IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧 ▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-操舵装置 図1
  • 特許-操舵装置 図2
  • 特許-操舵装置 図3
  • 特許-操舵装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-13
(45)【発行日】2024-05-21
(54)【発明の名称】操舵装置
(51)【国際特許分類】
   B62D 6/00 20060101AFI20240514BHJP
   B62D 5/04 20060101ALI20240514BHJP
   B62D 101/00 20060101ALN20240514BHJP
   B62D 119/00 20060101ALN20240514BHJP
【FI】
B62D6/00
B62D5/04
B62D101:00
B62D119:00
【請求項の数】 6
(21)【出願番号】P 2020156289
(22)【出願日】2020-09-17
(65)【公開番号】P2022049970
(43)【公開日】2022-03-30
【審査請求日】2023-06-26
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】三宅 純也
(72)【発明者】
【氏名】小寺 隆志
(72)【発明者】
【氏名】高島 亨
(72)【発明者】
【氏名】外山 英次
【審査官】飯島 尚郎
(56)【参考文献】
【文献】特開2015-123865(JP,A)
【文献】特開2006-062624(JP,A)
【文献】特開2010-264833(JP,A)
【文献】特開2017-024683(JP,A)
【文献】特開2015-231786(JP,A)
【文献】米国特許出願公開第2016/0083007(US,A1)
【文献】中国特許出願公開第102320326(CN,A)
【文献】独国特許出願公開第102017220158(DE,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
B62D 5/04
B62D 101/00-137/00
(57)【特許請求の範囲】
【請求項1】
ステアリングホイールとの間の動力伝達が分離されるとともに車両の転舵輪を転舵させる転舵シャフトと、
前記転舵輪を転舵させるべく前記転舵シャフトに付与されるトルクである転舵力を発生する転舵モータと、
前記転舵輪の転舵角に換算可能な角度を前記ステアリングホイールの操舵状態に応じて演算される目標角度に追従させるように前記転舵モータを制御するとともに、前記転舵モータが発生することのできる最大の転舵力と前記転舵シャフトに発生する軸力とが力の釣り合いを保つことができるとして定められた角度領域内の角度となるように前記目標角度を補正する補正処理を実行する制御装置と、を備え、
前記制御装置は、停車状態あるいは極低速域において前記目標角度が前記角度領域の限界値へ向けて増加するとき、前記目標角度が前記限界値に近づくにつれて前記目標角度の増加の程度がより緩やかになるように前記目標角度を補正するように構成され、
前記制御装置は、車速状態が正常ではないとき、車速の値にかかわらず前記補正処理を実行しないように構成される操舵装置。
【請求項2】
前記制御装置は、前記目標角度の変化範囲を制限する制限値を設定するとともに、停車状態あるいは極低速域においては前記目標角度の増加に対する前記制限値の増加割合が前記目標角度の増加に伴い徐々に小さくなるように前記制限値を設定する請求項1に記載の操舵装置。
【請求項3】
前記制御装置は、停車状態あるいは極低速域において前記目標角度が前記角度領域の限界値へ向けて増加するとき、前記目標角度が前記限界値に近づくにつれて前記目標角度の増加の程度がより緩やかになるように、前記ステアリングホイールの操舵状態に応じて演算される目標角度から減算すべき減算値を設定する請求項1に記載の操舵装置。
【請求項4】
前記制限値を第1の制限値として、前記制御装置は、停車状態あるいは極低速域ではないとき、前記第1の制限値に代えて、前記角度領域の限界値を基準として設定される固定値である第2の制限値を使用して前記目標角度の変化範囲を制限するとともに、前記第1の制限値または前記第2の制限値に対して徐変処理を施すことにより前記第1の制限値または前記第2の制限値を時間に対して徐々に変化させる請求項2に記載の操舵装置。
【請求項5】
車両が自動運転制御機能を有している場合、自動運転制御機能がオンされているとき、前記制御装置は車速の値にかかわらず前記補正処理を実行しない請求項1~請求項4のうちいずれか一項に記載の操舵装置。
【請求項6】
