IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ズークス インコーポレイテッドの特許一覧

<>
  • 特許-センサーの誤較正の自動検出 図1
  • 特許-センサーの誤較正の自動検出 図2
  • 特許-センサーの誤較正の自動検出 図3A
  • 特許-センサーの誤較正の自動検出 図3B
  • 特許-センサーの誤較正の自動検出 図4
  • 特許-センサーの誤較正の自動検出 図5
  • 特許-センサーの誤較正の自動検出 図6
  • 特許-センサーの誤較正の自動検出 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-14
(45)【発行日】2024-05-22
(54)【発明の名称】センサーの誤較正の自動検出
(51)【国際特許分類】
   B60W 50/04 20060101AFI20240515BHJP
   B60W 50/14 20200101ALI20240515BHJP
   G05D 1/43 20240101ALI20240515BHJP
   G01S 7/497 20060101ALI20240515BHJP
   G01S 17/88 20060101ALI20240515BHJP
【FI】
B60W50/04
B60W50/14
G05D1/43
G01S7/497
G01S17/88
【請求項の数】 13
(21)【出願番号】P 2020550866
(86)(22)【出願日】2019-03-19
(65)【公表番号】
(43)【公表日】2021-08-02
(86)【国際出願番号】 US2019022863
(87)【国際公開番号】W WO2019183027
(87)【国際公開日】2019-09-26
【審査請求日】2022-03-15
(31)【優先権主張番号】15/927,315
(32)【優先日】2018-03-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518156417
【氏名又は名称】ズークス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】弁理士法人谷・阿部特許事務所
(72)【発明者】
【氏名】デイビッド ファイファー
【審査官】鶴江 陽介
(56)【参考文献】
【文献】米国特許出願公開第2015/0260498(US,A1)
【文献】米国特許出願公開第2015/0148986(US,A1)
【文献】特開2015-075382(JP,A)
【文献】米国特許出願公開第2005/0062615(US,A1)
【文献】特開2016-215790(JP,A)
【文献】特表2016-525038(JP,A)
【文献】特表2017-501915(JP,A)
【文献】特開2007-155356(JP,A)
【文献】特開昭62-295121(JP,A)
【文献】独国特許出願公開第102007008798(DE,A1)
【文献】独国特許出願公開第102015005961(DE,A1)
【文献】米国特許出願公開第2016/0288799(US,A1)
【文献】JAYANTA KAR et al.,CALIPSO lidar calibration at 532nm: version 4 nighttime algorithm,Atmospheric Measurement Techiniques,2018年03月14日,Vol.11, issue 3,1466,https://doi.org/10.5194/amt-11-1459-2018
(58)【調査した分野】(Int.Cl.,DB名)
B60W 10/00-60/00
G08G 1/00- 1/16
G05D 1/43
G01S 7/497
G01S 17/88
(57)【特許請求の範囲】
【請求項1】
プロセッサーを含む1つ以上のコンピューティングデバイスによって実行される、誤較正されたセンサーを検出する方法であって、
複数のセンサーを使用して環境のセンサーデータを取り込むことであって、前記センサーデータは、第1の光検出および測距(LIDAR)センサーに関連付けられた第1のLIDARデータと、第2のLIDARセンサーに関連付けられた第2のLIDARデータと、第3のLIDARセンサーに関連付けられた第3のLIDARデータと、を含む、ことと、
前記環境の地表面に関連付けられた領域を決定することと、
領域データとして、前記領域に関連付けられた前記センサーデータのデータのサブセットを決定することと、
前記領域データが平面に対応すると決定することと、
前記領域データの第1のサブセットがデータポイントの閾値数を満たすまたは超える場合、前記領域データの前記第1のサブセットの第1の平均高さを決定することであって、前記第1のサブセットが前記第1のLIDARデータに関連付けられた第1のデータを含む、ことと、
前記領域データの第2のサブセットがデータポイントの閾値数を満たすまたは超える場合、前記領域データの前記第2のサブセットの第2の平均高さを決定することであって、前記第2のサブセットが前記第2のLIDARデータおよび前記第3のLIDARデータに関連付けられた第2のデータを含む、ことと、
前記第1の平均高さと前記第2の平均高さの間の差を決定することと、
前記差が高さ閾値を満たすまたは超えると決定することと、
前記差が前記高さ閾値を満たすまたは超えると決定されると、前記第1のLIDARセンサー、前記第2のLIDARセンサー、または前記第3のLIDARセンサーのうちの少なくとも1つが誤較正されているという表示を生成することと、
を備える、方法。
【請求項2】
前記表示に少なくとも部分的に基づいて、前記第1のLIDARセンサーが誤較正されていると決定することと、
前記第2のLIDARデータおよび前記第3のLIDARデータに少なくとも部分的に基づいて、軌道を生成することと、
前記軌道に少なくとも部分的に基づいて、自律車両を制御することと、
をさらに備える、請求項1に記載の方法。
【請求項3】
前記センサーデータに関連付けられた区分情報を受信することと、
前記区分情報に少なくとも部分的に基づいて、前記領域が前記環境の前記地表面に関連付けられると決定することと、
をさらに備える、請求項1に記載の方法。
【請求項4】
前記領域データの第3のサブセットの第3の平均高さを決定することであって、前記第3のサブセットが前記第2のLIDARデータに関連付けられた第3のデータを含む、ことと、
前記領域データの第4のサブセットの第4の平均高さを決定することであって、前記第4のサブセットが前記第1のLIDARデータおよび前記第3のLIDARデータを含む、ことと、
前記第3の平均高さと前記第4の平均高さの間の第2の差を決定することと、
前記第2の差が前記高さ閾値を満たすまたは超えると決定することと、
前記第2の差が前記高さ閾値を満たすまたは超えると決定されると、前記第1のLIDARセンサー、前記第2のLIDARセンサー、または前記第3のLIDARセンサーのうちの少なくとも1つが誤較正されているという第2の表示を生成することと、
をさらに備える、請求項1ないし3のいずれか一項に記載の方法。
【請求項5】
実行されると、1つ以上のプロセッサーに請求項1ないし4のいずれか一項に記載の方法を実施させる命令を格納した非一時的コンピュータ可読媒体。
【請求項6】
システムであって、
1つ以上のプロセッサーと、
前記1つ以上のプロセッサーによって実行可能な命令を格納した1つ以上のコンピュータ可読媒体であって、前記命令が、実行されると、前記システムに、
複数のセンサーから環境のセンサーデータを受信させ、
前記環境の地表面に関連付けられた領域を決定することと、
領域データとして、前記領域に関連付けられた前記センサーデータのデータのサブセットを決定させ、
前記領域データの第1のサブセットがデータポイントの閾値数を満たすまたは超える場合、前記領域データの前記第1のサブセットの第1の平均値を決定させ、前記第1のサブセットは前記複数のセンサーの第1のセンサーによって取り込まれており、
前記領域データの第2のサブセットがデータポイントの閾値数を満たすまたは超える場合、前記領域データの前記第2のサブセットの第2の平均値を決定させ、前記第2のサブセットは前記複数のセンサーの少なくとも第2のセンサーおよび第3のセンサーによって取り込まれており、
前記第1の平均値と前記第2の平均値の間の差を決定させ、
前記差が閾値を満たすまたは超えると決定させ、
前記差が前記閾値を満たすまたは超えると決定されると、前記第1のセンサー、前記第2のセンサー、または前記第3のセンサーのうちの少なくとも1つが誤較正されているという表示を生成させる、
1つ以上のコンピュータ可読媒体と、
を備えた、システム。
【請求項7】
前記命令が、実行されると、前記システムにさらに、
前記複数のセンサーのうちのセンサーに関連付けられた品質スコアを生成させ、前記品質スコアが試行されたテストの数に対して正常に実行されたテストの数の比率を表す、
請求項6に記載のシステム。
【請求項8】
前記命令が、実行されると、前記システムにさらに、
前記領域データの第3のサブセットの第3の平均値を決定させ、前記第3のサブセットが前記第2のセンサーによって取り込まれており、
前記領域データの第4のサブセットの第4の平均値を決定させ、前記第4のサブセットが前記第1のセンサーおよび前記第3のセンサーによって取り込まれており、
前記第3の平均値と前記第4の平均値の間の第2の差を決定させ、
前記第2の差が前記閾値を満たすまたは超えると決定させ、
前記第2の差が前記閾値を満たすまたは超えると決定されると、前記第1のセンサー、前記第2のセンサー、または前記第3のセンサーのうちの少なくとも1つが誤較正されているという第2の表示を生成させる、
請求項6または7に記載のシステム。
【請求項9】
前記命令が、実行されると、前記システムにさらに、
前記領域データの前記第1のサブセットについて、最高値を決定させ、
前記領域データの前記第1のサブセットについて、最低値を決定させ、
前記最高値と前記最低値の間の値の差を決定させ、
前記値の差が前記閾値以下であると決定させ、
前記値の差が前記閾値を満たすまたは超えることに少なくとも部分的に基づいて、前記領域データが平面に対応すると決定させる、
請求項6または7に記載のシステム。
【請求項10】
