(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-13
(45)【発行日】2024-05-21
(54)【発明の名称】接合体の製造方法
(51)【国際特許分類】
C03C 27/04 20060101AFI20240514BHJP
H01L 23/02 20060101ALI20240514BHJP
H01L 23/10 20060101ALI20240514BHJP
【FI】
C03C27/04 B
H01L23/02 H
H01L23/02 D
H01L23/10 A
(21)【出願番号】P 2020129420
(22)【出願日】2020-07-30
【審査請求日】2023-03-20
(31)【優先権主張番号】P 2020064412
(32)【優先日】2020-03-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000232243
【氏名又は名称】日本電気硝子株式会社
(74)【代理人】
【識別番号】100107423
【氏名又は名称】城村 邦彦
(74)【代理人】
【識別番号】100120949
【氏名又は名称】熊野 剛
(74)【代理人】
【識別番号】100129148
【氏名又は名称】山本 淳也
(72)【発明者】
【氏名】白神 徹
【審査官】有田 恭子
(56)【参考文献】
【文献】国際公開第2020/050031(WO,A1)
【文献】特開2013-239609(JP,A)
【文献】国際公開第2017/212828(WO,A1)
【文献】特開2015-023263(JP,A)
【文献】特開2013-021079(JP,A)
【文献】特開2017-212251(JP,A)
【文献】特開2013-119501(JP,A)
【文献】特開2001-326290(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03C 27/04
H01L 23/02
H01L 23/10
B23K 26/00-26/70
(57)【特許請求の範囲】
【請求項1】
高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、
前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、
前記接合工程は、前記レーザ光の照射により前記封着材料の軟化点未満の温度で前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料の軟化点以上の温度で前記封着材料を加熱する第二加熱工程と、を備えることを特徴とする接合体の製造方法。
【請求項2】
高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、
前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、
前記接合工程は、前記レーザ光の照射により前記封着材料が軟化流動しない温度で前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料が軟化流動する温度で前記封着材料を加熱する第二加熱工程と、を備えることを特徴とする接合体の製造方法。
【請求項3】
高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、
前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、
前記接合工程は、前記レーザ光の照射により前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料を加熱する第二加熱工程と、を備え、
前記第一加熱工程における前記レーザ光の出力が、前記第二加熱工程における前記レーザ光の出力よりも小さいことを特徴とする接合体の製造方法。
【請求項4】
前記準備工程では、前記封着材料は、閉曲線状に構成されており、
前記第一加熱工程では、前記レーザ光は、前記封着材料の周方向に沿って複数回周回するように走査される請求項1から3のいずれか一項に記載の接合体の製造方法。
【請求項5】
前記第二加熱工程では、前記第一加熱工程における前記レーザ光の出力よりも大きな出力の前記レーザ光を前記封着材料に照射する請求項1から4のいずれか一項に記載の接合体の製造方法。
【請求項6】
前記高熱伝導性基板は、シリコン基板である請求項1から5のいずれか一項に記載の接合体の製造方法。
【請求項7】
前記レーザ光は、半導体レーザである請求項1から6のいずれか一項に記載の接合体の製造方法。
【請求項8】
前記接合体は、前記高熱伝導性基板と前記ガラス基板との間に素子を備える請求項1から7のいずれか一項に記載の接合体の製造方法。
【請求項9】
前記準備工程の前に、前記高熱伝導性基板の表面にシリコン酸化膜またはシリコン窒化膜を形成する工程を有し、前記高熱伝導性基板と前記封着層の間に、前記シリコン酸化膜または前記シリコン窒化膜を介在させることを特徴とする請求項1から8のいずれか一項に記載の接合体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高熱伝導性基板とガラス基板とを接合することによって接合体を製造する方法及び接合体に関する。
【背景技術】
【0002】
周知のように、LED素子その他の電子素子は、劣化防止のために気密パーケージ内に収容される。気密パッケージは、例えばベース基板にガラス基板を接合することによる接合体として構成される。
【0003】