前記制御装置は、車速状態が正常ではないとき、または車両がその後退操作を補助するバックガイドモニター機能を有している場合にシフトポジションがリバースレンジであるときにも、車速の値にかかわらず前記補正処理を実行しない請求項5に記載の操舵装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両の操舵装置に関する。
【背景技術】
【0002】
従来、ステアリングホイールと転舵輪との間の動力伝達を分離した、いわゆるステアバイワイヤ方式の操舵装置が存在する。たとえば特許文献1に記載の操舵装置は、ステアリングシャフトに付与される操舵反力の発生源である反力モータ、および転舵輪を転舵させる転舵力の発生源である転舵モータを有している。車両の走行時、操舵装置の制御装置は、反力モータに対する給電制御を通じて操舵反力を発生させるとともに、転舵モータに対する給電制御を通じて転舵輪を転舵させる。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-133521号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1のものを含め、従来一般のステアバイワイヤ方式の操舵装置では、運転者によってステアリングホイールが操作された場合、転舵モータが発生する転舵力と転舵シャフトに発生する軸力とが力の釣り合いを保ちながら転舵輪が転舵する。
【0005】
ただし、転舵モータが発生することのできる最大の転舵力を上回る軸力が発生した場合、車両の軸力特性によっては転舵モータが発生する転舵力と転舵シャフトに作用する軸力との力の釣り合いを保つことが困難となる。このため、ステアリングホイールの操舵状態に応じて転舵輪を円滑に転舵させることが困難となるおそれがある。
【0006】
たとえば停車状態で転舵輪を転舵させる、いわゆる据え切りが行われた場合にはより大きい軸力が発生しやすいところ、車両の軸力特性によっては、つぎのような事象が発生することが考えられる。すなわち、据え切りが行われた時点では転舵輪は動かず、車両の発進に伴い軸力が減少した後に転舵輪が動き出す。このような事象の発生に対して、運転者が違和感を覚えることが懸念される。
【0007】
本発明の目的は、転舵輪をより円滑に転舵させることができる操舵装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成し得る操舵装置は、ステアリングホイールとの間の動力伝達が分離されるとともに車両の転舵輪を転舵させる転舵シャフトと、前記転舵輪を転舵させるべく前記転舵シャフトに付与されるトルクである転舵力を発生する転舵モータと、前記転舵輪の転舵角に換算可能な角度を前記ステアリングホイールの操舵状態に応じて演算される目標角度に追従させるように前記転舵モータを制御するとともに、前記転舵モータが発生することのできる最大の転舵力と前記転舵シャフトに発生する軸力とが力の釣り合いを保つことができるとして定められた角度領域内の角度となるように前記目標角度を補正する補正処理を実行する制御装置と、を備えている。前記制御装置は、停車状態あるいは極低速域において前記目標角度が前記角度領域の限界値へ向けて増加するとき、前記目標角度が前記限界値に近づくにつれて前記目標角度の増加の程度がより緩やかになるように前記目標角度を補正する。
【0009】
この構成によれば、転舵モータが発生することのできる最大の転舵力と転舵シャフトに発生する軸力とが力の釣り合いを保つことができるとして定められた角度領域内の角度となるように目標角度が補正される。このため、目標角度が転舵モータの転舵力と転舵シャフトに発生する軸力との力の釣り合いを保つことが困難となる角度領域を外れることが抑制される。すなわち、転舵モータが発生することのできる最大の転舵力を上回る軸力が発生する状況に至ることが抑えられる。したがって、転舵輪をステアリングホイールの操舵状態に応じてより円滑に転舵させることができる。
【0010】
ここで、目標角度に対する補正処理の実行に伴う車両挙動に対して、運転者が違和感を覚えるおそれがある。特に、より大きく転舵される状況が発生しやすい停車状態あるいは極低速域においては顕著であると考えられる。
【0011】
この点、上記の操舵装置によれば、停車状態あるいは極低速域において、目標角度が転舵モータの転舵力と軸力との力の釣り合いを保つことが困難となる角度領域の限界値へ向けて増加するとき、目標角度が限界値に近づくにつれて目標角度の増加の程度がより緩やかになるように目標角度が補正される。目標角度が限界値へ向けてより緩やかに変化することにより、車両挙動に対する運転者の違和感を軽減することが可能である。
【0012】
上記の操舵装置において、前記制御装置は、前記目標角度の変化範囲を制限する制限値を設定するとともに、停車状態あるいは極低速域においては前記目標角度の増加に対する前記制限値の増加割合が前記目標角度の増加に伴い徐々に小さくなるように前記制限値を設定するようにしてもよい。