前記命令が、実行されると、前記システムにさらに
前記センサーデータに関連付けられた区分情報を受信させ、
前記区分情報に少なくとも部分的に基づいて、前記領域データが地表面に対応すると決定させる、
請求項6または7に記載のシステム。
【請求項11】
前記複数のセンサーは自律車両上にあり、さらに前記命令が、実行されると、前記システムにさらに、
前記表示に少なくとも部分的に基づいて、前記第1のセンサーが誤較正されていると決定させ、
前記第2のセンサーおよび前記第3のセンサーに少なくとも部分的に基づいて、前記自律車両に軌道を横断させるように構成された信号を生成させ、
前記信号を前記自律車両へ送信させる、
請求項6または7に記載のシステム。
【請求項12】
前記命令が、実行されると、前記システムにさらに、
試行されたテストの数の第1のカウントを増分させ、
前記第2のセンサーに関連付けられたデータの第2のセンサーの平均値を決定させ、
前記第3のセンサーに関連付けられたデータの第3のセンサーの平均値を決定させ、
前記第2のセンサーの平均値と前記第3のセンサーの平均値の間のセンサーの平均値の差を決定させ、
前記センサーの平均値の差が前記閾値を超えないと決定させ、
正常に実行されたテストの数の第2のカウントを増分させる、
請求項6または7に記載のシステム。
【請求項13】
前記命令が、実行されると、前記システムにさらに、
テスト率を生成させ、前記テスト率は前記差が決定された第1の回数を示し、
成功率を生成させ、前記成功率は前記差が前記閾値以下である第2の回数を示す、
請求項6または7に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサーの誤較正の自動検出に関する。
【背景技術】
【0002】
[関連出願の相互参照]
この特許出願は、2018年3月21日に出願されたシリアル番号15/927,315の米国実用特許出願の優先権を主張する。出願番号15/927,315は参照により本明細書に完全に組み込まれる。
【0003】
自律車両システムはセンサーを使用して環境のデータを取り込むことができる。操作またはそれ以外の最中に、センサーは誤較正されることがある。誤較正されたセンサーは、安全性を低下させる結果を導く可能性のある不正確なデータを取り込むことがある。さらに、誤較正されたセンサーを検出することは、広範な原因分析が必要になると同時にまた、相当量の時間、費用、および資源を消費し得る。
【図面の簡単な説明】
【0004】
詳細な説明は、添付図面を参照して説明される。図面において、参照番号の左端の数字は、参照番号が最初に現れる図を識別している。異なる図面における同じ参照番号の使用は、類似または同一の項目または機能を示す。
【0005】
図1図1は、本開示のいくつかの例による、環境内のデータを取り込む例示のセンサー、および較正グリッドを含む例示の車両の斜視図である。
図2図2は、較正用のパーティションで表された取り込まれたセンサーデータを示す。
図3A図3Aは、車両に搭載された複数のセンサーを有する例示の車両の側面図を示す。
図3B図3Bは、車両に搭載された複数のセンサーを有する例示の車両の上面図を示す。
図4図4は、テーブルとして表された、複数のセンサーの個々のセンサーから収集された領域データを示す。
図5図5は、本明細書で説明する技術を実装するための例示のシステムのブロック図を示す。
図6図6は、誤較正されたセンサーを検出するための例示のプロセスを示す。
図7図7は、LIDARデータに少なくとも部分的に基づいて自律車両に指示するための例示のプロセスを示す。
【発明を実施するための形態】
【0006】
本開示は、自律車両用の誤較正されたセンサーを検出するための技術を説明する。自律車両は、車両の環境に対応するデータを取り込むために複数のセンサーを含み得る。システムはLIDARセンサーを使用して、例えば環境内の表面の高さ値などに対応する環境内のデータを取り込み得る。いくつかの例では、画像データ、区分データ、分類データ、もしくはGPSデータ、またはそれらの任意の組み合わせに少なくとも部分的に基づいて、取り込まれたデータの一部を地表面に関連付け得る。較正グリッドを使用して、取り込まれたデータを較正用のパーティションに分割できる。
【0007】
システムは較正グリッドの単一のパーティションを選択し、パーティションに対応する様々なセンサーデータを比較するための基準として使用し得る。例えば複数のセンサーからのセンサーデータはパーティションに対応する複数の高さ値(例えば寸法に対応する値)を有し得る。システムは複数のセンサーに関連付けられた平均高さ値を計算し得る。いくつかの例では、単一のセンサーの平均高さ値は、センサー群の平均高さ値と比較して、複数のセンサーのセンサーが誤較正されているかどうかを決定できる。
【0008】
本明細書で論じる誤較正されたセンサーの検出技術は、検出の正確さを維持しながら、誤較正されたセンサーを検出するために必要なコンピューティング資源の量を減らすことによって、コンピューティングデバイスの機能を改善できる。いくつかの例では、計算に使用されるデータの量を減らすことは、処理時間を減らし、メモリの使用量を減らし、誤較正されたセンサーの検出の正確さを維持できる。理解できるように、誤較正されたセンサーの検出の正確さを維持することは、安全性の結果を改善し、検出されないままでは不正確な可能性のあるセンサーデータの収集を減らすことができる。さらに、誤較正の検出に必要なデータの量を減らすことは、コンピューティングデバイスと車両の間で転送されるデータの量を減らすことで、ネットワーク輻輳を減らすことができる。コンピュータの機能に対するこれらおよびその他の改善を本明細書で論じる。
【0009】
本明細書で説明される技術は、いくつかのやり方で実装できる。例示の実装について、添付図面を参照しながら以下に提示する。自律車両のコンテキストで論じているが、本明細書で説明する技術は、使用前および/または使用中にセンサーの較正を必要とする様々なシステムに適用でき、自律車両に限定されない。別の例では、方法、装置、およびシステムは航空または航海のコンテキストで利用し得る。さらに、本明細書で説明する技術は、実データ(例えばセンサーを使用して取り込まれた)、シミュレートされたデータ(例えばシミュレーターによって生成された)、またはその2つの任意の組合せで使用し得る。
【0010】
図1は、領域102(例えば路面)を横切って走行し、例えば人および/または貨物を第1の位置から第2の位置に輸送するように構成された自動車両システム100の例を示す。例示の目的で、システム100は車両104を備えることができる。この車両104は、ドライバー(または乗員)の常時車両制御を期待せずに行程全体の安全に不可欠な機能全てを実行することが可能な車両を説明する、米国国家高速道路交通安全局によって2016年に発行されたレベル5分類に従って操作するように構成された自律車両であり得る。その場合、車両104は、全ての駐車機能を含む、開始から終了までの全ての機能を制御するように構成され得るので、それは乗員がいなくてもよい。これは単なる例であり、本明細書で説明する技術は、例えばアクセス制限されている高速道路上での操作中のような特定の運転状況内でドライバーの注意力または支援なしで自律制御できるような、それだけでなく、例えば都市部の市街での操作中、または少なくとも一部の駐車機能中のような他の運転状況内でドライバーの注意力および/または支援を要求するような、部分的に自律制御されている車両までを含む任意の地上車両に組み込み得る。以下で論じるように、いくつかの場合では、乗員がいる場合、システム100は乗客(例えば車両内の1人以上の乗客)の選択に基づいて加速を制限し得る。
【0011】
図1に示す例示の車両104は、4つのホイール106と、各ホイール106用のそれぞれのタイヤ108と、を有する自動車である。例えば、バン、スポーツユーティリティ車両、クロスオーバー車両、トラック、バス、農業用車両、および建設用車両などの他のタイプおよび構成の車両が企図される。車両104は、1つ以上の内燃エンジン、1つ以上の電池および電気モーター、水素燃料電池、またはそれらの任意の組み合わせによって動力を供給され得る。さらに、例示の車両104は4つのホイールを有するが、本明細書に記載されるシステムおよび方法は、より少ないまたはより多い数のホイール、タイヤ、および/または軌道を有する車両に組み込み得る。図1に示すように、例示の車両104は4輪ステアリングを有し、例えば第1の方向126内を走行する場合、車両104の第1の端部110が車両104の前端部であるように、および反対の第2の方向128を走行する場合、第1の端部110が車両104の後端部になるように、全ての方向で概して等しい性能特性で操作し得る。同様に第2の方向128を走行する場合、車両104の第2の端部112は車両104の前端部であり、および反対の第1の方向126を走行する場合、第2の端部112は車両104の後端部になる。これらの例示の特徴は、例えば駐車場および都市部などの小規模空間または混雑環境での操縦性を向上させ得る。
【0012】
図1に示す例示の車両104は、車両104の内部空間118へのおよびそこからの乗員および貨物の出入りを容易にするために、車両104の各側面116に1つ以上のドア114を含む。本明細書で説明するシステムおよび方法はより少ないまたはより多い数のドアを有する車両に組み込み得る。図1に示す車両104は、車両104の第1の端部110と第2の端部112との間に実質的に(例えば、ほぼ完全に)延在するウィンドシールド120およびルーフ122を含む。いくつかの例では、車両104はウィンドシールドを含まなくてもよい。例示の車両104はレベル5の自律車両であるため、ウィンドシールドは必要ない。しかしながら、いくつかの例では、車両104は車両104が自律的か、またはドライバーによって手動で制御されるように構成されているかに関わらず、ウィンドシールド120を含み得る。いくつかの例では、ルーフ122の少なくとも一部は、車両104の1つ以上の電動システムに電力を供給するために、車両104に電気エネルギーを供給するように構成された1つ以上の太陽電池を含み得る。
【0013】