ベース基板とガラス基板とを接合する方法として、例えばガラス粉末を含む封着材料をベース基板とガラス基板との間に介在させた状態で、当該封着材料をレーザ光の照射により加熱する方法が公知である(例えば特許文献1参照)。レーザ光による加熱によって封着材料は軟化流動し、ベース基板(容器)とガラス基板(ガラス蓋)が密着する。軟化流動した封着材料が冷却によって固着すると、封着層が形成され、ベース基板とガラス基板とが気密に接合される。このように、レーザ光を封着材料に照射すること(レーザ封着)により、素子に熱的負荷をかけることなく、気密パッケージを得ることができる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ベース基板は、素子の発熱による劣化を防止するために、熱伝導性の高い素材により構成される場合(以下「高熱伝導性基板」という)がある。高熱伝導性基板とガラス基板とを封着材料によって接合する場合、封着材料から高熱伝導性基板への熱伝導が急速に進むことで、加熱された封着材料及びガラス基板が急冷される虞がある。特に、レーザ封着の場合、一般的な焼成炉を用いる封着方法と異なり、封着材料およびその周囲のみが局所的に加熱されるため、この虞が大きくなる。封着材料及びガラス基板が急冷されると、封着層とガラス基板との界面、封着層自体やガラス基板自体にクラックが生じ、接合不良の原因となる。ここで、「高熱伝導性基板」は、20℃における熱伝導率が10W/m・K以上の基板を指す。
【0006】
本発明は上記の事情に鑑みて為されたものであり、高熱伝導性基板とガラス基板との接合不良の発生を低減することを技術的課題とする。
【課題を解決するための手段】
【0007】
本発明は上記の課題を解決するためのものであり、高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、前記接合工程は、前記レーザ光の照射により前記封着材料の軟化点未満の温度で前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料の軟化点以上の温度で前記封着材料を加熱する第二加熱工程と、を備えることを特徴とする。
【0008】
かかる構成によれば、接合工程の第一加熱工程において、レーザ光の照射によって封着材料をその軟化点未満の温度で予備加熱することで、当該封着材料を介して高熱伝導性基板を加熱することができる。この第一加熱工程後の第二加熱工程において、レーザ光の照射によって封着材料を軟化点以上の温度で加熱することで、封着材料から高熱伝導性基板への熱伝導による封着材料及びガラス基板の急冷を低減しつつ、高熱伝導性基板とガラス基板とを気密に接合する封着層を形成することができる。これにより、高熱伝導性基板とガラス基板との接合不良の発生を低減できる。
【0009】
また、本発明は上記の課題を解決するため、高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、前記接合工程は、前記レーザ光の照射により前記封着材料が軟化流動しない温度で前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料が軟化流動する温度で前記封着材料を加熱する第二加熱工程と、を備えることを特徴とする。
【0010】
かかる構成によれば、接合工程の第一加熱工程において、レーザ光の照射によって封着材料が軟化流動しない温度で予備加熱することで、当該封着材料を介して高熱伝導性基板を加熱することができる。この第一加熱工程後の第二加熱工程において、レーザ光の照射によって封着材料が軟化流動する温度で加熱することで、封着材料から高熱伝導性基板への熱伝導による封着材料及びガラス基板の急冷を低減しつつ、高熱伝導性基板とガラス基板とを気密に接合する封着層を形成することができる。これにより、高熱伝導性基板とガラス基板との接合不良の発生を低減できる。
【0011】
また、本発明は上記の課題を解決するため、高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体を製造する方法であって、前記高熱伝導性基板と前記ガラス基板との間に、ガラスを含む封着材料を介在させる準備工程と、前記封着材料にレーザ光を照射することにより前記封着層を形成する接合工程と、を備え、前記接合工程は、前記レーザ光の照射により前記封着材料を予備加熱する第一加熱工程と、前記第一加熱工程後に、前記レーザ光の照射により前記封着材料を加熱する第二加熱工程と、を備え、前記第一加熱工程における前記レーザ光の出力が、前記第二加熱工程における前記レーザ光の出力よりも小さいことを特徴とする。
【0012】
かかる構成によれば、接合工程の第一加熱工程において、レーザ光の照射によって封着材料が軟化流動しない出力で予備加熱することが可能になり、当該封着材料を介して高熱伝導性基板を加熱することができる。この第一加熱工程後の第二加熱工程において、レーザ光の照射によって封着材料が軟化流動する出力で加熱することが可能になり、封着材料から高熱伝導性基板への熱伝導による封着材料及びガラス基板の急冷を低減しつつ、高熱伝導性基板とガラス基板とを気密に接合する封着層を形成することができる。これにより、高熱伝導性基板とガラス基板との接合不良の発生を低減できる。
【0013】
前記準備工程では、前記封着材料は、閉曲線状に構成されており、前記第一加熱工程では、前記レーザ光は、前記封着材料の周方向に沿って複数回周回するように走査されてもよい。これにより、第一加熱工程において、閉曲線状に構成される封着材料の全体を均等に加熱でき、この封着材料を介して高熱伝導性基板を十分に加熱することができる。
【0014】
前記第二加熱工程では、前記第一加熱工程における前記レーザ光の出力よりも大きな出力の前記レーザ光を前記封着材料に照射してもよい。これにより、第一加熱工程から第二加熱工程への移行を効率良く行うことができる。
【0015】
本方法において、前記高熱伝導性基板は、シリコン基板であってもよい。
【0016】
本方法において、前記レーザ光は、半導体レーザであってもよい。
【0017】
本方法において、前記接合体は、前記高熱伝導性基板と前記ガラス基板との間に素子を備えてもよい。これにより、放熱性及び気密性に優れた接合体(気密パッケージ)を製造できる。