【0013】
この構成によれば、目標角度を制限値によって制限することにより、目標角度を補正することができる。
上記の操舵装置において、前記制御装置は、停車状態あるいは極低速域において前記目標角度が前記角度領域の限界値へ向けて増加するとき、前記目標角度が前記限界値に近づくにつれて前記目標角度の増加の程度がより緩やかになるように、前記ステアリングホイールの操舵状態に応じて演算される目標角度から減算すべき減算値を設定するようにしてもよい。
【0014】
この構成によれば、目標角度から減算値を減算することにより、目標角度を補正することができる。
上記の操舵装置において、前記制限値を第1の制限値として、前記制御装置は、停車状態あるいは極低速域ではないとき、前記第1の制限値に代えて、前記角度領域の限界値を基準として設定される固定値である第2の制限値を使用して前記目標角度の変化範囲を制限するとともに、前記第1の制限値または前記第2の制限値に対して徐変処理を施すことにより前記第1の制限値または前記第2の制限値を時間に対して徐々に変化させるようにしてもよい。
【0015】
この構成によれば、目標角度を制限する制限値が第1の制限値と第2の制限値との間で切り替えられた場合、目標角度を制限する制限値が急激に変化することが抑制される。このため、目標角度が急激に変化することも抑えることができる。
【0016】
上記の操舵装置において、車両が自動運転制御機能を有している場合、自動運転制御機能がオンされているとき、前記制御装置は車速の値にかかわらず前記補正処理を実行しないようにしてもよい。
【0017】
目標角度に対する補正処理が実行される場合に自動運転制御が実行されるとき、この自動運転制御の適切な実行が阻害されるおそれがある。この点、上記の操舵装置によれば、自動運転制御機能がオンされている場合には、車速の値にかかわらず目標角度に対する補正処理が実行されない。このため、目標角度に対する補正処理が自動運転制御の実行を妨げることがない。製品仕様などによっては、自動運転制御の実行を妨げないことが求められるところ、こうした要求に応えることができる。
【0018】
上記の操舵装置において、前記制御装置は、車速状態が正常ではないとき、または車両がその後退操作を補助するバックガイドモニター機能を有している場合にシフトポジションがリバースレンジであるときにも、車速の値にかかわらず前記補正処理を実行しないようにしてもよい。
【0019】
車速状態が正常ではない場合、その正常ではない車速に基づいて目標角度に対する補正処理が実行されると、かえって運転者に違和感を与えるおそれがある。この点、上記の操舵装置によれば、車速状態が正常ではない場合、車速の値にかかわらず目標角度に対する補正処理が実行されない。このため、運転者に違和感を与えることを抑制することができる。
【0020】
また、製品仕様などによっては、車両にその後退操作を補助するバックガイドモニター機能が設けられることがある。この機能に基づき極低速域内で車両の後退操作を行う場合、その後退操作の際に目標角度に対する補正処理が行われることによって車室内のディスプレイに表示される車両の予想進路線(予想軌跡線)などが車速に応じて変化し、かえって運転者に違和感を与えるおそれがある。この点、上記の操舵装置によれば、シフトポジションがリバースレンジである場合、すなわち、車両の後退操作が行われる場合、車速の値にかかわらず目標角度に対する補正処理が実行されない。このため、運転者に違和感を与えることを抑制することができる。
【発明の効果】
【0021】
本発明の操舵装置によれば、転舵輪をより円滑に転舵させることができる。
【図面の簡単な説明】
【0022】
図1】操舵装置の一実施の形態を示す構成図。
図2】一実施の形態における制御装置のブロック図。
図3】一実施の形態における転舵制御部の一部分を示すブロック図。
図4】一実施の形態における目標ピニオン角と制限値との関係を示すグラフ。
【発明を実施するための形態】
【0023】
以下、操舵装置を具体化した一実施の形態を説明する。
図1に示すように、車両の操舵装置10は、車両のステアリングホイール11に操舵反力を付与する反力ユニット20、および車両の転舵輪12,12を転舵させる転舵ユニット30を有している。操舵反力とは、運転者によるステアリングホイール11の操作方向と反対方向へ向けて作用するトルクをいう。操舵反力をステアリングホイール11に付与することにより、運転者に適度な手応え感を与えることが可能である。
【0024】
反力ユニット20は、ステアリングホイール11が連結されたステアリングシャフト21、反力モータ22、減速機構23、回転角センサ24、トルクセンサ25、および反力制御部27を有している。
【0025】
