを有し、
前記第2の誘電領域の前記異方性電気透過率は、所与の周波数範囲において、前記ラジエータ部分が前記生体中に電気的に埋め込まれているように見えるよう選択されている、誘電分光センサ。
【請求項17】
前記第1の誘電領域の前記電気透過率は、前記第3の誘電領域の前記電気透過率と同等である、請求項16記載の誘電分光センサ。
【請求項18】
前記マイクロストリップ送信線の前記ラジエータ部分は、平面巻線として形成されている、請求項16記載の誘電分光センサ。
【請求項19】
前記平面巻線は、交互曲折体として形成されている、請求項18記載の誘電分光センサ。
【請求項20】
前記平面巻線は、平面螺旋体として形成されている、請求項18記載の誘電分光センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、電気信号を用いて生きた有機体(本明細書では、「生体」という場合がある)の生物学的特性を測定するセンサおよび関連装置、特に、センサと生体の界面のところでの誘電変動性をなくすための誘電分光技術の使用に関する。
【0002】
〔関連出願の参照〕
本願は、2019年1月4日に出願された米国特許仮出願第62/788,197号の優先権主張出願であり、この米国仮出願を参照により引用し、その記載内容全体を本明細書の一部とする。
【背景技術】
【0003】
1Hz~数十GHzのオーダの電磁界を用いてこの広い周波数範囲にわたって生物学的サンプルの誘電率応答を特徴づけることは、掃引周波数誘電率、抵抗分光法、インピーダンス分光法、または抵抗パルス分光法として様々な名称で知られているが、より一般的には、誘電分光法と呼ばれている。これについては、エイチ・フリッケ(H. Fricke),フィロソフィカル・マガジン(Philos. Mag.),1932年,14,310,ケー・エス・コール(K. S. Cole)、アール・エイチ・コール(R. H. Cole),ザ・ジャーナル・オブ・ケミカル・フィジックス(J. Chem. Phys.),1941年,9,341,ケー・アサミ(K. Asami)、イー・ゲオルギウ(E. Gheorghiu)、ティー・ヨネザワ(T. Yonezawa),バイオフィジカル・ジャーナル(Biophys. J. ),1999年,76,3345,シー・プロダン(C. Prodan)、イー・プロダン(E. Prodan),ジャーナル・オブ・フィジックス・デー(J. Phys. D),1999年,32,335、ジー・スミス(G. Smith)、エー・ピー・ダフィー(A. P. Duffy)、ジェイ・シェーン(J. Shen)、シー・ジェイ・オリフ(C. J. Olliff),ジャーナル・オブ・ファーマスーティカル・サイエンシズ(J. Pharm. Sci.),1995年,84,1029を参照されたい。かかる技術を説明するために用いられる様々な用語は、1つには、同等のまたは等価な表示が電気的性質または電気特性について可能であるということを反映している。例えば、複素数としてのインピーダンスという表記は、複素数としてのコンダクタンスという表記と同等または等価であり、しかも複素数としての誘電率という表記とも同等または等価である。「同等」(または「等価」)という用語は、この意味において、上記表記のうちのどれもを簡単な数学的変換により任意他のものから十分に得ることができるということを示している。他のかかる同等の表記もまた可能であり、本発明の範囲に含まれる。誘電分光法は、D.C.~RFの周波数範囲におけるインピーダンスまたはキャパシタンスデータと、GHz範囲内のマイクロ波伝搬とから成る誘電率フィンガープリントを探す。これについては、エイチ・イー・アイリフ(H. E. Ayliffe)、エー・ビー・フレジャー(A. B. Frazier)、アール・デー・ラビット(R. D. Rabbitt),米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・ジャーナル・オブ・マイクロエレクトロメカニカル・システム(IEEE J. Microelectromech. Syst.),1999年,8,50、ジェイ・ヘフティ(J. Hefti)、エー・パン(A. Pan)、エー・クマール(A. Kumar),アプライド・フィジックス・レターズ(Appl. Phys. Lett.)1999年,75,1802を参照されたい。溶液中の互いに異なる成分は、互いに異なる周波数内において互いに異なる分散パターンを有する。例えば、理想的には、溶液中のイオンは、1Hzから1GHz超までの周波数範囲においてアルファ分散と呼ばれる特定の分散特性を示す。溶液中のマクロ種、例えば細胞または細胞小器官は、一般的には1kHz~1MHz範囲内においてベータ分散と呼ばれているこれら自身の特定の分散パターンを示す。最後に、1MHzから数百GHzまでの周波数範囲において、溶液中の溶剤は、本明細書においてガンマ分散と呼ばれている状態を示す。これについては、ジェイ・ギムザ(J. Gimsa)、ディー・ワクナー(D. Wachner),バイオフィジカル・ジャーナル(Biophys. J.),1998年,75,1107、ブイ・ライク(V. Raicu),フィジカル・レビュー(Phys. Rev.),1999年,E60,4677を参照されたい。実際には、全ての生きている生物有機体の応答は、それほど明確には識別されず、関心のある周波数範囲全体にわたって互いに異なる成分の分散特性にかなりの周波数オーバーラップが存在する。これについては、エイチ・ピー・シュヴァン(H. P. Schwan)、エス・タカシマ(S. Takashima),応用物理学百科事典(エンサイクロペディア・オブ・アプライド・フィジックス(Encyclopedia of Applied Physics )),ニューヨーク(New York),ヴイ・シー・エイチ社(VCH ),1993年,第5巻,p.177~200、ピー・デバイ(P. Debye)、ポラール・モレキュールズ(Polar Molecules ),ドーバー,ニューヨーク(Dover, New York),1929年、ジー・デ・ガスペリス(G. De Gasperis)、エックス・ワン(X. Wang)、ジェイ・ヤン(J. Yang )、エフ・エフ・ベッカー(F. F. Becker)、ピー・アール・シー・ガスコイン(P. R. C. Gascoyne),メジャーメント・サイエンス・アンド・テクノロジー(Meas. Sci. Technol.),1998年,9,518、エー・ケー・ジョンシャー(A. K. Jonscher),ロンドン(London),ネイチャー(Nature),1977年,267,673を参照されたい。広い周波数範囲へのアクセスは、生物学的サンプルについてこれらの化学的多様性に起因して重要である。これについては、ビー・オナラル(B. Onaral)、エイチ・エイチ・サン(H. H. Sun)、エイチ・ピー・シュヴァン(H. P. Schwan),米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・トランサクションズ・オン・バイオメディカル・エンジニアリング(IEEE Trans. Biomed. Eng.),1984年,31,827、ピー・エー・サークル(P. A. Cirkel)、ジェイ・ピー・エム・ファン・デル・プルーフ(J. P. M. van der Ploeg)、ジー・ジェイ・エム・コペル(G. J. M. Koper),フィジカ・エイ(Physica A),1997年,235,269、アール・エヌ・クラーク(編)(R. N. Clarke(Ed.)),「ア・ガイド・トゥー・ザ・キャラクタライゼーション・オブ・ダイエレクトリックマテリアルズ・アット・アールエフ・アンド・マイクロウェーブ・フリークエンシズ(A Guide to the Characterisation of DielectricMaterials at RF and Microwave Frequencies)」,ザ・インスティトゥート・オブ・メジャーメント・アンド・コントロール(英国)・アンド・国立物理研究所(エヌ・ピー・エル(ナショナル・フィジカル・ラボラトリー))(The Institute of Measurement & Control (UK) & NPL)発行,2003年、ジェイ・ベーカー‐ジャーヴィス(J. Baker-Jarvis)、エム・デー・ヤネシッツ(M. D. Janezic)、アール・エフ・リドル(R. F. Riddle)、アール・ティー・ジョンク(R. T. Johnk)、ピー・カボス(P. Kabos)、シー・ホロウェイ(C. Holloway)、アール・ジー・ゲイヤー(R. G. Geyer )、シー・エイ・グロブナー(C. A. Grosvenor),「メジャリング・ザ・パーミティビティ・アンド・パーミアビリティ・オブ・ロッシー・マテリアルズ:ソリッズ,リキッズ,メタルズ,ビルディング・マテリアルズ・アンド・ネガティブ‐インデックス・マテリアルズ(Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials)」,米国国立標準技術研究所(エヌ・アイ・エス・ティー(ナショナル・インスティトゥート・オブ・スタンダーズ・アンド・テクノロジー))・テクニカル・ノート(NIST Technical Note),2005年、「テスト・メソッズ・フォー・コンプレックス・パーミティビティ・(ダイエレクトリック・コンスタント)・オブ・ソリッド・エレクトリカル・インサレーティング・マテリアルズ・アット・マイクロウェーブ・フリークエンシズ・アンド・テンパーチャー・トゥー・1650°(Test Methods for complex permittivity (Dielectric Constant) of solids electrical insulating materials at microwave frequencies and temperatures to 1650 °)」,エー・エス・ティー・エム・スタンダード・デー2520(ASTM Standard D2520 ),米国材料試験協会(アメリカン・ソサイエティ・フォー・テスティング・アンド・マテリアルズ(American Society for Testing and Materials))、ヤネシッツ・エム(Janezic M.)