【0018】
本方法において、前記準備工程の前に、前記高熱伝導性基板の表面にシリコン酸化膜(SiO2)やシリコン窒化膜(Si3N4)を形成する工程を有し、前記高熱伝導性基板と前記封着層の間に、前記シリコン酸化膜または前記シリコン窒化膜を介在させてもよい。
【0019】
また、本発明は上記の課題を解決するためのものであり、高熱伝導性基板とガラス基板が、封着材料により封着されている接合体であることを特徴としている。
【0020】
本発明に係る接合体では、前記高熱伝導性基板が、シリコン基板であってもよい。
【0021】
本発明に係る接合体では、前記封着材料が、ガラス粉末と耐火性フィラー粉末を含む複合材料であってもよい。
【0022】
本発明は上記の課題を解決するためのものであり、高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体であって、前記高熱伝導性基板は、凹部と、前記封着層を介して前記ガラス基板に接合される接合面と、を含み、前記封着層の幅(W1)と前記接合面の幅(W)との比(W1/W)は、0.05~1であることを特徴とする。
【0023】
封着層の幅と高熱伝導性基板の接合面の幅との関係を上記のように規定することで、高熱伝導性基板とガラス基板とを接合するために封着層を加熱した際に、封着層から高熱伝導性基板への熱伝導によって封着層やガラス基板が急冷されることに起因する熱衝撃によるクラックが発生し難くなる。これにより、高熱伝導性基板とガラス基板とを気密に接合する封着層を形成することができ、接合不良の発生を低減できる。
【0024】
本発明は上記の課題を解決するためのものであり、高熱伝導性基板と、ガラス基板と、前記高熱伝導性基板と前記ガラス基板とを接合する封着層と、を備える接合体であって、前記高熱伝導性基板は、凹部と、前記封着層を介して前記ガラス基板に接合される接合面と、を含み、前記接合面に接触する前記封着層の面積(A1)と前記接合面の面積(A2)との比(A1/A2)は、0.05~1であることを特徴とする。
【0025】
高熱伝導性基板の接合面に接触する封着層の面積と接合面の面積との関係を上記のように規定することで、高熱伝導性基板とガラス基板とを接合するために封着層を加熱した際に、封着層から高熱伝導性基板への熱伝導によって封着層やガラス基板が急冷されることに起因する熱衝撃によるクラックが発生し難くなる。これにより、高熱伝導性基板とガラス基板とを気密に接合する封着層を形成することができ、接合不良の発生を低減できる。
【0026】
前記高熱伝導性基板の表面に、シリコン酸化膜(SiO2)やシリコン窒化膜(Si3N4)を形成し、前記高熱伝導性基板と前記封着層の間に、前記シリコン酸化膜または前記シリコン窒化膜を介在させてもよい。これにより、封着材料の高熱伝導性基板への濡れ性が向上し、前記熱衝撃による封着層の破損や剥離を回避し易くなり、接合不良の発生を更に低減できる。
【発明の効果】
【0027】
本発明によれば、高熱伝導性基板とガラス基板との接合不良の発生を低減することができる。
【図面の簡単な説明】
【0028】
【
図1】本発明によって製造される接合体を示す断面図である。
【
図2】
図1のII-II矢視線に係る断面図である。
【
図3】接合体の製造方法における準備工程を示すガラス基板の平面図である。
【
図4】接合体の製造方法における積層工程を示す積層体の断面図である。
【
図5】接合体の製造方法における接合工程を示す積層体の断面図である。
【
図6】接合体の製造方法における接合工程を示す積層体の平面図である。
【
図7】接合工程におけるレーザ光の出力と照射時間の関係を示すグラフである。
【
図8】接合工程におけるレーザ光の出力と照射時間の関係を示すグラフである。
【
図10】
図9におけるX-X矢視線の断面図である。
【発明を実施するための形態】
【0029】
以下、本発明を実施するための形態について、図面を参照しながら説明する。
図1乃至
図8は、本発明に係る接合体及びその製造方法の一実施形態を示す。
【0030】
図1及び
図2は、本発明によって製造される接合体の例として、気密パッケージを例示する。接合体1は、基材となる高熱伝導性基板2と、高熱伝導性基板2に重ねられるガラス基板3と、高熱伝導性基板2とガラス基板3とを接合する封着層4と、高熱伝導性基板2とガラス基板3との間に収容される素子5とを備える。
【0031】
高熱伝導性基板2は、素子5を収容可能な凹部2aを有する。高熱伝導性基板2は、例えばシリコン基板により構成されるが、この構成に限定されず、他の金属基板、セラミックス基板、半導体基板その他の各種基板により構成されてもよい。なお、高熱伝導性基板2の厚みは、0.1~5.0mmの範囲内であるが、この範囲に限定されない。
【0032】
高熱伝導性基板2の表面に、シリコン酸化膜(SiO2)やシリコン窒化膜(Si3N4)を形成し、前記高熱伝導性基板と前記封着層の間に、シリコン酸化膜またはシリコン窒化膜を介在させてもよい。高熱伝導性基板2が、シリコン基板、金属基板、又は半導体基板により構成される場合、封着材料6の高熱伝導性基板2への濡れ性が不十分になる虞がある。そこで、シリコン酸化膜やシリコン窒化膜を、封着材料6と高熱伝導性基板2の間に介在させることで、封着材料6の高熱伝導性基板2への濡れ性を向上させることが可能になる。これにより、熱衝撃による封着層4の剥離や破損を回避し易くなる。高熱伝導性基板2の表面に形成されるシリコン酸化膜やシリコン窒化膜等の膜厚は、好ましくは5.0μm以下、より好ましくは3.0μm以下、更に好ましくは2.0μm以下、特に好ましくは1.0μm以下であり、下限は5nmである。なお、シリコン酸化膜やシリコン窒化膜等の成膜には、スパッタリング法、真空蒸着法、イオンアシスト又はイオンプレーティングを用いた真空蒸着法、及びCVD法等が用いられる。
【0033】