反力モータ22は、操舵反力の発生源である。反力モータ22としては、たとえば三相のブラシレスモータが採用される。反力モータ22は、減速機構23を介して、ステアリングシャフト21に連結されている。反力モータ22が発生するトルクは、操舵反力としてステアリングシャフト21に付与される。
【0026】
回転角センサ24は反力モータ22に設けられている。回転角センサ24は反力モータ22の回転角θを検出する。
トルクセンサ25は、ステアリングシャフト21における減速機構23とステアリングホイール11との間の部分に設けられている。トルクセンサ25は、ステアリングホイール11の回転操作を通じてステアリングシャフト21に加わる操舵トルクTを検出する。
【0027】
反力制御部27は、回転角センサ24を通じて検出される反力モータ22の回転角θに基づきステアリングシャフト21の回転角である操舵角θを演算する。反力制御部27は、ステアリングホイール11の操舵中立位置に対応する反力モータ22の回転角θ(以下、「モータ中点」という。)を基準とする回転数をカウントしている。反力制御部27は、モータ中点を原点として回転角θを積算した角度である積算角を演算し、この演算される積算角に減速機構23の減速比に基づく換算係数を乗算することにより、ステアリングホイール11の操舵角θを演算する。ちなみに、モータ中点は舵角中点情報として反力制御部27に記憶されている。
【0028】
反力制御部27は、反力モータ22の駆動制御を通じて操舵トルクTに応じた操舵反力を発生させる反力制御を実行する。反力制御部27は、トルクセンサ25を通じて検出される操舵トルクTに基づき目標操舵反力を演算し、この演算される目標操舵反力および操舵トルクTに基づきステアリングホイール11の目標操舵角を演算する。反力制御部27は、反力モータ22の回転角θに基づき演算される操舵角θと目標操舵角との差を求め、当該差を無くすように反力モータ22に対する給電を制御する。反力制御部27は、回転角センサ24を通じて検出される反力モータ22の回転角θを使用して反力モータ22をベクトル制御する。
【0029】
転舵ユニット30は、転舵シャフト31、転舵モータ32、減速機構33、ピニオンシャフト34、回転角センサ35、および転舵制御部36を有している。
転舵シャフト31は、車幅方向(図1中の左右方向)に沿って延びている。転舵シャフト31の両端には、それぞれタイロッド13,13を介して左右の転舵輪12,12が連結されている。
【0030】
転舵モータ32は転舵力の発生源である。転舵モータ32としては、たとえば三相のブラシレスモータが採用される。転舵モータ32は、減速機構33を介してピニオンシャフト34に連結されている。ピニオンシャフト34のピニオン歯34aは、転舵シャフト31のラック歯31aに噛み合わされている。転舵モータ32が発生するトルクは、転舵力としてピニオンシャフト34を介して転舵シャフト31に付与される。転舵モータ32の回転に応じて、転舵シャフト31は車幅方向(図1中の左右方向)に沿って移動する。転舵シャフト31が移動することにより転舵輪12,12の転舵角θが変更される。
【0031】
回転角センサ35は転舵モータ32に設けられている。回転角センサ35は転舵モータ32の回転角θを検出する。
転舵制御部36は、転舵モータ32の駆動制御を通じて転舵輪12,12を操舵状態に応じて転舵させる転舵制御を実行する。転舵制御部36は、回転角センサ35を通じて検出される転舵モータ32の回転角θに基づきピニオンシャフト34の回転角であるピニオン角θを演算する。また、転舵制御部36は、反力制御部27により演算される目標操舵角を使用してピニオンシャフト34の目標回転角である目標ピニオン角を演算する。ただし、ピニオンシャフト34の目標回転角は、所定の舵角比を実現する観点に基づき演算される。転舵制御部36は、ピニオンシャフト34の目標ピニオン角と実際のピニオン角θとの差を求め、当該差を無くすように転舵モータ32に対する給電を制御する。転舵制御部36は、回転角センサ35を通じて検出される転舵モータ32の回転角θを使用して転舵モータ32をベクトル制御する。
【0032】
つぎに、反力制御部27について詳細に説明する。
図2に示すように、反力制御部27は、操舵角演算部51、操舵反力指令値演算部52、および通電制御部53を有している。
【0033】
操舵角演算部51は、回転角センサ24を通じて検出される反力モータ22の回転角θに基づきステアリングホイール11の操舵角θを演算する。
操舵反力指令値演算部52は、操舵トルクTおよび車速Vに基づき操舵反力指令値Tを演算する。操舵反力指令値演算部52は、操舵トルクTの絶対値が大きいほど、また車速Vが遅いほど、より大きな絶対値の操舵反力指令値Tを演算する。操舵反力指令値演算部52については、後に詳述する。
【0034】
