(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-13
(45)【発行日】2024-05-21
(54)【発明の名称】電池装置
(51)【国際特許分類】
H02J 7/02 20160101AFI20240514BHJP
H01M 10/48 20060101ALI20240514BHJP
H02J 7/00 20060101ALI20240514BHJP
【FI】
H02J7/02 H
H01M10/48 P
H02J7/00 Y
(21)【出願番号】P 2021049205
(22)【出願日】2021-03-23
【審査請求日】2023-01-23
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【氏名又は名称】矢作 和行
(74)【代理人】
【識別番号】100121991
【氏名又は名称】野々部 泰平
(74)【代理人】
【識別番号】100145595
【氏名又は名称】久保 貴則
(72)【発明者】
【氏名】竹内 隆之
(72)【発明者】
【氏名】堀 裕基
【審査官】下林 義明
(56)【参考文献】
【文献】特開2015-136268(JP,A)
【文献】特開2020-088916(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 7/00 - 7/12
H02J 7/34 - 7/36
H01M 10/42 - 10/48
(57)【特許請求の範囲】
【請求項1】
電気的に接続された複数の電池セル(220)の閉路電圧を含む電池情報を記憶する記憶部(32)と、
前記電池情報に基づいて前記閉路電圧の取得範囲を設定する設定部(33)と、
前記設定部で設定される前記取得範囲で、前記閉路電圧をデジタル信号に変換する変換部(12,13)と、を有し、
前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を変更する電池装置。
【請求項2】
前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を拡大する請求項1に記載の電池装置。
【請求項3】
前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、前記取得範囲を前記閉路電圧の取りうる範囲に変更する請求項2に記載の電池装置。
【請求項4】
前記設定部は、前記取得範囲が前記取りうる範囲の際に、前記閉路電圧が前記取りうる範囲の上限値と下限値の一方である場合、前記取得範囲を、前記取りうる範囲の上限値と下限値の一方を含む、制限された範囲に変更する請求項3に記載の電池装置。
【請求項5】
前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方である場合、新たな前記取得範囲を、前記閉路電圧側に遷移させた範囲に変更する請求項1または請求項2に記載の電池装置。
【請求項6】
前記設定部は、
前記閉路電圧が前記取得範囲の上限値である場合、新たな前記取得範囲の下限値を前記閉路電圧にし、
前記閉路電圧が前記取得範囲の下限値である場合、新たな前記取得範囲の上限値を前記閉路電圧にする請求項1または請求項2に記載の電池装置。
【請求項7】
前記設定部は、前記閉路電圧が前記取得範囲の上限値と下限値の一方であることが複数回起きると、故障が生じていると判定する請求項1~6のいずれか1項に記載の電池装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に記載の開示は、電池装置に関する。
【背景技術】
【0002】
特許文献1には、複数のリチウム2次電池のSOCを均等化する容量調整装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
複数のリチウム2次電池のSOCを均等化するためにリチウム2次電池の閉路電圧が用いられる。そのために閉路電圧が検出不可能になることを避ける必要がある。
【0005】
本開示の目的は、閉路電圧が検出不可能になることが抑制された電池装置を提供することである。
【課題を解決するための手段】
【0006】
本開示の一態様による電池装置は、電気的に接続された複数の電池セル(220)の閉路電圧を含む電池情報を記憶する記憶部(32)と、
電池情報に基づいて閉路電圧の取得範囲を設定する設定部(33)と、
設定部で設定される取得範囲で、閉路電圧をデジタル信号に変換する変換部(12,13)と、を有し、
設定部は、閉路電圧が取得範囲の上限値と下限値の一方である場合、取得範囲を変更する。
【0007】
これによれば、取得範囲を限定的に狭めた結果、閉路電圧が検出不可能になることが抑制される。
【0008】
なお、上記の括弧内の参照番号は、後述の実施形態に記載の構成との対応関係を示すものに過ぎず、技術的範囲を何ら限定するものではない。
【図面の簡単な説明】
【0009】
【
図2】SOCとOCVの特性を示すグラフ図である。
【
図3】電圧検出を説明するためのタイミングチャートである。
【
図4】電圧検出を説明するためのタイミングチャートである。
【
図5】地絡検出を説明するためのタイミングチャートである。
【
図6】天絡検出を説明するためのタイミングチャートである。
【
