(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-14
(45)【発行日】2024-05-22
(54)【発明の名称】電磁装置
(51)【国際特許分類】
H02K 3/04 20060101AFI20240515BHJP
【FI】
H02K3/04 Z
(21)【出願番号】P 2020162615
(22)【出願日】2020-09-28
【審査請求日】2023-04-20
(73)【特許権者】
【識別番号】000002853
【氏名又は名称】ダイキン工業株式会社
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】上田 茜
(72)【発明者】
【氏名】浅野 能成
(72)【発明者】
【氏名】木戸 尚宏
(72)【発明者】
【氏名】浅利 司
(72)【発明者】
【氏名】日比野 寛
【審査官】中島 亮
(56)【参考文献】
【文献】特開2010-178583(JP,A)
【文献】特開2015-095996(JP,A)
【文献】特開2011-125088(JP,A)
【文献】特開2010-172083(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 3/00- 3/28
(57)【特許請求の範囲】
【請求項1】
導線が巻き回されることにより構成されるコイルと、
前記コイルの巻回軸方向の両端部の外側に対向して配置されるコアと、
前記コイルにおける前記巻回軸方向の両端部の前記導線を前記巻回軸方向の外側に拡張するように弾性力を発生させる弾性力発生部と、を備え
、
前記弾性力発生部は、前記コイルであり、
前記コイルは、前記弾性力を発生させ、前記巻回軸方向の両端部が全周に亘って対向する部材と接触するように設けられる、
電磁装置。
【請求項2】
前記コイルと前記コアとの間を絶縁する絶縁部を備え、
前記絶縁部は、前記コイルにおける前記巻回軸方向の両端部の前記導線の前記巻回軸方向の外側への拡張に合わせて動くことが可能なように構成される、
請求項1に記載の電磁装置。
【請求項3】
前記コイルは、その少なくとも一部の前記導線がコイルばね形状に加工されている、
請求項
1又は2に記載の電磁装置。
【請求項4】
前記コイルは、その一部の前記導線が、巻回軸に垂直な方向から見て前記巻回軸方向に凸の形状を有するように加工されている、
請求項
1又は2に記載の電磁装置。
【請求項5】
前記コイルの引き出し線が前記弾性力を発生させる、
請求項
1又は2に記載の電磁装置。
【請求項6】
前記導線は、角線又は平角線である、
請求項1乃至
5の何れか一項に記載の電磁装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電磁装置に関する。
【背景技術】
【0002】
従来、導線が巻き回されることにより構成されるコイルと、コイルの巻回軸方向の両端部の外側に対向して配置されるコアとを含む電磁装置(例えば、クローポールモータやスラスト磁気軸受等)が知られている(特許文献1,2参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特許2013-158072号公報
【文献】特開2019-173823号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、コイルの銅損により発生する熱エネルギは、コイルとコアとの間の絶縁部材(例えば、絶縁紙、インシュレータ、樹脂モールド等)、及びコアを通じて、放熱部材に伝達されることにより、コイルは冷却される。
【0005】
しかしながら、例えば、丸線によりコイルが構成され、且つ、コイルと別体に絶縁部材が設けられる場合、コイルと絶縁部材との接触面積が相対的に小さくなり、コイルと絶縁部材との間の熱抵抗が相対的に高くなる場合がある。その結果、コイルと絶縁部材との間の熱伝導性が相対的に低くなり、コイルの冷却性能が相対的に低くなる可能性がある。また、例えば、更に、コイルの巻回軸が略鉛直方向に沿って配置される場合、コイルの自重により、コイルの上端部と絶縁部材との間に隙間が生じることで、コイルと絶縁部材との間の熱伝導性が更に低下し、コイルの冷却性能が更に低くなる可能性がある。そのため、コイルの冷却性能の観点で改善の余地がある。
【0006】
本開示は、コイルの巻回軸方向の両端部の外側に対向して配置されるコアを含む電磁装置において、コイルの冷却性能を向上させる技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示に係る一実施形態では、
導線が巻き回されることにより構成されるコイルと、
前記コイルの巻回軸方向の両端部の外側に対向して配置されるコアと、
前記コイルにおける前記巻回軸方向の両端部の前記導線を前記巻回軸方向の外側に拡張するように弾性力を発生させる弾性力発生部と、を備える、
電磁装置が提供される。
【0008】
本実施形態によれば、コイルの巻回軸方向の両端部の導線は、弾性力によりコアに向かって付勢される。そのため、例えば、丸線によりコイルが構成され、且つ、コイルと別体に絶縁部材が設けられる場合に、コイルと絶縁部材との接触度(接触面積)を相対的に高め、コイルと絶縁部材との間の熱抵抗を相対的に小さくすることができる。また、例えば、更に、コイルの巻回軸が略鉛直方向に沿って配置される場合に、コイルの上端部と絶縁部材との間の隙間をなくし、コイルの上端部の導線と絶縁部材とを接触させることができる。よって、コイルの冷却性能を向上させることができる。
【0009】
また、上述の実施形態において、
前記コイルと前記コアとの間を絶縁する絶縁部を備え、
前記絶縁部は、前記コイルにおける前記巻回軸方向の両端部の前記導線の前記巻回軸方向の外側への拡張に合わせて動くことが可能なように構成されてもよい。
【0010】
また、上述の実施形態において、
前記弾性力発生部は、前記コイルであり、
前記コイルは、前記弾性力を発生させてもよい。
【0011】
また、上述の実施形態において、
前記弾性力発生部は、前記コイルの前記巻回軸方向の両端部の前記導線の間に配置され、前記コイルにおける前記巻回軸方向の両端部の前記導線を前記巻回軸方向の外側に付勢する前記弾性力を発生させる弾性部材であってもよい。
【0012】
また、上述の実施形態において、
前記コイルは、その少なくとも一部の前記導線がコイルばね形状に加工されていてもよい。
【0013】
また、上述の実施形態において、
前記コイルは、その一部の前記導線が、巻回軸に垂直な方向から見て前記巻回軸方向に凸の形状を有するように加工されていてもよい。
【0014】
また、上述の実施形態において、
前記コイルの引き出し線が前記弾性力を発生させてもよい。
【0015】
また、上述の実施形態において、
前記コイルは、前記巻回軸方向に並ぶ第1のコイル及び第2のコイルを含み、
前記第1のコイル及び前記第2のコイルの間に前記弾性部材が設けられてもよい。
【0016】
また、上述の実施形態において、
前記導線は、角線又は平角線であってもよい。
【発明の効果】
【0017】
上述の実施形態によれば、コイルの巻回軸方向の両端部の外側に対向して配置されるコアを含む電磁装置において、コイルの冷却性能を向上させることができる。
【図面の簡単な説明】
【0018】
【
図1】クローポールモータの一例を示す斜視図である。
【
図3】クローポールモータの一例を示す縦断面図である。
【
図4】固定子ユニットの構成の一例を示す分解図である。
【
図5】固定子ユニットの構成の他の例を示す分解図である。
【
図6】コイルの冷却に関する熱回路の一例を示す図である。
【
図7】比較例に係るクローポールモータ(固定子)の構造を示す縦断面図である。
【
図8】比較例に係るクローポールモータのコイルとステータコアとの間の熱回路の一例を示す図である。
【
図9】実施形態に係るクローポールモータ(固定子)の構造を示す縦断面図である。
【
図10】実施形態に係るクローポールモータのコイルとステータコアとの間の熱回路の一例を示す図である。
【
図11】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第1例を模式的に示す図である。
【
図12】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第2例を模式的に示す図である。
【
図13】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第3例を模式的に示す図である。