通電制御部53は、操舵反力指令値Tに応じた電力を反力モータ22へ供給する。具体的には、通電制御部53は、操舵反力指令値Tに基づき反力モータ22に対する電流指令値を演算する。また、通電制御部53は、反力モータ22に対する給電経路に設けられた電流センサ54を通じて、当該給電経路に生じる実際の電流Iの値を検出する。この電流Iの値は、反力モータ22に供給される実際の電流の値である。そして通電制御部53は、電流指令値と実際の電流Iの値との偏差を求め、当該偏差を無くすように反力モータ22に対する給電を制御する。これにより、反力モータ22は操舵反力指令値Tに応じたトルクを発生する。運転者に対して路面反力に応じた適度な手応え感を与えることが可能である。
【0035】
つぎに、転舵制御部36について詳細に説明する。
図2に示すように、転舵制御部36は、ピニオン角演算部61、目標ピニオン角演算部62、ピニオン角フィードバック制御部63、および通電制御部64を有している。
【0036】
ピニオン角演算部61は、回転角センサ35を通じて検出される転舵モータ32の回転角θに基づきピニオンシャフト34の実際の回転角であるピニオン角θを演算する。転舵モータ32とピニオンシャフト34とは減速機構33を介して連動する。このため、転舵モータ32の回転角θとピニオン角θとの間には相関関係がある。この相関関係を利用して転舵モータ32の回転角θからピニオン角θを求めることができる。また、ピニオンシャフト34は、転舵シャフト31に噛合されている。このため、ピニオン角θと転舵シャフト31の移動量との間にも相関関係がある。すなわち、ピニオン角θは、転舵輪12,12の転舵角θを反映する値である。
【0037】
目標ピニオン角演算部62は、操舵角演算部51により演算される操舵角θに基づき目標ピニオン角θ を演算する。本実施の形態において、目標ピニオン角演算部62は、目標ピニオン角θ を操舵角θと同じ値に設定する。すなわち、操舵角θと転舵角θとの比である舵角比は「1:1」である。
【0038】
ちなみに、目標ピニオン角演算部62は、目標ピニオン角θ を操舵角θと異なる値に設定するようにしてもよい。すなわち、目標ピニオン角演算部62は、たとえば車速Vなど、車両の走行状態に応じて操舵角θに対する転舵角θの比である舵角比を設定し、この設定される舵角比に応じて目標ピニオン角θ を演算する。目標ピニオン角演算部62は、車速Vが遅くなるほど操舵角θに対する転舵角θがより大きくなるように、また車速Vが速くなるほど操舵角θに対する転舵角θがより小さくなるように、目標ピニオン角θ を演算する。目標ピニオン角演算部62は、車両の走行状態に応じて設定される舵角比を実現するために、操舵角θに対する補正角度を演算し、この演算される補正角度を操舵角θに加算することにより舵角比に応じた目標ピニオン角θ を演算する。
【0039】
ピニオン角フィードバック制御部63は、目標ピニオン角演算部62により演算される目標ピニオン角θ 、およびピニオン角演算部61により演算される実際のピニオン角θを取り込む。ピニオン角フィードバック制御部63は、実際のピニオン角θを目標ピニオン角θ に追従させるべくピニオン角θのフィードバック制御を通じて、転舵モータ32が発生するトルクに対するトルク指令値T を演算する。
【0040】
通電制御部64は、トルク指令値T に応じた電力を転舵モータ32へ供給する。具体的には、通電制御部64は、トルク指令値T に基づき転舵モータ32に対する電流指令値を演算する。また、通電制御部64は、転舵モータ32に対する給電経路に設けられた電流センサ65を通じて、当該給電経路に生じる実際の電流Iの値を検出する。この電流Iの値は、転舵モータ32に供給される実際の電流の値である。そして通電制御部64は、電流指令値と実際の電流Iの値との偏差を求め、当該偏差を無くすように転舵モータ32に対する給電を制御する。これにより、転舵モータ32はトルク指令値T に応じた角度だけ回転する。
【0041】
ここで、ステアバイワイヤ方式の操舵装置10においては、運転者によってステアリングホイール11が操作された場合、転舵モータ32が発生する転舵力と転舵シャフト31に作用する軸力とが力の釣り合いを保ちながら転舵輪12,12が転舵する。ただし、転舵モータ32が発生することのできる最大の転舵力を上回る軸力が発生した場合、転舵モータ32が発生する転舵力と転舵シャフト31に作用する軸力との力の釣り合いを保つことが困難となる。このため、ステアリングホイール11の操舵状態に応じて転舵輪12,12を円滑に転舵させることが困難となるおそれがある。
【0042】
そこで、本実施の形態では、転舵モータ32が発生することのできる最大の転舵力(以下、「転舵モータ32の最大出力」ともいう。)を上回る軸力が発生する状況に至ることを抑えるとともに転舵輪12,12をより円滑に転舵させるべく、転舵制御部36としてつぎの構成を採用している。
【0043】
図2に二点鎖線で示すように、転舵制御部36は、補正処理部66を有している。補正処理部66は、目標ピニオン角演算部62とピニオン角フィードバック制御部63との間の演算経路に設けられている。