、ベーカー‐ジャーヴィス・ジェイ(Baker-Jarvis J.),「フル‐ウェーブ・アナリシス・オブ・ア・スピリット‐シリンダ・レゾネータ・フォー・ノンデストラクティブ・パーミティビティ・メジャメンツ(Full-wave Analysis of a Split-Cylinder Resonator for Nondestructive Permittivity Measurements)」,米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・トランサクションズ・オン・マイクロウェーブ・セオリー・アンド・テクニークス(IEEE Transactions on Microwave Theory and Techniques),1999年10月,第47巻,第10号,p.2014~2020、ジェイ・クルプカ(J. Krupka)、エイ・ピー・グレゴリー(A. P. Gregory)、オー・シー・ロチャード(O. C. Rochard)、アール・エヌ・クラーク(R. N. Clarke)、ビー・リドル(B. Riddle),ジェイ・ベーカー‐ジャーヴィス(J. Baker-Jarvis),「アンサートゥンティ・オブ・コンプレックス・パーミティビティ・メジャメント・バイ・スプリット‐ポスト・ダイエレクトリック・リゾネータ・テクニークス(Uncertainty of Complex Permittivity Measurement by Split-Post Dielectric Resonator Techniques)」,ジャーナル・オブ・ザ・ヨーロピアン・セラミック・ソサイエティ(Journal of the European Ceramic Society),2001年,第10号,p.2673~2676、「ベーシックス・オブ・メジャリング・ザ・ダイエレクトリック・プロパティーズ・オブ・マテリアルズ(Basics of Measuring the Dielectric Properties of Materials)」,アジレント・アプリケーション・ノート(Agilent application note),2005年4月28日,5989-2589ENを参照されたい。したがって、誘電分光法の分野において開発・発展した多岐にわたる研究や知識が存在している。
【0004】
生きている生物有機体(以下、「生体」ともいう)の誘電スペクトルは、細胞レベルから分析物分子レベルまでの極めて多様な動的プロセスを表している。これらのプロセスおよび組成の良好な特徴づけおよび理解は、学術的に関心のあるものだけでなく、医学的用途、例えば人体の特定のホメオスタシスプロセスの判定や農業用途のための高い関連性を持っている。これらプロセスは、例えば、食品や農産物の全体的生産に著しい悪影響を及ぼす場合があり、しかも質、量の面において、さらに経済的意味においても多量の損失をもたらす場合のある植物病害の検出の際に利用できる。さらに、これらプロセスは、従来侵襲的手段(例えば、血液抜き取り)を用いて、そして生体または人間から採取したサンプルを分析して測定される種々の組成物について化学的存在およびレベルを示すことができる。
【0005】
生物学的細胞の誘電特性は、所与のひとまとまりの細胞の細胞および分子状態に関する情報を提供することができる。これら特性は、主として、ベータ分散、電波スペクトルの中波および高周波(HF)から極高周波(VHF)範囲で観測される誘電緩和現象によって特徴づけられる。多くの生物学的被験体におけるベータ分散機構は、リン脂質メンブレンの外側および内側界面のところのマックスウェル‐ワグナー分極(界面分極)に起因しており、電流を妨げる生物学的細胞膜の能力によって生じる。多くの生物学的被験体中のベータ分散への追加の寄与は、細胞小器官の存在、細胞団の不均質、および他の現象に起因して観測される。
【0006】
生物有機体、微生物、細胞、またはこれらの通常の生物学的文脈から外れた生物学的分子を分析する多くの既存の技術は、生体外で(「ガラス内で」)すなわち試験管、ペトリ皿などを用いて実験室環境内で行われている。これら技術は、望ましくないことには、測定中の生体の特性を変化させ、その結果、生体は、望ましくない仕方で変えられ、それにより試験結果が歪められる。また、これら技術では、生体用物質(バイオマテリアル)を生体から除去する必要がある。
【0007】
生体外で生物学的細胞の誘電特性を推定するための誘電分光技術が、例えば、米国特許第4,810,650号明細書、同第4,965,206号明細書、同第6,496,020号明細書、同第6,596,507号明細書、および同第7,930,110号明細書に記載されている。生物学的特性データを推定する既知の技術では、電気特性データは、信号を多数の周波数で細胞の溶液に適用することによって受け取られる。
【0008】
しかしながら、これら技術は、生体外またはガラス管測定法内に制限される。研究結果の示すところによれば、生体外測定と生体内測定との間に広いばらつきまたは偏差が生じる場合がある。ベータ緩和とガンマ緩和の間において、相当大きな分散が観測されるが、これは、これら緩和プロセスの重なりによって説明でき、生物学的物体に見られる場合の多い追加のデルタ緩和には起因しない。
【0009】
誘電分光法を実施する際に使用できる適当な測定器具は、当業者には容易に識別できる。例えば、誘電分光測定を行うために利用される装置には3つの大きな形態が存在し、これらは、同軸プローブ、フリースペース(自由空間)法や送信線利用法である。幾つかの例では、測定機器は、信号発生器、受信器、およびサンプルの電磁特性を測定する装置に結合された信号分析器を含む。結果として生じるキャパシタンスまたは誘電スペクトルは、細胞属性、例えば、形態学的特徴、膜電荷、細胞小器官、健康状態、および/または細胞内の代謝産物の蓄積または存在によって影響を受け、したがって、結果として生じるキャパシタンスは、これら属性に関する情報をリアルタイムで生じさせることができる。
【0010】
精度を高くした状態で誘電分光法を実施するための共振技術では、被験体全体を電気的共振チャンバ内に配置する必要があり、かかる共振技術は、生きている生体にとって完全に実施不能であり、したがって、ここでは考慮しない。現在、誘電分光法の分野では、生物学的組織の高精度誘電分光法を実施する上述の方法は、典型的には、生きている生物有機体全体には適用されずまたは生体に大幅な外乱をもたらす。これらの方法は、望ましくないことには、測定中の生体の特性を変化させ、その結果、生体は、望ましくない仕方で変えられ、試験結果が歪められる。
【0011】
両端が開口した同軸プローブは、送信線のカットオフ区分である。典型的には、プローブを液体中に浸漬させまたはプローブを固体(または粉末)物質の平坦なフェースに触れさせることによって物質を測定する。プローブ端部のところの電場が物質中に「縞状に入り込み」これら電場が試験対象の物質に接触したときに変化する。Sパラメータ(S11)の形態の反射信号を測定することができ、そしてこれを周波数の関数として物質の相対誘電率に関連づけることができる。両端が開口形同軸プローブ利用法は、ブロードバンドでありかつ非破壊的である。しかしながら、生物学的な生体内測定に関し、この方法では、被験体がa)厚さにおいて半無限であり、b)等方性かつ均質であり、c)平坦な表面であり、d)空隙がないことを必要とする。両端が開口形同軸プローブ利用法は、典型的には、周波数依存性複合反射係数を記録するためにベクトルネットワーク分析器(VNA)と関連して用いられる。次に、サンプルの周波数あたりの誘電率を標準型逆手法を用いてプローブ孔のところの反射係数から計算する。
【0012】