高熱伝導性基板2の熱伝導率は、ガラス基板3の熱伝導率よりも高い。高熱伝導性基板2の20℃における熱伝導率は、好ましくは10~500W/m・K、より好ましくは30~300W/m・K、更に好ましくは70~250W/m・K、特に好ましくは100~200W/m・Kであるが、この範囲に限定されるものではない。
【0034】
ガラス基板3は、矩形状に構成されるが、この形状に限定されるものではない。ガラス基板3を構成するガラスとしては、例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスなどを用いることができる。ガラス基板3の厚みは、特に限定されるものではないが、例えば0.01~2.0mmの範囲内のものが用いられる。ガラス基板3の20℃における熱伝導率は、好ましくは0.5~5W/m・Kであるが、この範囲に限定されない。
【0035】
封着層4は、封着材料6を高熱伝導性基板2とガラス基板3との間に介在させ、当該封着材料6にレーザ光を照射し、加熱により軟化流動させることによって形成される。
【0036】
封着材料として、種々の材料が使用可能である。その中でも、封着強度を高める観点から、ビスマス系ガラス粉末と耐火性フィラー粉末を含む複合材料(ガラスフリット)を用いることが好ましい。複合材料として、55~100体積%のビスマス系ガラス粉末と0~45体積%の耐火性フィラー粉末を含有する複合材料を用いることが好ましく、60~95体積%のビスマス系ガラス粉末と5~40体積%の耐火性フィラー粉末を含有する複合材料を用いることが更に好ましく、60~85体積%のビスマス系ガラス粉末と15~40体積%の耐火性フィラー粉末を含有する複合材料を用いることが特に好ましい。
【0037】
耐火性フィラー粉末を添加すれば、封着層4の熱膨張係数が、高熱伝導性基板2とガラス基板3との熱膨張係数に整合し易くなる。その結果、高熱伝導性基板2とガラス基板3とを接合した後に、封着層4の領域に不当な応力が残留する事態を低減し易くなる。一方、耐火性フィラー粉末の含有量が多過ぎると、ビスマス系ガラス粉末の含有量が相対的に少なくなるため、レーザ封着前の封着材料6の表面平滑性が低下して、封着精度が低下し易くなる。
【0038】
ビスマス系ガラスは、ガラス組成として、モル%で、Bi2O3 28~60%、B2O3 15~37%、ZnO 0~30%、CuO+MnO(CuOとMnOの合量) 1~40%を含有することが好ましい。各成分の含有範囲を上記のように限定した理由を以下に説明する。なお、ガラス組成範囲の説明において、%表示はモル%を指す。
【0039】
Bi2O3は、ガラスの軟化点を低下させるための主要成分である。Bi2O3の含有量は、好ましくは28~60%、33~55%、特に35~45%である。Bi2O3の含有量が少な過ぎると、軟化点が高くなり過ぎて、ガラスの軟化流動性が低下し易くなる。一方、Bi2O3の含有量が多過ぎると、封着の際にガラスが失透し易くなり、この失透に起因して、軟化流動性が低下し易くなる。
【0040】
B2O3は、ガラス形成成分として必須の成分である。B2O3の含有量は、好ましくは15~37%、19~33%、特に22~30%である。B2O3の含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、ガラスが失透し易くなる。一方、B2O3の含有量が多過ぎると、ガラスの粘性が高くなり、軟化流動性が低下し易くなる。
【0041】
ZnOは、ガラスの耐失透性を高める成分である。ZnOの含有量は、好ましくは0~30%、3~25%、5~22%、特に5~20%である。ZnOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下し易くなる。
【0042】
CuOとMnOは、ガラスのレーザ吸収能を大幅に高める成分である。CuOとMnOの合量は、好ましくは1~40%、3~35%、10~30%、特に15~30%である。CuOとMnOの合量が少な過ぎると、レーザ吸収能が低下し易くなる。一方、CuOとMnOの合量が多過ぎると、軟化点が高くなり過ぎて、レーザ光を照射しても、ガラスが軟化流動し難くなる。またガラスが熱的に不安定になり、ガラスが失透し易くなる。なお、CuOの含有量は、好ましくは1~30%、特に10~25%である。MnOの含有量は、好ましくは0~25%、1~25%、特に3~15%である。
【0043】
また、ビスマス系ガラスだけでなく、銀リン酸系ガラス、テルル系ガラス等のガラス粉末を封着材料として使用することもできる。銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと比較して、低温で軟化流動し易く、レーザ光による加熱後に生じる熱歪みを低減することができる。更に、銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと同様に、耐火性フィラー粉末と混合すると、封着層4の機械的強度を高めることができ、且つ封着層4の熱膨張係数を低下させることができる。
【0044】
銀リン酸系ガラスは、ガラス組成として、モル%で、Ag2O 10~50%、P2O5 10~35%、ZnO 3~25%、遷移金属酸化物 0~30%を含有することが好ましい。
【0045】
テルル系ガラスは、ガラス組成として、モル%で、TeO2 30~80%、MoO3 5~50%、P2O5 0~15%、遷移金属酸化物(但し、MoO3を除く) 0~40%を含有することが好ましい。
【0046】
耐火性フィラー粉末としては、種々の材料が使用可能であるが、その中でも、コーディライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上の材料により構成されることが好ましい。
【0047】
耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に0.1μm以上、且つ1.5μm未満である。耐火性フィラー粉末の平均粒径D50が大き過ぎると、封着層4の表面平滑性が低下し易くなると共に、封着層4の平均厚みが大きくなり易く、結果として、封着の精度が低下し易くなる。ここで、平均粒径D50は、レーザ回折法で測定した値であって、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒径を意味する。
【0048】
耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に0.3μm以上、且つ3μm以下である。耐火性フィラー粉末の99%粒径D99が大き過ぎると、封着層4の表面平滑性が低下し易くなると共に、封着層4の平均厚みが大きくなり易く、結果として、レーザ封着精度が低下し易くなる。ここで、99%粒径D99は、レーザ回折法で測定した値であって、レーザ回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒径を意味する。
【0049】
封着材料の軟化点は、300℃以上550℃以下であることが好ましい。封着材料6の軟化点は、マクロ型DTA装置で測定した際の第四変曲点に相当する。
【0050】
図2に示すように、封着層4は、素子5を収容する空間を封着するように、閉曲線状に構成されている。本発明において、「閉曲線」の用語は、曲線のみによって構成される形状のみならず、曲線と直線との組み合わせにより構成される形状、直線のみによって構成される形状(例えば四角形状その他の多角形状)を含む。
【0051】
封着層4の厚さは、1μm~20μmであることが好ましく、より好ましくは、3~8μmである。封着層4の幅寸法W1は、50~2000μmであることが好ましく、より好ましく100~1000μmである。
【0052】
素子5は、高熱伝導性基板2の凹部2a、ガラス基板3及び封着層4によって区画される空間(キャビティ)に配置される。素子5としては、深紫外LED(Light Emitting Diode)等の発光素子、MEMS(Micro Electro Mechanical Systems)素子、CCD(Charge Coupled Device)素子などの各種素子が使用され得る。
【0053】
以下、上記構成の接合体1を製造する方法について、
図3乃至
図8を参照しながら説明する。本方法は、高熱伝導性基板2とガラス基板3とを重ね合わせて積層体を形成する準備工程と、準備工程後に封着材料6を加熱してガラス基板3と高熱伝導性基板2とを接合する接合工程とを備える。
【0054】
準備工程は、ガラス基板3の表面に封着材料6を固定する固定工程と、固定工程後にガラス基板3を高熱伝導性基板2に積層する積層工程とを備える。
【0055】
固定工程は、封着材料6をガラス基板3の表面に塗布する工程(塗布工程)と、塗布工程後に、封着材料6を加熱する工程(加熱工程)とを備える。
【0056】
図3に示すように、塗布工程では、例えばスクリーン印刷、ディスペンサ等により、ペースト状の封着材料6を例えば四角形状の閉曲線を構成するように、ガラス基板3の表面に塗布する。封着材料は、通常、三本ローラー等により、上記の複合材料とビークルを混練することによりペースト状に構成される。ビークルは、通常、有機樹脂と溶剤を含む。有機樹脂は、ペーストの粘性を調整する目的で添加される。
【0057】
加熱工程では、電気炉等によって、ガラス基板3に塗布された封着材料6を軟化温度以上に加熱する。この加熱工程により、有機樹脂を分解し、かつ封着材料6に含まれるガラス粉末を軟化流動させることで、封着材料6をガラス基板3に固着することができる。
【0058】
準備工程に係る加熱工程では、電気炉等を使用することなく、レーザ光によって封着材料6を加熱(焼成)してもよい。
【0059】
図4に示すように、積層工程では、ガラス基板3において封着材料6が固定された表面を高熱伝導性基板2に対向させた状態で、ガラス基板3を高熱伝導性基板2の表面に重ね合わせる。ガラス基板3は、封着材料6の閉曲線形状の内側に高熱伝導性基板2の凹部2aが位置するように、高熱伝導性基板2に積層される。なお、素子5は、積層工程の前に高熱伝導性基板2における凹部2aの底部に設置される。
【0060】
図5に示すように、積層工程によって、高熱伝導性基板2とガラス基板3との間に封着材料6が介在してなる積層体LMが構成される。
【0061】
接合工程は、レーザ光Lの照射により封着材料6の軟化点未満の温度又は封着材料6が軟化流動しない温度で封着材料6を予備加熱する第一加熱工程と、第一加熱工程後に、レーザ光Lの照射により封着材料6の軟化点以上の温度又は封着材料6が軟化流動する温度で封着材料6を加熱する第二加熱工程と、を備える。
【0062】
図5に示すように、各加熱工程では、レーザ照射装置7により、積層体LMの封着材料6に対してガラス基板3側からレーザ光Lを照射する。レーザ光Lの波長は、600~1600nmであることが好ましい。使用されるレーザとしては、半導体レーザが好適に使用されるが、これに限らず、YAGレーザ、グリーンレーザ、超短パルスレーザ等の各種レーザを使用してもよい。
【0063】
図6に示すように、第一加熱工程では、レーザ光Lは、封着材料6の閉曲線形状の周方向に沿って周回するように走査される。第一加熱工程におけるレーザ光Lの周回数は、2~500であることが好ましい。第一加熱工程におけるレーザ光Lの出力は、好ましくは1~25W、より好ましくは2~20W、更に好ましくは5~18Wであるが、この範囲に限定されない。レーザ光Lのスポット径は、封着材料6の幅寸法W2よりも大きく設定されることが望ましい。第一加熱工程における封着材料6の加熱温度は、封着材料6の軟化点未満の温度又は軟化流動しない温度、例えば、封着材料6にビスマス系ガラス粉末を用いる場合、380~480℃であることが好ましい。
【0064】