図7】電圧検出処理を説明するためのフローチャートである。
【
図8】地絡検出を説明するためのタイミングチャートである。
【
図9】天絡検出を説明するためのタイミングチャートである。
【
図10】地絡検出を説明するためのタイミングチャートである。
【
図11】地絡検出を説明するためのタイミングチャートである。
【
図12】天絡検出を説明するためのタイミングチャートである。
【
図13】地絡検出を説明するためのタイミングチャートである。
【
図14】天絡検出を説明するためのタイミングチャートである。
【発明を実施するための形態】
【0010】
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
【0011】
各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。
【0012】
<第1実施形態>
第1実施形態を
図1~
図8に基づいて説明する。
【0013】
図1に電池装置100と組電池200を示す。電池装置100と組電池200はハイブリッド自動車や電気自動車などの電動車両に搭載される。この電動車両には、乗用車、バス、建設作業車、および、農業機械車両などが含まれる。
【0014】
電池装置100は組電池200の状態を監視するとともに制御する。組電池200は電動車両に推進力を提供する電動機などの各種車載機器に電源電力を供給する。
【0015】
<組電池>
組電池200は複数の電池スタック210を有する。複数の電池スタック210それぞれは電気的に直列接続された複数の電池セル220を有する。この電池セル220としてはリチウムイオン2次電池、ニッケル水素2次電池、および、有機ラジカル電池などの2次電池を採用することができる。直列接続された複数の電池セル220の出力電圧が電池スタック210の出力電圧になっている。
図1では1つの電池スタック210に含まれる複数の電池セル220を破線で囲って示している。
【0016】
複数の電池スタック210は電気的に直列接続若しくは並列接続される。本実施形態では、複数の電池スタック210が電気的に直列接続されている。これら直列接続された複数の電池スタック210の出力電圧の総和が組電池200の出力電圧になっている。この出力電圧に依存する電源電力が各種車載機器に供給される。
【0017】
複数の電池スタック210それぞれには、電池セル220の物理量を検出する物理量センサ230が設けられている。物理量センサ230の検出する物理量としては、例えば、電池セル220の温度や電流がある。
【0018】
物理量センサ230で検出される物理量は、電池セル220、電池スタック210、および、組電池200それぞれのSOCの推定などに用いられる。SOCはstate of chargeの略である。SOCは充電量に相当する。
【0019】
SOCは上記した電源電力の各種車載機器への供給によって減少する。また、電池セル220は自己放電する。そのためにSOCは電源電力の非供給時においても減少する。
【0020】
このSOCの減少は、例えば、車外に設けられた電気スタンドなどの充電機器から組電池200への充電電力の供給によって改善される。この充電機器から組電池200への充電電力の供給は、電池装置100によって制御される。電池装置100は図示しない配線を介してCPLT信号を充電機器と送受信しながら、組電池200の充電を制御する。
【0021】
なお、複数の電池セル220の品質や環境などは均一ではない。そのために複数の電池セル220のSOCにばらつきが生じる。このばらつきは、後述の均等化処理によって改善される。
【0022】
<OCV、CCV、SOC>
電池セル220には内部抵抗がある。そのために電池セル220のSOCに応じた実際のセル電圧と、監視部10で検出されるセル電圧とには、この内部抵抗と電池セル220を流れる電流に応じた電圧降下分の差がある。
【0023】
以下においては、必要に応じて、電池セル220のSOCに応じた実際のセル電圧を開路電圧OCVと示す。監視部10で検出されるセル電圧を閉路電圧CCVと示す。電池セル220内の抵抗を内部抵抗R、電池セル220を実際に流れる電流を実電流Iとする。OCVはOpen Circuit Voltageの略である。CCVはClosed Circuit Voltageの略である。
【0024】
閉路電圧CCVと開路電圧OCVの関係は、CCV=OCV±I×Rとあらわされる。電池セル220の放電時では、CCV=OCV-I×Rとなる。電池セル220の充電時では、CCV=OCV+I×Rとなる。
【0025】
<SOCとOCVの特性>
電池セル220はSOCとOCVの特性を有している。電池セル220がリチウムイオン電池である場合のSOCとOCVの特性データを
図2に示す。
【0026】
図2に示すように、SOCが0%に近い過放電領域では、SOCに対するOCVの変化率が高くなっている。SOCが100%に近い過充電領域では、SOCに対するOCVの変化率が高くなっている。
【0027】
これに対して、過放電領域と過充電領域との間の充放電領域では、SOCに対するOCVの変化率が低くなっている。電池セル220は主としてこの充放電領域で使用される。
図2では、一例として、過放電領域と充放電領域との間のSOCとOCVの値をSOC1,OCV1と表記している。充放電領域と過充電領域との間のSOCとOCVの値をSOC2,OCV2と表記している。