【
図14】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第4例を模式的に示す図である。
【
図15】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第5例を模式的に示す図である。
【
図16】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第6例を模式的に示す図である。
【
図17】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第7例を模式的に示す図である。
【
図18】コイルの軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第8例を模式的に示す図である。
【
図19】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第1例を模式的に示す図である。
【
図20】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第2例を模式的に示す図である。
【
図21】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第3例を模式的に示す図である。
【
図22】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第4例を模式的に示す図である。
【
図23】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第5例を模式的に示す図である。
【
図24】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第6例を模式的に示す図である。
【
図25】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第7例を模式的に示す図である。
【
図26】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第8例を模式的に示す図である。
【
図27】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第9例を模式的に示す図である。
【
図28】コイルの軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部の構造の第10例を模式的に示す図である。
【発明を実施するための形態】
【0019】
以下、図面を参照して実施形態について説明する。
【0020】
[クローポールモータの構成]
まず、
図1~
図5を参照して、本実施形態に係るクローポールモータ1について説明する。
【0021】
図1は、本実施形態に係るクローポールモータ1の一例を示す斜視図である。
図2は、本実施形態に係るクローポールモータ1の固定子20の一例を示す斜視図である。具体的には、
図2は、
図1において、回転子10(ロータコア11、永久磁石12、及び回転軸部材13)の図示を省略した図である。
図3は、クローポールモータ1の一例を示す縦断面図である。
図4、
図5は、本実施形態に係る固定子ユニット21の構成の一例及び他の例を示す分解図である。
【0022】
尚、
図1では、簡単のため、後述する連結部材14の図示が省略されている。また、
図3では、簡単のため、爪磁極部211B2及び絶縁部213の図示が省略されている。また、
図3では、コイル212で発生する熱エネルギの移動態様が破線矢印により概略的に示されている。
【0023】
図1に示すように、クローポールモータ(「クローポール電動機」とも称する)1は、アウタロータ型の同期電動機(SM:Synchronous Motor)であり、複数相(本例では、3相)の電機子電流で駆動される。クローポールモータ1は、例えば、空調調和機の圧縮機、ファン等に搭載される。
【0024】
図1~
図3に示すように、クローポールモータ1は、回転子10と、固定子20と、固定部材30とを含む。
【0025】
図1に示すように、回転子(「ロータ」とも称する)10は、固定子20に対して、クローポールモータ1の径方向(以下、単に「径方向」)の外側に配置され、回転軸心AXまわりに回転可能に構成される。回転子10は、永久磁石界磁であり、ロータコア11と、複数(本例では、20個)の永久磁石12と、回転軸部材13とを含む。
【0026】
ロータコア(「回転子鉄心」とも称する)11は、例えば、略円筒形状を有し、クローポールモータ1の回転軸心AXと円筒形状の軸心とが略一致するように配置される。"略"は、例えば、製造上の誤差等を許容する意図であり、以下、同様の意図で用いる。また、ロータコア11は、クローポールモータ1の軸方向(以下、単に「軸方向」)において、固定子20と略同等の長さを有する。ロータコア11は、例えば、電磁鋼板、鋳鉄、圧粉磁心等の軟磁性体により形成される。ロータコア11は、例えば、
図1に示すように、軸方向において、一の部材で構成される。また、ロータコア11は、例えば、軸方向に積層される複数のロータコア(例えば、後述する固定子ユニット21A~21Cのそれぞれに対応する3つのロータコア)で構成されてもよい。
【0027】
複数の永久磁石12は、電機子としての固定子20と鎖交する磁界を発生させる。
【0028】
図2に示すように、永久磁石12は、例えば、ロータコア11の内周面において、周方向に略等間隔で複数(本例では、20個)並べられる。つまり、クローポールモータ1は、表面磁石型(SPM:Surface Permanent Magnet)であってよい。
【0029】
また、永久磁石12は、例えば、ロータコア11に埋設される形で、周方向に略等間隔で複数並べられてもよい。つまり、クローポールモータ1は、埋込磁石型(IPM:Interior permanent Magnet)であってもよい。
【0030】
複数の永久磁石12は、それぞれ、ロータコア11の軸方向の略一端から略他端までの間に存在するように形成されている。永久磁石12は、例えば、ネオジム焼結磁石やフェライト磁石である。
【0031】
複数の永久磁石12は、それぞれ、径方向の両端に異なる磁極が着磁されている。また、複数の永久磁石12のうちの周方向で隣接する二つの永久磁石12は、固定子20に面する径方向の内側に互いに異なる磁極が着磁されている。そのため、固定子20の径方向の外側には、周方向で、径方向の内側にN極が着磁された永久磁石12と、径方向の内側にS極が着磁された永久磁石12とが交互に配置される。
【0032】
複数の永久磁石12は、それぞれ、軸方向において、一の磁石部材で構成されていてもよいし、軸方向に分割される複数(例えば、積層されるロータコア11の部材の数に対応する3つ)の磁石部材で構成されていてもよい。この場合、軸方向に分割される永久磁石12を構成する複数の磁石部材は、固定子20に面する径方向の内側に全て同じ磁極が着磁される。
【0033】
尚、周方向に配置される複数の永久磁石12は、例えば、周方向で異なる磁極が交互に着磁される円環状のリング磁石やプラスチック磁石等、周方向において、一の部材で構成される永久磁石に置換されてもよい。この場合、周方向において、一の部材で構成される永久磁石は、軸方向においても、一の部材で構成され、全体として、一の部材で構成されてもよい。また、周方向において、一の部材で構成される永久磁石は、複数の永久磁石12の場合と同様、軸方向において、複数の部材に分割されていてもよい。また、周方向において、一の部材で構成されるプラスチック磁石が採用される場合、ロータコア11は、省略されてもよい。
【0034】
回転軸部材13は、例えば、略円柱形状を有し、クローポールモータ1の回転軸心AXと円柱形状の軸心とが略一致するように配置される。回転軸部材13は、例えば、挿通部材24の軸方向の両端部に設けられるベアリング25,26(
図3等参照)によって回転可能に支持される。後述の如く、挿通部材24は、固定部材30に固定される。これにより、回転軸部材13は、固定部材30に対して回転軸心AX回りで回転することができる。回転軸部材13は、例えば、軸方向において、クローポールモータ1の固定部材30側の端部とは反対側の端部(以下、便宜的に「クローポールモータ1の先端部」)で、連結部材14(
図3等参照)を介して、ロータコア11と連結される。
【0035】
