(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-05-14
(45)【発行日】2024-05-22
(54)【発明の名称】橋梁の共振検出方法とその共振検出装置及び橋梁の共振検出プログラム
(51)【国際特許分類】
G01H 17/00 20060101AFI20240515BHJP
E01D 22/00 20060101ALI20240515BHJP
B61L 25/00 20060101ALI20240515BHJP
【FI】
G01H17/00 Z
E01D22/00 A
B61L25/00
(21)【出願番号】P 2021010369
(22)【出願日】2021-01-26
【審査請求日】2023-02-21
(73)【特許権者】
【識別番号】000173784
【氏名又は名称】公益財団法人鉄道総合技術研究所
(74)【代理人】
【識別番号】100104064
【氏名又は名称】大熊 岳人
(72)【発明者】
【氏名】松岡 弘大
【審査官】中村 圭伸
(56)【参考文献】
【文献】特開2012-208043(JP,A)
【文献】特開2018-091654(JP,A)
【文献】特開2017-020795(JP,A)
【文献】米国特許第06053269(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
B61L 25/00 - 25/08
E01D 22/00
G01H 1/00 - 17/00
(57)【特許請求の範囲】
【請求項1】
移動体が移動する橋梁の共振を検出する橋梁の共振検出方法であって、
前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両の車両長に比べて支間長が短い短支間の橋梁
のN次共振(Nは2以上の整数)を検出する共振検出工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項2】
請求項1に記載の橋梁の共振検出方法において、
前記共振検出工程は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置の測定結果に基づいて、前記短支間の橋梁の共振を検出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項3】
請求項2に記載の橋梁の共振検出方法において、
前記加速度測定装置は、前記移動体の前方及び後方の上下振動加速度を測定し、
前記共振検出工程は、前記移動体の前方の前記加速度測定装置の測定結果と、この移動体の後方の前記加速度測定装置の測定結果とに基づいて、前記短支間の橋梁の共振を検出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項4】
請求項3に記載の橋梁の共振検出方法において、
前記加速度測定装置は、前記移動体を組成する先頭車両及び後尾車両の車体又は台車の上下振動加速度を測定すること、
を特徴とする橋梁の共振検出方法。
【請求項5】
請求項2から請求項4までのいずれか1項に記載の橋梁の共振検出方法において、
前記加速度測定装置の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する振動成分抽出工程を含み、
前記振動成分抽出工程は、前記移動体を組成する車両の車両長の1/Nを主成分とする振動を、前記共振橋梁に特有の振動成分として抽出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項6】
請求項1に記載の橋梁の共振検出方法において、
前記共振検出工程は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置の測定結果に基づいて、前記短支間の橋梁
の共振を検出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項7】
請求項6に記載の橋梁の共振検出方法において、
前記通路変位測定装置は、前記移動体の前方及び後方で通路変位を測定し、
前記共振検出工程は、前記移動体の前方の前記通路変位測定装置の測定結果と、この移動体の後方の前記通路変位測定装置の測定結果とに基づいて、前記短支間の橋梁の共振を検出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項8】
請求項7に記載の橋梁の共振検出方法において、
前記通路変位測定装置は、前記移動体を組成する先頭車両及び後尾車両から通路変位を測定すること、
を特徴とする橋梁の共振検出方法。
【請求項9】
請求項
6から請求項8までのいずれか1項に記載の橋梁の共振検出方法において、
前記通路変位測定装置の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する振動成分抽出工程を含み、
前記振動成分抽出工程は、前記移動体を組成する車両の車両長の1/Nを主成分とする振動を、前記共振橋梁に特有の振動成分として抽出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項10】
請求項5又は請求項9に記載の橋梁の共振検出方法において、
前記移動体の前方及び後方で測定される前記共振橋梁に特有の振動成分の振幅を推定する振動振幅推定工程と、
前記
移動体の前方及び後方で測定される前記共振橋梁に特有の振動成分の振幅の差分を演算する差分演算工程とを含み、
前記共振検出工程は、前記共振橋梁に特有の振動成分の振幅の差分に基づいて、前記短支間の橋梁の共振を検出する工程を含むこと、
を特徴とする橋梁の共振検出方法。
【請求項11】
移動体が移動する橋梁の共振を検出する橋梁の共振検出装置であって、
前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両の車両長に比べて支間長が短い短支間の橋梁