【0044】
補正処理部66は、ピニオン角フィードバック制御部63へ供給される最終的な目標ピニオン角θ が、転舵モータ32の最大出力と軸力とが力の釣り合いを保つことができるとして定められた角度領域内の角度となるように、目標ピニオン角演算部62により演算される目標ピニオン角θ を車両の軸力特性に合わせて補正する。
【0045】
図3に示すように、補正処理部66は、制限値演算部71、判定部72、切り替え処理部73、徐変処理部74、およびガード処理部75を有している。
制限値演算部71は、目標ピニオン角演算部62により演算される目標ピニオン角θ および車速センサを通じて検出される車速Vを取り込み、この取り込まれる目標ピニオン角θ および車速Vに基づき目標ピニオン角θ に対する制限値θL1を演算する。目標ピニオン角θ の変化範囲は制限値θL1によって制限される。制限値θL1は、たとえば車速Vが極低速域の速度である場合における車両の軸力特性に応じて転舵モータ32の最大出力と軸力との釣り合いを保つことができる角度の限界値を基準として設定される。極低速域とは、たとえば5km/h以下の速度をいう。
【0046】
ちなみに、停車した状態で転舵輪12,12を転舵させる据え切り時の軸力、あるいは車速Vが極低速域内の速度である場合に転舵輪12,12を転舵させるときの軸力は、車速Vが極低速域を超える速度である場合に転舵輪12,12を転舵させるときの軸力に比べて相当大きくなる。換言すれば、車速Vが極低速域を超える速度である場合に転舵輪12,12を転舵させるときの軸力は、車速が極低速域の速度である場合に転舵輪12,12を転舵させるときの軸力に比べて相当小さくなる。
【0047】
制限値演算部71は、目標ピニオン角θ と制限値θL1との関係を規定するマップを使用して制限値θL1を演算する。マップは、たとえば停車状態あるいは車速Vが極低速域の速度である場合における車両の軸力特性に応じて目標ピニオン角θ を転舵モータ32の最大出力と軸力とが力の釣り合いを保つことができる角度領域内の角度に制限する観点に基づき設定される。
【0048】
図4に示すように、マップMの特性は、つぎの通りである。すなわち、特性線L1で示されるように、目標ピニオン角θ の絶対値が「0」を起点として増加するにつれて制限値θL1はその最大値θmaxへ向けて徐々に増加する。ただし、目標ピニオン角θ の絶対値の増加に対する制限値θL1の増加割合(特性線L1の傾き)は、目標ピニオン角θ の絶対値が増加するにつれて徐々に小さくなる。すなわち、目標ピニオン角θ の絶対値の増加に対する制限値θL1の増加勾配は、目標ピニオン角θ の絶対値が増加するにつれて緩やかになる。ちなみに、最大値θmaxは、車両の軸力特性に応じて転舵モータ32の最大出力と軸力との釣り合いを保つことができる角度の限界値を基準として設定される。また、最大値θmaxは、車速Vに応じて設定される。
【0049】
特性線L0で示されるように目標ピニオン角θ の絶対値の増加に対して制限値θL1を線形的に増加させる場合に比べて、制限値θL1は目標ピニオン角θ の絶対値の増加に伴い緩やかに増加し、やがて最大値θmaxに達する。
【0050】
判定部72は、制限値演算部71により演算される制限値θL1を有効とすべき状況であるのか無効とすべき状況であるのかを判定する。
判定部72は、車両の走行状態が反映される状態変数として、車速センサを通じて検出される車速Vが正常であるか否かの車速状態を示す電気信号である車速状態信号S1を取り込む。たとえば車速センサの異常あるいは故障が検出されるとき、車速Vが正常でないとされる。また、判定部72は、車両の現在のシフトポジションを示す電気信号であるシフトポジション状態信号S2を取り込む。このシフトポジション状態は、車両の後退操作が行われるか否かを判定するために使用される。また、判定部72は、自動運転制御機能のオンオフ状態を示す電気信号である自動運転状態信号S3を取り込む。自動運転制御機能にはパーキングアシスト機能などの運転支援制御機能の他、運転者の操舵なしに自律運転が可能な自動運転制御機能も含まれる。
【0051】
判定部72は、車速状態信号S1、シフトポジション状態信号S2および自動運転状態信号S3に基づきフラグF1の値をセットする。具体的には、判定部72は、つぎの3つの条件(a),(b),(c)のすべてが成立する旨判定されるとき、フラグF1の値を「1」にセットする。また、判定部72は、3つの条件(a),(b),(c)のうち少なくとも1つが成立しない旨判定されるとき、フラグF1の値を「0」にセットする。
【0052】
(a)自動運転制御機能の作動状態がオンではないこと。
(b)シフトポジションがリバースレンジ(Rレンジ)ではないこと。
(c)車速状態が正常であること。
【0053】