連結部材14は、例えば、ロータコア11の略円筒形状の開放端を閉塞する形の略円板形状を有してよい。これにより、ロータコア11及びロータコア11の内周面に固定される複数の永久磁石12は、回転軸部材13の回転に合わせて、固定部材30に対してクローポールモータ1の回転軸心AXまわりに回転することができる。
【0036】
尚、回転軸部材13は、固定部材30に代えて、クローポールモータ1の先端部側において、図示しない筐体にベアリング等を介して回転可能に支持されてもよい。この場合、挿通部材24において、回転軸部材13を挿通する挿通孔24H(
図3参照)が省略される。
【0037】
図2、
図3に示すように、固定子(「ステータ」とも称する)20は、回転子10(ロータコア11及び永久磁石12)の径方向の内側に配置される。固定子20は、複数(本例では、3つ)のクローポール型固定子ユニット(以下、単に「固定子ユニット」)21と、複数(本例では、2つ)の相間部材22と、端部部材23と、挿通部材24とを含む。
【0038】
図4、
図5に示すように、固定子ユニット21は、一対のステータコア211と、コイル212とを含む。また、固定子ユニット21は、絶縁部213(
図9参照)を含む。
【0039】
一対のステータコア(「固定子鉄心」とも称する)211は、コイル212の周囲を取り囲むように設けられる。ステータコア211は、例えば、圧粉磁心等の軟磁性体で形成される。ステータコア211は、ヨーク部211Aと、複数の爪磁極(「クローポール」とも称する)211Bと、ヨーク部211Cと、挿通孔211Dとを含む。
【0040】
ヨーク部211Aは、軸方向視で略円環形状を有すると共に、軸方向に所定の厚みを有する。
【0041】
複数の爪磁極211Bは、ヨーク部211Aの外周面において、周方向に等間隔で配置され、それぞれは、ヨーク部211Aの外周面から径方向の外側に向かって突出する。爪磁極211Bは、爪磁極部211B1を含む。
【0042】
爪磁極部211B1は、所定の幅を有し、ヨーク部211Aの外周面から所定の長さだけ延び出す形で突出する。
【0043】
また、爪磁極211Bは、更に、爪磁極部211B2を含む。これにより、コイル212の電機子電流により磁化される爪磁極211Bの磁極面と回転子10との対向面積を相対的に広く確保することができる。そのため、クローポールモータ1の出力トルクを相対的に増加させ、クローポールモータ1の出力を向上させることができる。
【0044】
爪磁極部211B2は、爪磁極部211B1の先端から一対のステータコア211の他方に向かって軸方向に所定の長さだけ延び出す形で突出する。例えば、
図4に示すように、爪磁極部211B2は、爪磁極部211B1からの距離に依らず幅が一定であってよい。また、例えば、
図5に示すように、爪磁極部211B2は、爪磁極部211B1から軸方向で離れるにつれて幅が狭くなるテーパ形状を有してもよい。
【0045】
尚、爪磁極部211B2は、省略されてもよい。
【0046】
ヨーク部211Cは、ヨーク部211Aの内周面付近の部分が一対のステータコア211の他方に向かって所定量だけ突出する形で構成され、例えば、軸方向視でヨーク部211Aより外径が小さい円環形状を有する。これにより、一対のステータコア211は、互いのヨーク部211Cの先端部で当接し、一対のステータコア211に対応する一対のヨーク部211Aや爪磁極211B(爪磁極部211B1)の間にコイル212を収容する空間が生成される。
【0047】
挿通孔211Dには、挿通部材24が挿通される。挿通孔211Dは、ヨーク部211A及びヨーク部211Cの内周面によって実現される。
【0048】
コイル(「巻線」とも称する)212は、固定子20の軸心(即ち、クローポールモータ1の回転軸心AX)を略中心として、軸方向視で導線が円環状に巻き回されることにより構成される。コイル212の導線は、例えば、軸方向で複数の層を成すように巻き回されてもよいし、径方向で複数の列を成すように巻き回されてもよいし、軸方向で複数の層を成し且つ径方向で複数の列を成すように巻き回されてもよい。また、コイル212の導線は、例えば、断面が円形の丸線である。また、コイル212の導線は、例えば、断面が矩形の角線や平角線であってもよい。複数相(本例では、3相)のコイル212同士がY結線(スター結線)で接続される場合、コイル212は、その一端が外部端子に電気的に繋がっており、その他端が中性点に電気的に繋がっている。また、例えば、複数相のコイル212同士がΔ結線(デルタ結線)で接続される場合、コイル212は、その一端がクローポールモータ1の一の外部端子(同じ相の外部端子)に電気的に繋がっており、その他端がクローポールモータ1の他の外部端子(異なる相の外部端子)に電気的に繋がっている。コイル212は、軸方向において、一対のステータコア211(ヨーク部211A)の間に配置される。また、コイル212は、内周部が一対のステータコア211のヨーク部211Cよりも径方向で外側になるように巻き回されている。
【0049】
絶縁部213は、ステータコア211とコイル212の導線との間に配置され、ステータコア211とコイル212の導線との間を電気的に絶縁する。絶縁部213は、例えば、ステータコア211とコイル212との間に配置される、絶縁紙、樹脂成形されたインシュレータ、シリコンゴム、ステータコア211或いはコイル212に対する樹脂モールド等である。また、絶縁部213は、例えば、コイル212の導線の表面に設けられる樹脂の絶縁皮膜であってもよい。
【0050】
図2に示すように、一対のステータコア211は、一方のステータコア211の爪磁極211Bと他方のステータコア211の爪磁極211Bとが周方向で交互に配置されるように組み合わせられる。また、円環状のコイル212に電機子電流が流れると、一対のステータコア211のうちの一方に形成される爪磁極211Bと他方に形成される爪磁極211Bとは、互いに異なる磁極に磁化される。これにより、一対のステータコア211において、一方のステータコア211から突出する一の爪磁極211Bは、周方向で隣接し、他方のステータコア211から突出する他の爪磁極211Bと異なる磁極を有する。そのため、コイル212に流れる電機子電流により、一対のステータコア211の周方向には、N極の爪磁極211B及びS極の爪磁極211Bが交互に配置される。
【0051】
図2、
図3に示すように、複数の固定子ユニット21は、軸方向に積層される。
【0052】
複数の固定子ユニット21には、複数相(本例では、3相)分の固定子ユニット21が含まれる。具体的には、複数の固定子ユニット21は、U相に対応する固定子ユニット21Aと、V相に対応する固定子ユニット21Bと、W相に対応する固定子ユニット21Cとを含む。複数の固定子ユニット21は、クローポールモータ1の先端部から、U相に対応する固定子ユニット21A、V相に対応する固定子ユニット21B、及びW相に対応する固定子ユニット21Cの順で積層される。固定子ユニット21A~21Cは、互いに、周方向の位置が電気角で120°異なるように配置される。
【0053】
尚、クローポールモータ1は、2相の電機子電流で駆動されてもよいし、4相以上の電機子電流で駆動されてもよい。
【0054】
相間部材22は、軸方向で隣接する異なる相の固定子ユニット21の間に設けられる。相間部材22は、例えば、非磁性体である。これにより、異なる相の二つの固定子ユニット21の間に所定の距離を確保し、異なる相の二つの固定子ユニット21の間での磁束漏れを抑制することができる。相間部材22は、UV相間部材22Aと、VW相間部材22Bとを含む。
【0055】
UV相間部材22Aは、軸方向で隣接する、U相の固定子ユニット21AとV相の固定子ユニット21Bとの間に設けられる。UV相間部材22Aは、例えば、所定の厚みを有する略円柱形状(略円板形状)を有し、中心部分に挿通部材24が挿通される挿通孔が形成される。以下、VW相間部材22Bについても同様であってよい。
【0056】
VW相間部材22Bは、軸方向で隣接する、V相の固定子ユニット21BとW相の固定子ユニット21Cとの間に設けられる。
【0057】
端部部材23は、積層される複数の固定子ユニット21のクローポールモータ1の先端部側の端部に設けられる。具体的には、端部部材23は、軸方向において、固定子ユニット21Aの固定子ユニット21Bに面する側と反対側の端面に接するように設けられる。端部部材23は、例えば、所定の厚みを有する略円柱形状(略円板形状)を有し、中心部分に挿通部材24が挿通される挿通孔が形成される。端部部材23は、例えば、非磁性体である。これにより、固定子ユニット21A(具体的には、クローポールモータ1の先端部側のステータコア211)からの磁束漏れを抑制することができる。