【0028】
図2に示す特性データは温度に依存している。そのため、温度によってSOCに対するOCVの変化率が変わる。それとともにSOC1,SOC2,OCV1,OCV2の値も変わる。
【0029】
<電池装置>
電池装置100は監視部10と制御部30を有する。電池装置100は監視部10を電池スタック210と同数有している。複数の監視部10は複数の電池スタック210それぞれの状態にかかわる電池情報を検出する。
【0030】
制御部30は複数の監視部10で検出された電池情報を取得する。また制御部30は他の図示しない各種ECUと各種センサから入力される車両情報を取得する。電動車両に充電機器が接続されている場合、制御部30は充電機器から入力される充電情報を取得する。これら車両情報と充電情報の制御部30への入力と、制御部30の処理結果の各種ECUと充電機器などへの出力は
図1において白抜き矢印で示している。
【0031】
制御部30は取得した諸情報に基づいて組電池200の状態を判定する。それとともに制御部30は組電池200に対する処理を実行する。組電池200に対する処理としては、例えば、組電池200の充放電、組電池200に含まれる複数の電池セル220のSOCを均等化する均等化処理などがある。
【0032】
<監視部>
複数の監視部10それぞれは複数の電池スタック210それぞれに個別に設けられる。1つの監視部10は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極との間の端子間電圧(閉路電圧)を検出する。また、監視部10は物理量センサ230で検出された物理量を取得する。監視部10は制御部30から入力される指示信号に基づいて処理を実行する。
【0033】
図1に示すように監視部10は、マルチプレクサ11、レベルシフタ12、AD変換部13、監視制御部14、および、監視通信部15を有している。図面ではマルチプレクサ11をMUXと表記している。レベルシフタ12をLSと表記している。AD変換部13をADと表記している。監視制御部14をMCUと表記している。監視通信部15をMCSと表記している。
【0034】
マルチプレクサ11は1つの電池スタック210に含まれる複数の電池セル220それぞれの正極と負極とに接続されている。これにより、マルチプレクサ11には複数の電池セル220の閉路電圧が入力される。
【0035】
また、マルチプレクサ11は物理量センサ230に接続されている。これにより、マルチプレクサ11には物理量が入力される。
【0036】
マルチプレクサ11は入力された複数の閉路電圧を順次選択して検出する。そしてマルチプレクサ11は検出した閉路電圧をレベルシフタ12に順次出力する。また、マルチプレクサ11は入力された複数の物理量も順次選択して検出する。マルチプレクサ11は検出した物理量もレベルシフタ12に順次出力する。
【0037】
レベルシフタ12は、オペアンプと、オペアンプの入力端子と出力端子との間で並列接続された複数の帰還回路と、を有する。この帰還回路には直列接続されたスイッチとコンデンサが含まれている。複数の帰還回路に含まれるコンデンサの静電容量は同一でも不同でもよい。
【0038】
レベルシフタ12の有する複数の帰還回路のスイッチが、監視制御部14によって選択的に通電状態と遮断状態とに制御される。これによりオペアンプの入力端子と出力端子との間で接続されるコンデンサの数が変化する。オペアンプの入力端子と出力端子との間の静電容量が変化する。また、オペアンプの入力端子と出力端子との間の抵抗が変化する。この結果、レベルシフタ12のゲインとオフセットが制御される。
【0039】
AD変換部13にはレベルシフタ12からゲインとオフセットの調整された閉路電圧や物理量のアナログ信号が入力される。AD変換部13は入力レンジを制限するためのクランプ回路を有する。このクランプ回路が監視制御部14によって制御される。これによってAD変換部13の入力レンジが制御される。
【0040】
AD変換部13の入力レンジの制限とレベルシフタ12のゲインとオフセットの調整により、AD変換部13でアナログデジタル変換されるアナログ信号の電圧レンジが制御される。AD変換部13でアナログデジタル変換される閉路電圧と物理量の電圧レンジが制御される。この結果、閉路電圧と物理量の取得範囲が制御される。なお、物理量の取得範囲は特に制御しなくともよい。レベルシフタ12とAD変換部13が変換部に相当する。
【0041】
AD変換部13は連続的なアナログ信号を断続的にサンプリングする。そしてAD変換部13はサンプリングした値を量子化して、離散したデジタル信号に変換する。係る変換を行うため、アナログ信号とデジタル信号とには誤差(量子化誤差)がある。
【0042】
この量子化誤差は、AD変換部13の量子化ビット数が大きいほどに小さくなる。しかしながら、量子化ビット数は固定値になっている。そのため、例えば、閉路電圧の取得範囲が0.0V~5.0Vの場合、AD変換部13の分解能は、この0.0V~5.0Vを量子化ビット数で割った値になる。
【0043】
これに対して、例えば、閉路電圧の取得範囲が10分の1の3.0V~3.5Vの場合、AD変換部13の分解能は、この3.0V~3.5Vを量子化ビット数で割った値になる。この場合、AD変換部13の分解能は10倍程度に高まる。このように、取得範囲を制限することで、閉路電圧の検出精度が向上される。