第二加熱工程では、第一加熱工程における出力(以下「第一出力」という)よりも大きな出力(以下「第二出力」という)でレーザ光Lを封着材料6に照射する。第二加熱工程におけるレーザ光Lの第二出力は、好ましくは15~50W、より好ましくは18W~40W、更に好ましくは20W~35Wであるが、この範囲に限定されない。第二加熱工程では、第一加熱工程において封着材料6に照射されるレーザ光Lを停止させることなく、継続的にレーザ光Lを封着材料6に照射する。
【0065】
第二加熱工程において、レーザ光Lは、封着材料6の閉曲線形状の周方向に沿って一回又は複数回周回するように走査される。第二加熱工程におけるレーザ光Lの周回数は、第一加熱工程におけるレーザ光Lの周回数よりも少なくされるが、これに限らず、第一加熱工程におけるレーザ光Lの周回数以上であってもよい。レーザ光Lのスポット径は、第一加熱工程におけるレーザ光Lのスポット径と同一に設定されるが、第一加熱工程におけるスポット径と異なってもよい。
【0066】
本実施形態に係る接合工程では、第一加熱工程におけるレーザ光Lの走査速度は、第二加熱工程におけるレーザ光Lの走査速度と等しいが、これに限らず、第二加熱工程に係る走査速度と異なってもよい。
【0067】
図7及び
図8は、接合工程におけるレーザ光の照射時間(加熱時間)とレーザ光の出力との関係を示すグラフである。
【0068】
図7に示すように、第一加熱工程S1は、時間T0から時間T1までの間で実行される。この間、レーザ光は、第一出力P1を一定に維持しつつ封着材料6に照射される。第二加熱工程S2は、時間T1から時間T2までの間で実行される。この間、レーザ光は、第一出力P1よりも大きな第二出力P2を一定に維持しつつ封着材料6に照射される。
【0069】
第一出力P1は、
図7のように一定に維持されなくともよい。すなわち、
図8に示すように、第一加熱工程S1において、開始時間T0におけるレーザ光の第一出力P1を時間T0から時間T1までの間で中間出力P10まで徐々に増加させてもよい。中間出力P10は、第一出力P1よりも大きく、第二出力P2よりも小さい。
【0070】
第二加熱工程における封着材料6の加熱温度は、その軟化点以上の温度、例えば、封着材料6にビスマス系ガラス粉末を用いる場合、500~750℃であることが好ましい。第二加熱工程においてレーザ光Lによって加熱されることで、封着材料6は、そのガラス成分が軟化流動し、高熱伝導性基板2に融着する。レーザ光Lの照射が終了し、冷却される過程で、封着材料6が固着することで、高熱伝導性基板2とガラス基板3とを接合するとともに、素子5を気密に封着する閉曲線状の封着層4が形成される。
【0071】
以上説明した本実施形態に係る接合体1の製造方法によれば、接合工程の第一加熱工程において、レーザ光Lの照射によって封着材料6をその軟化点未満の温度又は封着材料6が軟化流動しない温度で予備加熱することで、封着材料6を介して高熱伝導性基板2を加熱することができる。この第一加熱工程後の第二加熱工程において、レーザ光Lの照射によって封着材料6を軟化点以上の温度又は軟化流動する温度で加熱することで、封着材料6から高熱伝導性基板2への熱伝導による封着材料6及びガラス基板3の急冷を低減しつつ、高熱伝導性基板2とガラス基板3とを気密に接合する封着層4を形成することができる。これにより、高熱伝導性基板2とガラス基板3との接合不良の発生を低減できる。
【0072】
図9乃至
図12は、本発明の他の実施形態を示す。
図9及び
図10に示すように、接合体1は、上記の
図1乃至
図8の実施形態と同様に、基材となる高熱伝導性基板2と、高熱伝導性基板2に重ねられるガラス基板3と、高熱伝導性基板2とガラス基板3とを接合する封着層4と、高熱伝導性基板2とガラス基板3との間に収容される素子5とを備える。
【0073】
高熱伝導性基板2は、素子5を収容する凹部2aと、ガラス基板3が接合される表面(以下「接合面」という)2bとを有する。接合面2bは、凹部2aの周囲を囲むように四角形の枠状に形成されているが、接合面2bの形状は本実施形態に限定されない。
【0074】
接合面2bは、内縁部8と、外縁部9とを有する。接合面2bは、内縁部8と外縁部9とによって囲まれた面である。
【0075】
図11及び
図12に示すように、内縁部8は、凹部2aと接合面2bとの境界となる部分である。内縁部8は、四本の直線部8a~8dを含むが、直線部8a~8dの数は、本実施形態に限定されない。以下、四本の直線部8a~8dのそれぞれを、第一直線部8a、第二直線部8b、第三直線部8cおよび第四直線部8dという。第一直線部8aは、第三直線部8cとほぼ平行である。第二直線部8bは、第四直線部8dとほぼ平行である。第一直線部8aが第二直線部8bおよび第四直線部8dと為す角度は、約90°である。第二直線部8b及び第四直線部8dが第三直線部8cと為す角度は、約90°である。
【0076】
外縁部9は、四本の直線部9a~9dを含むが、直線部9a~9dの数は、本実施形態に限定されない。以下、四本の直線部9a~9dのそれぞれを、第一直線部9a、第二直線部9b、第三直線部9cおよび第四直線部9dという。第一直線部9aは、第三直線部9cとほぼ平行であり、内縁部8の第一直線部8aとほぼ平行である。第二直線部9bは、第四直線部9dとほぼ平行であり、内縁部8の第二直線部8bとほぼ平行である。第一直線部9aが第二直線部9bおよび第四直線部9dと為す角度は、約90°である。第二直線部9b及び第四直線部9dが第三直線部9cと為す角度は、約90°である。
【0077】
接合面2bの幅Wは、その全周にわたって一定とされている。具体的には、接合面2bの内縁部8の第一直線部8aと外縁部9の第一直線部9aとの間隔は、内縁部8の第二直線部8bと外縁部9の第二直線部9bとの間隔と等しい。同様に、接合面2bの内縁部8の第一直線部8aと外縁部9の第一直線部9aとの間隔は、内縁部8の第三直線部8cと外縁部9の第三直線部9cとの間隔とも等しく、内縁部8の第四直線部8dと外縁部9の第四直線部9dとの間隔とも等しい。この構成に限らず、これらの間隔は異なっていてもよい。
【0078】