【0058】
尚、複数の固定子ユニット21のクローポールモータ1の基端側(即ち、固定部材30側)の端部に端部部材23が設けられてもよい。この場合、クローポールモータ1の基端側の端部部材23は、固定子ユニット21Cと固定部材30との間に配置される。
【0059】
挿通部材24は、クローポールモータ1の先端部側から順に、端部部材23、固定子ユニット21A、UV相間部材22A、固定子ユニット21B、VW相間部材22B、固定子ユニット21Cを挿通した状態で、先端部が固定部材30に固定される。挿通部材24は、例えば、先端部に雄ねじ部を有し、固定部材30の対応する雌ネジ部に締め込まれることにより固定部材30に固定される。また、挿通部材24は、例えば、略円筒形状を有し、内周面により実現される挿通孔24Hに回転軸部材13が回転可能に配置される。また、挿通部材24は、クローポールモータ1の先端側において、固定子ユニット21の挿通孔211Dの内径よりも相対的に大きい外径を有する頭部を有する。これにより、例えば、挿通部材24が固定部材30にある程度締め込まれることで、頭部から端部部材23に軸方向で固定部材30に向かう方向の力を作用させることができる。そのため、複数の固定子ユニット21(固定子ユニット21A~21C)及び相間部材22(UV相間部材22A、VW相間部材22B)を端部部材23及び固定部材30で挟み込む形で固定部材30に固定することができる。圧粉磁心は、引張応力に対する強度が相対的に低い一方、圧縮応力に対する強度が相対的に高い。よって、圧粉磁心で形成されるステータコア211に圧縮応力が作用する形で、固定子ユニット21A~21Cに固定することができる。
【0060】
尚、挿通部材24以外の部材により、複数の固定子ユニット21及び相間部材22を端部部材23及び固定部材30で挟み込む形で固定部材30に固定することが可能であれば、挿通部材24は、固定部材30と一体化され、一の部材として構成されてもよい。
【0061】
固定部材30は、例えば、軸方向視で回転子10(ロータコア11)よりも大きい外径の略円板形状を有する。固定部材30には、上述の如く、挿通部材24を介して、回転子10が回転可能に支持され、固定子20が固定される。
【0062】
固定部材30は、例えば、軸方向で固定子20と面する領域以外の領域において、段差形状、フィン形状、ピン形状等を有してもよい。これにより、固定部材30は、その表面積が相対的に大きくなり、外気への放熱を促進することができる。そのため、コイル212で発生する熱が伝導される際の固定部材30の温度上昇を更に抑制し、コイル212で発生する熱を確実に固定部材30に移動させ、コイル212の冷却を促進させることができる。
【0063】
[コイルの冷却に関する構造の概要]
次に、
図6~
図10を参照して、クローポールモータ1におけるコイル212の冷却に関する構造について説明する。
【0064】
<コイルの冷却に関する熱回路>
図6は、コイル212の冷却に関する熱回路の一例を示す図である。具体的には、コイル212の熱が固定部材30まで伝導されて、外気OAに放出されるまでの熱回路の具体例である。
【0065】
図6に示すように、固定子ユニット21Aのコイル212で発生する熱エネルギは、固定子ユニット21Aの絶縁部213及びステータコア211(ヨーク部211A及び爪磁極211B)の順に軸方向に伝導される。そして、固定子ユニット21Aのステータコア211の熱エネルギは、UV相間部材22A、固定子ユニット21Bのステータコア211、VW相間部材22B、固定子ユニット21Cのステータコア211、及び固定部材30の順に伝熱され、外気OAに放熱される。
【0066】
同様に、固定子ユニット21Bのコイル212で発生する熱エネルギは、固定子ユニット21Bの絶縁部213及びステータコア211(ヨーク部211A及び爪磁極211B)の順に軸方向に伝導される。そして、固定子ユニット21Bのステータコア211の熱エネルギは、VW相間部材22B、固定子ユニット21Cのステータコア211、及び固定部材30の順に伝熱され、外気OAに放熱される。
【0067】
同様に、固定子ユニット21Cのコイル212で発生する熱エネルギは、固定子ユニット21Cの絶縁部213及びステータコア211(ヨーク部211A及び爪磁極211B)の順に軸方向に伝導される。そして、固定子ユニット21Cのステータコア211の熱エネルギは、直接、固定部材30に(ステータコア211と固定部材30との間に端部部材23がある場合は、端部部材23及び固定部材30の順に)伝熱され、外気OAに放熱される。
【0068】
図6に示すように、部材間には、各部材の熱伝導率や部材同士の接触度等に応じた熱抵抗が存在し、熱抵抗が小さくなるほど、コイル212の冷却性能が相対的に高くなる。熱抵抗は、各部材の熱伝導率が小さくなるほど小さくなり、部材同士の接触度(例えば、接触面積)が大きくなるほど小さくなる。
【0069】
<比較例に係るクローポールモータにおけるコイルの冷却に関する構造>
図7は、比較例に係るクローポールモータ1com(固定子20com)の構造の一例を示す縦断面図である。
図8は、比較例に係るクローポールモータ1comのコイル212comとステータコア211との間の熱回路の一例を示す図である。
【0070】
比較例に係るクローポールモータ1comは、本実施形態に係るクローポールモータ1に対して、コイル212及び絶縁部213がコイル212com及び絶縁部213comに置換され、それ以外の構成が本実施形態に係るクローポールモータ1と同様であってよい。そのため、
図7では、クローポールモータ1comにおけるコイル212com及び絶縁部213com以外の構成には、本実施形態に係るクローポールモータ1と同じ符号が付されている。
【0071】
図7に示すように、比較例に係るクローポールモータ1comでは、コイル212comの軸方向(上下方向)の両端部において、コイル212comとステータコア211(ヨーク部211A及び爪磁極211B)との間に絶縁部213comが配置されている。
【0072】
また、例えば、コイル212comに含まれる導線は、自重により、それらの隙間が埋められる形で、上下の絶縁部213com同士の間の空間において、下側に片寄って配置される場合がある。そのため、コイル212comの上端部の導線と絶縁部213comとの間で、接触度(接触面積)が非常に小さくなったり、
図7に示すように、隙間GP1が生じたりする可能性がある。その結果、コイル212comと、コイル212comの上端部と対向する絶縁部213comとの間の熱抵抗が非常に大きくなり、コイル212comからコイル212comの上端部と対向する絶縁部213comにほとんど熱エネルギを伝導することができなくなる可能性がある。
【0073】
例えば、
図7に示すように、コイル212comは、丸線が巻き回れることにより構成される場合がある。そのため、コイル212comの下端部の導線と絶縁部213comとの接触度(接触面積)が相対的に小さくなる可能性がある。その結果、コイル212comとコイル212comの下端部に対向する絶縁部213comとの間の熱抵抗R1cが相対的に大きくなる可能性がある。
【0074】
また、例えば、ステータコア211が圧粉磁心で構成される場合、ヨーク部211A及び爪磁極211Bの表面が粗いため、
図7に示すように、爪磁極211Bと絶縁部213comとの間に隙間GP2が発生する可能性がある。その結果、絶縁部213comとステータコア211との間の熱抵抗R2cが相対的に大きくなる可能性がある。
【0075】
このように、比較例に係るクローポールモータ1comでは、コイル212comの熱エネルギがコイル212comの上端部と対向する絶縁部213comにほとんど伝導されない可能性が高い。そのため、
図8に示すように、比較例に係るクローポールモータ1comでは、コイル212comの熱エネルギを、コイル212comの下端部と対向する絶縁部213comを通じてステータコア211に伝達する一つの経路しか利用できない可能性が高い。この場合、コイル212comの発熱量Qを前提として、コイル212comとステータコア211との間の温度差ΔTcは、以下の式(1)で表される。
【0076】
【0077】