【0044】
監視制御部14はプロセッサとこのプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体を有する。この非遷移的実体的記憶媒体にAD変換部13から入力されるデジタル信号や制御部30から入力される指示信号が保存される。監視制御部14のプロセッサは指示信号に基づいてマルチプレクサ11、レベルシフタ12、および、AD変換部13を制御する。
【0045】
監視制御部14に入力される指示信号には、検出対象の電池セル220の閉路電圧の取得範囲が含まれている。監視制御部14は検出対象の閉路電圧をマルチプレクサ11が選択する際に、レベルシフタ12のゲインとオフセットを制御する。監視制御部14はAD変換部13の入力レンジを制限する。これにより閉路電圧の取得範囲が制御される。
【0046】
監視通信部15にはデジタル信号の閉路電圧と物理量が入力される。監視通信部15はこのデジタル信号を制御部30に出力する。
【0047】
<制御部>
図1に示すように制御部30は、制御通信部31、記憶部32、および、演算部33を有する。図面では制御通信部31をCCUと表記している。記憶部32をMUと表記している。演算部33をOPと表記している。演算部33が設定部に相当する。
【0048】
制御通信部31には諸情報が入力される。この諸情報には監視部10で取得された閉路電圧と物理量が含まれる。また、この諸情報には車両情報と充電情報が含まれる。車両情報には電動車両の走行状態や現在時刻が含まれている。充電情報には充電電力が含まれている。
【0049】
なお、図示しない通信部に車両情報と充電情報が入力されてもよい。そして、制御部30がRTCを有する場合、現在時刻が車両情報に含まれていなくともよい。RTCはreal time clockの略である。
【0050】
記憶部32はコンピュータやプロセッサによって読み取り可能なプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶部32は揮発性メモリと不揮発性メモリとを有している。この記憶部32に制御通信部31に入力された諸情報や演算部33の処理結果が記憶される。
【0051】
また、記憶部32には演算部33が演算処理するためのプログラムや参照値があらかじめ記憶されている。この参照値には、例えば、各種2次電池のSOCとOCVの特性データの温度依存性、均等化処理の実行を判定する均等化判定値、複数の電池セル220の製造日、および、劣化判定値などがある。
【0052】
演算部33にはプロセッサが含まれている。演算部33は制御通信部31に入力された諸情報を記憶部32に記憶する。演算部33は記憶部32に記憶された情報に基づいて各種演算処理を実行する。この演算処理された結果を含む電気信号は、制御通信部31を介して監視部10に出力される。この演算処理された結果を含む電気信号は、制御通信部31若しくは図示しない通信部を介して各種ECUや充電機器に出力される。
【0053】
演算処理を具体的に例示すると、演算部33は記憶部32に記憶された情報に基づいて電池セル220のSOCの推定を行う。演算部33は推定したSOCと記憶部32に記憶された情報に基づいて監視部10の動作を指示する指示信号の生成を行う。この指示信号には、検出対象の電池セル220の閉路電圧の取得範囲が含まれている。なお、記憶部32にSOCを推定するための電池情報が記憶されていない場合、演算部33は閉路電圧の取得範囲を、電池セル220の閉路電圧の取りうる範囲に設定する。
【0054】
閉路電圧の取得範囲を定めるほかに、演算部33は複数の電池セル220のSOCのばらつきを低減する均等化処理の実行を決定する。演算部33は複数の電池スタック210それぞれに対する均等化処理を含む指示信号を監視部10に出力する。
【0055】
演算部33は監視部10から入力された閉路電圧の最大値と最小値の差を演算する。この差が均等化判定値を上回る場合、演算部33は均等化処理の実行を決定する。この均等化処理は、例えば、上記した閉路電圧の最大値と最小値のうちの少なくとも一方が検出された電池スタック210だけで行われてもよい。均等化処理は、すべての電池スタック210で行われてもよい。
【0056】
図面では明記していないが、監視部10は、マルチプレクサ11と複数の電池セル220の正極および負極それぞれとを接続する複数の配線を架橋する複数のスイッチを有する。監視制御部14は演算部33から入力される指示信号に基づいて、これら複数のスイッチを選択的に通電状態と遮断状態とに制御する。これにより、電気的に接続された複数の電池セル220のうちの相対的にSOCの高い電池セル220が放電される。これとは逆に、相対的にSOCの低い電池セル220が充電される。この結果、複数の電池セル220のSOCが均等化される。
【0057】
<閉路電圧の取得>
図2に示す電池セル220のSOCとOCVの特性のため、放電によってSOCが低下するとOCVも低下する。それにともなって電池セル220の閉路電圧CCVも低下する。これとは逆に、充電機器からの充電電力の供給によってSOCが増大すると、電池セル220の閉路電圧も増大する。
【0058】