図1に示す例では、システム100は複数のセンサー124を備えることができ、これは車両104に搭載されたRADARセンサー、LIDARセンサー、SONARセンサー、画像センサー、マイクロフォン、またはそれらの任意の組み合わせであり得る。車両104はまた任意の数およびタイプのセンサーを含んでもよく、提示する例に限定されない。センサー124は、例えば車両104に近接する領域102の所望のカバレッジ領域を提供するために、所定のパターンで配置され得る。いくつかの例では、示すように、センサー124は車両104の周りの約360度のカバレッジを有効にするパターンで配置できる。これは、車両104が車両104の走行している方向126、128に関係なく物体を検出することを可能にできる。これはまた、システム100が車両104の側面から接近する物体(例えば、通りを走っている犬または他の動物)を検出することを可能にできる。センサー124の他のパターンおよび配置が企図される。
【0014】
図1に示すように、センサー124は、車両104の周りの領域102の一部の見通し線視界を提供する車両104の一部に搭載され得、センサー124の少なくとも一部は走行方向に向けられる。示すように、各例示のセンサー124は、ウィンドシールド120の上縁に近接するルーフ122の一部、またはルーフ122上に搭載できる。センサー124はウィンドシールド120の上縁に概して対応する位置に搭載し得る。センサー124がウィンドシールドの内側に搭載されている例では、ウィンドシールドに起因するデータのいずれかの歪みは、例えばレンズまたはデータを補正するように構成されたアルゴリズムを介して補正され得る。車両104が(例示の車両104のように)双方向であるために2つのウィンドシールドを含むことになった場合、各センサー124はウィンドシールド120の上縁に概ね対応する位置に搭載できる。
【0015】
図示の例示のセンサー124はルーフ122に搭載されているが、1つ以上のセンサー124は車両104の他の部分に搭載できる。例えば1つ以上のセンサー124は、例えば従来の自動車のバンパーの位置に概ね対応する位置で、車両104の第1および/または第2の端部110、112に搭載できる。いくつかの例によれば、センサー124は、各タイヤ108の経路内、または車両104の各側面の領域102のデータを取り込むように搭載されてもよい。
【0016】
いくつかの例によれば、例えばセンサー124から取り込まれたデータが車両104に対応した一定の方向130から取り込まれるように、センサー124の1つ以上を固定的に搭載し得る。そのような例では、データは常に垂直および横方向の両方で、車両104に対応した同じ角度から取り込まれることになる。
【0017】
いくつかの例によれば、センサー124の1つ以上は、センサー124の方向130を車両104に対して垂直および/または横方向に変更できるように、搭載し得る。他の例では、1つ以上のセンサー124はセンサーの方向130は固定されず、車両104に対応した領域102を継続的に掃引し得るように、継続的に軸回転または揺動し得る。
【0018】
いくつかの例では、センサー124は方向を変更するために軸回転するように構成され得る。例えば、車両104がより高速で走行している、または特定の環境条件に基づいている場合、センサー124は車両104の前部をはるかに超えて向けられることがあり、その結果、車両104がセンサー124によって取得したデータに応答する時間が比較的長くなる。反対に、車両104が比較的遅い速度で、および/または人工密度が高い、もしくはそうでなければ混雑領域で、または他の環境条件に基づいて走行している場合、センサー124は車両104の前部により近く向けられ得る。いくつかの例では、センサー124はこれらの方向の変化の1つ以上を可能にするために搭載できる。
【0019】
図1に示す例では、システム100は領域102の一部を地表面132(例えば、ほぼ平面であり、および/または車両と平行な平面にある車両104に近接する領域)として決定し得る。例えば、いくつかの例では、データ区分技術は地表面132に関連付けられた領域102の部分を決定するのを支援し得る。システム100は、データを取り込み、データを区分し、および/または他のセンサーデータを区分されたデータに関連付け得る。分類装置は、センサーデータを受信して、データの少なくとも一部を地表面132として分類し得る。
【0020】
いくつかの例では、システム100はGPSデータを使用し、センサーデータをGPSデータと関連付け得る。GPSデータとセンサーデータの両方を使用して、システム100は環境の地表面132に関連付けられた領域を決定し得る。
【0021】
いくつかの例では、システム100は車両に直に近接する領域102の部分が平面でありおよび車両に平行であると想定し、そのような部分を地表面132として使用し得る。
【0022】
いくつかの例によれば、システム100は地表面132に関連付けられた領域上に較正グリッド136を重ねるか、そうでなければ関連付け得る。較正グリッド136は、1つ以上のセンサーから受信され、地表面132に関連付けられたデータを、較正用の1つ以上のパーティション138に分割し得る。較正用のパーティション138は、領域データ134を含み得るか、そうでなければそれに関連付けられ得る。領域データ134はパーティションに関連付けられたセンサーデータの一部を備え得る。例示の目的で車両104の前後に存在して図1で示すが、そのようなパーティションは車両104に近接する全ての方向に延在してもよく、必ずしも隣接していなくてもよいことが理解される。
【0023】
図2は、センサーデータ200の一部の例示のグラフィック表現を示す。領域データ134は地表面132の一部に関連付けられたパーティションに関連付けられた複数のデータポイントを含み得る。データポイント202、204、206、および208の各セット(例えばデータを取得するときに軸回転するセンサーの掃引として参照され得る)は、各データポイントが例えば高さ値を示すセンサー124に関連付けられる。従って、例示の目的で、図2は4つの異なるセンサー124(例えばセンサーA、センサーB、センサーC、およびセンサーD)からのセンサーデータを例示する。領域データ134は任意の数のセンサーに関連付けられたセンサーデータを含んでもよく、本明細書で論じる例に限定されないことが理解できる。
【0024】
いくつかの例では、システム100は、パーティションに関連付けられた領域データ134をチェックする前に、パーティションを選択し得る。例えばシステム100はパーティションに関連付けられた最小数のデータポイントをチェックし得る。別の例として、システム100はパーティションに関連付けられた最小数のセンサー124(例えばパーティションに関連付けられたセンサーデータを有する、および/またはそうでなければパーティションを取り込むことになる視野を有する、センサー124の数)をチェックし得る。さらに別の例として、システム100はパーティションに関連付けられたセンサー124に関連付けられた最小数のデータポイントをチェックし得る。言い換えると、システム100は、セット202、204、206、および208ごとに最小数のデータポイントを必要とし得る。従って、システム100はパーティションを選択し、パーティションに関連付けられた領域データ134に対して様々なチェックを実行し得る。いくつかの例では、データの閾値量を決定するための1つ以上のチェックは本明細書で論じる検出操作のためのパーティションを選択する前に実行され得る。
【0025】
図3Aは車両304に搭載された複数のセンサー124を有する例示の車両304の側面図300を示す。側面図300に示すように、車両304は任意の組み合わせまたは構成で任意の数のセンサー124を含み得る。例えば車両304は少なくともセンサー124を含む。いくつかの例では、センサー124は、RADARセンサー、LIDARセンサー、SONARセンサー、画像センサー、マイクロフォン、またはそれらの任意の組み合わせを備え得る。車両304はまた任意の数およびタイプのセンサーを含でもよく、提示する例に限定されない。さらに、側面図300に示すように、および上記のように、センサー124は方向130が車両304に対して固定されるように搭載し得る。いくつかの例によれば、センサー124は、方向130が車両304に対して変更できるように搭載されてもよい。いくつかの例では、センサー124は、例えば車両速度または環境条件に応じて方向130を変更するように構成され得る。いくつかの例では、センサー124は方向130が固定されず、車両304に対応した領域を継続的に掃引し得るように、軸回転および/または揺動し得る。
【0026】
図3Bは車両に搭載された複数のセンサー124を有する例示の車両304の上面図302を示す。例えば、センサー124は図3Bに見ることができる。センサー124は、例えば互いに共同設置される、または近接して設置され得るが、様々な視野を有する異なるセンサータイプまたは様式を含み得る。この開示のコンテキストで理解し得るように、車両304は任意の数および任意のタイプのセンサーを含み得る。この開示のコンテキストで理解し得るように、搭載位置および視野は任意の数の構成を含み得る。
【0027】
図4は車両104に搭載されたセンサー124によって取り込まれたデータのセットの例示のデータテーブル400を示す。例えばデータ列402は個々のセンサー124(例えば、センサーA、センサーB、センサーC、およびセンサーD)から収集されたセンサーデータを表す。さらに、例えばデータ行404はセンサー124によって収集されたデータポイント、および/または地表面(例えば地表面132)の想定平面の上の距離(例えば高さ)を表す。図2を参照し、セット202、204、206、および208はデータ行404内のデータポイントを参照し得る。従って例示の目的で、各データポイント406は単一のセンサー124に対応し得、各データポイント406はまた、図2のセット202、204、206、および208に示すように、センサー124によって測定される高さ値に対応し得る。集合的にデータのセットは領域データ134として参照され得る。
【0028】
次に領域データ134をコンピューティングデバイス408に提供して、例えば領域データ134を処理および/または分析して、1つ以上のセンサーに関連付けられた較正エラーを検出できる
【0029】