上述の如く、熱抵抗R1c,R2cは、相対的に大きく、コイル212comから絶縁部213comへの熱伝導、及び絶縁部213comからステータコア211への熱伝導がされにくくなり、コイル212comの冷却性能が相対的に低くなる可能性がある。そのため、比較例に係るクローポールモータ1comでは、コイル212comとステータコア211との間の温度差ΔTcは相対的に大きい値となり、コイル212comの温度が相対的に高くなってしまう可能性がある。
【0078】
<実施形態に係るクローポールモータにおけるコイルの冷却に関する構造>
図9は、本実施形態に係るクローポールモータ1(固定子20)の構造を示す縦断面図である。
図10は、本実施形態に係るクローポールモータ1のコイル212とステータコア211との間の熱回路の一例を示す図である。
【0079】
図9に示すように、本実施形態に係るクローポールモータ1は、コイル212の軸方向の両端部の導線を軸方向の外側(即ち、上端部を上側に且つ下端部を下側)に拡張する弾性力EFが発生するように構成される。
【0080】
これにより、コイル212の下端部の導線は、コイル212の下端部と対向する絶縁部213に押し付けられる。そのため、コイル212の下端部の導線と、コイル212の下端部と対向する絶縁部213との間の接触度(接触面積)が相対的に大きくなる。よって、コイル212とコイル212の下端部に対向する絶縁部213との間の熱抵抗R1は、比較例に係るクローポールモータ1comのコイル212comとコイル212comの下端部に対向する絶縁部213との間の熱抵抗R1cよりも小さくなる。
【0081】
また、コイル212の上端部の導線は、コイル212の上端部と対向する絶縁部213に接触することができると共に、絶縁部213に押し付けられる。そのため、コイル212の上端部の導線からコイル212の上端部に対向する絶縁部213への熱伝導を確実に実現することができ、その間の熱抵抗は、コイル212とコイル212の下端部に対向する絶縁部213との間の熱抵抗R1と略同等になる。
【0082】
また、
図9に示すように、本実施形態のクローポールモータ1は、絶縁部213が弾性力EFに伴うコイル212の軸方向の両端部の軸方向の外側(即ち、上端部の上側及び下端部の下側)への拡張を阻害しないように構成される。本例では、クローポールモータ1は、絶縁部213が弾性力EFに伴うコイル212の軸方向の両端部の軸方向の外側への拡張に合わせて動くことが可能なように構成される。
【0083】
これにより、コイル212の上端部及び下端部に対向する絶縁部213は、それぞれ、弾性力EFに伴いコイル212の上端部及び下端部から作用する力によって、上側及び下側に移動し、ヨーク部211A及び爪磁極211Bに押し付けられる。そのため、コイル212の上端部及び下端部に対向する絶縁部213のそれぞれと、ヨーク部211A及び爪磁極211Bとの間の接触度(接触面積)が相対的に大きくなる。よって、絶縁部213とステータコア211との間の熱抵抗R2は、比較例に係るクローポールモータ1comの絶縁部213comとステータコア211との間の熱抵抗R2cよりも小さくなる。
【0084】
このように、本実施形態に係るクローポールモータ1では、コイル212の熱エネルギがコイル212の軸方向の両端部のそれぞれと対向する絶縁部213に確実に伝導される。そのため、
図10に示すように、本実施形態に係るクローポールモータ1では、コイル212の熱エネルギを、コイル212の軸方向の両端部のそれぞれに対向する絶縁部213を通じて、二つの経路で並列にステータコア211に伝導することができる。この場合、コイル212の発熱量Qを前提として、コイル212とステータコア211との間の温度差ΔTは、以下の式(2)で表される。
【0085】
【0086】
ここで、上述の如く、熱抵抗R1,R2と、熱抵抗R1c、R2cとの間には、下記の式(3)、(4)の関係が成立する。
【0087】
【0088】
そのため、コイル212,212comで同じ発熱量Qが発生したときに、本実施形態に係るコイル212とステータコア211との温度差ΔTと、比較例に係るコイル212comとステータコア211との温度差ΔTcとの間には以下の式(5)の関係が成立する。
【0089】
【0090】
よって、本実施形態に係るコイル212の温度は、比較例に係るコイル212comの温度よりも確実に低くなる。
【0091】
このように、本実施形態では、クローポールモータ1は、コイル212における軸方向(巻回軸方向の一例)の両端部の導線を軸方向の外側に拡張するように弾性力を発生させる。
【0092】
これにより、コイル212の軸方向の両端部の導線は、弾性力によりステータコア211に向かって付勢される。そのため、例えば、丸線によりコイル212が構成され、且つ、コイル212と別体に絶縁部が設けられる場合に、コイル212と絶縁部との接触度(接触面積)を相対的に大きくし、コイル212と絶縁部213との間の熱抵抗を相対的に小さくできる。また、例えば、更に、コイル212の巻回軸が略鉛直方向に沿って配置される場合に、コイル212の上端部と絶縁部213との間の隙間をなくし、コイル212の上端部の導線と絶縁部213とを接触させることができる。また、圧粉磁心等のように、表面が粗いステータコア211が用いられる場合に、例えば、コイル212を介して付勢される絶縁部213とステータコア211との接触度(接触面積)を相対的に大きくし、絶縁部213とステータコア211との間の熱抵抗を相対的に小さくできる。よって、コイル212の冷却性能を向上させることができる。
【0093】
また、コイル212の軸方向の両端部の導線に対して軸方向の外側に作用する弾性力によって、コイル212が一対のステータコア211の間で固定される。そのため、微振動等によるコイル212の導線表面の摩耗を抑制することができる。
【0094】
また、本実施形態では、絶縁部213は、コイル212における軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成されてよい。例えば、絶縁部213は、コイル212における軸方向の両端部の導線の軸方向の外側への拡張に合わせて動くことが可能なように構成されてよい。
【0095】
これにより、コイル212の軸方向の両端部の導線の軸方向の外側への拡張に合わせて、絶縁部213とステータコア211との間の接触度(接触面積)を相対的に大きくすることができる。そのため、絶縁部213とステータコア211との間の熱抵抗を相対的に小さくし、コイル212の冷却性能を更に向上させることができる。
【0096】
また、絶縁部213の少なくとも一部にインシュレータが含まれる場合、通常、樹脂の熱膨張時や熱収縮時のクリープ変形を防ぐために、絶縁部213のうちのインシュレータによる構成部分とステータコア211との間に所定のクリアランスを設ける必要が生じうる。そのため、絶縁部213のガタツキが生じてしまう可能性がある。
【0097】
これに対して、本実施形態では、弾性力EFの作用によって、絶縁部213の樹脂にクリープ変形が生じても、その変形に追従するように、コイル212の軸方向の両端部の導線が位置を変えることができる。そのため、絶縁部213としてのインシュレータのガタツキを防止することができると共に、絶縁部213の固定を実現することができる。
【0098】
また、本実施形態では、コイル212は、上述の如く、角線或いは平角線が巻き回されることにより構成されてもよい。
【0099】
これにより、コイル212の導線と絶縁部213との間の接触度(接触面積)を相対的に大きくし、コイル212の冷却性能を更に向上させることができる。
【0100】
また、本実施形態では、絶縁部213とコイル212との間や、ステータコア211と絶縁部213との間にシリコーングリス等が塗布されてもよい。
【0101】
これにより、コイル212の導線と絶縁部213との間や、ステータコア211と絶縁部213との間の接触度を更に向上させ、コイル212の冷却性能を更に向上させることができる。
【0102】
[コイルの冷却に関する構造の詳細]
次に、
図11~
図28を参照して、コイルの冷却に関する構造の詳細について説明する。
【0103】
<弾性力を発生させる構造>
図11~
図18は、コイル212の軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させる構造の第1例~第8例を模式的に示す図である。
【0104】
尚、
図15~
図17では、簡単のため、爪磁極部211B2及び絶縁部213の描画が省略されている。
【0105】