のN次共振(Nは2以上の整数)を検出する共振検出部を備えること、
を特徴とする橋梁の共振検出装置。
【請求項12】
請求項11に記載の橋梁の共振検出装置において、
前記共振検出部は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置の測定結果に基づいて、前記短支間の橋梁の共振を検出すること、
を特徴とする橋梁の共振検出装置。
【請求項13】
請求項11に記載の橋梁の共振検出方法において、
前記共振検出部は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置の測定結果に基づいて、前記短支間の橋梁
の共振を検出すること、
を特徴とする橋梁の共振検出装置。
【請求項14】
移動体が移動する橋梁の共振を検出する橋梁の共振検出プログラムであって、
前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両の車両長に比べて支間長が短い短支間の橋梁
のN次共振(Nは2以上の整数)を検出する共振検出手順をコンピュータに実行させること、
を特徴とする橋梁の共振検出プログラム。
【請求項15】
請求項14に記載の橋梁の共振検出プログラムにおいて、
前記共振検出手順は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置の測定結果に基づいて、前記短支間の橋梁の共振を検出する手順を含むこと、
を特徴とする橋梁の共振検出プログラム。
【請求項16】
請求項14に記載の橋梁の共振検出プログラムにおいて、
前記共振検出手順は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置の測定結果に基づいて、前記短支間の橋梁
の共振を検出する手順を含むこと、
を特徴とする橋梁の共振検出プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、移動体が移動する橋梁の共振を検出する橋梁の共振検出装置とその共振検出装置及び橋梁の共振検出プログラムに関する。
【背景技術】
【0002】
高速鉄道橋の共振現象により大振幅の振動が生じる場合、橋梁のたわみ量や、ひび割れ進展や疲労が維持管理上、大きな問題となる。これは、列車の車両長に起因した規則的な加振振動数と橋梁の固有振動数が一致する場合に生じる。実際に共振によるたわみ量が規制値を超えて徐行運行となった高速鉄道路線も存在し、共振橋梁をいち早く検知し、対策することが必要である。共振は供用開始後ある時点で突如発生する場合もあり、地上からの測定だけでは共振状態のまま通常運行してしまう場合もある。これまでに走行する列車の先頭車両と最後尾車両の床上上下加速度を利用して走行する営業車両から共振が生じた橋梁を検知する方法が提案されている。
【0003】
従来の橋梁動的応答評価方法(以下、従来技術1という)は、橋梁上を走行する先頭車両及び後尾車両の上下加速度を計測し、先頭車両及び後尾車両の上下加速度の波形の特徴量に基づいて加速度増幅率を算出し、加速度増幅率から橋梁衝撃係数を算出している(例えば、特許文献1参照)。従来の橋梁動的応答評価方法(以下、従来技術2という)は、橋梁上を走行する全車両の上下加速度を車両毎に計測し、各車両の上下加速度の波形の特徴量に基づいて個別車両増幅率を算出し、個別車両増幅率から橋梁衝撃係数を算出している(例えば、特許文献2参照)。この従来技術1,2では、橋梁上を走行する列車の車両加速度応答に基づく指標を用いて、橋梁の衝撃係数を求め、動的応答の評価及び橋梁の健全性の評価をすることができる。
【先行技術文献】
【特許文献】
【0004】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来技術1,2では、位置誤差の影響から先頭車両及び後尾車両の測定データの比を用いていた。しかし、従来技術1,2では、車両の振動成分により検知精度が低下する場合があった。また、従来技術1,2では、共振橋梁に特有の振動成分を特定できていなかったため、橋梁のたわみ成分以外の軌道変位が大きい箇所ではその影響により検知精度が低下していた。さらに、従来技術1,2では、車両が1両通過するごとに橋梁で1波の振動が励起される1次共振を対象としていた。しかし、従来技術1,2では、1次橋梁が支間長30m以上で主に生じるため、短支間の橋梁の共振については検知できなかった。
【0007】
この発明の課題は、共振橋梁に特有の振動成分に基づいて短支間の橋梁の共振を正確に検出することができる橋梁の共振検出方法とその共振検出装置及び橋梁の共振検出プログラムを提供することである。
【課題を解決するための手段】
【0008】
この発明は、以下に記載するような解決手段により、前記課題を解決する。
なお、この発明の実施形態に対応する符号を付して説明するが、この実施形態に限定するものではない。
請求項1の発明は、
図1、
図2、
図7、図9、
図11、
図13、
図14、
図18、
図20及び
図21に示すように、移動体(T)が移動する橋梁(B)の共振を検出する橋梁の共振検出方法であって、前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両(V
F
,V
M
,V
L
)の車両長(L
C
)に比べて支間長(L
b
)が短い短支間の橋梁(B
3)
のN次共振(Nは2以上の整数)を検出する共振検出工程(#140)を含むことを特徴とする橋梁の共振検出方法(#100)である。
【0009】
請求項2の発明は、請求項1に記載の橋梁の共振検出方法において、
図2及び
図13に示すように、前記共振検出工程は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置(2)の測定結果に基づいて、前記短支間の橋梁の共振を検出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0010】