図5は、本明細書で説明される技術を実装するための例示のシステム500のブロック図を示す。少なくとも1つの例では、システム500は、図1図3Aおよび図3Bに関連する上記の車両104および304と同じ車両とすることができる車両502を含むことができる。
【0030】
車両502は、車両コンピューティングデバイス504、1つ以上のセンサーシステム506、1つ以上のエミッタ508、1つ以上の通信接続部510、少なくとも1つの直接接続部512、および1つ以上の駆動モジュール514を含むことができる。
【0031】
車両コンピューティングデバイス504は、1つ以上のプロセッサー516、および1つ以上のプロセッサー516と通信可能に結合されたメモリ518を含むことができる。図示の例では、車両502は自律車両である。しかしながら、車両502は任意の他のタイプの車両であることができる。図示の例では、車両コンピューティングデバイス504のメモリ518は、位置測定コンポーネント520、知覚コンポーネント522、計画コンポーネント524、1つ以上のシステムコントローラ526、および検出コンポーネント528を格納する。例示の目的でメモリ518に属するものとして図5に示すが、位置測定コンポーネント520、知覚コンポーネント522、計画コンポーネント524、1つ以上のシステムコントローラ526、および検出コンポーネント528は、さらに、または代わりに、車両502にアクセス可能であり得る(例えば遠隔に格納される)。
【0032】
少なくとも1つの例では、位置測定コンポーネント520は車両502の位置を決定するためにセンサーシステム506からデータを受信するための機能を含むことができる。例えば、位置測定コンポーネント520は、環境の3次元マップを含み、および/または要求/受信することができ、マップ内の自律車両の位置を継続的に決定できる。いくつかの例では、位置測定コンポーネント520は、SLAM(同時位置測定およびマッピング)またはCLAMS(同時に較正、位置測定およびマッピング)を使用して、画像データ、LIDARデータ、RADARデータ、SONARデータ、IMUデータ、GPSデータ、ホイールエンコーダーデータ、またはそれらの任意の組み合わせ、および自律車両の位置を正確に決定するその他のデータを受信できる。いくつかの例では、本明細書で論じるように、位置測定コンポーネント520は車両502の様々なコンポーネントにデータを提供して、候補軌道を生成するための自律車両の初期位置を決定できる。
【0033】
いくつかの例では、知覚コンポーネント522は、物体検出、区分、および/または分類を実行する機能を含むことができる。いくつかの例では、知覚コンポーネント522は、車両502に近接するエンティティの存在および/またはエンティティタイプ(例えば、車、歩行者、自転車、建物、木、路面、縁石、歩道、不明など)としてのエンティティの分類を示す処理済みセンサーデータを提供できる。追加および/または代替の例では、知覚コンポーネント522は、検出されたエンティティおよび/またはエンティティが位置付く環境に関連付けられた1つ以上の特性を示す処理済みセンサーデータを提供できる。いくつかの例では、エンティティに関連付けられた特性は、限定しないが、x位置(グローバルポジション)、y位置(グローバルポジション)、z位置(グローバルポジション)、方向、エンティティタイプ(例えば分類)、エンティティの速度、エンティティの範囲(サイズ)など、を含むことができる。環境に関連付けられた特性は、限定しないが、環境内の別のエンティティの存在、環境内の別のエンティティの状態、時刻、曜日、季節、気象条件、暗闇/光の表示などを含むことができる。
【0034】
一般に、計画コンポーネント524は環境を横断するために車両502が辿る経路を決定できる。例えば、計画コンポーネント524は様々なルートおよび軌道ならびに様々なレベルの詳細を決定できる。例えば、計画コンポーネント524は第1の位置(例えば現在の位置)から第2の位置(例えば目標の位置)へ走行するルートを決定できる。この議論の目的に、ルートは2つの位置の間を走行するための一連の経由地点にできる。非限定的な例として、経由地点は、道路、交差点、全地球測位システム(GPS)座標などが含まれる。さらに、計画コンポーネント524は、第1の位置から第2の位置への経路の少なくとも一部に沿って自律車両を誘導するための命令を生成できる。少なくとも1つの例では、計画コンポーネント524は一連の経由地点内の第1の経由地点から一連の経由地点の第2の経由地点まで自律車両をどのように誘導するかを決定できる。いくつかの例では、命令と軌道または軌道の一部とすることができる。いくつかの例では、receding horizon技術に従って、複数の軌道は実質的に同時に生成できる(例えば技術的な許容範囲内で)。receding horizonにおける複数の軌道うちの最高の信頼レベルを有する単一の軌道を選択し、車両を操作し得る。
【0035】
少なくとも1つの例では、車両コンピューティングデバイス504は、車両502のステアリング、推進、制動、安全、エミッタ、通信、および他のシステムを制御するように構成できる1つ以上のシステムコントローラ526を含むことができる。これらのシステムコントローラ526は駆動モジュール514および/または車両502の他のコンポーネントの対応するシステムと通信および/または制御でき、これは計画コンポーネント524から提供された軌道に従って操作するように構成され得る。
【0036】
いくつかの例では、検出コンポーネント528は誤較正されたセンサーの検出を実行する機能を含むことができる。いくつかの例では、検出コンポーネント528はシステムコントローラ526からデータを受信して、車両502が特定の速度で走行しているかどうかを決定し得る。いくつかの例では、検出コンポーネント528は最高速度または最低速度で走行するために車両502を制御する表示を提供し得る。図示の例では、検出コンポーネント528は、グランドコンポーネント530、領域コンポーネント532、クォーラムコンポーネント534、平均コンポーネント536、比較コンポーネント538、および表示コンポーネント540を含む。
【0037】
少なくとも1つの例では、グランドコンポーネント530は、環境の地表面に関連付けられた領域を決定するための機能を含むことができる。例えば、知覚コンポーネント522は、区分および/または分類の後、センサーデータをグランドコンポーネント530に提供できる。いくつかの例では、グランドコンポーネント530は、知覚コンポーネントによって提供されたデータを使用して、環境の地表面に関連付けられたデータを分離できる。上記のように、グランドコンポーネント530はまた、例えば、車両に直に隣接する領域が平面状の地表面などであると仮定することにより、既知地表面のマップに対応したシステム500の位置に基づいて、地表面を選択し得る。
【0038】
いくつかの例では、領域コンポーネント532は、環境の地表面に関連付けられたデータの一部を選択できる。例えば、領域コンポーネント532は較正グリッドを重ねて地表面を分割し得る。次に、領域コンポーネントは、さらなる分析のために、較正グリッドの1つのパーティションおよび関連付けられたデータを選択し得る。いくつかの例では、地表面に関連付けられたデータは、例えば表面に対する距離の測定の可能な、1つ以上のRADARセンサー、LIDARセンサー、SONARセンサー、画像センサー(例えばステレオ画像センサー)、飛行時間(ToF)センサー、またはそれらの任意の組み合わせ、を備え得るセンサー124によって収集されたデータを含むことができる。いくつかの例では、領域コンポーネント532は、潜在的な関心領域の平坦性に基づいて(例えば以下で論じる比較コンポーネント538と併せて)領域を選択する機能を含むことができる。例えば、領域コンポーネントは潜在的な関心領域内の単一のセンサーによって取り込まれた高さ値を比較できる。場合によっては、領域コンポーネント532は、最高の高さ値と最低の高さ値との間の差を決定できる。いくつかの例では、差が閾値を満たすまたは超える場合、領域コンポーネント532は、誤較正検出の目的で、領域が「平坦な」領域ではない可能性があるため、潜在的な関心領域を拒否できる。いくつかの例では、領域コンポーネント532は領域のサイズを設定できる。一例では、領域はおよそ50センチメートル×50センチメートルとすることができるが、任意の寸法を使用できる。
【0039】
クォーラムコンポーネント534は、少なくとも1つの例では、データの特定のセットがクォーラム条件を満たしていると決定し得る。例えば、クォーラムコンポーネント534は領域コンポーネント532から、較正グリッドのパーティションに関連付けられたデータ(例えば領域データ)を受信し得る。クォーラムコンポーネント534は、次に例えば領域データに関連付けられたセンサーの数を決定し得る。領域データに関連付けられたセンサーの数がセンサーの閾値数を満たしていないまたは超えていない場合、クォーラムコンポーネント534はセンサークォーラムが満たされていないという表示を提供し得る。さらに、クォーラムコンポーネント534は領域データ内の単一のセンサーに関連付けられたデータのセットを分析し、データのセット内のデータポイントの数を決定し得る。次に、クォーラムコンポーネント534は、領域データ内の単一のセンサーに関連付けられたデータのセットに最小数のデータポイントが包含されていないと決定し得、また特定のセンサーのデータポイントクォーラムが満たされていないという表示を提供できる。例えば、十分な数のセンサーのためにデータポイントクォーラムが満たされていない場合、次にクォーラムコンポーネント534は、次に、センサークォーラムも満たされていないことを示し得る。
【0040】