図11に示すように、本例(第1例)では、コイル212(弾性力発生部の一例)は、全体として、導線がコイルばね形状を有するように加工されている。また、コイル212は、軸方向の自然長Lcoが固定子ユニット21の一対のステータコア211の間の距離(以下、「コア間距離」)Dccより長くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、全体が軸方向で自然長Lcoより短く縮められた状態になる。そのため、コイル212は、コイル212自体の軸方向の両端部の導線を軸方向の外側に拡張させる弾性力を発生させることができる。
【0106】
また、
図12に示すように、本例(第2例)では、コイル212(弾性力発生部の一例)は、その軸方向の両端部の間の一部において、導線がコイルばね形状に加工されたコイルばね部212aを含む。また、コイル212は、上述の第1例の場合と同様、軸方向の自然長Lcoがコア間距離Dccより長くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、コイルばね部212aが軸方向で縮められた状態となり、全体が自然長Lcoより短くなる。そのため、コイル212は、コイルばね部212aの作用によりその軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させることができる。
【0107】
また、
図13に示すように、本例(第3例)では、コイル212(弾性力発生部の一例)は、その軸方向の両端部の間の一部において、導線が軸方向に対して垂直な方向から見て軸方向に凸形状を有するように加工されている。具体的には、コイル212は、その軸方向の両端部の間の一部において、導線が軸方向に対して垂直な方向から見て波形状になるように、即ち、波ワッシャ(「波座金」とも称する)形状を有するように加工された波ワッシャ部212bを含む。また、コイル212は、上述の第1例等の場合と同様、軸方向の自然長Lcoがコア間距離Dccより長くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、波ワッシャ部212bが軸方向で縮められた状態となり、全体が自然長Lcoより短くなる。そのため、コイル212は、波ワッシャ部212bの作用によりその軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させることができる。
【0108】
また、
図14に示すように、本例(第4例)では、コイル212(弾性力発生部の一例)は、上述の第3例の場合と同様、その軸方向の両端部の間の一部において、導線が軸方向に対して垂直な方向から見て軸方向に凸形状を有するように加工されている。具体的には、コイル212は、その軸方向の両端部の間の一部において、導線が軸方向に対して垂直な方向から見て略台形形状になるように、即ち、皿ばね形状を有するように加工された皿ばね部212cを含む。また、コイル212は、上述の第1例等の場合と同様、軸方向の自然長Lcoがコア間距離Dccより長くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、皿ばね部212cが軸方向で縮められた状態となり、全体が自然長Lcoより短くなる。そのため、コイル212は、皿ばね部212cの作用によりその軸方向の両端部の導線を軸方向の外側に拡張する弾性力を発生させることができる。
【0109】
また、
図15に示すように、本例(第5例)では、コイル212(弾性力発生部の一例)は、軸方向に区分されるコイル212A及びコイル212Bを含む。
【0110】
コイル212Aは、軸方向のステータコア211(ヨーク部211A及び爪磁極211B)と対向する一端部において、径方向の内側に引出部212A_E1を有する。引出部212A_E1は、外部端子或いは中性点に接続される。また、コイル212Aは、軸方向のコイル212Bと対向する他端部において、径方向の外側に引出部212A_E2を有する。
【0111】
コイル212Bは、軸方向のステータコア211(ヨーク部211A及び爪磁極211B)と対向する一端部において、径方向の内側に引出部212B_E1を有する。引出部212B_E1は、外部端子或いは中性点に接続される。また、コイル212Bは、軸方向のコイル212Aと対向する他端部において、径方向の外側に引出部212B_E2を有する。
【0112】
コイル212A及びコイル212Bのそれぞれの軸方向で対向する径方向の外側の引出部212A_E2,212B_E2は、引出線212Lで接続されている。
【0113】
コイル212A、引出線212L、及びコイル212Bを含むコイル212の軸方向の寸法(即ち、自然長Lco)は、コア間距離Dccより短くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、引出線212Lが弾性変形する。そのため、コイル212は、引出線212Lの作用により、コイル212の軸方向の両端部、即ち、コイル212A及びコイル212Bのそれぞれのステータコア211に対向する端部を軸方向の外側に拡張する弾性力EFを発生させることができる。
【0114】
また、
図16に示すように、本例(第6例)では、上述の第5例の場合と同様、コイル212(弾性力発生部の一例)は、軸方向に区分されるコイル212A及びコイル212Bを含む。
【0115】
コイル212Aの引出部212A_E1は、軸方向のコイル212Bと対向する一端部において、径方向の内側に引き出される。また、コイル212Aの引出部212A_E2は、軸方向のステータコア211(ヨーク部211A及び爪磁極211B)と対向する他端部において、径方向の外側に引き出される。
【0116】
コイル212Bの引出部212B_E1は、軸方向のコイル212Aと対向する一端部において、径方向の内側に引き出される。また、コイル212Bの引出部212B_E2は、軸方向のステータコア211(ヨーク部211A及び爪磁極211B)と対向する他端部において、径方向の外側に引き出される。
【0117】
コイル212A及びコイル212Bのそれぞれの径方向の外側の引出部212A_E2,212B_E2は、上述の第5例の場合と同様、引出線212Lで接続されている。
【0118】
コイル212A、引出線212L、及びコイル212Bを含むコイル212の軸方向の寸法(即ち、自然長Lco)は、コア間距離Dccより短くなるように構成される。これにより、コイル212は、上述の第5例の場合と同様、軸方向で一対のステータコア211の間に収容されることで、引出線212Lが弾性変形する。そのため、コイル212は、引出線212Lの作用により、コイル212の軸方向の両端部、即ち、コイル212A及びコイル212Bのそれぞれのステータコア211に対向する端部を軸方向の外側に拡張する弾性力EFを発生させることができる。
【0119】
また、
図17に示すように、本例(第7例)では、コイル212(弾性力発生部の一例)は、軸方向の両端部における径方向の外側に引出部212_E1が設けられる。引出部212_E1は、引出線212Lを通じて、外部端子或いは中性点に接続される。
【0120】
引出線212Lは、引出部212_E1から延び出す第1の直線部と、それより先に設けられる第2の直線部との間にステータコア211(爪磁極211B)を軸方向で挟み込むことが可能な形状(以下、「挟み込み部」)を有する。引出線212Lは、挟み込み部の第1の直線部及び第2の直線部の間にステータコア211が(爪磁極211B)が挟み込まれることにより、ステータコア211に固定される。引出線212Lの挟み込み部は、その隙間、即ち、第1の直線部及び第2の直線部の間の軸方向の距離がステータコア211(爪磁極211B)の軸方向の厚みよりも小さくなるように構成される。これにより、引出線212Lは、ステータコア211を挟み込み部に挟み込む際に、その隙間が軸方向に拡張されることで弾性変形し、第1の直線部(引出部212_E1)及び第2の直線部からステータコア211に圧縮力(弾性力EF)が作用する。そのため、引出部212_E1を含むコイル212の軸方向の両端部は、引出線212L(挟み込み部)の作用により、ステータコア211(ヨーク部211A及び爪磁極211B)に押し付けられる。よって、コイル212は、引出線212Lの作用により、コイル212の軸方向の両端部を軸方向の外側に拡張する弾性力EFを発生させることができる。
【0121】
また、
図18に示すように、本例(第8例)では、コイル212の軸方向の両端部の間の層の間、即ち、一端側の第1のコイル部及び他端側の第2のコイル部の間に、弾性部材214が設けられる(挿入される)。弾性部材214は、例えば、弾性樹脂、ゴム、板ばね、皿ばね等である。また、弾性部材214は、導体である場合、例えば、樹脂被膜等により絶縁加工が施されている。