図3に閉路電圧の時間変化を示す。縦軸は任意単位である。横軸は時間である。任意単位はa.u.で表記している。時間はTで表記している。
【0059】
図3には、閉路電圧のほかに、電池装置100の駆動状態、組電池200を流れる実電流、ある一つの電池セル220の閉路電圧を示している。電池装置100の駆動状態はDSと表記している。説明を簡便とするため、図面に示す電池セル220の閉路電圧の挙動と組電池200の閉路電圧の挙動は同等とする。挙動を明示するため、図面では電池セル220の閉路電圧が短時間で大きく変化するように図示している。
【0060】
時間0の初期状態において、電池装置100は非駆動状態になっている。記憶部32には閉路電圧や物理量などの電池情報が記憶されていない。組電池200と各種車載機器との間の導通状態を制御するシステムメインリレーが遮断状態になっている。そのために組電池200に電流が実質的に流れていない。電池セル220の閉路電圧は充放電領域の値になっている。
【0061】
電池セル220に電流が流れていなくとも、自己放電のために電池セル220のSOCは減少する。そのために時間0の初期状態において、電池セル220の閉路電圧は微量ながら減少傾向にある。
【0062】
時間t0になると、電池装置100は非駆動状態から駆動状態になる。システムメインリレーが遮断状態から通電状態になる。これにより組電池200から各種車載機器への電源電力の供給が開始する。組電池200に実電流が流れはじめる。電池セル220のSOCの減少率が増大する。それにともなって、電池セル220の閉路電圧の減少率も増大する。
【0063】
時間t1になると、演算部33は電池セル220の閉路電圧を取得する。この際、記憶部32には電池情報が記憶されていない。そのため、演算部33は時間t1での閉路電圧の取得範囲を、電池セル220の取りうる範囲に設定する。すなわち、演算部33は閉路電圧の取得範囲を0.0V~5.0Vに設定する。
【0064】
時間t2になると、演算部33は再び電池セル220の閉路電圧を取得する。この際、演算部33は時間t1で取得した電池セル220の閉路電圧に基づいて、時間t2での閉路電圧の取得範囲の中心値を決定している。また、演算部33は閉路電圧の取得範囲の範囲幅αを決定している。
【0065】
取得範囲は
図3に示す実線の両端矢印の幅で示される。取得範囲の中心値と上下限値との差は範囲幅αに設定される。範囲幅αは閉路電圧の検出誤差よりも大きな値である。範囲幅αは
図2に示すOCV1とOCV2の差の半分よりも小さい値である。なお、中心値と上限値との差、および、中心値と下限値との差は、同一でも不同でもよい。本実施形態では範囲幅αは固定値になっている。範囲幅αは記憶部32に予め記憶されている。そのため、取得範囲は実質的に閉路電圧に基づいて決定される。演算部33はこの範囲幅αと取得した閉路電圧とに基づいて限定された取得範囲を設定する。演算部33は、例えば、時間t2の取得範囲を2.8V~3.2Vに設定する。演算部33はこの時間t2での取得範囲において監視部10で検出された閉路電圧を取得する。
【0066】
なお、厳密に言えば、電池装置100での演算処理があるため、時間t2における、取得範囲の決定タイミングと、閉路電圧の取得タイミングとは同一にならない。決定タイミングは取得タイミングの手前である。しかしながら、これら2つのタイミングの差は微小である。そのためにこれら2つのタイミングを同一とみなして記載している。
【0067】
演算部33は取得周期で閉路電圧を取得している。この取得周期は、急速充電などによって電池セル220の充放電状態が急変しない限り、電池セル220のSOCが急変しないことの期待される時間間隔である。取得周期は、電池セル220の閉路電圧の変化量が範囲幅αを超えないことが期待される時間間隔である。時間t1から取得周期が経過すると時間t2になる。
【0068】
時間t2から取得周期が経過して時間t3になると演算部33は、時間t2の閉路電圧に基づいて閉路電圧の取得範囲を決定する。演算部33は、例えば、時間t3の取得範囲を2.6V~3.0Vに設定する。そして演算部33はこの取得範囲において監視部10で検出された電池セル220の閉路電圧を取得する。
【0069】
時間t3から時間tc1になると、電動車両の駆動状態が変化する。実電流が低減する。これに伴って、閉路電圧の減少率も低減する。
【0070】
時間t3から取得周期が経過して時間t4になると演算部33は、時間t3の閉路電圧に基づいて閉路電圧の取得範囲を決定する。演算部33は、例えば、時間t4の取得範囲を2.4V~2.8Vに設定する。演算部33はこの取得範囲において監視部10で検出された電池セル220の閉路電圧を取得する。
図3に示すように、時間tc1で閉路電圧の減少率が低減したとしても、この一例では、時間t4で検出される閉路電圧が取得範囲に収まっている。
【0071】
時間t4から時間tc2になると、電動車両に充電機器が接続される。充電機器により組電池200が急速充電される。これにより実電流が急上昇する。演算部33は係る情報を車両情報若しくは充電情報から取得する。この際、演算部33は閉路電圧の取得範囲を、電池セル220の取りうる範囲に設定する。
【0072】
時間t4から取得周期が経過して時間t5になると演算部33は、閉路電圧の取りうる範囲に設定された取得範囲において監視部10で検出された電池セル220の閉路電圧を取得する。係る取得範囲の変更のため、