開口形同軸プローブは、反射係数測定値をプローブ孔平面に関連づけるよう注意深く較正されなければならない。これは、通常、2つの方法、すなわち、1)プローブの開口端のところの直接較正のための基準液を用いる手法または2)基準平面を孔に変えるプローブのモデルと組み合わされたコネクタ平面のところでの機械的または電子的較正基準を用いる仕方のうちの一方で実施される。これら要件により、開口形同軸プローブの使用は、生体内測定プロセスへの使用にとって極めて非実用的になる。
【0013】
フリースペース法は、アンテナを用いて電波エネルギーを試験取り付け具を必要としないで物質のサンプルのところでまたはこれを通って集束させる。この方法は、非接触式であり、高温および過酷な環境下において試験されるべき物質に利用できる。開口同軸プローブ法と同様、フリースペース法は、ブロードバンドであり非破壊的である。しかしながら、生物学的生体内測定のためには、この方法は、実用的ではなく、というのは、この方法では実用的なサンプルサイズによって生物学的被験体内においてマイクロ波領域の高周波に制限される大きくて平べったくかつフェースが互いに平行なサンプルが必要とされるからである。
【0014】
送信線方法では、物質を包囲された送信線の一部分の内側に配置する。この線は、通常、長方形導波路または同軸エアラインの一区分である。誘電率er
*と磁気透過率μr
*の両方は、反射信号(S11)および送信信号(S21)からコンピュータ計算される。開口形同軸プローブ利用法およびフリースペース法と同様、送信線方法は、ブロードバンドである。開口形同軸プローブ利用法およびフリースペース法と異なり、送信線方法は、破壊的であり、というのは、生物学的物質が送信線センサの固定具断面を固定具壁のところに空隙のない状態で満たさなければならないからである。しかしながら、異方性物質を送信線形導波路で測定することができる。
【0015】
生物学的被験体の誘電特性を生体内で推定する誘電分光技術が、例えば、米国特許第9,247,905号明細書、同第7,315,767号明細書、同第7,184,810号明細書、同第8,200,307号明細書、同第7,693,561号明細書に記載されている。本明細書において説明する解決策は全て、同軸プローブ利用方法の一変形例であり、実際問題として、もし記載しない場合であっても、これら全てにおいて、生物学的被験体は等方性でありかつ均質であることが必要である。これらの条件は、事実上、生物学的生体内被験体については決して起こらず、したがって、生物学的被験体の誘電特性を推定する上述の技術は、これらの変形例を修正しようとする1つまたは2つ以上のしくみを必要とする。
【0016】
例えば、この第1の欠点は、皮膚を通って体内に誘電分光法を実施しようとした場合に生体内被験体内で大きくなり、というのは、これら被験体は、定義上、異方性だからである。第2の欠点は、開口形同軸プローブまたはプローブ状構造体と皮膚の表面との間の界面のところで上述した従来方式の全てで生じる。今日まで、おびただしいほどの労力にもかかわらず、人間の皮膚について一般的に受け入れられる電気的モデルは存在しない。皮膚‐プローブ界面から生じる測定上の欠点を是正する種々の方法は、多量に血液を必要とする検出器や推定器、汗検出器、温度センサ、皮膚水分センサおよび推定器、皮膚キャパシタンス推定器、および空隙センサおよび推定器を含む。これらセンサは、考慮できる電気応答変動性を一般的に指示することができる情報を提供するが、多数の変数が存在する場合には、正確な応答をコンピュータ計算することは、極めて複雑になる。第3の欠点は、生物学的プロセス異常を検出するための実用的な持続性データ収集方式が名目上のまたは定常状態の生物学的プロセスを特徴づけ、それにより新規な生物学的プロセスを識別し、生物有機体をアドホックサンプルよりも経時的に観測することによって生物有機体の大抵の考えられる状態を推定し、推定することに起因して上述した解決策のうちの多くで生じ、ただし、高い分析精度は、生体内被験体の快適さに起因して実現可能ではない。
【0017】
したがって、上述した先行技術の問題を解決する必要がある。
【先行技術文献】
【特許文献】
【0018】
【文献】米国特許第4,810,650号明細書
【文献】米国特許第4,965,206号明細書
【文献】米国特許第6,496,020号明細書
【文献】米国特許第6,596,507号明細書
【文献】米国特許第7,930,110号明細書
【文献】米国特許第9,247,905号明細書
【文献】米国特許第7,315,767号明細書
【文献】米国特許第7,184,810号明細書
【文献】米国特許第8,200,307号明細書
【文献】米国特許第7,693,561号明細書
【非特許文献】
【0019】
【文献】エイチ・フリッケ(H. Fricke),フィロソフィカル・マガジン(Philos. Mag.),1932年,14,310
【文献】ケー・エス・コール(K. S. Cole)、アール・エイチ・コール(R. H. Cole),ザ・ジャーナル・オブ・ケミカル・フィジックス(J. Chem. Phys.),1941年,9,341
【文献】ケー・アサミ(K. Asami)、イー・ゲオルギウ(E. Gheorghiu)、ティー・ヨネザワ(T. Yonezawa),バイオフィジカル・ジャーナル(Biophys. J.),1999年,76,3345
【文献】シー・プロダン(C. Prodan)、イー・プロダン(E. Prodan ),ジャーナル・オブ・フィジックス・デー(J. Phys. D),1999年,32,335
【文献】ジー・スミス(G. Smith)、エー・ピー・ダフィー(A. P. Duffy)、ジェイ・シェーン(J. Shen)、シー・ジェイ・オリフ(C. J. Olliff),ジャーナル・オブ・ファーマスーティカル・サイエンシズ(J. Pharm. Sci.),1995年,84,1029
【文献】エイチ・イー・アイリフ(H. E. Ayliffe)、エー・ビー・フレジャー(A. B. Frazier )、アール・デー・ラビット(R. D. Rabbitt),米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・ジャーナル・オブ・マイクロエレクトロメカニカル・システム(IEEE J. Microelectromech Syst.),1999年,8,50
【文献】ジェイ・ヘフティ(J. Hefti)、エー・パン(A. Pan)、エー・クマール(A. Kumar),アプライド・フィジックス・レターズ(Appl. Phys. Lett.)1999年,75,1802
【文献】ジェイ・ギムザ(J. Gimsa)、ディー・ワクナー(D. Wachner),バイオフィジカル・ジャーナル(Biophys. J),1998年,75,1107
【文献】ブイ・ライク(V. Raicu),フィジカル・レビュー(Phys. Rev.),1999年,E60,4677
【文献】エイチ・ピー・シュヴァン(H. P. Schwan)、エス・タカシマ(S. Takashima),応用物理学百科事典(エンサイクロペディア・オブ・アプライド・フィジックス(Encyclopedia of Applied Physics)),ニューヨーク(New York),ブイ・シー・エイチ社(VCH ),1993年,第5巻,p.177~200
【文献】ピー・デバイ(P. Debye)、ポラール・モレキュレス(Polar Molecules),ドーバー,ニューヨーク(Dover, New York),1929年
【文献】ジー・デ・ガスペリス(G. De Gasperis)、エックス・ワン(X. Wang)、ジェイ・ヤン(J. Yang)、エフ・エフ・ベッカー(F. F. Becker)、ピー・アール・シー・ガスコイン(P. R. C. Gascoyne),メジャーメント・サイエンス・アンド・テクノロジー(Meas. Sci. Technol.),1998年,9,518
【文献】エー・ケー・ジョンシャー(A. K. Jonscher),ロンドン(London),ネイチャー(Nature),1977年,267,673
【文献】ビー・オナラル(B. Onaral)、エイチ・エイチ・サン(H. H. Sun )、エイチ・ピー・シュヴァン(H. P. Schwan),米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・トランサクションズ・オン・バイオメディカル・エンジニアリング(IEEE Trans. Biomed. Eng.),1984年,31,827
【文献】ピー・エー・サークル(P. A. Cirkel)、ジェイ・ピー・エム・ファン・デル・プルーフ(J. P. M. van der Ploeg)、ジー・ジェイ・エム・コペル(G. J. M. Koper),フィジカ・エイ(Physica A),1997年,235,269