【0122】
弾性部材214が挿入された状態のコイル212の軸方向の寸法(自然長Lco)は、コア間距離Dccより長くなるように構成される。これにより、コイル212は、軸方向で一対のステータコア211の間に収容されることで、弾性部材214が軸方向で縮められた状態となり、全体が自然長Lcoより短くなる。そのため、弾性部材214は、コイル212の両端部の導線を軸方向の外側に拡張する弾性力を発生させることができる。
【0123】
<コイルの拡張を阻害しない絶縁部の構造>
図19~
図28は、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しない絶縁部213の構造の第1例~第10例を示す縦断面図である。
【0124】
尚、
図19~
図28では、簡単のため、固定子ユニット21の一対のステータコア211が一体として描画されて、爪磁極部211B2の描画が省略されている。
【0125】
図19に示すように、本例(第1例)では、絶縁部213は、絶縁部213A,213Bを含む。
【0126】
絶縁部213Aは、コイル212の軸方向の一端部とステータコア211(ヨーク部211A及び爪磁極211B)との間における径方向の全体に亘る範囲に配置される。また、本例では、絶縁部213Aは、コイル212の径方向の内側とヨーク部211Cとの間における軸方向の一端側の一部の範囲に配置される。
【0127】
絶縁部213Bは、コイル212の軸方向の他端部とステータコア211(ヨーク部211A及び爪磁極211B)との間の径方向の全体に亘る範囲に配置される。また、本例では、絶縁部213Bは、コイル212の径方向の内側とヨーク部211Cとの間における軸方向の他端側の一部に配置される。
【0128】
これにより、コイル212の軸方向の一端部及び他端部のそれぞれの絶縁部213が絶縁部213A,213Bとして分離される。そのため、絶縁部213A,213Bは、コイル212の両端部の導線に外側に拡張する弾性力が作用する場合に、コイル212の両端部の拡張に合わせて、互いに、反対方向(即ち、軸方向の外側)に動くことができる。
【0129】
本例では、絶縁部213A,213Bは、樹脂成形等によるインシュレータである。
【0130】
また、絶縁部213A,213Bは、コイル212の径方向の内側とヨーク部211Cとの間の領域(以下、「内側領域」)において、軸方向で一部が重複(オーバーラップ)するように配置される。具体的には、絶縁部213A,213Bは、互いに軸方向で対向する部分に、径方向で互い違いに構成される段差形状を有する。そして、絶縁部213A,213Bは、双方の段差形状同士が嵌まり合うように、内側領域に配置される。これにより、絶縁部213A,213Bが、互いに軸方向の外側に動いても、上述の段差形状の作用により、軸方向の全体に亘って、絶縁部213A,213Bの少なくとも一方がヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0131】
このように、本例(第1例)では、絶縁部213A,213Bの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0132】
また、
図20に示すように、本例(第2例)では、絶縁部213は、絶縁部213A~213Cを含む。以下、上述の第1例と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0133】
絶縁部213Cは、内側領域において、絶縁部213A,213Bの間を埋めるように設けられる。本例では、絶縁部213Cは、絶縁部213A,213Bと同様、樹脂成形等によるインシュレータである。
【0134】
絶縁部213A,213Cは、互いに軸方向で対向する部分に、径方向で互い違いに構成される段差形状を有する。そして、絶縁部213A,213Cは、双方の段差形状同士が嵌まり合うように、内側領域に配置される。同様に、絶縁部213B,213Cは、互いに軸方向対向する部分に、径方向で互い違いに構成される段差形状を有する。そして、絶縁部213B,213Cは、双方の段差形状同士が嵌まり合うように、内側領域に配置される。これにより、絶縁部213A,213Bが、互いに軸方向の外側に動いても、上述の段差形状の作用により、軸方向の全体に亘って、絶縁部213A~213Cの少なくとも一つがヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0135】
このように、本例(第2例)では、絶縁部213A~213Cの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0136】
また、
図21に示すように、本例(第3例)では、絶縁部213は、上述の第2例の場合と同様、絶縁部213A~213Cを含む。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0137】
絶縁部213Cは、内側領域において、絶縁部213A,213Bよりも径方向の内側で且つ軸方向でヨーク部211Cの表面全体を覆うように配置される。本例では、絶縁部213Cは、絶縁紙である。これにより、絶縁部213A,213Bが、互いに軸方向の外側に動いても、絶縁部213Cの作用により、軸方向の全体に亘って、少なくとも絶縁部213Cがヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0138】
尚、本例では、絶縁部213Cは、軸方向でヨーク部211Cの表面全体を覆う必要は無い。例えば、絶縁部213Cは、軸方向において、コイル212とヨーク部211Cとの間の絶縁部213A,213Bが存在しない範囲に、弾性力による可動分,及びある程度の余裕分と加えた範囲に設けられればよい。以下、後述の第4例、第6例の絶縁部213Cの場合についても同様であってよい。
【0139】
このように、本例(第3例)では、絶縁部213A~213Cの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0140】
また、
図22に示すように、本例(第4例)では、絶縁部213は、上述の第2例等の場合と同様、絶縁部213A~213Cを含む。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0141】
絶縁部213Cは、内側領域において、絶縁部213A,213Bよりも径方向の外側で且つ軸方向でコイル212の表面全体を覆うように配置される。これにより、絶縁部213A,213Bが互いに軸方向の外側に動いても、上述の第3例の場合と同様、絶縁部213Cの作用により、軸方向の全体に亘って、少なくとも絶縁部213Cがヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0142】
このように、本例(第4例)では、絶縁部213A~213Cの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0143】
また、
図23に示すように、本例(第5例)では、絶縁部213は、上述の第2例等の場合と同様、絶縁部213A~213Cを含む。本例では、絶縁部213A~213Cは、絶縁紙である。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0144】
絶縁部213Aは、コイル212の軸方向の一端部とステータコア211(ヨーク部211A及び爪磁極211B)との間で径方向の全体に亘って配置される。
【0145】
絶縁部213Bは、コイル212の軸方向の他端部とステータコア211(ヨーク部211A及び爪磁極211B)との間の径方向の全体に亘って配置される。
【0146】
絶縁部213Cは、内側領域において、軸方向でヨーク部211Cの表面全体覆うように設けられる。
【0147】
これにより、絶縁部213A,213Bが、互いに軸方向の外側に動いても、上述の第3例の場合と同様、絶縁部213Cの作用により、軸方向の全体に亘って、絶縁部213Cがヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0148】
このように、本例(第5例)では、絶縁部213A~213Cの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0149】
また、