請求項3の発明は、請求項2に記載の橋梁の共振検出方法において、前記加速度測定装置は、前記移動体の前方及び後方の上下振動加速度を測定し、前記共振検出工程は、前記移動体の前方の前記加速度測定装置の測定結果と、この移動体の後方の前記加速度測定装置の測定結果とに基づいて、前記短支間の橋梁の共振を検出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0011】
請求項4の発明は、請求項3に記載の橋梁の共振検出方法において、前記加速度測定装置は、前記移動体を組成する先頭車両(VF)及び後尾車両(VL)の車体又は台車(T1,T2)の上下振動加速度を測定することを特徴とする橋梁の共振検出方法である。
【0012】
請求項5の発明は、請求項2から請求項4までのいずれか1項に記載の橋梁の共振検出方法において、
図11に示すように、前記加速度測定装置の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する振動成分抽出工程(#110)を含み、前記振動成分抽出工程は、前記移動体を組成する車両の車両長の1/Nを主成分とする振動を、前記共振橋梁に特有の振動成分として抽出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0013】
請求項6の発明は、請求項1に記載の橋梁の共振検出方法において、
図14、
図20及び
図21に示すように、前記共振検出工程は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置(2A,2B)の測定結果に基づいて、前記短支間の橋梁
の共振を検出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0014】
請求項7の発明は、請求項6に記載の橋梁の共振検出方法において、前記通路変位測定装置は、前記移動体の前方及び後方で通路変位を測定し、前記共振検出工程は、前記移動体の前方の前記通路変位測定装置の測定結果と、この移動体の後方の前記通路変位測定装置の測定結果とに基づいて、前記短支間の橋梁の共振を検出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0015】
請求項8の発明は、請求項7に記載の橋梁の共振検出方法において、前記通路変位測定装置は、前記移動体を組成する先頭車両(VF)及び後尾車両(VL)から通路変位を測定することを特徴とする橋梁の共振検出方法である。
【0016】
請求項9の発明は、請求項
6から請求項8までのいずれか1項に記載の橋梁の共振検出方法において、
図11に示すように、前記通路変位測定装置の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する振動成分抽出工程(#110)を含み、前記振動成分抽出工程は、前記移動体を組成する車両の車両長の1/Nを主成分とする振動を、前記共振橋梁に特有の振動成分として抽出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0017】
請求項10の発明は、請求項5又は請求項9に記載の橋梁の共振検出方法において、
図11に示すように、前記移動体の前方及び後方で測定される前記共振橋梁に特有の振動成分の振幅を推定する振動振幅推定工程(#120)と、前記
移動体の前方及び後方で測定される前記共振橋梁に特有の振動成分の振幅の差分を演算する差分演算工程(#130)とを含み、前記共振検出工程は、前記共振橋梁に特有の振動成分の振幅の差分に基づいて、前記短支間の橋梁の共振を検出する工程を含むことを特徴とする橋梁の共振検出方法である。
【0018】
請求項11の発明は、
図1~
図3、
図7、図9、
図11、
図13~
図15、
図18及び
図20~
図22に示すように、移動体(T)が移動する橋梁の共振を検出する橋梁(B)の共振検出装置であって、前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両(V
F
,V
M
,V
L
)の車両長(L
C
)に比べて支間長(L
b
)が短い短支間の橋梁(B
3)
のN次共振(Nは2以上の整数)を検出する共振検出部(4f)を備えることを特徴とする橋梁の共振検出装置(4)である。
【0019】
請求項12の発明は、請求項11に記載の橋梁の共振検出装置において、
図2、
図3及び
図13に示すように、前記共振検出部は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置の測定結果に基づいて、前記短支間の橋梁の共振を検出することを特徴とする橋梁の共振検出装置である。
【0020】
請求項13の発明は、請求項11に記載の橋梁の共振検出方法において、
図2、
図14、
図15、
図18及び
図20~
図22に示すように、前記共振検出部は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置(2A,2B)の測定結果に基づいて、前記短支間の橋梁
の共振を検出することを特徴とする橋梁の共振検出装置である。
【0021】
請求項14の発明は、
図1~
図3、
図7、図9、
図12、
図13~
図15、
図18、
図20及び
図21に示すように、移動体(T)が移動する橋梁(B)の共振を検出する橋梁の共振検出プログラムであって、前記移動体側から測定する
この移動体の上下振動加速度に基づいて、
この移動体を組成する車両(V
F
,V
M
,V
L
)の車両長(L
C
)に比べて支間長(L
b
)が短い短支間の橋梁(B
3)