図3に示すように、たとえ閉路電圧が時間tc2から急上昇したとしても、時間t5で検出される閉路電圧が取得範囲に収まっている。
【0073】
時間t5から時間tc3になると、組電池200の出力電圧が目標電圧に到達する。これを検出すると、演算部33は充電機器による急速充電を終了させる。演算部33は充電機器に満充電を実行させる。
【0074】
上記した急速充電と満充電とでは、供給電流量が異なる。急速充電は満充電よりも供給電流量が大きくなっている。
【0075】
上記したように閉路電圧CCVと開路電圧OCVとには電圧降下I×R分の差がある。充電時では、CCV=OCV+I×Rとなる。したがって、例えば組電池200の最高出力電圧が閉路電圧CCVとして検出されたとしても、開路電圧OCVは最高出力電圧に達していないことになる。組電池200のSOCは満充電量に達していないことになる。
【0076】
上記の目標電圧は、組電池200の最高出力電圧に基づく値である。演算部33は組電池200の出力電圧が目標電圧に到達したと判定すると、満充電を充電機器に実行させる。満充電では、過充電を避けつつ、組電池200のSOCを満充電量に近づけるため、組電池200の出力電圧を目標電圧に保った状態で、組電池200への充電電力の供給が行われる。目標電圧と最高出力電圧は記憶部32に予め記憶されている。
【0077】
時間t5から取得周期が経過して時間t6になると演算部33は、電池セル220の取りうる範囲に設定された取得範囲において監視部10で検出された電池セル220の閉路電圧を取得する。なおもちろんではあるが、この際、組電池200の出力電圧が目標電圧に到達していることが期待される。そのため、この目標電圧に基づいた取得範囲で閉路電圧を検出してもよい。
【0078】
<取得範囲の再設定>
図3では、取得範囲内で閉路電圧が検出される例を示した。しかしながら、例えば
図4~
図6に示すように、取得範囲内で閉路電圧が検出されないことが起こりうる。
【0079】
図4に示す一例では、演算部33は、時間t5での閉路電圧の取得範囲を、組電池200の急速充電を考慮せずに、時間t4で検出された閉路電圧に基づいて設定している。係る設定の場合、急速充電のために閉路電圧が取得範囲外になる。監視部10で検出される閉路電圧が取得範囲の上限値になる。演算部33はこの上限値を取得する。
【0080】
このように取得範囲の上限値を取得した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する。このように取得範囲を拡大することで、時間t6での閉路電圧の検出が可能になる。
【0081】
図5に示す一例では、演算部33は、時間t3での閉路電圧の取得範囲を、時間t2で取得した閉路電圧に基づいて設定している。しかしながら、時間t2と時間t3との間の時間taで地絡が生じると、時間t3において監視部10で検出される閉路電圧が取得範囲外になる。演算部33で取得される閉路電圧は取得範囲の下限値になる。
【0082】
このように取得範囲の下限値を取得した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する。このように取得範囲を拡大することで、時間t4での閉路電圧の検出が可能になる。
【0083】
一時的な地絡ではない場合、
図5に示すように、時間ta以降の時間t3,t4,t5,t6において監視部10で0.0Vが検出される。演算部33は0.0Vを複数回取得する。0.0Vの取得回数が故障判定値以上になった場合、演算部33は地絡が発生していると判定する。本実施形態では故障判定値を3回に設定している。なお、故障判定値の値は特に限定されない。故障判定値は記憶部32に記憶されている。
【0084】
図6に示す一例では、演算部33は、時間t3での閉路電圧の取得範囲を、時間t2で取得した閉路電圧に基づいて設定している。しかしながら、時間t2と時間t3との間の時間taで天絡が生じると、時間t3において監視部10で検出される閉路電圧が取得範囲外になる。演算部33で取得される閉路電圧は取得範囲の上限値になる。
【0085】
このように取得範囲の上限値を取得した場合、演算部33は閉路電圧の取得範囲を、
図4と
図5に基づいて説明したように、閉路電圧の取りうる範囲に再設定する。
【0086】
一時的な天絡ではない場合、
図6に示すように、時間ta以降の時間t3,t4,t5,t6において監視部10で5.0Vが検出される。演算部33は5.0Vを複数回取得する。5.0Vの取得回数が故障判定値以上になった場合、演算部33は天絡が発生していると判定する。
【0087】
<電圧検出処理>
次に、演算部33の電圧検出処理を
図7に基づいて説明する。演算部33はこの電圧検出処理をサイクルタスクとして実行している。この電圧検出処理の実行間隔は上記した取得周期に相当する。
【0088】
ステップS10で演算部33は、閉路電圧が記憶部32に記憶されているか否かを判定する。閉路電圧が記憶部32に記憶されている場合、演算部33はステップS20へ進む。閉路電圧が記憶部32に記憶されていない場合、演算部33はステップS30へ進む。
【0089】