【文献】アール・エヌ・クラーク(編)(R. N. Clarke(Ed. )),「ア・ガイド・トゥー・ザ・キャラクタライゼーション・オブ・ダイエレクトリックマテリアルズ・アット・アールエフ・アンド・マイクロウェーブ・フリークエンシズ(A Guide to the Characterisation of DielectricMaterials at RF and Microwave Frequencies)」,ザ・インスティトゥート・オブ・メジャーメント・アンド・コントロール(英国)・アンド・国立物理研究所(エヌ・ピー・エル(ナショナル・フィジカル・ラボラトリー))(The Institute of Measurement & Control (UK) & NPL)発行,2003年
【文献】ジェイ・ベーカー‐ジャーヴィス(J. Baker-Jarvis)、エム・デー・ヤネシッツ(M. D. Janezic)、アール・エフ・リドル(R. F. Riddle)、アール・ティー・ジョンク(R. T. Johnk)、ピー・カボス(P. Kabos)、シー・ホロウェイ(C. Holloway)、アール・ジー・ゲイヤー(R. G. Geyer )、シー・エイ・グロブナー(C. A. Grosvenor),「メジャリング・ザ・パーミティビティ・アンド・パーミアビリティ・オブ・ロッシー・マテリアルズ:ソリッズ,リキッズ,メタルズ,ビルディング・マテリアルズ・アンド・ネガティブ‐インデックス・マテリアルズ(Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials)」,米国国立標準技術研究所(エヌ・アイ・エス・ティー(ナショナル・インスティトゥート・オブ・スタンダーズ・アンド・テクノロジー))・テクニカル・ノート(NIST Technical Note),2005年
【文献】「テスト・メソッズ・フォー・コンプレックス・パーミティビティ・(ダイエレクトリック・コンスタント)・オブ・ソリッド・エレクトリカル・インサレーティング・マテリアルズ・アット・マイクロウェーブ・フリークエンシズ・アンド・テンパーチャー・トゥー・1650°(Test Methods for complex permittivity (Dielectric Constant) of solids electrical insulating materials at microwave frequencies and temperatures to 1650 °)」,エー・エス・ティー・エム・スタンダード・デー2520(ASTM Standard D2520),米国材料試験協会(アメリカン・ソサイエティ・フォー・テスティング・アンド・マテリアルズ(American Society for Testing and Materials))
【文献】ヤネシッツ・エム(Janezic M.)、ベーカー‐ジャーヴィス・ジェイ(Baker-Jarvis J.),「フル‐ウェーブ・アナリシス・オブ・ア・スピリット‐シリンダ・レゾネータ・フォー・ノンデストラクティブ・パーミティビティ・メジャメンツ(Full-wave Analysis of a Split-Cylinder Resonator for Nondestructive Permittivity Measurements)」,米国電気電子学会(アイ・トリプルイー(インスティトゥート・オブ・エレクトリカル・アンド・エレクトロニクス・エンジニアーズ))・トランサクションズ・オン・マイクロウェーブ・セオリー・アンド・テクニークス(IEEE Transactions on Microwave Theory and Techniques),1999年10月,第47巻,第10号,p.2014~2020
【文献】ジェイ・クルプカ(J. Krupka)、エイ・ピー・グレゴリー(A. P. Gregory)、オー・シー・ロチャード(O. C. Rochard)、アール・エヌ・クラーク(R. N. Clarke)、ビー・リドル(B. Riddle),ジェイ・ベーカー‐ジャーヴィス(J. Baker-Jarvis),「アンサートゥンティ・オブ・コンプレックス・パーミティビティ・メジャメント・バイ・スプリット‐ポスト・ダイエレクトリック・リゾネータ・テクニークス(Uncertainty of Complex Permittivity Measurement by Split-Post Dielectric Resonator Techniques)」,ジャーナル・オブ・ザ・ヨーロピアン・セラミック・ソサイエティ(Journal of the European Ceramic Society ),2001年,第10号,p.2673-2676
【文献】「ベーシックス・オブ・メジャリング・ザ・ダイエレクトリック・プロパティーズ・オブ・マテリアルズ(Basics of Measuring the Dielectric Properties of Materials)」,アジレント・アプリケーション・ノート(Agilent application note),2005年4月28日,5989~2589EN
【発明の概要】
【0020】
本発明の装置は、この欠点をなくし、残存する収拾するシステムの能力を強調する持続性データ収集器の具体化を可能にし、必要に応じてデータを収集し、これが取り付けられる生きた生物有機体の自然な不変の形状に厳密に合致し、それにより通常の生活に対する干渉を最小限にする。
【0021】
したがって、本発明の目的は、電磁信号を発生させ、検出し、そして観測された電磁信号を認識することができる装置および方法を提供することによって先行技術の欠点を解決することにあり、かかる装置および方法は、有益な持続性データ収集法式を提供して、生物学的プロセス異常を検出し、名目上の生物学的プロセスを決定し、名目上の生物学的プロセスを特徴づけ、予想される一連の行為を阻止しまたは防ぐための先行する活動の定式化および実行を容易にする生物学的プロセスを識別し、そして是正のための評価および再治療をほぼリアルタイムでまたはリアルタイムで提供する。
【0022】
本発明の実施形態は、生物学的プロセスを観測された電磁信号を応答により生体内で達成させ、検出し、そして認識することができる装置および方法を提供する。
【0023】
本発明の実施形態は、異方性電気および/または機械的特性を備えた生体内生物有機体の誘電分光測定技術に関し、本発明の装置は、実際の物理的導波路が生物有機体の外側に位置した状態で電気的には生物有機体の内側に位置していると見なされる導波路、すなわち導波路素子の仮想イメージを生じさせる。
【0024】
最も大きな電磁信号が試験片中に結合されてインピーダンスが整合したときに可能な限り最も大きな電場を生じさせることが知られている状態で電磁分光法に関し、インピーダンスが整合されて被験体内の互いに異なる分析物相互間の分極の差に起因して最も小さな電場摂動を検出して測定することができるということがより重要である。
【0025】
「インピーダンス整合」という用語は、電気的、機械的、音響的、光学的、または誘電的である第1の信号媒体の一インピーダンスが信号を伝搬させる別の媒体のインピーダンスのように見えるようにすることを意味する。多くの場合、負荷インピーダンスを駆動源の源または内部インピーダンスに整合させることが必要になる。最大電力‐移送理論によれば、最大電力量を源から負荷に移送するには、負荷インピーダンスは、源インピーダンスに整合する必要がある。
【0026】
生物有機体における誘電分光に関し、重要な観点は、空隙によって生じる、信号エミッタと生物有機体との間のキャパシタンスの極端な変動性であり、そして、被験体としての人間および動物の生体内では、血液の豊富さ、汗、皮膚の温度の影響、皮膚および組織の含水量および最も重要なこととして周波数全体にわたる皮膚キャパシタンスのモデルがないことという追加の問題である。かくして、生物学的の生体内誘電分光法における制限要因は、生物学的被験体の異方性、特に被験体としての動物の皮膚の異方性である。
【0027】
本発明の実施形態は、複数の誘電体を用いてインピーダンス整合を異方性生物学的被験体の複合誘電混合物によって生じる有効誘電媒体の電磁インピーダンスに可能な限り近づけた状態で導波路構造体を作ることによってこの要因を回避する。
【0028】
当業者には理解されるように、本発明の装置は、異方性媒体中に埋め込まれた送電線の一般的形態を取り、この場合、誘電異方性の強度の作用効果は、これらの規則、すなわち、a)電場が最も高い誘電率を持つ方向に最も強く生じるという規則、b)電場が最も高いεを辿る程度が異方性の強度に比例するという規則、c)インピーダンスが異方性媒体の存在下において変化するという規則、d)電場が実際に異方性に「従う」という規則に従う。
【0029】
本発明の装置は、生物学的被験体界面へのセンサのところでの異方性をほぼゼロに減少させ、それによりこの界面が1つの誘電特性を別の誘電特性に整合させることによってより等方性になるようにし、それにより追加的被験体界面へのセンサが見えないようにし、それにより実際の物理学的導波路センサが生物有機体の外側に位置した状態で導波路が生物有機体の内側に効果的に電気的に結像するようにし、かくして生物学的被験体の異方性が測定値に影響を及ぼすようにすることができる。
【0030】