非限定的な例として、クォーラムコンポーネント534はいくつかのセンサーの閾値を、2つ、3つ、または任意の数のセンサーに設定できる。閾値が3つのセンサーに設定され、センサーデータの2つのセットが存在する例では、クォーラムコンポーネント534はセンサークォーラムが満たされていないことを示し得る。そのような状況下では、誤較正が検出されないと決定され得る。さらに、例として、クォーラムコンポーネント534はセンサーごとに12個のデータポイントで閾値数のポイント(例えばデータポイントクォーラム)を設定し得るが、任意の数のデータポイントを使用し得る。従って、センサーデータのセットが11個のデータポイントを包含する状況では、クォーラムコンポーネント534はデータポイントクォーラムが満たされていないと示し得る。データポイントクォーラムが満たされていない場合、センサーデータはセンサークォーラムに寄与することはない。従って、例示の目的で、センサーデータの3つのセットが利用可能であり、セットの1つがデータポイントクォーラムを満たさず、次に、クォーラムコンポーネント534が3セットのセンサーデータを必要とする場合、センサークォーラムはまた満たされないことがある。しかしながら、センサーデータの4つのセットが利用可能であり、セットの1つがデータポイントクォーラムを満たさない場合、次に、クォーラムコンポーネント534がセンサーデータの3つのセットを利用するように設定されている場合、センサークォーラムは依然として満たされ得る。このような状況下では、誤較正検出は分析に十分なデータを有する3つのセンサーに対して行い得る。
【0041】
平均コンポーネント536はセットの値の平均を計算する機能を含むことができる。例えば、平均コンポーネント536は領域コンポーネント532からデータを受信できる。ほんの一例として、データは高さ測定値(例えば関連付けられたセンサーデータに基づいて決定される地表面の上方または下方の距離)を表すことができ、平均コンポーネント536は高さ値の平均高さ値を生成できる。もちろん、この例はそのように限定することを意味しない。別の非限定的な例として、xまたはy方向のいずれかにおけるオフセット値は、例えば建物の壁などに関連付けられた各センサーデータについて決定され得る。さらに、平均コンポーネント536はトリム平均を計算する機能を提供できる。トリム平均を計算すると、平均コンポーネント536は、高さ値を並べ替えるおよび最低値の一部を調節(例えば除外、省略、無視など)、最高値の一部を調節、またはトリム平均を計算する前に最低値および最高値の両方の一部を調節できる。平均コンポーネント536が調節する量は、固定数、パーセンテージ、標準偏差に基づく、または十分と思われる他の計算に基づくことができる。いくつかの例では、平均コンポーネント536は平均値を格納できる。他の例では、平均コンポーネント536は平均値を、領域コンポーネント532または比較コンポーネント538などの異なるコンポーネントに送信できる。
【0042】
比較コンポーネント538は、値を比較し、差を計算し、および差が閾値を満たすまたは超えるかどうかの表示を提供する機能を含むことができる。例えば、比較コンポーネント538は領域コンポーネント532からデータを受信できる。非限定的な例として、比較コンポーネント538はセンサーに関連付けられた最低値およびセンサーに関連付けられた最高値を受信できる。次に、比較コンポーネント532は差が特定の最大値を満たすまたは超えるかどうかの表示を提供できる。例示目的のために、この表示はセンサーが非平面上でデータを収集したことを意味できる。
【0043】
別の例として、比較コンポーネント538は、平均コンポーネント536または領域コンポーネント532から1つ以上の値を受信できる。値を受信後、比較コンポーネント538は次に値間の差を計算できる。差に基づいて、比較コンポーネント538は、差が閾値を満たすまたは超えるかどうかに関する表示を提供するように構成できる。例示のみを目的として、比較コンポーネント538は第1のセンサーによって取り込まれたデータの1セットの平均(例えば平均またはトリム平均)値を受信できる。次に、比較コンポーネント538は、2つの平均(例えば第2のセンサーによって取り込まれた第2のデータセットの平均および第3のセンサーによって取り込まれた第3のデータセットの平均)の平均を受信できる。次に、比較コンポーネント538は第1のセンサーに関連付けられた平均値と平均(第2のセンサーおよび第3のセンサーに関連付けられている平均)の平均との間の差を計算することができる。他の例では、比較コンポーネント538は第1のセンサーによって取り込まれた1つのデータセットの1つの平均値および第2のセンサーによって取り込まれた異なるデータセットの別の平均値を受信できる。次に、比較コンポーネントは、例えば差が閾値を満たすまたは超えていることを示すことができる。閾値は、固定値、パーセンテージ、標準偏差に基づく、または十分と思われる他の計算に基づくことができる。いくつかの例では、4つ以上のセンサーが使用される場合、1つのセンサーからのセンサーデータの平均値が残りのセンサーの平均値の平均と比較される同様の技術を使用し得る。このような比較は、概して「1対残り」の比較として呼称され得る。
【0044】
誤較正されたセンサーを検出するための操作の例を以下に示す。この例では、領域はセンサーA、センサーB、センサーC、センサーDの4つのセンサーによって取り込まれたデータを含む。初期事項として(および上記のように)、センサーの数(この例では3つのセンサーであり得る)はセンサーの閾値数と比較される。さらに、各センサーによって取り込まれたデータポイントの数はセンサーごとのデータポイントの閾値数と比較できる。次に、各個々のセンサーによって取り込まれたデータの平均高さは平均コンポーネント536によって決定できる。本明細書で論じるように、場合によっては、トリム平均を使用できる。従って、操作は、センサーAによって取り込まれたデータの平均高さ(例えば、「avg_A」と呼称される)の生成を含むことができる。センサーB、C、およびDの平均は、それぞれ「avg_B」、「avg_C」、および「avg_D」として決定できる。センサーAから始めて、センサーAによって取り込まれたデータの平均高さ(「avg_A」)は、センサーB、センサーC、およびセンサーDの平均に基づく平均高さ値と比較できる。操作は、avg_B、avg_C、およびavg_Dの平均(例えば「avg_BCD」と呼称される)を決定することと、avg_Aとavg_BCDの差を決定することと、を含むことができる。差が閾値を満たすまたは超える場合、センサーAが誤較正されている可能性があるという表示を生成できる。これらの操作は、センサーB、センサーC、およびセンサーDに対して実行して、他のセンサーが誤較正されたかどうかを検出することもできる。
【0045】
表示コンポーネント540は、センサーかどうか、またはセンサーのセットを基準として使用し得ないかどうかを決定する機能を含むことができる。センサーかどうか、またはセンサーのセットを基準として使用し得ないかどうかを決定するための操作の例を以下に示す。この例では、システム500はテストのためにセンサーAを選択できる。平均コンポーネント536を使用して、システムはセンサーBおよびセンサーC(例えば「avg_B」および「avg_C」と呼称される)の平均を使用できる。比較コンポーネント538を使用して、システム500は、avg_Bとavg_Cとの間の差が閾値を満たすまたは超えることを決定し、avg_Bおよびavg_CがセンサーAの基準として機能できないことを決定できる。従って、表示コンポーネント540はテストを完了すべきではないという表示を提供できる。
【0046】
他の例では、表示コンポーネント540は記録されたデータを使用して、センサーが誤較正されているかどうかを決定できる。例示のみを目的として、ある期間にわたって、システム500は、センサーがテストされた回数、センサーが誤較正されていると決定された回数、およびセンサーが誤較正されていないと決定された回数、を格納および追跡できる。従って、システム500は記録されたデータを分析し、例えば品質スコアを決定できる。品質スコアはセンサーが誤較正されていないという表示の数およびセンサーがテストされた回数に基づいてパーセンテージを示すことができる。システム500はまた記録されたデータを分析し、例えばテスト率または表示率を決定できる。テスト率は、センサーがテストされる回数、および特定のセンサーについてシステム500によって実行されるテストの総回数に基づくパーセンテージを示すことができる。このような表示コンポーネント540は、システム500が1つ以上の運転を完了するときに、無作為に選択された地表面からのデータを融合できる。
【0047】
テスト率を決定する例を以下に論じる。上述するように、テスト率は、特定のセンサーに対応して開始されたテストの数と比較した、テストが完了した回数の測定値とすることができる。平均の「1対残り」の比較では、操作に「残り」の平均が信頼可能なベースライン測定であるかどうかを決定するためのチェックを含むことができる。限定ではなく例として、システム500は、センサーA、センサーB、およびセンサーCの3つのセンサーによって取り込まれたデータを受信できるが、任意の数のセンサーからのデータを受信できる。本明細書で論じるように、センサーAのテストでは、センサーAによって取り込まれたデータの値の平均(例えば「1」の平均)はセンサーBおよびセンサーCによって取り込まれた値の平均(例えば「残り」の平均)と比較できる。場合によっては、「残り」の平均を決定する前に、センサーBおよびセンサーCの個々の平均を比較して、データが閾値を超えて変化しているかどうかを決定できる。つまり、センサーBの平均値とセンサーCの平均値の間の差が閾値を満たすか超える場合、テストは実行されない可能性がある(例えばセンサーBおよびセンサーCの平均値が一致しないため、信頼可能な「残り」の値を提供し得ない)。従って、そのようなテストは、失敗したテスト(例えば完了していない)としてカウントできる。このような場合、センサーAに対して開始されたテストの数は1つ増分することになるが、完了したテストの数は増分することはない。従って、時間とともに、テスト率はセンサーAとの共視認性(例えば少なくとも部分的に重複する視野)を有するセンサーが誤較正され得るかどうかについての見識を提供できる。いくつかの例では、テスト率はパーセンテージとして決定できるが、テスト率は割合として、または別の統計的表現として提供され得る。
【0048】
さらに、システム500は、完了したテストの数について、完了したテストの数に対応して誤較正でないという表示をもたらすテストの数を比較することにより、品質スコアを決定できる。品質スコアが閾値を満たしていないまたは超えていない場合、センサーAは誤較正であるという表示を生成できる。これらの操作は、センサーB、センサーCなどに対して実行され、他のセンサーが誤較正されているかどうかを同様に検出できる。
【0049】