のN次共振(Nは2以上の整数)を検出する共振検出手順(S500)をコンピュータに実行させることを特徴とする橋梁の共振検出プログラムである。
【0022】
請求項15の発明は、請求項14に記載の橋梁の共振検出プログラムにおいて、
図2、
図3、
図12及び
図13に示すように、前記共振検出手順は、前記移動体の上下振動加速度をこの移動体側から測定する加速度測定装置(2)の測定結果に基づいて、前記短支間の橋梁の共振を検出する手順を含むことを特徴とする橋梁の共振検出プログラムである。
【0023】
請求項16の発明は、請求項14に記載の橋梁の共振検出プログラムにおいて、
図14、
図15、
図18及び
図20~
図22に示すように、
前記共振検出手順は、前記橋梁上の通路変位を前記移動体側から測定する通路変位測定装置(2A,2B)の測定結果に基づいて、前記短支間の橋梁
の共振を検出する手順を含むことを特徴とする橋梁の共振検出プログラムである。
【発明の効果】
【0024】
この発明によると、共振橋梁に特有の振動成分に基づいて短支間の橋梁の共振を正確に検出することができる。
【図面の簡単な説明】
【0025】
【
図1】この発明の第1実施形態に係る橋梁の共振検出装置による検出対象の短支間橋梁を移動する移動体の模式図である。
【
図2】この発明の第1実施形態に係る橋梁の共振検出システムを概略的に示す全体図である。
【
図3】この発明の第1実施形態に係る橋梁の共振検出システムを概略的に示す構成図である。
【
図4】この発明の第1実施形態に係る橋梁の共振検出システムの加速度測定装置の構成図である。
【
図5】この発明の第1実施形態に係る橋梁の共振検出システムにおける加速度測定装置の測定データ記憶部のデータ構造の模式図である。
【
図6】各列車速度での列車通過時の橋梁のたわみ時刻歴応答を示すグラフであり、(A)~(E)は各列車速度におけるたわみ時刻歴応答を示すグラフである。
【
図7】理論分析用の共振橋梁モデルの模式図である。
【
図8】共振橋梁の移動荷重位置における動的応答成分を一例として示すグラフである。
【
図9】この発明の第1実施形態に係る橋梁の共振検出装置の検出原理を説明するための模式図である。
【
図10】この発明の第1実施形態に係る橋梁の共振検出方法を説明するための概念図であり、(A)は列車通過時の橋梁支間中央の鉛直変位を示すグラフであり、(B)は橋梁通過時の車体上下加速度を示すグラフであり、(C)はフィルタ処理及び包絡線処理後の橋梁通過時の車体上下加速度のフィルタ処理及び包絡線処理後の適用結果を示すグラフであり、(D)は包絡線処理後の先頭車両及び後尾車両の車体上下加速度の差分処理後の適用結果を示すグラフである。
【
図11】この発明の第1実施形態に係る橋梁の共振検出方法を説明するための工程図である。
【
図12】この発明の第1実施形態に係る橋梁の共振検出装置の動作を説明するためのフローチャートである。
【
図13】この発明の第2実施形態に係る橋梁の共振検出システムを概略的に示す全体図である。
【
図14】この発明の第3実施形態に係る橋梁の共振検出システムを概略的に示す全体図である。
【
図15】この発明の第3実施形態に係る橋梁の共振検出システムを概略的に示す構成図である。
【
図16】この発明の第3実施形態に係る橋梁の共振検出システムの軌道変位測定装置の模式図である。
【
図17】この発明の第3実施形態に係る橋梁の共振検出システムの軌道変位測定装置における測定データ記憶部のデータ構造を示す模式図である。
【
図18】この発明の第3実施形態に係る橋梁の共振検出装置の検出原理を説明するための模式図である。
【
図19】この発明の第3実施形態に係る橋梁の共振検出方法を説明するための概念図であり、(A)は列車通過時の橋梁支間中央の鉛直変位を示すグラフであり、(B)は橋梁通過時の車軸の鉛直変位を示すグラフであり、(C)はフィルタ処理及び包絡線処理後の橋梁通過時の車軸の鉛直変位のフィルタ処理及び包絡線処理後の適用結果を示すグラフであり、(D)は包絡線処理後の先頭車両及び後尾車両の車軸の鉛直変位の差分処理後の適用結果を示すグラフである。
【
図20】この発明の第4実施形態に係る橋梁の共振検出システムを概略的に示す全体図である。
【
図21】この発明の第5実施形態に係る橋梁の共振検出システムを概略的に示す全体図である。
【
図22】この発明の第5実施形態に係る橋梁の共振検出システムを概略的に示す構成図である。
【発明を実施するための形態】
【0026】
(第1実施形態)
以下、図面を参照して、この発明の第1実施形態について詳しく説明する。
図1及び
図2に示す軌道Rは、列車Tが走行する通路(線路)である。軌道Rは、列車Tの車輪を案内する左右一対のレールなどを備えている。軌道Rは、
図9に示すように、例えば、二本の本線で構成された複線であり、終点から起点に向かって列車Tが走行する上り線と、起点から終点に向かって列車Tが走行する下り線とから構成されている。
【0027】
図1、
図2及び
図9に示す列車Tは、軌道Rに沿って移動する移動体である。列車Tは、橋梁B上を走行する電気車、気動車又は客車などの鉄道車両である。
図1及び
図2に示す列車Tは、例えば、高速で走行する新幹線(登録商標)の鉄道車両である。列車Tは、旅客又は貨物の運輸営業を行うことを目的として組成された営業列車である。列車Tは、例えば、
図1に示すように、車両長(車体長)L
Cが25m程度の営業車両12両で編成されている。列車Tは、橋梁B上を走行するときに規則的な軸配置に起因して、車輪が周期的に橋梁Bに荷重を作用させて橋梁Bを加振する。
【0028】
列車Tは、
図1、
図2及び
図9に示すように、車両V
F,V
M,V
Lによって組成されており、略一定の速度で橋梁Bを移動している。車両V
Fは、編成の先頭に位置する先頭車両であり、車両V
Mは編成の中間に位置する中間車両であり、車両V
Lは編成の後尾に位置する後尾車両(最後尾車両)である。車両V
F,V
M,V
Lは、