切り替え処理部73は、制限値演算部71により演算される制限値θL1、および転舵制御部36の記憶装置に格納された固定値である制限値θL0を取り込む。制限値θL0は、車両の軸力特性に応じて転舵モータ32の最大出力と軸力との釣り合いを保つことができる角度の限界値を基準として設定される。制限値θL0は、先の最大値θmaxと同じ値に設定してもよい。
【0054】
切り替え処理部73は、判定部72によりセットされるフラグFの値に応じて、制限値θL1および制限値θL0のうちいずれか一方をプレ制限値θL2として選択する。切り替え処理部73は、フラグFの値が「1」であるとき、プレ制限値θL2として制限値θL1を選択する。切り替え処理部73は、フラグFの値が「0」であるとき、プレ制限値θL2として制限値θL0を選択する。
【0055】
徐変処理部74は、切り替え処理部73により選択されたプレ制限値θL2を取り込む。徐変処理部74は、プレ制限値θL2に対して時間に対する徐変処理、すなわちプレ制限値θL2の値を時間に対して徐々に変化させるための処理を施すことにより、最終的な制限値θL3を演算する。ちなみに、徐変処理部74として、ローパスフィルタを採用してもよい。
【0056】
ガード処理部75は、目標ピニオン角演算部62により演算される目標ピニオン角θ 、および徐変処理部74より演算される最終的な制限値θL3を取り込む。ガード処理部75は、最終的な制限値θL3に基づき目標ピニオン角θ に対する制限処理を実行する。すなわち、ガード処理部75は、目標ピニオン角θ の絶対値と制限値θL3とを比較する。ガード処理部75は、目標ピニオン角θ の絶対値が制限値θL3を超える場合、目標ピニオン角θ の絶対値を制限値θL3に制限する。この制限処理が施された目標ピニオン角θ が最終的な目標ピニオン角θ としてピニオン角フィードバック制御部63へ供給される。また、ガード処理部75は、目標ピニオン角θ の絶対値が制限値θL3以下の値である場合、目標ピニオン角演算部62により演算される目標ピニオン角θ がそのまま最終的な目標ピニオン角θ としてピニオン角フィードバック制御部63へ供給される。
【0057】
したがって、本実施の形態によれば、以下の効果を得ることができる。
(1)目標ピニオン角θ が、車両の軸力特性に応じて転舵モータ32の最大出力と軸力とが力の釣り合いを保つことができる角度領域内の角度となるように補正される。このため、目標ピニオン角θ が転舵モータの転舵力と軸力との力の釣り合いを保つことが困難となる角度領域、すなわち転舵輪12,12を円滑に転舵させることが困難となる角度になることが抑制される。このため、転舵モータ32が発生することのできる最大の転舵力を上回る軸力が発生する状況に至ることが抑えられる。したがって、転舵輪12,12をステアリングホイール11の操舵状態に応じて円滑に転舵させることができる。
【0058】
(2)目標ピニオン角θ に対する補正処理の実行に伴う車両挙動に対して、運転者が違和感を覚えるおそれがある。特に、より大きく転舵される状況が発生しやすい停車状態あるいは極低速域においては顕著であると考えられる。この点、本実施の形態では、停車状態あるいは極低速域において、目標ピニオン角θ の絶対値の増加に対する制限値θL1の増加勾配は、目標ピニオン角θ の絶対値が増加するにつれて、より緩やかになる。このため、制限値θL1により制限される目標ピニオン角θ の絶対値についても、最大値θmaxへ向けてより緩やかに増加する。したがって、車両挙動に対する運転者の違和感を軽減することが可能である。
【0059】
(3)切り替え処理部73は、極低速域では制限値演算部71により演算される制限値θL1をプレ制限値θL2として選択する一方、中高速域では固定値である制限値θL0をプレ制限値θL2として選択する。すなわち、プレ制限値θL2は車速に応じて制限値θL1と制限値θL0との間で切り替わる。このとき、目標ピニオン角θ の値によっては制限値θL1と制限値θL0とが大きく乖離していることが考えられる。この場合、プレ制限値θL2が急激に変化することによって最終的な目標ピニオン角θ の値も急激に変化するおそれがある。この点、本実施の形態では、切り替え処理部73により選択されるプレ制限値θL2に対して徐変処理が施される。このため、プレ制限値θL2が制限値θL1と制限値θL0との間で切り替わる場合、プレ制限値θL2が急激に変化すること、ひいては最終的な目標ピニオン角θ の値が急激に変化することが抑制される。
【0060】