いくつかの例では、システム500は、単一のテストを使用してセンサーが誤較正されている可能性があるという警告を示す機能を提供できる。例えば表示コンポーネント540がセンサーAは誤較正されていると決定した後に、システム500はセンサーAが誤較正されているという警告を生成し得る。他の例では、システム500は閾値数のテストを使用して、センサーが誤較正されている可能性があるという警告を示し得る。さらに、他の例では、システム500は、閾値数のテストを使用して、センサーが誤較正されている可能性があるというエラーを示し得る。システム500は、例として、上述のように品質スコアを使用して、センサーが誤較正されている可能性があるというエラーを示し得る。システム500はまた、例として上述のようにテスト率を使用して、センサーが誤較正されている可能性があるという警告またはエラーを示し得る。システム500はまた、単一のテスト、閾値数のテスト、品質スコア、および/またはテスト率の組み合わせを使用して、センサーが誤較正されている可能性があるという警告および/またはエラーを示し得る。
【0050】
いくつかの例では、システム500はセンサーが誤較正されているという表示に少なくとも部分的に基づいてセンサーを無効し得る。
【0051】
いくつかの例では、検出コンポーネント528はネットワーク542を介してアクセス可能なリモートコンピューティングデバイス(コンピューティングデバイス544など)に格納され得る。
【0052】
少なくとも1つの例では、センサーシステム506は、LIDARセンサー、RADARセンサー、超音波トランスデューサー、SONARセンサー、位置センサー(例えば、GPS、コンパスなど)、慣性センサー(例えば、慣性測定ユニット(IMU)、加速度計、磁力計、ジャイロスコープなど)、カメラ(例えばRGB、IR、強度、深度など)、マイクロフォン、ホイールエンコーダー、環境センサー(例えば温度センサー、湿度センサー、光センサー、圧力センサーなど)など、を含むことができる。センサーシステム506は、センサーのこれらまたは他のタイプのそれぞれの複数の実例を含むことができる。例えば、LIDARセンサーは、車両502のコーナー、フロント、バック、サイド、および/またはトップに設置された個々のLIDARセンサーを含むことができる。別の例として、カメラセンサーは車両502の外部および/または内部の様々な位置に配置された複数のカメラを含むことができる。センサーシステム506は車両コンピューティングデバイス504に入力を提供できる。追加的および/または代替的に、センサーシステム506は、所定の期間が経過した後、ほぼ実時間で、特定の周波数にて1つ以上のコンピューティングデバイス544に1つ以上のネットワーク542を介してセンサーデータを送信できる。
【0053】
車両502はまた、上述のように、光および/または音を発するための1つ以上のエミッタ508を含むことができる。この例示のエミッタ508は車両502の乗客と通信するための内部オーディオおよびビジュアルエミッタを含む。限定ではなく例として、内部エミッタは、スピーカー、ライト、標識、ディスプレイ画面、タッチスクリーン、触覚エミッタ(例えば振動および/またはフォースフィードバック)、機械式アクチュエータ(例えばシートベルトテンショナー、シートポジショナー、ヘッドレストポジショナーなど)などを含むことができる。この例のエミッタ508はまた外部エミッタを含む。限定ではなく例として、この例示の外部エミッタは、走行の方向または車両の作動の他のインジケータ(例えば、インジケータライト、標識、ライトアレイなど)を信号で送るためのライト、および音響ビームステアリング技術を備え得る1つ以上の、歩行者または他の近くの車両と音声で通信ための1つ以上のオーディオエミッタ(例えば、スピーカー、スピーカーアレイ、ホーンなど)を含む。
【0054】
車両502はまた、車両502と1つ以上の他のローカルまたはリモートコンピューティングデバイスとの間の通信を可能にする1つ以上の通信接続部510を含むことができる。例えば、通信接続部510は車両502および/または駆動モジュール514上の他のローカルコンピューティングデバイスとの通信を容易にできる。また、通信接続部510は、車両が他の近くのコンピューティングデバイス(例えば、他の近くの車両、交通信号など)と通信することを可能にできる。通信接続部510はまた、車両502が遠隔操作コンピューティングデバイスまたは他の遠隔サービスと通信することを可能にする。
【0055】
通信接続部510は車両コンピューティングデバイス504を別のコンピューティングデバイスまたはネットワーク542などのネットワークに接続するための物理的および/または論理的インターフェースを含むことができる。例えば、通信接続部510は、IEEE802.11規格によって定義された周波数を介するようなWi-Fiベースの通信、Bluetoothなどの短距離無線周波数、セルラー通信(例えば、2G、3G、4G、4G LTE、5Gなど)、またはそれぞれのコンピューティングデバイスが他のコンピューティングデバイスとインターフェースで接続することを可能にする任意の適切な有線または無線通信プロトコルを可能にできる。
【0056】
少なくとも1つの例では、車両502は1つ以上の駆動モジュール514を含むことができる。いくつかの例では、車両502は単一の駆動モジュール514を有することができる。少なくとも1つの例では、車両502が複数の駆動モジュール514を有する場合、個々の駆動モジュール514は車両502の両端部(例えば前部および後部など)に位置付けできる。少なくとも1つの例では、駆動モジュール514は、駆動モジュール514および/または車両502の周囲の状況を検出するための1つ以上のセンサーシステムを含むことができる。限定ではなく例として、センサーシステムは、駆動モジュールのホイールの回転を感知するための1つ以上のホイールエンコーダー(例えばロータリーエンコーダー)、駆動モジュールの向きと加速度を測定するための慣性センサー(例えば、慣性測定ユニット、加速度計、ジャイロスコープ、磁力計など)、カメラまたはその他の画像センサー、駆動モジュールの周囲の物体を音響的に検出するための超音波センサー、LIDARセンサー、RADARセンサーなど、を含むことができる。ホイールエンコーダーなどの一部のセンサーは、駆動モジュール514に固有のものにできる。場合によっては、駆動モジュール514上のセンサーシステムは車両502の対応するシステム(例えばセンサーシステム506)と重複または補足できる。
【0057】
駆動モジュール514は、高電圧バッテリー、車両を推進するモーター、バッテリーからの直流を他の車両システムで使用する交流に変換するインバーター、ステアリングモーターおよびステアリングラック(電動であることができる)を含むステアリングシステム、油圧または電気アクチュエータを含むブレーキシステム、油圧および/または空気圧コンポーネントを含むサスペンションシステム、トラクションの損失を軽減し制御を維持するブレーキ力分散用の安定性制御システム、HVACシステム、照明(例えば車両の外部環境を照らすヘッド/テールライトなどの照明)、および1つ以上の他のシステム(例えば、冷却システム、安全システム、車載充電システム、DC/DCコンバーター、高電圧ジャンクション、高電圧ケーブル、充電システム、充電ポートなどのその他の電装コンポーネント)を含む多くの車両システムを含むことができる。さらに、駆動モジュール514は、センサーシステムからデータを受信および事前処理し、様々な車両システムの操作を制御できる駆動モジュールコントローラを含むことができる。いくつかの例では、駆動モジュールコントローラは、1つ以上のプロセッサー、および1つ以上のプロセッサーと通信可能に結合されたメモリを含むことができる。メモリは1つ以上のモジュールを格納して、駆動モジュール514の様々な機能を実行できる。さらに、駆動モジュール514はまた、それぞれの駆動モジュールによる1つ以上の他のローカルまたはリモートコンピューティングデバイスとの通信を可能にする1つ以上の通信接続部を含む。
【0058】
少なくとも1つの例では、位置測定コンポーネント520、知覚コンポーネント522、および/または計画コンポーネント524は、上述のようにセンサーデータを処理でき、それぞれの出力を1つ以上のネットワーク542を介して、1つ以上のコンピューティングデバイス544へ送信できる。少なくとも1つの例では、位置測定コンポーネント520、知覚コンポーネント522、計画コンポーネント524、および/または検出コンポーネント528は、所定の期間が経過した後、ほぼ実時間で、特定の周波数で、それぞれの出力を1つ以上のコンピューティングデバイス544に送信できる。
【0059】
車両502はネットワーク542を介してセンサーデータを1つ以上のコンピューティングデバイス544に送信できる。いくつかの例では、車両502は未処理のセンサーデータをコンピューティングデバイス544に送信できる。他の例では、車両502は処理されたセンサーデータおよび/またはセンサーデータの表現をコンピューティングデバイス544に送信できる。いくつかの例では、車両502は、所定の期間が経過した後、ほぼ実時間で、特定の周波数にてセンサーデータをコンピューティングデバイス544に送信できる。場合によっては、車両502はセンサーデータ(未処理または処理済み)を1つ以上のログファイルとしてコンピューティングデバイス544に送信できる。
【0060】
コンピューティングデバイス544は、センサーデータ(未処理または処理済み)を受信でき、センサーデータに基づいてマップを生成および/または更新できる。さらに、コンピューティングデバイス544は受信されたセンサーデータを分析して、車両502の1つ以上のセンサーが誤較正されているかどうかを決定できる。少なくとも1つの例では、コンピューティングデバイス544は、1つ以上のプロセッサー546、および1つ以上のプロセッサー546と通信可能に結合されたメモリ548を含むことができる。図示の例では、コンピューティングデバイス544のメモリ548は、グランドコンポーネント552、領域コンポーネント554、クォーラムコンポーネント556、平均コンポーネント558、比較コンポーネント560、および表示コンポーネント562を備える検出コンポーネント550を格納する。