図24に示すように、本例(第6例)では、絶縁部213は、上述の第2例等の場合と同様、絶縁部213A~213Cを含む。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0150】
絶縁部213Aは、コイル212の軸方向の一端部の周囲全体を覆うように、コイル212と一体で構成される。
【0151】
絶縁部213Bは、コイル212の軸方向の他端部の周囲全体を覆うように、コイル212と一体で構成される。
【0152】
本例では、絶縁部213A,213Bは、樹脂モールドである。
【0153】
絶縁部213Cは、絶縁部213A,213Bよりも径方向の内側で且つ軸方向でヨーク部211Cの表面全体を覆うように配置される。本例では、絶縁部213Cは、絶縁紙である。これにより、絶縁部213A,213Bが互いに軸方向の外側に動いても、上述の第3例の場合と同様、絶縁部213Cの作用により、軸方向の全体に亘って、少なくとも絶縁部213Cがヨーク部211Cとコイル212との間に存在する状態を維持できる。そのため、絶縁部213A,213Bが軸方向で互いに反対方向に移動しても、コイル212とステータコア211との間の絶縁性を確保することができる。
【0154】
このように、本例(第6例)では、絶縁部213A~213Cの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0155】
また、
図25に示すように、本例(第7例)では、絶縁部213は、絶縁部213A,213B,213Dを含む。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0156】
絶縁部213Dは、内側領域において、絶縁部213A,213Bを接続し、且つ、絶縁部213A,213Bが軸方向への可動性を有するように構成される。具体的には、絶縁部213Dは、軸方向に折りたたまれる蛇腹構造を有する。
【0157】
本例では、絶縁部213A,213B,213Dは、樹脂成形により一体化されるインシュレータである。これにより、コイル212とステータコア211との間の絶縁性を確実に確保することができる。
【0158】
また、絶縁部213Dは、コイル212の両端部の導線を外側に拡張する弾性力が絶縁部213A,213Bに作用する場合に、蛇腹構造の作用によりコイル212の両端部の拡張に合わせて伸長することができる。そのため、絶縁部213A,213Bは、絶縁部213Dの作用により、互いに、反対方向(即ち、軸方向の外側)に動くことができる。
【0159】
このように、本例(第7例)では、絶縁部213A,213B,213Dの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0160】
また、
図26に示すように、本例(第8例)では、絶縁部213は、上述の第7例の場合と同様、絶縁部213A,213B,213Dを含む。以下、上述の第1例等と異なる部分を中心説明し、上述の第1例と同じ或いは対応する記載を簡略化或いは省略する場合がある。
【0161】
本例では、絶縁部213A,213B,213Dは、上述の第7例の場合と同様、樹脂成形により一体化されるインシュレータである。これにより、コイル212とステータコア211との間の絶縁性を確実に確保することができる。
【0162】
また、絶縁部213Dは、上述の第7例の場合と同様、内側領域において、絶縁部213A,213Bを接続し、且つ、絶縁部213A,213Bが軸方向への可動性を有するように構成される。具体的には、絶縁部213Dは、中空部を有する。これにより、絶縁部213Dの表面の樹脂の厚みが相対的に薄くなり、外部から作用する力で伸長し易くなる。そのため、絶縁部213Dは、コイル212の両端部の導線を外側に拡張する弾性力が絶縁部213A,213Bに作用する場合に、中空部(即ち、薄肉化)の作用によりコイル212の両端部の拡張に合わせて確実に伸長することができる。そのため、絶縁部213A,213Bは、絶縁部213Dの作用により、互いに、反対方向(即ち、軸方向の外側)に動くことができる。
【0163】
このように、本例(第8例)では、絶縁部213A,213B,213Dの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0164】
また、
図27に示すように、本例(第9例)では、絶縁部213は、上述の第7例等の場合と同様、絶縁部213A,213B,213Dを含む。
【0165】
本例では、絶縁部213A,213B,213Dは、上述の第7例等の場合と同様、樹脂成形により一体化されるインシュレータである。これにより、コイル212とステータコア211との間の絶縁性を確実に確保することができる。
【0166】
また、絶縁部213Dは、上述の第7例の場合と同様、内側領域において、絶縁部213A,213Bを接続し、且つ、絶縁部213A,213Bが軸方向への可動性を有するように構成される。具体的には、絶縁部213Dは、絶縁部213A,213Bよりも径方向の厚みが十分に薄くなるように構成される。これにより、絶縁部213Dは、外部から作用する力で伸長し易くなる。そのため、絶縁部213Dは、コイル212の両端部の導線を外側に拡張する弾性力が絶縁部213A,213Bに作用する場合に、薄肉化の作用によりコイル212の両端部の拡張に合わせて確実に伸長することができる。そのため、絶縁部213A,213Bは、絶縁部213Dの作用により、互いに、反対方向(即ち、軸方向の外側)に動くことができる。
【0167】
このように、本例(第9例)では、絶縁部213A,213B,213Dの作用により、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0168】
また、
図28に示すように、本例(第10例)では、絶縁部213は、固定子ユニット21の一対のステータコア211の軸方向の内側の表面及びヨーク部211Cの径方向の外側の表面の全体に設けられる樹脂モールドである。
【0169】
これにより、ステータコア211及び絶縁部213の接触度を相対的に高め、熱抵抗を低減することができる。また、絶縁部213は、ステータコア211に配置されるため、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しない。
【0170】
このように、本例では、絶縁部213をステータコア211の表面に設けられる樹脂モールドとして構成することにより、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0171】
また、上述の第1例~第10例と異なり、絶縁部213は、コイル212の導線の表面に施される樹脂の絶縁被膜であってもよい。これにより、絶縁部213は、コイル212を構成する導線の動きに自由に追従することができる。そのため、絶縁部213を、コイル212の軸方向の両端部の導線の軸方向の外側への拡張を阻害しないように構成することができる。
【0172】
[変形・変更]
以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
【0173】
例えば、上述の実施形態のコイル212の冷却に関する構造は、クローポール型の固定子の径方向の内側に回転子が回転可能に配置されるインナロータ型のクローポールモータに適用されてもよい。この場合、ステータコアの内周側から径方向の内側に向かって突出する爪磁極が形成される。
【0174】
また、上述の実施形態のコイル212の冷却に関する構造は、クローポールモータと異なる他の電磁装置、具体的には、コイルの巻回軸方向の両端部の外側に対向してコアが配置される他の電磁装置に採用されもよい。他の電磁装置は、例えば、スラスト磁気軸受やリアクトルを含んでよい。これにより、上述の実施形態の場合と同様、他の電磁装置のコイルの冷却性能を向上させることができる。
【符号の説明】
【0175】
1 クローポールモータ(電磁装置)
10 回転子
11,11A~11C ロータコア
12 永久磁石
13 回転軸部材
14 連結部材
20 固定子
21,21A~21C 固定子ユニット
22 相間部材
22A UV相間部材
22B VW相間部材
23 端部部材
24 挿通部材
25,26 ベアリング
30 固定部材
211 ステータコア(コア)
211A ヨーク部
211B 爪磁極
211C ヨーク部
211D 挿通孔
212 コイル(弾性力発生部)
213,213A~213D 絶縁部
214 弾性部材(弾性力発生部)