次に、誘電分光法の通常のやり方では、導波路構造体を100kHzから1GHzまでの極めて広い周波数範囲全体にわたって周波数成分の広がりを持つ電気信号で駆動する。
【0031】
導波路構造体は、複数の追加の導波路構造体によって信号発生器に結合され、適当なコネクタにより受信器に結合され、それにより入力信号に対する生物有機体の応答を記録する。
【0032】
したがって、本発明の装置は、構成要素の電磁信号応答を生じさせ、検出し、そして認識することができる装置および方法を提供することによって先行技術の欠点を解決し、この装置は、かかる装置および方法は、有益な持続性データ収集法式を提供して、生物学的プロセス異常を検出し、名目上の生物学的プロセスを決定し、名目上の生物学的プロセスを特徴づけ、予想される一連の行為を阻止しまたは防ぐための先行する活動の定式化および実行を容易にする生物学的プロセスを識別し、そして是正のための評価および再治療をほぼリアルタイムでまたはリアルタイムで提供し、かくして本発明の目的が達成される。
【0033】
本発明によれば、生体の電気透過率の生体内検出のためのマイクロストリップ導波路構造体であって、生体の電気透過率は、既知の透過率成分および未知の透過率成分を含み、マイクロストリップ導波路構造体が第1の側部および第1の側部と反対側の第2の側部を備えた誘電複合体を有することを特徴とするマイクロストリップ導波路構造体が提供される。誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有し、第1の誘電領域と第3の誘電領域との間に位置する第2の誘電領域は、第1の誘電領域および第3の誘電領域の電気透過率とは異なる異方性電気透過率を有する。透過率の差は、値の差であり、等方性の差でもある。第2の誘電領域の異方性電気透過率は、生体の電気透過率の既知の透過率成分に実質的に等しいよう(例えば20%以内に)選択される。マイクロストリップ導波路構造体は、誘電複合体の第1の側部上に形成されたマイクロストリップ送信線をさらに有し、マイクロストリップ送信線は、第1の誘電領域上に形成された入力区分、第2の誘電領域上に形成されたラジエータ部分、および第3の誘電領域上に形成された出力部分を有する。また、グラウンドプレーンが誘電複合体の第2の側部上に形成されている。
【0034】
別の特徴によれば、第1の誘電領域の電気透過率は、第3の誘電領域の電気透過率と同等である。
【0035】
別の特徴によれば、マイクロストリップ送信線のラジエータ部分は、平面巻線として形成されている。
【0036】
別の特徴によれば、平面巻線は、交互曲折体として形成されている。
【0037】
別の特徴によれば、平面巻線は、平面螺旋体として形成されている。
【0038】
別の特徴によれば、誘電複合体は、湾曲している。
【0039】
別の特徴によれば、第2の誘電領域の誘電率は、25~55である。
【0040】
別の特徴によれば、第2の誘電領域の誘電率は、2~3である。
【0041】
別の特徴によれば、第2の誘電領域の誘電率は、偏差±10%の400である。
【0042】
別の特徴によれば、誘電複合体の厚さは、生体の高さの半分未満である。
【0043】
別の特徴によれば、第2の誘電領域の誘電率は、100kHz~220MHzの周波数範囲において、生体の電気透過率の既知の透過率成分に実質的に等しいよう選択されている。
【0044】
別の特徴によれば、第1および第3の誘電領域のうちの少なくとも一方は、異方性誘電率を有する。
【0045】
本発明によれば、生体の成分の生体内測定のための誘電分光システムであって、生体は、第1の誘電率を有する第1の組をなす成分、および測定されるべき誘電率を備えた第2の組をなす成分を有し、本システムは、第1の側部および第1の側部と反対側の第2の側部を備えた誘電複合体を備えたセンサを有することを特徴とする誘電分光システムが提供される。誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有する。第2の誘電領域は、第1の誘電領域および第3の誘電領域の電気透過率とは異なる異方性電気透過率を有する。第2の誘電領域の異方性電気透過率は、生体の電気透過率の既知の透過率成分に実質的に等しいよう選択されている。センサは、誘電複合体の第1の側部上に形成されたマイクロストリップ送信線をさらに有し、マイクロストリップ送信線は、第1の誘電領域上に形成された入力区分、第2の誘電領域上に形成されたラジエータ部分、および第3の誘電領域上に形成された出力部分を有する。センサは、誘電複合体の第2の側部上に形成されたグラウンドプレーンをさらに有する。本システムは、入力区分に結合されていて、複数の互いに異なる周波数で信号を提供するよう構成された信号発生器と、入力区分に結合されていて、センサからの反射信号を検出するカップラと、送信信号を受信するようセンサの出力区分に結合された受信器とをさらに有する。
【0046】
別の特徴によれば、第1の誘電領域の電気透過率は、第3の誘電領域の電気透過率と同等である。
【0047】
別の特徴によれば、マイクロストリップ送信線のラジエータ部分は、平面巻線として形成されている。
【0048】
本発明によれば、生体の生体内検出のための誘電分光センサであって、第1の側部および第1の側部と反対側の第2の側部を備えた誘電複合体を有することを特徴とする誘電分光センサもまた提供される。誘電複合体は、直線状に整然と並べられた3つの誘電領域、すなわち、第1の誘電領域、第2の誘電領域、および第3の誘電領域を有する。第2の誘電領域は、第1の誘電領域と第3の誘電領域との間に位置し、かつ第1の誘電領域および第3の誘電領域の電気透過率とは異なる異方性電気透過率を有する。センサは、誘電複合体の第1の側部上に形成されたマイクロストリップ送信線を有し、マイクロストリップ送信線は、第1の誘電領域上に形成された入力区分、第2の誘電領域上に形成されたラジエータ部分、および第3の誘電領域上に形成された出力部分を有する。また、グラウンドプレーンが誘電複合体の第2の側部上に形成されている。第2の誘電領域の異方性電気透過率は、所与の周波数範囲において、ラジエータ部分が生体中に電気的に埋め込まれているように見えるよう選択されている。
【0049】
別の特徴によれば、第1の誘電領域の電気透過率は、第3の誘電領域の電気透過率と同等である。
【0050】
別の特徴によれば、マイクロストリップ送信線のラジエータ部分は、平面巻線として形成されている。
【0051】
別の特徴によれば、平面巻線は、交互曲折体として形成されている。
【0052】
別の特徴によれば、平面巻線は、平面螺旋体として形成されている。
【0053】
本発明を生体内分光のための装置に具体化したものとして本明細書において図示するとともに説明するが、それにもかかわらず、本発明は、図示の細部に限定されるものではなく、というのは、種々の改造および構造的変更を本発明の精神から逸脱することなく、しかも特許請求の範囲に記載された本発明の均等範囲の範囲に含まれた状態で本発明に対して実施できるからである。加うるに、本発明の例示の実施形態の周知の構成要素については詳細には説明せずまたは本発明の関連の細部を不明瞭にしないように省く。
【0054】
本発明にとって特有であると見なされる他の特徴が特許請求の範囲に記載されている。必要ならば、本発明の詳細な実施形態を本明細書において開示するが、理解されるべきこととして、開示する実施形態は、種々の形態で実施できる本発明の例示に過ぎない。したがって、本明細書において開示する特定の構造的および機能的細部は、本発明を限定するものと解されてはならず、単に特許請求の範囲に記載された本発明の基礎として、かつ当業者を教示して本発明を事実上任意適当に詳細な構造で種々の形態で採用するための例示の基礎として解されるべきである。さらに、本明細書において用いられる用語および語句は、本発明を限定するものではなく、これとは異なり、本発明の理解可能な説明を提供するものである。明細書は、新規と見なされる本発明の特徴を記載した特許請求の範囲で終わっているが、本発明は、図面と関連して以下の説明を考慮すると、良好に理解されると考えられ、図中、同一の参照符号は、繰り返し用いられる。図面の図は、縮尺通りには描かれていない。
【0055】
本発明を開示して説明する前に、本明細書で用いられる用語は、特定の実施形態だけを説明する目的のためであって、本発明を限定するものではない。原文明細書で用いられる“a ”または“an”という用語は、1つまたは2つ以上として規定される。本明細書で用いられる「複数」という用語は、2つまたは3つ以上として規定される。本明細書で用いられる「別の」という用語は、少なくとも第2または第3以上として規定される。原文明細書で用いられる“including”(訳文では「~を含む」としている場合が多い)および/または“having”(「~を備える」としている場合が多い)は、“comprising”(訳文では、「~有する」としている場合が多い)として規定される(すなわち、“comprising”は、非排他的な用語である)。本明細書で用いられる「結合され」という用語は、「連結され」と規定され、ただし、必ずしも直接的ではなく、あるいは必ずしも機械的ではない。「~を提供する」という用語は、本明細書においては、その最も広い意味で規定され、例えば、物理的存在の状態に至る/なる、利用できる、かつ/あるいは一度にまたはある期間にわたって全体としてまたは多数の部分として誰かにまたは何かに供給することを意味する。