【0061】
一般に、検出コンポーネント550は、1つ以上の車両(車両502など)からデータを受信でき、誤較正されたセンサーを検出できる。理解できるように、検出コンポーネント550およびその中に含まれるコンポーネントは、検出コンポーネント528に関連して論じる機能において対応できる。
【0062】
車両502のプロセッサー516およびコンピューティングデバイス544のプロセッサー546は本明細書で説明されるようにデータを処理し操作を実行するための命令を実行の可能な任意の適切なプロセッサーとすることができる。限定ではなく例として、プロセッサー516および546は、1つ以上の中央処理装置(CPU)、グラフィック処理装置(GPU)、または電子データを処理して電子データをレジスタまたはメモリに格納できる他の電子データに変換する他の任意のデバイスまたはデバイスの一部、を備えることができる。いくつかの例では、集積回路(例えばASICsなど)、ゲートアレイ(例えばFPGAsなど)、および他のハードウェアデバイスもまた、それらが符号化された命令を実装するように構成される限り、プロセッサーと見做すことができる。
【0063】
メモリ518およびメモリ548は、非一時的コンピュータ可読媒体の例である。メモリ518およびメモリ548は、オペレーティングシステムおよび1つ以上のソフトウェアアプリケーション、命令、プログラム、および/またはデータを格納して、本明細書に記載の方法および様々なシステムに起因する機能を実装できる。様々な実装では、メモリは、スタティックランダムアクセスメモリ(SRAM)、シンクロナスダイナミックRAM(SDRAM)、不揮発性/フラッシュタイプのメモリ、または情報を格納可能なその他のタイプのメモリなど、適切なメモリ技術を使用して実装できる。本明細書で説明するアーキテクチャ、システム、および個々の要素は、他の多くの論理的、プログラム的、および物理的コンポーネントを含むことができ、それらの添付図面に示すものは、本明細書の議論に関連する例にすぎない。
【0064】
図5は分散型システムとして示されているが、代替の例では、車両502のコンポーネントはコンピューティングデバイス544に関連付けることができ、および/またはコンピューティングデバイス544のコンポーネントは車両502に関連付けることができる、という事に留意すべきである。すなわち、車両502はコンピューティングデバイス544に関連付けられた機能のうちの1つ以上を実行でき、逆もまた同様である。
【0065】
図6は、本明細書で論じるような、誤較正されたセンサーを決定するための例示のプロセスを示す。例えば、プロセス600の一部または全ては、本明細書に説明するように、図5の1つ以上のコンポーネントによって実行できる。例えば、プロセス600の一部または全ては、検出コンポーネント528、550によって実行できる。
【0066】
オペレーション602において、プロセスは環境のセンサーデータを取り込むことを含むことができる。場合によっては、センサーデータはセンサーシステム506によって取り込まれ得る。
【0067】
オペレーション604において、プロセスは環境の地表面に関連付けられた領域の決定を含むことができる。場合によっては、グランドコンポーネント530、552は、地表面に関連付けられた領域を決定し得る。他の例では、位置測定コンポーネント520および/または知覚コンポーネント522は地表面に関連付けられた領域を決定し得る区分および分類データを提供し得る。他の例では、車両502は1つ以上のネットワーク542を介して、地表面に関連付けられた領域を決定し得る、区分および分類データを受信し得る。さらに、または代わりに、そのような領域は、例えば既知の地表面として示される車両に対応したマップ内の位置により、車両に近接する(および/または車両が走行する)領域が地表面であるという近似により、およびその他により、識別され得る。
【0068】
オペレーション606において、プロセスは、領域に関連付けられたセンサーデータのサブセットを、領域データとして、決定することを含むことができる。いくつかの例では、領域データは1つ以上のセンサーに関連付けられ得る1つ以上のデータポイントを示し得る。場合によっては、オペレーション606は較正グリッドを使用して、地表面に関連付けられた領域を較正用の複数のパーティションに分割し得る。次に、オペレーション606は、いくつかの例では、単一のパーティションを選択し、パーティションに関連付けられた領域データを決定し得る。
【0069】
オペレーション608において、プロセスは、領域データに関連付けられた十分なデータのチェックの実行を含むことができる。場合によっては、領域データは領域データに関連付けられた十分なセンサーを有していないことがある。他の例では、領域データは特定のセンサーに関連付けられた十分なデータポイントを有していないことがある。いくつかの例では、領域データは平面に関連付けられていないことがあり、したがって不十分なデータを含むことがある。領域データが不十分なデータを包含するいくつかの例では、プロセス600は、オペレーション606に戻り、異なる領域データとして、領域に関連付けられたセンサーデータのサブセットを決定し得る。領域データが十分なデータを包含するいくつかの例では、プロセス600はオペレーション610に進み得る。場合によっては、オペレーション608はデータの一部を破棄し、および/または1つ以上のセンサーを誤較正のためのテストから(例えば単一のセンサーが閾値数のポイントを満たさないまたは超えない場合)取り除き得る。
【0070】
オペレーション610において、プロセスはテストされるセンサーの識別を含むことができる。いくつかの例では、テストされるセンサーの識別は領域データに関連付けられたセンサーの識別を含む。
【0071】
オペレーション612において、プロセスは第1の平均高さの決定を含むことができる。場合によっては、第1の平均高さはテストされる識別されたセンサーに関連付けられ得る。いくつかの例では、第1の平均高さは、本明細書で論じるように、トリム平均として決定できる。
【0072】
オペレーション614において、プロセスは第2の平均高さの決定を含むことができる。場合によっては、第2の平均高さはテストされる1つ以上の基準センサーに関連付けられ得る。1つ以上の基準センサーが少なくとも2つのセンサーを含む場合、オペレーション614は第1の基準センサーによって取り込まれたセンサーデータの平均高さが第2の基準センサーによって取り込まれたセンサーデータの平均高さの閾値内であるかどうかを決定することを含むことができる。すなわち、オペレーション614は、基準センサーによって取り込まれたデータが、誤較正されたセンサーを検出するために適切であることを保証する内部チェックを含むことができる。
【0073】
「1対残り」比較の例では、オペレーション612は「1」の平均の決定を参照でき、一方、オペレーション614は「残り」の平均の決定を参照できる。
【0074】
オペレーション612および614は並行または順次発生し得る。さらに、オペレーション612および614は、オペレーション612が第1に発生する、またはオペレーション614が第1に発生するという順番で発生し得る。
【0075】
オペレーション616において、プロセスは第1の平均高さと第2の平均高さとの間の差の決定を含むことができる。
【0076】
オペレーション618において、プロセスは差が高さ閾値を満たすまたは超えるかどうかの決定を含むことができる。場合によっては、差は高さ閾値を満たしまたは超えて、オペレーション620に進む。他の例では、差は高さ閾値を満たさないまたは超えないことがあり、プロセスはオペレーション622に進み得る。
【0077】
オペレーション620において、プロセスは1つ以上のセンサーの少なくとも1つが誤較正されているという表示の生成を含むことができる。本明細書で論じるように、表示は警告またはエラーを表し得る。さらに、本明細書で論じるように、表示は単一のテストまたは複数のテストに基づいてもよく、格納されたテスト結果データおよび格納されたテスト結果データの分析に基づいてもよい。
【0078】
オペレーション622において、プロセスは領域データの特定のセットについて全てのセンサーがテストされたかどうかのチェックの実行ができる。場合によっては、全てのセンサーがテストされていない場合、プロセスはオペレーション610に戻り得る。他の例では、全てのセンサーがテストされた場合、プロセスはオペレーション606に戻って別のセットの領域データを選択し得る。さらに、いくつかの例では、全てのセンサーがオペレーション622においてテストされた場合、プロセスはオペレーション602に戻り、環境のより多くのセンサーデータを取り込むまたは受信できる。
【0079】
図7は、本明細書で論じるように、センサーデータ(例えばLIDARデータ)に基づく位置に少なくとも部分的に基づいて自律車両に指示する例示のプロセス700を示す。例えばプロセス700の一部または全ては、本明細書で説明するように、図5の1つ以上のコンポーネントによって実行できる。例えばプロセス700の一部または全ては車両502の1つ以上のコンポーネントによって実行できる。
【0080】
オペレーション702において、プロセスは自律車両によって取り込まれたセンサーデータの受信を含むことができる。いくつかの例では、センサーデータは、環境の地表面に関連付けられた領域を決定するために、車両502によって受信できる。
【0081】
オペレーション704において、プロセスはセンサーデータに少なくとも部分的に基づいて、自律車両の軌道の生成を含むことができる。
【0082】
オペレーション706において、プロセスは自律車両に軌道を辿るように指示することを含むことができる。場合によっては、オペレーション706は、環境内で自律車両を誘導するための経路、軌道、および/または自律車両の1つ以上のシステムの制御信号の生成を含むことができる。
【0083】
[例示的な発明内容]