図1及び
図2に示すように、台車T
1,T
2を備えており、一つの車体が二つの台車T
1,T
2によって支持されている。台車T
1,T
2は、各車両V
F,V
M,V
Lの車体を支持して軌道R上を走行する装置である。
図1及び
図2に示す台車T
1,T
2は、二対の輪軸によって構成された二軸台車(ボギー台車)であり、各車両V
F,V
M,V
Lの車体の一方の端部と他方の端部とを支持している。台車T
1は、各車両V
F,V
M,V
Lの進行方向前側に配置されて車体の一方の端部を支持する第1台車であり、台車T
2は各車両V
F,V
M,V
Lの進行方向後側に配置されて車体の他方の端部を支持する第2台車である。
【0029】
図1及び
図9に示す橋梁Bは、軌道Rの下方に空間を形成するように建設された固定構造物である。橋梁Bは、川、谷、湖沼などの水圏又は道路、鉄道などの交通路を横切るように建設されている。橋梁Bは、例えば、コンクリートが主要材料である鉄筋コンクリート構造(RC構造)、又はプレストレストコンクリート構造の一種であり、通常の使用状態でひび割れの発生を許容し、異形鉄筋の配置とプレストレストの導入によりひび割れ幅を制御する構造 (PRC構造)のコンクリート鉄道橋である。橋梁Bは、
図1に示すように、梁B
1と、柱B
2と、短支間橋梁B
3などを備えている。橋梁Bは、例えば、梁B
1及び柱B
2が単体的に建設されたラーメン構造のラーメン高架橋などである。梁B
1は、水平方向に配置されて軌道Rを支持する構造物である。柱B
2は、梁B
1を支持する構造物である。柱B
2は、橋梁Bの長さ方向に所定の間隔をあけて施工されており、鉛直方向に配置される鉄筋コンクリート柱などである。短支間橋梁B
3は、橋梁Bの梁B
1間に載せられる構造物である。短支間橋梁B
3は、
図1に示すように、列車Tの車両V
F,V
M,V
Lの車両長L
Cに比べて、この短支間橋梁B
3の支間長L
bが短い橋梁である。短支間橋梁B
3は、例えば、ラーメン高架橋などの連続橋中に、ヒンジを挿入した構造のゲルバー桁のような調整桁である。短支間橋梁B
3は、例えば、支間長L
bが10m程度の橋梁である。
【0030】
図2及び
図3に示す共振検出システム1は、列車Tが走行する短支間橋梁B
3の共振を検出するシステムである。共振検出システム1は、
図3に示すように、加速度測定装置2と、通信装置3と、共振検出装置4などを備えている。共振検出システム1は、加速度測定装置2の測定結果を通信装置3によって共振検出装置4に送信し、加速度測定装置2の測定結果に基づいて短支間橋梁B
3の共振を検出する。
【0031】
図2~
図4に示す加速度測定装置2は、共振橋梁の検出に必要な測定データD
1を列車T側から測定する装置である。加速度測定装置2は、共振橋梁の検出に必要な測定データ(車両計測データ)D
1として、列車Tの上下加速度を列車T側から測定する。加速度測定装置2は、先頭の車両V
F及び後尾の車両V
Lの上下加速度を測定する。加速度測定装置2は、列車Tが移動するときに列車Tに発生する振動を測定しており、列車Tの車両V
Fの車体の上下加速度と列車Tの車両V
Lの車体の上下加速度とを測定する。加速度測定装置2は、列車Tとともに移動しながら車両V
F,V
Lの上下加速度を測定する。加速度測定装置2は、
図4に示すように、加速度検出部2a,2bと、速度検出部2cと、位置検出部2dと、測定データ記憶部2eと、測定データ送信部2fと、制御部2gなどを備えている。
【0032】
図2及び
図4に示す加速度検出部2a,2bは、列車Tの上下加速度を検出する手段である。加速度検出部2aは、列車Tの車両V
Fの上下加速度(上下振動加速度)を検出し、加速度検出部2bは列車Tの車両V
Lの上下加速度(上下振動加速度)を検出する。加速度検出部2a,2bは、いずれも同一構造であり、先頭の車両V
F及び後尾の車両V
Lの上下加速度(車上加速度)を検出する加速度計などである。加速度検出部2a,2bは、例えば、多くの高速鉄道車両に搭載されている列車動揺管理用の車体動揺加速度センサを利用可能である。加速度検出部2a,2bは、例えば、
図2に示すように、列車Tの編成中央部Oから等距離L
0の検出位置P
F,P
Lで車両V
F,V
Lの振動を検出する。加速度検出部2a,2bは、先頭の車両V
Lの台車T
1の上方と後尾の車両V
Lの台車T
2の上方とで上下加速度を検出する。加速度検出部2aは、例えば、先頭の車両V
Lの進行方向前側の台車(第1台車)T
1の直上の車体床上に設置されており、加速度検出部2bは後尾の車両V
Lの進行方向後側の台車(第2台車)T
2の真上の車体床上に設置されている。
図4に示すように、加速度検出部2aは検出後の上下加速度を先頭車両加速度データD
11として制御部2gに出力し、加速度検出部2bは検出後の上下加速度を後尾車両加速度データD
12として制御部2gに出力する。
【0033】
速度検出部2cは、列車Tの走行速度を検出する手段である。速度検出部2cは、列車Tの車輪の回転を検出して、この車輪の回転数に応じたパルス信号を発生する速度発電機などの速度計である。速度検出部2cは、例えば、列車Tの車輪の1回転毎に所定数のパルス信号(距離パルス信号)を発生してこの車輪の回転数を検出し、この検出結果を列車速度データ(移動体速度データ)D13として制御部2gに出力する。
【0034】
位置検出部2dは、列車Tの位置を検出する手段である。位置検出部2dは、例えば、軌道R側の特定地点に設置された自動列車停止装置(ATS(Automatic Train Stop))のATS地上子との間で相互に情報を送受信するために列車T側に設置されたATS車上子と、このATS車上子からの信号を受信し起点(出発地点)からATS地上子までの距離を表す絶対位置データを出力するATS受信機と、ATS受信機が出力する絶対位置データに基づいて列車Tの絶対位置を検出し、次のATS地上子に列車Tが到達するまでの間に速度検出部2cが出力するパルス信号を積算して列車Tの現在位置を演算する演算部などを備えている。位置検出部2dは、速度検出部2cが出力する列車速度データD13とATS受信機が出力する絶対位置データとに基づいて、起点からの列車Tの移動距離(走行距離)を演算し、列車Tの現在位置を列車位置データ(移動体位置データ)D14として制御部2gに出力する。