【0056】
本発明の実施形態の説明において、別段の指定がなければ、例えば「上」、「下」、「左」、「右」、「内側」、「外側」、「前側」、「後側」、「頭」、「尾」などという用語によって示される包囲または位置的関係は、図面を基準とした包囲または位置的関係であり、図面は、本発明の実施形態の説明を容易にするとともに説明を簡単にするに過ぎず、器具またはコンポーネントが特定の包囲を有しなければならずまたは特定の包囲に構成されまたは作用されることを示しまたは意味するものではなく、かくして、これらの表現は、本発明の実施形態に対する限定と理解することはあり得ない。さらに、例えば「第1」、「第2」、「第3」などのような用語は、説明の目的のために用いられているに過ぎず、相対的な重要性を指示しまたは意味するものと解されることはあり得ない。
【0057】
本発明の実施形態の説明において、別段の明示の指定および限定がなければ、例えば「取り付けられ」、「結合され」、「連結され」という用語は、広く解釈されるべきであり、例えば、この用語は、固定的に連結されても良く、取り付け可能に連結されても良くまたは一体的に連結されても良く、機械的に連結されても良く、または電気的に連結(接続)されても良く、直接的に連結されまたは中間媒体を介して間接的に連結されても良い。本明細書で用いられる「約」または「ほぼ」という用語は、明示的に指示されていてもそうでなくてもいずれにせよ、全ての数値に当てはまる。これらの用語は、一般に、当業者が列記された値と同価である(すなわち、同一の機能または結果を有する)と見なす範囲の値を意味している。多くの場合、これらの用語は、最も近くの有効数字に丸められた数値を含む場合がある。本明細書では、「長手方向」という用語は、別段の指定がなければ、送電線要素の細長い方向に対応した方向を意味しているものと理解されるべきである。本明細書で用いられる「プログラム」、「ソフトウェアアプリケーション」などの用語は、コンピュータシステム上で実行可能に設計された命令シーケンスとして定義される。「プログラム」、「コンピュータプログラム」、または「ソフトアプリケーション」は、サブルーチン、ファンクション、手順、オブジェクト方法、オブジェクト具体化、実行可能なアプリケーション、アプレット、サーブレット、ソースコード、オブジェクトコード、共用ライブラリ/動的ロードライブラリおよび/またはコンピュータシステム上で実行可能に設計された他の命令シーケンスを含む場合がある。当業者であれば、特定の状況に応じて本発明の実施形態において上述の用語の特定の意味を理解できよう。
【0058】
添付の図面は、種々の実施形態をさらに説明するのに役立つとともに本明細書に従って種々の原理および利点を全て説明するのに役立ち、図中、同一の参照符号は、別々の図全体を通じて同一のまたは機能的に同一の要素を指しており、添付の図面は、以下の詳細な説明と一緒になって、本明細書に組み込まれまたはその一部をなす。
【図面の簡単な説明】
【0059】
【
図1】幾つかの実施形態に従って複合誘電構造を有するセンサを用いる誘電分光システムのブロック図である。
【
図2】幾つかの実施形態に従って設計された誘電分光センサの側面断面図であり、この誘電分光センサが被験体の周波数応答を測定するために用いられている状態を示す図である。
【
図3】幾つかの実施形態に係る誘電分光センサの平面図である。
【
図4】幾つかの実施形態に係る誘電分光センサの平面図である。
【
図5】幾つかの実施形態に係る湾曲した誘電分光センサの側面図である。
【
図6】誘電分光センサの側面断面図であり、放射またはラジエータ部分がセンサと皮膚の界面を越えて被験体の内部にどのようにして結像するかを示す図である。
【
図7】幾つかの実施形態に従って誘電分光センサを用いる方法の流れ図である。
【
図8】幾つかの実施形態に従って誘電分光のためのセンサ内で用いられる異方性誘電率を有する物質部分の一例を示す図である。
【発明を実施するための形態】
【0060】
明細書は、新規と見なされる本発明の特徴を記載した特許請求の範囲で終わっているが、本発明は、図面と関連して以下の説明を考慮すると、良好に理解されると考えられ、図中、同一の参照符号は、繰り返し用いられる。開示する実施形態は、種々の形態で実施できる本発明の例示に過ぎない。
【0061】
図1は、幾つかの実施形態に従って複合誘電構造を有するセンサ106を用いる生体内誘電分光システム100のブロック図である。センサは、生物学的被験体108に対して誘電分光法を実施するために用いられ、被験体108は、図示のように、大きな生体または他の生物学的実態の一部分である。センサ106と被験体108が当たる場所には、界面が存在する。例えば、被験体が動物(または人間)である場合、センサは、被験体の皮膚に接触することになり、被験体の皮膚は、可変性かつ異方性の誘電コンポーネントを提供する。通常、温度、血液の豊富さ、汗などが所与の場合、皮膚の特定の誘電応答は、誘電分光測定のための従来型開口形同軸プローブを用いるために特に知られる必要がある。しかしながら、センサ106は、皮膚一般の異方性誘電材料に一致する異方性誘電材料を備えた状態で設計されている。その結果、センサのラジエータ部分は、被験体内に位置するように電気的に結像し、皮膚界面に対するセンサの影響を除く。センサは、特定の被験体、例えば人間、種々の動物、および種々の植物被験体、例えばアボカド、バナナなど向きに構成されているのが良い。本発明の原理をいったん理解すると、当業者であれば、本明細書に示された教示を種々の試験被験体に適用することができる。
【0062】
可変周波数発生器102が試験信号を種々の周波数で提供するよう用いられるのが良い。試験信号は、所与の被験体108について関心のある1つまたは複数の一定の周波数間隔のトーン信号であるのが良い。試験信号は、信号線104を経てセンサ106に提供される。受信器/分析器110は、次に、センサの信号出力(例えばS21パラメータ)ならびに反射信号成分(例えばS11パラメータ)を測定することができる。反射信号成分をカップラ112を用いて測定でき、他方、出力線114は、センサ106を通過した送信信号成分を測定するために使用できる。測定信号応答パラメータをデータ線116またはこれと等価な接続部によりコンピュータ118に提供されるのが良い。コンピュータ118は、可変周波数源102の制御を例えば制御線112により可能にするソフトウェアプログラムを実行するのが良い。コンピュータはまた、例えば、種々の周波数における測定値をコンピュータ118に取り付けられたコンピュータ118の一部であるかコンピュータ118によってアクセス可能な(例えば、ネットワークにより)データ格納装置120内に提供できる較正済み試験サンプルで生じた測定値と比較することによって、受信器/分析器110によって得られた結果を分析することができる。データ格納装置120は、測定試験結果に適用できる関心のある1つの成分のための誘電スペクトル応答モデルを格納するのが良い。
【0063】
図2は、幾つかの実施形態に従って設計され、被験体204の誘電周波数応答を測定するために用いられている誘電分光センサ200の側面断面図である。誘電分光センサ200は、
図1のセンサ106と同一であるのが良く、このセンサ200は、連続して配列された3つの誘電材料領域、すなわち、第1の誘電領域208、第2の誘電領域210、および第3の誘電領域212から成る誘電複合構造体202を有する。第2の誘電領域210は、第1の誘電領域208および
第3の誘電領域212の誘電率の値とは異なる誘電率の値を有する。異なるという用語は、これら領域が周波数全体にわたって互いに異なる誘電率値を有し、さらに異なる等方性を示すことができるというを意味している。幾つかの実施形態では、第1および第2の誘電領域208,212の誘電率が互いに等しいのが良い。第2の誘電領域210は、異方性誘電率をさらに示すのが良く、このことは、誘電率の値が誘電率を測定する方向に依存していることを意味している。これは、
図8の実施例として示されており、
図8では、3つの互いに異なる寸法方向において、誘電材料が互いに異なる誘電率ε
1,ε
2,ε
3を有することができる。誘電複合体202の被験体に向いた表面上には、導電層によって形成されたマイクロストリップ送信または導波路が設けられ、このマイクロストリップ送信または導波路は、第1の誘電領域208上の誘電複合体202の第1の端部のところに入力区分214を有する。入力区分214は、第2の誘電領域210上のラジエータまたは放射部分216に結合されている。ラジエータ部分は、電磁波を外方に、そして被験体204中に放射するよう設計されている。それと同時に、電磁波は、同様に、逆方向に放射して第2の誘電領域210中に入る。放射部分216は、第3の誘電領域212上の出力区分218と連続した状態で結合されている。誘電複合体202の反対側または閉塞部上にはグラウンドプレーン220が設けられ、このグラウンドプレーンは、3つ全ての誘電領域208,210,212を横切って延びている。供給ライン222が周波数発生器から信号を提供することができる。カップラが入力線222上の反射信号S