A:誤較正されたセンサーを検出する方法であって、自律車両に配置された複数のセンサーを使用して環境のセンサーデータを取り込むことであって、前記センサーデータは、第1の光検出および測距(LIDAR)センサーに関連付けられた第1のLIDARデータと、第2のLIDARセンサーに関連付けられた第2のLIDARデータと、第3のLIDARセンサーに関連付けられた第3のLIDARデータと、を含む、ことと、前記環境の地表面に関連付けられた領域を決定することと、領域データとして、前記領域に関連付けられた前記センサーデータのデータのサブセットを決定することと、前記領域データが平面に対応すると決定することと、前記領域データの第1のサブセットの第1の平均高さを決定することであって、前記第1のサブセットが前記第1のLIDARデータに関連付けられた第1のデータを含む、ことと、前記領域データの第2のサブセットの第2の平均高さを決定することであって、前記第2のサブセットが前記第2のLIDARデータおよび前記第3のLIDARデータに関連付けられた第2のデータを含む、ことと、前記第1の平均高さと前記第2の平均高さの間の差を決定することと、前記差が高さ閾値を満たすまたは超えると決定することと、センサーが誤較正されているという表示を生成することと、を備える方法。
【0084】
B:前記表示に少なくとも部分的に基づいて、前記第1のLIDARセンサーが誤較正されていると決定することと、前記第2のLIDARデータおよび前記第3のLIDARデータに少なくとも部分的に基づいて、軌道を生成することと、前記軌道に少なくとも部分的に基づいて、前記自律車両を制御することと、をさらに備える、段落Aに記載の方法。
【0085】
C:前記センサーデータに関連付けられた区分情報を受信することと、前記区分情報に少なくとも部分的に基づいて、前記領域が前記環境の前記地表面に関連付けられると決定することと、をさらに備える、段落Aまたは段落Bに記載の方法。
【0086】
D:前記第1のサブセットがデータ値の閾値数を満たすまたは超えると決定すること、をさらに備える、段落Aから段落Cのいずれかの段落に記載の方法。
【0087】
E:前記領域データの第3のサブセットの第3の平均高さを決定することであって、前記第3のサブセットが前記第2のLIDARデータに関連付けられた第3のデータを含む、ことと、前記領域データの第4のサブセットの第4の平均高さを決定することであって、前記第4のサブセットが前記第1のLIDARデータおよび前記第3のLIDARデータを含む、ことと、前記第3の平均高さと前記第4の平均高さの間の第2の差を決定することと、前記第2の差が前記高さ閾値を満たすまたは超えると決定することと、第2のセンサーが誤較正されているという第2の表示を生成することと、をさらに備える、段落Aから段落Dのいずれかの段落に記載の方法。
【0088】
F:システムであって、1つ以上のプロセッサーと、1つ以上のプロセッサーによって実行可能な命令を格納した1つ以上のコンピュータ可読媒体であって、前記システムに、車両に配置された複数のセンサーから環境のセンサーデータを受信させ、領域データとして、前記センサーデータのデータのサブセットを決定させ、前記領域データの第1のサブセットの第1の平均値を決定させ、前記第1のサブセットは前記複数のセンサーの第1のセンサーによって取り込まれており、前記領域データの第2のサブセットの第2の平均値を決定させ、前記第2のサブセットは前記複数のセンサーの少なくとも第2のセンサーおよび第3のセンサーによって取り込まれており、前記第1の平均値と前記第2の平均値の間の差を決定させ、前記差が閾値を満たすまたは超えると決定させ、前記第1のセンサーが誤較正されているという表示を生成させる、前記命令を格納した1つ以上のコンピュータ可読媒体と、
を備える、システム。
【0089】
G:前記複数のセンサーが複数の光検出および測距(LIDAR)センサーである、段落Fに記載のシステム。
【0090】
H:前記センサーデータが3つ以上のセンサーに取り込まれたデータを表す、段落Fまたは段落Gに記載のシステム。
【0091】
I:前記命令が、実行されると、前記システムにさらに、前記領域データの第3のサブセットの第3の平均値を決定させ、前記第3のサブセットが前記第2のセンサーによって取り込まれており、前記領域データの第4のサブセットの第4の平均値を決定させ、前記第4のサブセットが前記第1のセンサーおよび前記第3のセンサーによって取り込まれており、前記第3の平均値と前記第4の平均値の間の第2の差を決定させ、前記第2の差が前記閾値を満たすまたは超えると決定させ、前記第2のセンサーが誤較正されているという第2の表示を生成させる、段落Fから段落Gのいずれかの段落に記載のシステム。
【0092】
J:前記命令が前記システムにさらに、前記領域データの前記第1のサブセットについて、最高値を決定させ、前記領域データの前記第1のサブセットについて、最低値を決定させ、前記最高値と前記最低値の間の値の差を決定させ、前記値の差が閾値以下であると決定させ、前記値の差が前記閾値を満たすまたは超えることに少なくとも部分的に基づいて、前記領域データが平面に対応すると決定させる、段落Fから段落Iのいずれかの段落に記載のシステム。
【0093】
K:前記命令が前記システムにさらに、前記センサーデータに関連付けられた区分情報を受信させ、前記区分情報に少なくとも部分的に基づいて、前記領域データが地表面に対応すると決定させる、段落Fから段落Jのいずれかの段落に記載のシステム。
【0094】
L:前記命令が、実行されると、前記システムにさらに、前記領域データの前記第1のサブセットがデータ値の閾値数を満たすまたは超えると決定させる、段落Fから段落Kのいずれかの段落に記載のシステム。
【0095】
M:前記車両が自律車両であり、さらに前記命令が、実行されると、前記システムにさらに、前記表示に少なくとも部分的に基づいて、前記第1のセンサーが誤較正されていると決定させ、前記第2のセンサーおよび前記第3のセンサーに少なくとも部分的に基づいて、自律車両に軌道を横断させるように構成された信号を生成させ、前記信号を前記自律車両へ送信させる、段落Fから段落Lのいずれかの段落に記載のシステム。
【0096】
N:前記命令が、実行されると、前記システムにさらに、試行されたテストの数のカウントを増分させ、前記第2のセンサーに関連付けられたデータの第2のセンサーの平均を決定させ、前記第3のセンサーに関連付けられたデータの第3のセンサーの平均を決定させ、前記第2のセンサーの平均と前記第3のセンサーの平均の間のセンサーの平均の差を決定させ、前記センサーの平均の差が閾値を超えないと決定させ、正常に実行されたテストの数のカウントを増分させる、段落Fから段落Mのいずれかの段落に記載のシステム。
【0097】
O:前記命令が前記システムにさらに、前記複数のセンサーのセンサーに関連付けられた品質スコアを生成させ、前記品質スコアが試行されたテストの前記数に対して正常に実行されたテストの前記数の比率を表す、段落Nに記載のシステム。
【0098】
P:実行されると、1つ以上のプロセッサーに,車両の複数のセンサーを使用して環境のセンサーデータを取り込むことと、領域データとして、前記センサーデータのデータのサブセットと決定することと、前記領域データの第1のサブセットの第1の平均値を決定することであって、前記第1のサブセットが前記複数のセンサーの第1のセンサーに関連付けられている、ことと、前記領域データの第2のサブセットの第2の平均値を決定することであって、前記第2のサブセットが前記複数のセンサーの第2のセンサーに関連付けられている、ことと、前記第1の平均値と前記第2の平均値の間の差を決定することと、前記差が閾値を満たすまたは超えると決定することと、複数のセンサーのセンサーが誤較正されているという表示を生成することと、を備える操作を実行させる命令を格納した非一時的コンピュータ可読媒体。
【0099】
Q:前記操作がさらに、テスト率を生成することであって、前記テスト率が前記差の決定される回数を示す、ことと、成功率を生成することであって、前記成功率が前記差の前記閾値以下である回数を示す、ことと、を備える段落Pに記載の非一時的コンピュータ可読記録媒体。
【0100】
R:前記操作がさらに、前記表示に少なくとも部分的に基づいて、前記複数のセンサーのセンサーを無効にすることであって、無効にすることが、アクティブなセンサーとして前記複数のセンサーのサブセットを示すことを備える、こと、を備える段落Pまたは段落Qに記載の非一時的コンピュータ可読記録媒体。
【0101】
S:前記操作がさらに、1つ以上のアクティブなセンサーから取り込まれたセンサーデータに少なくとも部分的に基づいて、自律車両に軌道を横断させるように構成された信号を生成することと、前記信号を前記自律車両へ送信することと、を備える段落Rに記載の非一時的コンピュータ可読記録媒体。
【0102】
T:操作がさらに、前記領域データの前記第1のサブセットについて、最高値を決定することと、前記領域データの前記第1のサブセットについて、最低値を決定することと、前記最高値と前記最低値の間の値の差を決定することと、前記値の差が閾値以下であると決定することと、前記値の差に少なくとも部分的に基づいて、前記領域データが平面に対応すると決定することと、を備える段落Pから段落Sのいずれかの段落に記載の前記非一時的コンピュータ可読記録媒体。
【0103】
上述の例示の節は、1つの特定の実装に関して説明しているが、この文書のコンテキストでは、例示の節の内容はまた、方法、デバイス、システム、および/またはコンピュータ可読媒体を介して実装できる。
【0104】
[結論]
本明細書で説明する技術の1つ以上の例について説明したが、様々な変更、追加、置換、およびそれらの同等物が、本明細書で説明する技術の範囲内に含まれる。
【0105】
例示の説明では、本明細書の一部を形成する添付の図面を参照するが、これは例示として請求される主題の具体的な例を示す。他の例を使用することができ、構造的変更などの変更または代替を行うことができることを理解されたい。そのような例、変更または代替は、意図して請求された主題に関する範囲から必ずしも逸脱するものではない。本明細書のステップは特定の順序で提示できるが、場合によっては、順序を変更して、説明したシステムおよび方法の機能を変更することなく、特定の入力が異なる時間または異なる順序で提供されるようにすることができる。開示された手順はまた、異なる順序で実行できる。さらに、本明細書にある様々な計算は開示された順序で実行される必要はなく、計算の代替順序を使用する他の例は容易に実装できる。並べ替えに加えて、計算はまた、サブ計算に分解して同じ結果を得ることができる。
図1
図2
図3A
図3B
図4
図5
図6
図7