【0035】
測定データ記憶部2eは、加速度測定装置2に関する種々のデータを記憶する手段である。測定データ記憶部2eは、例えば、加速度測定装置2の測定結果を測定データD
1として記憶する記憶装置である。測定データ記憶部2eは、
図5に示すように、加速度検出部2aが出力する先頭車両加速度データD
11と、加速度検出部2bが出力する後尾車両加速度データD
12と、速度検出部2cが出力する列車速度データD
13と、位置検出部2dが出力する列車位置データD
14と、加速度測定装置2が各データを測定した測定日データD
15を測定データD
1として記憶する。測定データ記憶部2eは、速度検出部2cが出力する列車速度データD
13及び位置検出部2dが出力する列車位置データD
14と対応させて先頭車両加速度データD
11及び後尾車両加速度データD
12を、列車Tが短支間橋梁B
3を通過する毎に測定日データD
15に従って時系列順に記憶する。
【0036】
図4に示す測定データ送信部2fは、測定データD
1を送信する手段である。測定データ送信部2fは、測定データ記憶部2eが記憶する測定データD
1を列車Tから共振検出装置4に送信する送信機などである。
【0037】
制御部2gは、加速度測定装置2に関する種々の動作を制御する中央処理部(CPU)である。制御部2gは、例えば、加速度検出部2aが出力する先頭車両加速度データD11を測定データ記憶部2eに出力したり、先頭車両加速度データD11の記憶を測定データ記憶部2eに指令したり、加速度検出部2bが出力する後尾車両加速度データD12を測定データ記憶部2eに出力したり、後尾車両加速度データD12の記憶を測定データ記憶部2eに指令したり、速度検出部2cが出力する列車速度データD13を測定データ記憶部2eに出力したり、列車速度データD13の記憶を測定データ記憶部2eに指令したり、位置検出部2dが出力する列車位置データD14を測定データ記憶部2eに出力したり、列車位置データD14の記憶を測定データ記憶部2eに指令したり、測定データ記憶部2eから測定データD1を読み出して測定データ送信部2fに出力したり、測定データD1の送信を測定データ送信部2fに指令したりする。制御部2gは、加速度検出部2a,2b、速度検出部2c、位置検出部2d、測定データ記憶部2e及び測定データ送信部2fとの間で通信可能に接続されている。
【0038】
図3及び
図4に示す通信装置3は、加速度測定装置2から共振検出装置4に測定データD
1を送信する装置である。通信装置3は、加速度測定装置2の測定データ送信部2fから共振検出装置4の測定データ受信部4aに測定データD
1を送信するために、これらを相互に通信可能なように接続する電話回線又はインターネット回線などの電気通信回線である。
【0039】
図2~
図4に示す共振検出装置4は、列車Tが走行する短支間橋梁B
3の共振を検出する装置である。共振検出装置4は、列車T側から測定する列車T側の測定データD
1に基づいて、N次共振(Nは2以上の整数)する短支間橋梁B
3を検出する。共振検出装置4は、加速度測定装置2が測定する測定データD
1から共振橋梁に起因する車両長の1/N(Nは2以上の整数)の成分以外の成分を除去するとともに、共振橋梁に特有の振動成分を抽出する。共振検出装置4は、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅との差分から、短支間橋梁B
3の共振を検出する。共振検出装置4は、
図3に示すように、測定データ受信部4aと、測定データ記憶部4bと、振動成分抽出部4cと、振動振幅推定部4dと、差分演算部4eと、共振検出部4fと、検出結果データ記憶部4gと、共振検出プログラム記憶部4hと、表示部4iと、制御部4jなどを備えている。共振検出装置4は、例えば、パーソナルコンピュータなどによって構成されており、共振検出プログラムに従って所定の処理をコンピュータに実行させる。共振検出装置4は、例えば、軌道変位及び車両動揺などの鉄道に関するデータを、種々の角度から分析及び加工する軌道保守管理データベースシステム(Laboratory’s Conversational System(LABOCS))上で共振検出プログラムを実行する。
【0040】
次に、列車通過時の鉄道橋の共振現象について説明する。
以下では、3次共振する短支間橋梁を例に挙げて説明する。また、2次元単純梁としてモデル化した鉄道橋と、2次元マルティボディによりモデル化した車両による相互シミュレーション結果を例にして説明する。鉄道橋及び車両の諸元は、日本の一般的な鉄道橋及び高速車両を想定して、支間長50m、固有振動数2.8Hz、モード減衰比2%、単位長質量25t/m、車両長25m、台車中心間隔17.5m、台車内車軸間隔2.5m、軸重120kN及び編成数8両である。
【0041】
図6は、いくつかの列車速度200,230,250,270,300km/hで車両が通過した際の短支間橋梁の支間中央のたわみ波形を示すグラフである。
図6に示す縦軸は、鉛直変位[m]であり、横軸は1車両分(車両長25m)が通過する時間を1とした無次元化時間である。
図6に示すように、列車速度により、短支間橋梁の支間中央のたわみ波形に見られる動的応答増幅の特徴が大きく変化し、
図6(C)に示す250km/hで最大となる。このような動的応答増幅は、短支間橋梁の3次たわみモードの固有振動数と走行列車の加振振動数が近接し、共振することで生じる。走行列車の加振周期は、車両の規則的な軸配置に起因するが、車両長よりも短く支間長が30mよりも短い短支間橋梁では車両長25mの1/3の間隔が主要な加振成分となる。したがって、列車速度をv[m/s]、車両長をL