11を測定することができる。受信線224は、センサ200を通過した送信信号S
21を受信し、そして送信信号を測定のために受信器/分析器に提供することができる。
【0064】
被験体204は、センサ200を被験体204の内部から分離する皮膚206または同様な外層を有するのが良い。この皮膚206は、被験体204の内部とは異なる誘電率を呈し、この誘電率は、従来型誘電分光技術により皮膚206を越えたところでの測定を行うために高い程度まで知られなければならない。しかしながら、誘電複合体を用いて、皮膚206の誘電率に近似することで足りる。したがって、第2の領域の誘電率は、被験体としての人間については25~55のオーダであるのが良い。乾燥状態の木については、誘電率は、2~3のオーダであるのが良い。果物としてのアボカドについては、誘電率は、約400のオーダであるのが良い。
【0065】
通常の誘電分光法では、入力区分214、放射部分216、および出力区分218から成る導波路構造体を100kHzから1GHzまでの極めて広い周波数範囲全体にわたって周波数成分の広がりを持つ電気信号で駆動する。導波路構造体214,216,218は、複数の追加の導波路構造体222,224によって信号発生器に結合され、適当なコネクタによって受信器に結合され、入力信号に対する被験体204の応答が測定されて記録される。第1、第2、および第3の誘電領域208,210,212の各々は、一寸法方向、2つの寸法方向または3つの寸法方向において異方性であるのが良く、それにより、各領域208,210,212は、できるだけ厳密に被験体204に合致するようこれらの複素誘電率er
*が互いに異なるとともに誘電領域208,210,212の複素磁気透過率μr
*が互いに異なり、このことは、皮膚206および他の成分が関心のあるものではないことを意味している。それにより、関心のある成分は、未知の誘電率および透過率を有する。導波路部分214,216,218の寸法ならびに誘電領域208,210,212の寸法は、選択された複素誘電率er
*および複素磁気透過率μr
*ならびに所望の全体的インピーダンスを選択するよう所望に応じて変更可能であるのが良い。
【0066】
被験体204の高さが誘電領域210の高さよりも非常に高い場合、全体的システムの有効電気透過率er
*が領域210の複素誘電率および被験体204の複素誘電率の混合であることが当業者によって理解できる。排他的形態による表現が可能な場合があるが、旧式の混合ルール、例えばマクセル・ガーネットの式およびブルッゲマンの式は、信頼性をもって機能することはなく、その最も蓋然性の高い理由は、これらの規則が生体内試験下において生物学的物質にとって有用ではない複合マトリックス中への一様な含有物を必要とするからである。
【0067】
本発明のインピーダンス分光センサ200から得られた値は、マルチステッププロセスにおいて電気信号に対応した隔離状態の個々の現象にある。各現象が特有の関連した時間定数を有すると仮定すると、種々の現象を周波数域で分離することができる。関心のある現象は、被験体204の種々の生物学的成分のうちの任意のものを含むのが良い。例えば、血糖(BS)レベルを血糖(BG)の特徴的な応答の検出および測定に基づいて測定することができる。任意の種類の外乱を適用することができるが、報告された大抵の研究は、僅かな正弦波電流外乱を平衡系に適用して対応の電圧系統を測定する。センサ200の反射および送信値のコンピュータ処理は、試験下にある生物学的物体の異方性によっては影響を受けないということは当業者であればさらに理解されよう。手首領域の人間の組織の混合物の有効誘電率は、30~55に属することが判明した。したがって、手首領域のところの成分を測定するためには、第2の誘電領域210は、どの成分が測定/検出中であるかに応じた関心のある周波数範囲にわたってこの領域に誘電率値を有するべきである。
【0068】
周波数の関数としての物質の複素電磁誘電率特徴づけのための大抵の普及している手順のうちの1つは、送信線において周波数にわたる試験下において試験片の送信/受信測定値に基づいてニコルソン・ロス‐ウェアー(NRW)法(同じ議論の方向でさらに話を進めると、マックスウェル‐ワグナー分極に起因した複素ベータ分散機構の特徴づけ)である。試験下にある物質の統制は、周波数の関数として物質中のインピーダンスおよび波速から導出される。この方法の普及の主な理由は、閉形式解を試験片の厚さが材料中の半波長の整数倍未満である場合に作ることができ、もしそうでなければ、この方法が波の位相の2π周期性に起因して曖昧な結果を生じさせることにある。幾つかの実施形態では、本発明のセンサ応答は、生物学的試験片(例えば被験体204)を複合材料として構成する成分の多数の値の平均から得られる複合材料としての生体内生物学的試験片の巨視的電気的性質を表す有効誘電媒体の近似値を見出すための一般に用いられている技術、例えば埋め込み形RFマイクロストリップに基づいて別の送信線形態でNRW技術の変形例を用いて処理できる。かくして、本発明の装置は、2つの誘電材料、すなわち、完全に既知の特性を備えた第1の誘電材料(例えば領域210)と既知と未知の特性の何らかの組み合わせを備えた第2の誘電材料(例えば被験体204)との間の境界条件ではなく界面条件下における電磁場の挙動を用いて第2の誘電材料(例えば被験体204)の未知の特性を測定する。誘電領域210内の被験体204の構成成分のうちの幾つかの周波数についての誘電応答を近似することによって、「既知の」構成成分をこれらが第2の誘電領域210によって効果的に合わされたときに効果から除かれる。かくして、電気的には、効果的に、放射部分216は、
図6に示されているように被験体204の内部にありまたはこの中に埋め込まれたように見える。
図6では、横または擬似横波602を被験体204中に放射するのが良い。誘電領域210の誘電率と被験体204(例えば皮膚)の構成成分の誘電率がほぼ同じなので、放射部分216は、これが埋め込み形マイクロストリップとして線604によって示されているように被験体204の内側に位置したかのように効果的に挙動する。
【0069】
構成成分レベルでは、生きている被験体204の電磁的誘電率値は、ばらつきがあり、不均一である。多くの構成成分値の正確な計算は、ほぼ不可能である。しかしながら、受け入れることができる近似値を求めることが可能であり、かかる近似値は、被験体204の有用なパラメータおよび特性を全体として表す。この意味において、有効中間近似値は、計算から導き出されるその成分の特性および相対フラクションに基づく媒体(被験体204)の表示である。かくして、本発明の装置は、放射部分216の下に位置する領域210が既知の特性を備えた誘電体で満たされるセンサ構造体を用いることによって共通のRF埋め込み形マイクロストリップを改造しており、放射部分216の上に位置する被験体204は、不完全に知られた特性を有する。すなわち、知られているものもあれば知られていないものもある。被験体204の周波数についての誘電特性のうちの幾つかは、先験的に知られている場合があり、放射部分216の下に位置する第2の誘電領域210は、被験体204の既知の誘電特性とほぼ同じ電気的特性を備えた状態で形成でき、放射部分216は、グラウンドプレーン220と組み合わせた状態で、物理的に被験体204の外側に位置したままの状態で被験体204内に電気的に埋め込まれた埋め込み形マイクロストリップ送信線として働く。
【0070】
センサ200は、被験体204と誘電複合体202の既知の誘電体の組み合わせによって形成される有効媒体の送信線および送信/反射測定をセンサの3つの部分、すなわち、第1の誘電領域208上の入力区分214、第2の誘電領域210上の放射部分216、および第3の誘電領域212上の出力区分218の全てを考慮する送信線法の使用により行うことができるときに給電可能である。
【0071】
試験下にある被験体204の特性は、周波数の関数として物質中のインピーダンスおよび波速から導出される。既知の誘電体(208,210,212)被験体204により作られた誘電有効媒体の電磁的誘電率特徴づけをニコルソン・ロス・ワイヤー(NRW)法、そして同じ議論の方向でさらに話を進めると、マックスウェル‐ワグナー分極に起因した複素ベータ分散機構の特徴づけによって得ることができ、それにより試験下にある被験体204の諸特性を生体内で検索することができる。
【0072】
本発明のセンサ200を利用して周波数の関数として複素電磁的誘電率を求める別の方法は、ニュートン‐ラプソンの根を求める方法を用いた計算を実施し、誘電率計算にのみ適したNIST反復法である。この方法は、反射および透過係数を計算するために4つ全ての散乱パラメータ(S11,S21,S12,S11)または1対(S11,S21)の散乱係数を利用する。この方法は、良好な初期推定が有用な場合に良好に働き、サンプルの厚さが二分の一波長nλg/2の整数倍であるときにNRW法に存在する不正確なピークをバイパスする。この方法は、長尺のサンプルおよび低損失物質の特徴づけに適している。