ステップS20へ進むと演算部33は、記憶部32に記憶された閉路電圧と範囲幅αとに基づいて、閉路電圧の取得範囲を算出する。演算部33はこの取得範囲を記憶部32に記憶する。そして演算部33はその限定された取得範囲を含む指示信号を、限定範囲信号として監視部10に送信する。この後に演算部33はステップS40へ進む。
【0090】
ステップS40へ進むと演算部33は、監視部10で検出された閉路電圧を取得する。この後に演算部33はステップS50へ進む。
【0091】
ステップS50へ進むと演算部33は、閉路電圧が取得範囲の上限値、若しくは、下限値であるか否かを判定する。すなわち、演算部33は閉路電圧が取得範囲の上限値と下限値を除く値であるか否かを判定する。閉路電圧が取得範囲の上限値、若しくは、下限値である場合、演算部33はステップS60へ進む。閉路電圧が取得範囲の上限値と下限値を除く値である場合、演算部33はステップS70へ進む。
【0092】
ステップS60へ進むと演算部33は、自身の保有するカウンタを1だけインクリメントする。この後に演算部33はステップS80へ進む。
【0093】
ステップS80へ進むと演算部33は、カウンタの値が故障判定値よりも小さいか否かを判定する。本実施形態の故障判定値は3である。カウンタの値が故障判定値よりも小さい場合、演算部33はステップS90へ進む。カウンタの値が故障判定値以上の場合、演算部33はステップS100へ進む。
【0094】
ステップS90へ進むと演算部33は、ステップS20において限定範囲信号を送信していた場合、その限定範囲信号に含まれる取得範囲とは異なる取得範囲を含む指示信号を、範囲信号として監視部10に送信する。本実施形態の場合、演算部33は閉路電圧の取りうる範囲を範囲信号に含ませる。ステップS30において後述の全範囲信号を送信していた場合、演算部33はそれと同等の指示信号を監視部10に送信する。若しくは、演算部33は指示信号の出力をやめる。この後に演算部33はステップS110へ進む。
【0095】
ステップS110へ進むと演算部33は、監視部10で検出された閉路電圧を取得する。この後に演算部33はステップS50へ戻る。
【0096】
図5と
図6に示すように地絡や天絡が生じた場合、演算部33はステップS50,S60,S80,S90,S110を繰り返す。閉路電圧が取得範囲の上限値、若しくは、下限値になることが繰り返される。この結果、カウンタの値が故障判定値以上になる。
【0097】
なお、カウンタの値が故障判定値以上になっておらず、記憶部32に閉路電圧が記憶されている場合、演算部33はその記憶されている閉路電圧に基づいてSOCの推定などを行う。そして演算部33はその推定結果に基づいた演算処理を実行する。
【0098】
ステップS80においてカウンタの値が故障判定値以上と判定してステップS100へ進むと、演算部33は地絡や天絡などの故障が生じていると判定する。そして演算部33は電圧検出処理を終了する。
【0099】
フローをさかのぼって、ステップS50において閉路電圧が取得範囲の上限値、若しくは、下限値ではないと判定してステップS70へ進むと、演算部33はカウンタをクリアする。演算部33はカウンタの値をゼロにする。そして演算部33はステップS120へ進む。
【0100】
ステップS120へ進むと演算部33は、電池セル220は正常であると判定する。そして演算部33はステップS130へ進む。
【0101】
ステップS130へ進むと演算部33は、取得した閉路電圧を記憶部32に記憶する。そして演算部33は電圧検出処理を終了する。
【0102】
フローをさかのぼって、ステップS10において閉路電圧が記憶部32に記憶されていないと判定してステップS30へ進むと、演算部33は閉路電圧の取りうる取得範囲を含む指示信号を、全範囲信号として監視部10に送信する。この後に演算部33はステップS40へ進む。
【0103】
図6に基づいて電圧検出処理を説明すると、時間t1において演算部33はステップS30とステップS130を実行する。演算部33は取りうる取得範囲での閉路電圧の検出と、閉路電圧の記憶部32への記憶を行う。
【0104】
時間t2において演算部33はステップS20とステップS130を実行する。演算部33は限定された取得範囲での閉路電圧の検出と、閉路電圧の記憶部32への記憶を行う。
【0105】
時間t3以降、演算部33は、ステップS50,S60,S80,S90,S110を繰り返して実行する。そして演算部33はステップS100を実行する。演算部33は取得範囲を変更して閉路電圧の取得を繰り返し行う。そして演算部33は故障判定を行う。
【0106】
<作用効果>
これまでに説明したように、閉路電圧が取得範囲外である場合、演算部33は閉路電圧の取得範囲を変更する。演算部33は閉路電圧が検出されるように取得範囲を変更する。本実施形態の演算部33は取得範囲を閉路電圧の取りうる取得範囲に変更する。
【0107】
これによれば、取得範囲を狭めた結果、閉路電圧が検出できなくなることが抑制される。
【0108】
演算部33は、例えば、閉路電圧の取得範囲を0.0V~5.0Vの取りうる取得範囲から、3.0V~3.5Vの制限された取得範囲に変更する。この限定的な取得範囲において、アナログの閉路電圧がAD変換部13でデジタル信号に変換される。これによりAD変換部13の量子化誤差が低減される。閉路電圧の検出精度が向上される。
【0109】