図9に示すように、封着層4は、平面視において、四本の直線部4a~4dと、直線部を相互に連結する四個の連結部4e~4hとを含むが、直線部4a~4d及び連結部4e~4hの数は、本実施形態に限定されない。以下、四本の直線部4a~4dをそれぞれ、第一直線部4a、第二直線部4b、第三直線部4cおよび第四直線部4dという。また、四個の連結部4e~4hをそれぞれ、第一連結部4e、第二連結部4f、第三連結部4g及び第四連結部4hという。
【0079】
各直線部4a~4dは、その全長にわたり一定とされた幅W1を有する。第一直線部4aは、接合面2bにおける内縁部8の第一直線部8aと外縁部9の第一直線部9aとの間に形成されている。第二直線部4bは、接合面2bにおける内縁部8の第二直線部8bと外縁部9の第二直線部9bとの間に形成されている。第三直線部4cは、接合面2bにおける内縁部8の第三直線部8cと、外縁部9の第三直線部9cとの間に形成されている。第四直線部4dは、内縁部8の第四直線部8dと、外縁部9の第四直線部9dとの間に形成されている。
【0080】
図9及び
図11に示すように、第一連結部4eは、第一直線部4aと第二直線部4bとを連結する。第二連結部4fは、第二直線部4bと第三直線部4cとを連結する。第三連結部4gは、第三直線部4cと第四直線部4dとを連結する。第四連結部4hは、第四直線部4dと第一直線部4aとを連結する。
【0081】
本実施形態において、封着層4の幅W1と、接合面2bの幅Wとの比W1/Wは、好ましくは0.05~1、より好ましくは0.1~1、更に好ましくは0.3~1、特に好ましくは0.5~1である。これにより、接合工程において、封着層4から高熱伝導性基板2への熱伝導によって封着層4やガラス基板3が急冷されることに起因する熱衝撃によるクラックが発生し難くなる。したがって、高熱伝導性基板2とガラス基板3とを気密に接合する封着層4を形成することができ、接合不良の発生を低減できる。
【0082】
本実施形態において、高熱伝導性基板2の接合面2bと接触する封着層4の面積A1(
図11において二点鎖線のハッチングを付した領域の面積)と、高熱伝導性基板2の接合面2bの面積A2(
図12においてクロスハッチングを付した領域の面積)との比A1/A2は、好ましくは0.05~1、より0.1~1、更に好ましくは0.3~1、特に好ましくは0.5~1である。これにより、接合工程において、封着層4から高熱伝導性基板2への熱伝導によって封着層4やガラス基板3が急冷されることに起因する熱衝撃によるクラックが発生し難くなる。したがって、高熱伝導性基板2とガラス基板3とを気密に接合する封着層4を形成することができ、接合不良の発生を低減できる。
【0083】
なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0084】
上記の実施形態では、一個の素子5を収容する接合体1の製造方法を例示したが、本発明はこの構成に限定されるものではない。例えば、高熱伝導性基板2に複数の凹部2aを形成し、各凹部2aに素子5を収容した状態で、各凹部2aに対応する複数の閉曲線状の封着材料6が形成されたガラス基板3を高熱伝導性基板2に接合してもよい。この場合、この接合体1を素子5毎に切断することで、複数の気密パッケージを効率良く製造することができる。
【0085】
上記の実施形態では、高熱伝導性基板2とガラス基板3との間に素子5を備えてなる接合体1を例示したが、本発明はこの構成に限定されるものではない。本発明は、高熱伝導性基板2とガラス基板3との間に素子5を有していない接合体1を製造する場合にも適用可能である。上記の実施形態では、凹部2aが形成された高熱伝導性基板2を例示したが、本発明はこの構成に限定されない。例えば凹部2aが形成されていない高熱伝導性基板2の表面に、被膜、配線、ビアホール等が形成され、これらの封着対象を封着する場合にも、本発明を適用可能である。
【0086】
上記の実施形態では、第一加熱工程におけるレーザ光の第一出力の値と、第二加熱工程におけるレーザ光の第二出力の値を異ならせて接合工程を実行する例を示したが、本発明はこの構成に限定されるものではない。例えば、レーザ光の出力を一定に維持しつつ、第一加熱工程におけるレーザ光の走査速度を高速とし、第二加熱工程におけるレーザ光の走査速度を低速として、接合工程を実行してもよい。これにより、第一加熱工程で封着材料を均一に加熱しつつ、第二加熱工程で封着の精度を高めることができる。また、レーザ光の出力を一定に維持しつつ、第二加熱工程におけるレーザ光のスポット径を第一加熱工程におけるレーザ光のスポット径よりも小さくして、接合工程を実行してもよい。これにより、第一加熱工程で封着材料を均一に加熱しつつ、第二加熱工程で接合強度を高めることができる。
【0087】
上記の実施形態では、準備工程において封着材料6をガラス基板3に固定する工程(固定工程)を例示したが、本発明はこの構成に限定されない。準備工程の固定工程では、高熱伝導性基板2に封着材料6を固定してもよい。
【0088】
上記の実施形態では、高熱伝導性基板2の接合面2bの内縁部8及び外縁部9が直線部8a~8d,9a~9dにより構成された例を示したが、本発明はこの構成に限定されない。内縁部8及び外縁部9は、その一部又は全てが曲線部により構成されてもよい。この場合において、封着層4の幅W1と接合面2bの幅Wの比W1/Wを算出する際、内縁部8と外縁部9との間隔が最小となる部分における接合面2bの幅Wを使用することができる。
【実施例】
【0089】
以下、本発明に係る実施例について説明するが、本発明はこの実施例に限定されるものではない。
【0090】
本発明者は、上記の実施形態における第一加熱工程(予備加熱工程)を経て製造された実施例1~5に係る接合体と、予備加熱工程を経ることなく製造された比較例1に係る接合体の接合状態と気密信頼性の評価を行った。以下、評価の詳細を説明する。
【0091】