【0073】
本発明のセンサ200を用いて周波数の関数として物質の複素電磁的誘電率を求めるさらに別の方法は、非反復法であり、この非反復法は、NRW法と類似しているが、異なる定式を有し、この非反復法は、透過率μr=1の場合の誘電率計算に適している。この非反復法は、反射および透過係数を計算するために被験体204の4つ(S11,S21,S12,S22)の散乱パラメータ全てまたはちょうど2つ(S11,S21)の散乱パラメータを利用する。この方法は、恣意的なサンプル長さについて全周波数範囲にわたって安定であるという利点を有し、しかもNRW法の単純化された変形例に基づいている。サンプル中の二分の一波長の倍数に対応した周波数においては相違が観測されない。この方法は、誘電率の初期推定を必要とせず、計算を極めて迅速に実施することができる。この方法の精度は、反復法と同等であり、NRW法からの部分的に異なる定式を用いる。この方法は、他の測定サンプル、例えばマイクロストリップまたは同一平面上の線に容易に拡張可能である。この方法はまた、有効電磁パラメータの表現に見える誘電率および透過率を有する。有効電磁パラメータは、伝搬モードを表している。
【0074】
本発明のセンサ200を利用して周波数の関数として複素電磁的誘電率を求めるさらに別の方法は、短絡線(SCL)法であり、この方法は、導波路に対する1ポート測定法である。SCL法は、NIST反復法の場合と同一のニュートン‐ラプソンの数値的アプローチを用いた計算を行い、誘電率計算にのみ適している。この方法は、反射係数を計算するために被験体204のS11パラメータのみを利用する。この方法は、正確な結果を得るために良好な初期推定を必要とする。また、この方法では、正確な測定値が得られるようサンプル長さおよび位置が既知であることが必要である。
【0075】
図3は、幾つかの実施形態にかかる誘電分光センサ202の平面図である。マイクロストリップ導波路は、第1の誘電領域208上の入力区分214、第2の誘電領域210上の放射部分216、および第3の誘電領域212上の出力区分218で構成されている。信号を矢印300で示されているように構造体に印加するのが良く、その結果、矢印302で示されている反射波および矢印304で示されている透過波が生じる。上述の方法を用いてこれら応答の値を用いると、放射部分216と接触状態にある被験体(例えば204)の構成要素の「未知の」誘電率を求めることができる。図示のように、放射部分は、中央給電形完全交互曲折体であり、このことは、導電トレースが中央で始まり、一方の側に横行し、次に向きをぐるりと変えて他方の側に戻るなどし、そして出力区分218に結合する。
【0076】
図4は、幾つかの実施形態にかかる有効分光センサ400の平面図である。センサ400は、センサ202と実質的に同一であり、第1の誘電部分または領域402、第2の誘電領域404、および第3の誘電領域406を有する。マイクロチップ導波路構造体の入力区分408が第1の誘電領域402上に形成されている。放射部分または素子412が第2の誘電領域404上に形成され、これには入力区分408によって給電される。出力区分410が第3の誘電領域406上に形成され、この出力区分は、放射部分412の端の結合されている。図示のように、放射部分412は、中央給電形平面状螺旋巻線である。給電線414が入力区分408を放射部分412の中央に接続し、そしてこの給電線は、第2の誘電部分404の頂部上の巻線トレースの下で第2の誘電部分404を横切っている。第2の領域部分404の誘電率は、所与の被験体のある特定の構成成分の誘電率に近似するよう選択されている。
【0077】
図5は、幾つかの実施形態にかかる湾曲誘電分光センサ500の側面図である。センサ500は、湾曲しまたは違ったやり方で対応の形をした被験体を受け入れるよう形作られるのが良い。例えば、湾曲センサ500は、凹部516を形成し、患者の手首をこの凹部内に入れてセンサ500と接触状態に配置することができる。センサ500は、3つの誘電領域502,504,506を有する。誘電領域504の誘電率は、試験対象のまたは算定対象の構成成分に用いられる周波数範囲内で試験対象ではない被験体の構成成分に実質的に合致するよう選択されており、この誘電率は、誘電領域502,506の誘電率とは異なる。かくして、マイクロストリップ導波路が第1の誘電領域502上の入力区分510で構成され、入力区分510は、第2の誘電領域504上の放射部分508に給電し、放射部分508の出力部は、第3の誘電領域506上の出力区分512に結合されている。グラウンドプレーン514がマイクロストリップ導波路素子510,508,512から見て誘電領域502,504,506の反対側に設けられている。
【0078】
図7は、幾つかの実施形態に従って誘電分光センサを用いる方法700の流れ図である。開始ステップ702において、試験のための被験体を特別にまたは一般的に識別する。ステップ704において、例えば
図1に示されたセンサおよびシステムを用意し、この場合、センサは、誘電複合体の一方の側上に配置されたマイクロストリップ導波路構造体と直列に配列された3つの区分および反対側に設けられたグラウンドプレーンで形成された誘電複合体を有する。マイクロストリップ導波路構造体は、第1の誘電領域上の入力区分、第2の誘電領域上の放射素子、第3の誘電領域上の出力区分で構成されている。第2の誘電区分の誘電率は、既知である試験中の被験体のある特定の構成成分の誘電率に等しいよう選択されている。これら電気的性質は、被験者および測定対象の構成成分に基づいて様々であろう。さらに、第1および第3の誘電領域の誘電率は、第2の誘電領域の誘電率とは異なっている。
【0079】
ステップ706において、センサを被験体と接触関係をなして配置し、特に、マイクロストリップ導波路の放射素子を被験体に向けて配置する。ステップ708において、種々の周波数の一連の信号をセンサに印加し、用いられる各周波数について、反射および透過信号を測定する。反射信号をセンサの入力部のところで測定し、透過信号をセンサの出力部のところで(例えば、放射素子の他方の側で)測定する。ステップ710において、測定された反射および透過信号を処理して試験対象の構成成分の既知のモデル応答と比較する。ステップ712において、記録を準備しまたは発生させ、次にこの方法を終了する(714)。
【0080】
実際には、本明細書において図示するとともに説明したように構成されたセンサを用いて、横電磁(TEM)波を擬似TEM波として放射素子から発射し、そして誘電複合体および試験対象の被験体によって結果的に生じたインピーダンスと組み合わせてマイクロストリップ導波路の素子によって変換する。電場を第2の誘電領域と放射素子およびグラウンドプレーンの組み合わせによって被験体内に生じさせる。被験体と第2の誘電領域が同一またはほぼ同一なので、被験体と放射素子との界面のところで導波路構造体によってもたらされる異方性は、ほぼゼロに減少し、それによりこの界面は、一方の誘電特性を別の誘電特性に合致させることによってより等方性になる。かくして、界面が効果的に消え、それにより実際の物理学的センサが被験体の外側に位置した状態で放射要素に被験体の内側に電気的に結像させる。
【0081】
放射素子を通過したTEM波は、出力区分およびグラウンドプレーンによって第3の誘電素子と組み合わせた状態で受信器の公称インピーダンスに変換される。当業者であれば理解されるように、上述したようなマイクロストリップ導波路形態のインピーダンスは、50オームという公称インピーダンスである必要はない。さらに、当業者であれば理解されるように、誘電領域は、一寸法方向、二寸法方向、または三寸法方向において異方性であるのが良く、したがって、誘電複合体領域の複素誘電率および複素透磁率は、できる限り厳密に生物学的試験片に合致するよう選択される。
【0082】
また、当業者であれば理解されるように、各素子の寸法は、マイクロストリップ導波路素子の幅および厚さを調節してまたは変更することによって所望の誘電率および透磁率を達成して所望の全体的インピーダンスを算定するよう変えるよう様々であるのが良い。さらに理解されるように、被験体と組み合わされるセンサの結果として生じる誘電率および透磁率は、本明細書において説明した種々の方法を用いて測定できる。
【0083】
したがって、マイクロストリップ導波路のラジエータ部分が試験対象の被験体の内側に効果的に結像して被験体のある特定の構成成分の透磁率を測定することができるようにするマイクロストリップ導波路構造体を形成するセンサおよび種々の関連方法を開示した。本発明の構成は、非侵襲的技術の必要性をなくすとともに被験体の生体内検査を可能にする。したがって、被験体を壊さないでまたは被験体としての動物/人間の場合には不快感を生じさせることなく、被験体内の動的プロセスを継続的にモニタすることができる。