演算部33は閉路電圧の取得範囲の下限値若しくは上限値の取得回数が故障判定値以上になった場合、故障が発生していると判定する。具体的に言えば、演算部33は0.0Vの取得回数が3以上になった場合、地絡が発生していると判定する。演算部33は5.0Vの取得回数が3以上になった場合、天絡が発生していると判定する。
【0110】
これにより故障の誤判定が抑制される。地絡と天絡とを分けて検出することができる。
【0111】
(第2実施形態)
次に、第2実施形態を
図8と
図9に基づいて説明する。
【0112】
第1実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。そして、取りうる範囲で閉路電圧の取得を継続する例を示した。これに対して本実施形態では、取りうる範囲で上限値、若しくは、下限値の閉路電圧を取得した場合、演算部33は取得範囲をその取得した閉路電圧の近傍に狭める。
【0113】
演算部33は、
図8に示すように、閉路電圧の取りうる範囲で下限値の閉路電圧を取得した場合、閉路電圧の取得範囲を、その閉路電圧を含む近傍に設定する。演算部33は取得範囲を0.0Vの近傍に設定する。演算部33は取得範囲の幅を記憶部32に記憶されている範囲幅αよりも小さい値に設定する。これにより地絡を高精度に検出することができる。
【0114】
演算部33は、
図9に示すように、閉路電圧の取りうる範囲で上限値の閉路電圧を取得した場合、閉路電圧の取得範囲を、その閉路電圧を含む近傍に設定する。演算部33は取得範囲を5.0Vの近傍に設定する。演算部33は取得範囲の幅を範囲幅αよりも小さい値に設定する。これにより天絡を高精度に検出することができる。
【0115】
(第3実施形態)
次に、第3実施形態を
図10に基づいて説明する。
【0116】
第1実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を検出した場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。これに対して本実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得する度に、演算部33は
図10に示すように閉路電圧の取得範囲を徐々に拡大する。
【0117】
(第4実施形態)
次に、第4実施形態を
図11と
図12に基づいて説明する。
【0118】
第2実施形態では、取得範囲の上限値、若しくは、下限値の閉路電圧を取得する度に、演算部33は閉路電圧の取得範囲を徐々に拡大する例を示した。これに対して本実施形態では、取得範囲の下限値の閉路電圧を取得する度に、演算部33は
図11に示すように閉路電圧の取得範囲を徐々に0.0Vにシフトさせる。取得範囲の上限値の閉路電圧を取得する度に、演算部33は
図12に示すように閉路電圧の取得範囲を徐々に5.0Vにシフトさせる。
【0119】
演算部33は0.0Vを含む取得範囲で0.0Vを取得した場合、地絡が発生していると判定する。演算部33は5.0Vを含む取得範囲で5.0Vを取得した場合、天絡が発生していると判定する。
【0120】
(第5実施形態)
次に、第5実施形態を
図13と
図14に基づいて説明する。
【0121】
第1実施形態では、閉路電圧が取得範囲の上限値、若しくは、下限値の場合、演算部33は閉路電圧の取得範囲を閉路電圧の取りうる範囲に再設定する例を示した。これに対して本実施形態では、閉路電圧が取得範囲の上限値、若しくは、下限値の場合、演算部33は取得した閉路電圧を新たな取得範囲の下限値、若しくは、上限値にする。
【0122】
閉路電圧が取得範囲の下限値の場合、
図13において一点鎖線で示すように、演算部33は新たな取得範囲の上限値を取得した閉路電圧にする。そして演算部33は新たな取得範囲の下限値を取りうる範囲の下限値に設定する。
【0123】
閉路電圧が取得範囲の上限値の場合、
図14において一点鎖線で示すように、演算部33は新たな取得範囲の下限値を取得した閉路電圧にする。そして演算部33は新たな取得範囲の上限値を取りうる範囲の上限値に設定する。
【0124】
これによれば、取得範囲の再設定による閉路電圧の検出精度の低下が抑制される。
【0125】
(その他の変形例)
本実施形態では、複数の監視部10に1つの制御部30が設けられる例を示した。しかしながら、複数の監視部10に複数の制御部30が個別に設けられる構成を採用することもできる。
【0126】
本実施形態では、複数の電池セル220それぞれの閉路電圧の取得範囲を設定する例を示した。しかしながら、複数の電池スタック210それぞれの閉路電圧の取得範囲を設定する構成を採用することもできる。1つの電池スタック210に含まれる複数の電池セル220それぞれに共通する閉路電圧の取得範囲を設定する構成を採用することもできる。係る変形例では、組電池200は少なくとも2つの電池スタック210を有する。
【0127】
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
【符号の説明】
【0128】
10…監視部、11…マルチプレクサ、12…レベルシフタ、13…AD変換部、14…監視制御部、15…監視通信部、30…制御部、31…制御通信部、32…記憶部、33…演算部、100…電池装置、200…組電池、210…電池スタック、220…電池セル、230…物理量センサ