c[m]、短支間橋梁の固有振動数をn[Hz]とすれば、共振が生じる条件はv/L
c/3=nとなり、これを満たす列車速度v=v
resは共振速度と呼ばれ、以下の数1によって表される。
【0042】
【0043】
図6(C)は2.8[Hz]×25[m]=70[m/s]で約250km/hとなり、動的応答増幅が最大となり、概ね数1の条件に対応する。
図6(C)に示す状態は、共振状態であり、この状態の橋梁は共振橋梁である。
図6(A)(B)(D)(E)に示す状態は、非共振状態であり、列車の走行速度が共振速度と離れており、列車通過時の動的応答増幅はほとんど生じない。共振検出装置4は、測定データD
1のような車上計測データに基づいて、
図6(C)に示すような動的応答が急増する共振状態又は共振に近い状態の橋梁を共振橋梁として検出する。
【0044】
共振橋梁上を走行した際に車両上で観測される動的応答の特徴を理解するため、簡単な理論的分析を行う。
図7は、理論分析用の移動荷重作用下の単純支持梁モデルである。ここで、
図7に示すL
cは車両長であり、Pは車両長毎の移動集中荷重 (移動荷重)であり、v
resは共振速度(共振時の列車速度)であり、L
bは短支間橋梁B
3の支点間の距離である支間長(桁支間(スパン長))であり、z
b(x,t)は支間長L
bの単純支持梁の位置x及び時点tにおける桁変位(鉛直変位)であり、A
resは共振時の梁の動的応答振幅(共振時動的振幅)である。xは、短支間橋梁B
3の桁の左端をゼロとする橋軸方向の位置であり、tは先頭の移動集中荷重Pが桁に進入した時点をゼロとする時間である。なお、移動集中荷重Pの数は十分に多く、短支間橋梁B
3は定常状態にあると仮定する。この場合に、共振状態の梁を通過する移動集中荷重Pが作用する梁上の位置x
pにおける梁の動的応答成分z
b,d(x
p)は、以下の数2によって表される。
【0045】
【0046】
数2は、移動集中荷重Pの位置xpから見た場合の共振橋梁の動的応答成分zb,d(xp)が、車両長Lcに等しい波長の波(車両長成分)と橋梁支間長の2倍の2Lbに等しい波長の波(支間長成分)の掛合せとなることを意味する。
【0047】
図8は、支間長10m、車両長25m、共振時の梁の動的応答振幅A
res=1とした場合に、数2によって算出した共振橋梁の移動集中荷重Pの位置x
pにおける動的応答成分z
b,d(x
p)の一例である。
図8に示す縦軸は、動的応答振幅であり、横軸は桁端(橋梁左端)からの距離[m]である。
図8に示す理論波形は、車両長L
cの1/3に対応した波の最大振幅が、支間長L
bに対応した半正弦波(支間長成分)に合わせて増減する特徴を示す。この特徴を利用することによって、上下加速度の測定に混入する他の振動成分と共振橋梁由来の振動成分とをより高精度に分解可能である。
【0048】
次に、この発明の第1実施形態に係る橋梁の共振検出装置の検出原理を説明する。
以下では、共振検出装置4によって3次共振する短支間橋梁B
3を検出する場合を例に挙げて説明する。
図2及び
図3に示す共振検出装置4は、共振橋梁上を通過する列車Tのうち、後尾の車両V
Lの車体上下加速度に混入する車両長L
Cの1/3の成分の有無から共振橋梁を検知する。共振検出装置4は、
図9に示すように、列車Tの先頭の車両V
F及び後尾の車両V
Lで計測した車体上下加速度に基づいて、共振橋梁に特有の振動成分を強調する信号処理(フィルタ及び包絡線処理)を行うとともに、他の振動成分の影響を相殺して共振橋梁に起因した振動成分(車両長L
Cの1/3の成分)のみを抽出する先頭の車両V
F及び後尾の車両V
Lの差分処理を行う。共振検出装置4は、包絡線処理された波形の差分値(包絡線差分)を検知指標とし、列車Tが通過する短支間橋梁B
3の支間長L
bに対応した卓越成分をこの検知指標が形成する場合に、短支間橋梁B
3が共振橋梁であると判断する。
【0049】
(フィルタ処理)
共振検出装置4は、車体上下加速度に混入する様々な成分の中から、共振橋梁に起因する車両長L
Cの1/3の成分以外を低減するためのフィルタ処理を行う。共振検出装置4は、共振橋梁通過時の後尾の車両V
Lの応答に混入する車両長L
Cの1/3の成分を抽出する。共振検出装置4は、3次共振する短支間橋梁B
3に特有の波長成分(車両長L
Cの1/3)を特定する。共振検出装置4は、1車両(25m)の通過時間で短支間橋梁B
3の固有振動が3波励起されることから、
図8に示す動的応答成分z
b,d(x
p)の波形に相当する波長25/3=8.33m付近を通過帯としたバンドパスフィルタ(Band-pass filter(BPF))処理を行うことで、3次共振する短支間橋梁B
3を検知する。
【0050】
(包絡線処理)
共振検出装置4は、先頭の車両V
F及び後尾の車両V
Lの位置同期誤差や加速度センサの測定誤差に対してロバストな差分処理を実現するために、フィルタ処理後の車体上下加速度波形に対して包絡線処理を行う。共振検出装置4は、
図8に示すように、フィルタ処理によって抽出された動的応答成分z
b,d(x
p)の波形から、支間長成分に対応する波形の振幅を推定する包絡線処理を行う。共振検出装置4は、差分処理に伴って増大する観測ノイズなどのランダム誤差を、包絡線処理によって大幅に低減する。共振検出装置4は、例えば、フィルタ処理した波形の微分値を用いてピーク位置を検出し、このピーク値の極大値又は極小値を結ぶことで包絡線を推定する。共振検出装置4は、差分処理に用いる波形を包絡線処理によって長周期化して、先頭の車両V
F及び後尾の車両V
Lの位置同期誤差の影響を低減する。共振検出装置4は、先頭の車両V
F及び後尾の車両V