(4)製品仕様などによっては、自動運転制御機能がオンされている場合には自動運転制御の実行を妨げないことが求められる。すなわち、自動運転制御用の制御装置は、たとえば車両に目標車線上を走行させるための指令値として、目標ピニオン角あるいは現在の目標ピニオン角に対して付加すべき角度である付加角度を設定する。この場合、プレ制限値θL2としてマップMに基づく制限値θL1が選択されると、自動運転制御用の制御装置によって設定される目標ピニオン角がマップMに基づく制限値θL1によって制限されるおそれがある。この点、判定部72は自動運転制御機能の作動状態がオンである場合、制限値演算部71により演算される制限値θL1を無効とすべき状況であると判定する。したがって、自動運転制御機能がオンされている場合、車速Vが極低速域内の速度であるときであれ、マップMに基づく制限値θL1による制限処理を通じた目標ピニオン角θ の補正処理を行わないようにすることによって、自動運転制御の実行が妨げられることを抑制することができる。
【0061】
(5)車速状態が正常ではない場合、その正常ではない車速Vに基づいて制限値θL1による制限処理が実行されると、かえって運転者に違和感を与えるおそれがある。この点、判定部72は、車速状態が正常でない場合、制限値演算部71により演算される制限値θL1を無効とすべき状況であると判定する。したがって、車速状態が正常ではない場合、車速Vが極低速域内の速度であるときであれ、マップMに基づく制限値θL1による制限処理を通じた目標ピニオン角θ の補正処理を行わないようにすることによって、運転者に違和感を与えることを抑制することができる。
【0062】
(6)製品仕様などによっては、いわゆるバックガイドモニター機能が設けられることがある。バックガイドモニター機能とは、車両後部にカメラを取り付け、そのカメラにより撮影される映像および車両の予想進路線(予想軌跡線)を車室内のディスプレイに表示することによって車庫入れや縦列駐車などの車両の後退操作を補助する機能をいう。この機能に基づき極低速域内で後退操作を行う場合、その後退操作の際に制限値θL1による制限処理が行われることによって車両の予想進路線などが車速Vに応じて変化し、かえって運転者に違和感を与えるおそれがある。この点、判定部72は、シフトポジションがリバースレンジである場合、すなわち、車両の後退操作が行われる場合、制限値演算部71により演算される制限値θL1を無効とすべき状況であると判定する。したがって、シフトポジションがリバースレンジである場合、車速Vが極低速域内の速度であるときであれ、マップMに基づく制限値θL1による制限処理を通じた目標ピニオン角θ の補正処理を行わないようにすることによって、運転者に違和感を与えることを抑制することができる。
【0063】
<他の実施の形態>
なお、本実施の形態は、つぎのように変更して実施してもよい。
・本実施の形態では、目標ピニオン角演算部62により演算される目標ピニオン角θ を最終的な制限値θL3によって制限することによって補正したが、つぎのようにしてもよい。すなわち、目標ピニオン角演算部62により演算される目標ピニオン角θ を車速に応じてオフセットさせる。たとえば、極低速域においては図4のグラフに特性線L1で示される目標ピニオン角θ に対する制限値θL1の変化特性と同様の特性が得られるように、目標ピニオン角演算部62により演算される目標ピニオン角θ から減算値θoffを減算する(次式(1)を参照)。ただし、減算値θoffは、目標ピニオン角演算部62により演算される目標ピニオン角θ に応じて変化する。
【0064】
θ (最終)=θ -θoff …(1)
・本実施形態では、判定部72は先に挙げた3つの条件(a),(b),(c)が成立するかどうかに基づいて制限値演算部71により演算される制限値θL1を有効とすべき状況であるのか無効とすべき状況であるのかを判定したが、これに限らない。たとえば3つの条件(a),(b),(c)のうちいずれか1つまたは2つの条件を採用し、それらの条件が成立するかどうかに基づいて判定してもよい。このようにした場合であれ、本実施の形態の(4)~(6)に対応した各効果を得ることができる。
【0065】
・製品仕様などによっては、補正処理部66として徐変処理部74を割愛した構成を採用してもよい。
・反力制御部27と転舵制御部36とで単一の制御装置を構成してもよい。
【0066】
・本実施の形態では、車両の操舵装置10として、ステアリングシャフト21と転舵輪12との間の動力伝達が分離されたいわゆるリンクレス構造を採用した例を挙げたが、クラッチによりステアリングシャフト21と転舵輪12との間の動力伝達を分離可能とした構造を採用してもよい。クラッチが切断されるとき、ステアリングホイール11と転舵輪12との間の動力伝達が切断される。クラッチが接続されるとき、ステアリングホイール11と転舵輪12との間の動力伝達が連結される。
【符号の説明】
【0067】
10…操舵装置
11…ステアリングホイール
12…転舵輪
30…転舵ユニット
31…転舵シャフト
32…転舵モータ
36…転舵制御部(制御装置)
θL1…制限値(第1の制限値)
θL0…制限値(第2の制限値)
θoff…減算値
θ…ピニオン角(転舵角に換算可能な角度)
θ …目標ピニオン角(目標角度)
図1
図2
図3
図4