実施例1~5及び比較例1に使用されたガラス基板は、ホウケイ酸ガラスにより構成される矩形状のガラス基板である。実施例及び比較例に係るガラス基板の厚さは、0.2mmである。
【0092】
実施例1~5及び比較例1に使用された高熱伝導性基板は、一方の表面に平面視四角形状の凹部(キャビティ)を有するシリコン基板である。実施例1~5及び比較例1に係る高熱伝導性基板の厚さは、0.4mmである。
【0093】
なお、実施例2に使用された高熱伝導性基板の接合面の表面には、真空蒸着法により、膜厚1.0μmのシリコン酸化膜を形成した。
【0094】
実施例1~5及び比較例1に使用された封着材料は、ビスマス系ガラス粉末と耐火性フィラー粉末とを含む複合材料(ガラスフリット)である。なお、実施例1~5及び比較例1に使用した封着材料は同一である。封着材料の構成と特性を表1に示す。
【表1】
【0095】
得られた封着材料とビークル(樹脂はエチルセルロース、溶剤はターピネオール、により構成されたもの)を、重量比60%対40%で混合し、三本ローラーを用いて混錬し、ペーストを得た。その後、スクリーン印刷法により、実施例1~5及び比較例1に係る四角形の閉曲線状のペーストを塗布したガラス基板を得た。
【0096】
その後、実施例1~5及び比較例1に係るペーストを塗布したガラス基板を、電気炉で480℃20分間加熱して、ガラス基板上に所定の四角形の閉曲線状の封着材料を形成した。
【0097】
その後、封着材料が形成されたガラス基板を高熱伝導性基板の所定の位置に被せた。
【0098】
実施例1~5に係る接合体については、波長808nmの近赤外線半導体レーザによるレーザ光の出力を14Wとして、封着材料に対する予備加熱工程を実行した。予備加熱工程では、レーザ光を封着材料の周方向に沿って100回周回するように走査した。レーザ光の走査速度は、60mm/secで実施した。その後、レーザ光の出力を25.5Wに変更し、走査速度を変更することなく、封着材料の第二加熱工程(本加熱工程)を行った。この本加熱工程では、レーザ光を封着材料の周方向に沿って2回周回(走査)させて当該封着材料を加熱することで封着層を形成し、高熱伝導性基板とガラス基板を接合した。
【0099】
比較例1については、予備加熱工程を行うことなく、レーザ光の出力を25.5Wとし、その走査速度を60mm/secとし、このレーザ光を封着材料の周方向に沿って2回周回させて当該封着材料を加熱することで封着層を形成し、高熱伝導性基板とガラス基板を接合した。
【0100】
その後、実施例1~5及び比較例1の接合状態を確認するために、光学顕微鏡(100倍)により封着層の状態をガラス基板側から観察した。封着層またはガラス基板にクラックが確認できなかったものを「〇」、クラックの長さが封着層の幅長の10分の1未満のもの(以下、「微小クラック」という)が確認できたものを「△」、クラックの長さが封着層の幅長の10分の1以上のものが確認できたものを「×」、と判定した。
【0101】
更に、実施例1~5及び比較例1の接合体の気密信頼性を、PCT(Pressure Cooker Test)による加速劣化試験で評価した。具体的には、上記で製造した接合体を、121℃、2気圧、相対湿度100%の環境下で24時間保持した後、光学顕微鏡(100倍)を用いて接合体の封着層の近傍を観察した。この観察により、封着層またはガラス基板のクラックの有無、封着層とガラス基板の剥離の有無、封着層の変質の有無についての評価を行った。この評価では、クラックの有無については、クラックが確認できなかったものを「〇」、微小クラックが確認できたものを「△」、クラックの長さが封着層の幅長の10分の1以上のものが確認できたものを「×」、と判定した。剥離の有無については、光学顕微鏡画像において封着層とガラス基板との間に剥離が認められた場合を「×」、剥離が認められなかった場合を「〇」と判定した。
【0102】
実施例1~5及び比較例1の条件及び評価の結果を、表2に記す。
【表2】
【0103】
表2に示すように、実施例1~4に係る接合体では、ガラス基板、及びガラス基板と封着層との界面にクラックは発生しなかった。また、実施例5に係る接合体では、ガラス基板、及びガラス基板と封着層との界面に微小クラックが発生したものの、接合状態は不良とまでは判断できなかった。一方、比較例1に係る接合体では、封着層に重なるガラス基板にクラックが発生した。また、ガラス基板と封着層との界面にも多数のクラックが発生した。これにより、封着材料を予備加熱することで、高熱伝導性基板とガラス基板との接合不良の発生を低減できることが確認された。
【0104】
実施例1に係る接合体の画像を
図13に示し、比較例1に係る接合体の画像を
図14に示す。
図14に示すように、比較例1に係る接合体では、封着層に重なるガラス基板の一部にクラックCR1,CR2が発生していることが確認された。また、ガラス基板と封着層との界面にも多数のクラックCR3が発生していることが確認された。
【0105】
表2に示すように、加速劣化試験の結果、実施例1~4に係る接合体では、封着層やガラス基板にクラックは認められず、また、接合体の剥離等も認められなかった。また、実施例5に係る接合体では、封着層やガラス基板に微小クラックが認められたものの、接合状態は不良とまでは判断できなかった。一方、比較例1に係る接合体では、封着層やガラス基板にクラックの伸展が確認でき、また、接合体の剥離が認められた。この試験により、封着材料を予備加熱することで、接合体の気密信頼性が得られていることを確認した。なお、実施例1~5、比較例1については、封着層の変質は認められなかった(表2において「〇」と表記)。
【符号の説明】
【0106】
1 接合体
2 高熱伝導性基板
2a 凹部
2b 接合面
3 ガラス基板
4 封着層
5 素子
6 封着材料
A1 接合面に接触する封着層の面積
A2 接合面の面積
L レーザ光
P1 第一加熱工程におけるレーザ光の第一出力
P2 第二加熱工程におけるレーザ光の第二出力
W1 封着層の幅
W 接合面の幅