Lの車両動揺加速度センサが同形式であり、混入する測定ノイズが同様に生成されると仮定した場合に、波形としての評価から振幅量としての評価に包絡線処理によって変換することで、差分処理したときに測定ノイズを相殺させて測定ノイズを大幅に低減する。
【0051】
(先頭及び後尾車両の差分処理)
共振検出装置4は、
図8に示すように、フィルタ処理及び包絡線処理により、車体上下加速度に含まれた共振橋梁の車両長L
cの1/3の成分を、短支間橋梁B
3の支間長L
bに対応した半正弦波状の卓越成分に変換する。波長が車両長L
cの1/3に近い軌道変位や橋梁の準静的な変形が共振橋梁の変位とは別に存在する場合には、これらの影響も含まれる。このため、フィルタ処理及び包絡線処理後の波形で支間長L
bに対応した卓越成分が存在したとしても、短支間橋梁B
3の共振に起因するものか、他の要因によるものかを判断できない。共振検出装置4は、
図9に示すように、先頭の車両V
F及び後尾の車両V
Lで計測された二つの車体上下加速度に対して、フィルタ処理及び包絡線処理を施したうえで、後尾の車両V
Lから先頭の車両V
Fを差し引く差分処理により、共振以外の振動成分を相殺する。共振時の橋梁の動的応答振幅は列車Tの通過とともに増幅するため、後尾の車両V
Lが通過した際に卓越する共振に起因した車両長L
cの1/3の成分は、先頭の車両V
Fの通過時にはほとんど生成されない。一方、橋梁の準静的な変形や線路線形、軌道の歪み、レール凹凸などの軌道変位は、先頭の車両V
F及び後尾の車両V
Lの通過時で変化しないため、これらの成分に起因した車体上下加速度も先頭の車両V
F及び後尾の車両V
Lでほぼ等しくなる。共振検出装置4は、共振橋梁に起因して生成される短支間橋梁B
3の支間長L
bに対応した卓越成分のみを差分処理によって抽出する。
【0052】
図3に示す測定データ受信部4aは、加速度測定装置2が送信する測定データD
1を受信する手段である。測定データ受信部4aは、加速度測定装置2が通信装置3を通じて送信する測定データD
1を受信する。測定データ記憶部4bは、加速度測定装置2が送信する測定データD
1を記憶する手段である。測定データ記憶部4bは、例えば、
図5に示すような加速度測定装置2が送信する測定データD
1を、時系列順に記憶する記憶装置である。
【0053】
図3に示す振動成分抽出部4cは、加速度測定装置2の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する手段である。ここで、共振橋梁に特有の振動成分とは、車両長L
cの1/3を主成分とする振動である。振動成分抽出部4cは、車両長L
cの1/3を主成分とする振動を、共振橋梁に特有の振動成分として抽出する。振動成分抽出部4cは、測定データ記憶部4bが記憶する先頭車両加速度データD
11及び後尾車両加速度データD
12から共振橋梁に特有の振動成分を抽出する。振動成分抽出部4cは、先頭の車両V
Fの共振橋梁に特有の振動成分を加速度測定装置2の測定結果(上下加速度波形)から抽出するとともに、後尾の車両V
Lの共振橋梁に特有の振動成分を加速度測定装置2の測定結果(上下加速度波形)から抽出する。振動成分抽出部4cは、短支間橋梁B
3の変位分(橋梁応答)を含む上下加速度の時間変化を示す測定波形から、車両長L
cの1/3を主成分とする振動(車両長不整)のみを通過させて、車両長L
cの1/3を主成分とする振動以外を除去する。振動成分抽出部4cは、例えば、特定の周波数成分を通過させるバンドパスフィルタであり、ディジタルフィルタなどのフィルタ部として機能する。振動成分抽出部4cは、
図8に示す短支間橋梁B
3の動的応答成分z
b,d(x
p)の波形からバンドパスフィルタ処理によって、共振橋梁に特有の振動成分sin(6πx/L
c+θ
res)を抽出する。振動成分抽出部4cは、抽出後の共振橋梁に特有の振動成分を、振動成分データとして振動振幅推定部4dに出力する。
【0054】
図3に示す振動振幅推定部4dは、先頭の車両V
F及び後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅を推定する手段である。振動振幅推定部4dは、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を加速度測定装置2の測定結果に基づいて推定するとともに、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅を加速度測定装置2の測定結果に基づいて推定する。振動振幅推定部4dは、車両長L
cの1/3を主成分とする振動の振幅を包絡線処理によって推定する。振動振幅推定部4dは、
図8に示す波長が車両長L
cの1/3となる短支間橋梁B
3の動的応答成分z
b,d(x
p)の波形を包絡線処理し、波長が支間長L
bの2倍の2L
bの包絡線sin(2πx/2L
b)を生成して、この包絡線sin(2πx/2L
b)の振幅を推定する。ここで、包絡線処理とは、
図8に示す短支間橋梁B
3の動的応答成分z
b,d(x
p)の波形の包絡線sin(2πx/2L
b)を推定する処理である。振動振幅推定部4dは、推定後の共振橋梁に特有の振動成分の振幅を、振動振幅データとして差分演算部4eに出力する。
【0055】
図3に示す差分演算部4eは、先頭の車両V
F及び後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅の差分を演算する手段である。差分演算部4eは、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅から、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を減算することによって、後尾の車両V
Lでのみ卓越する共振橋梁に特有の振動成分の振幅の差分を演算する。差分演算部4eは、バンドパスフィルタ処理及び包絡線処理後の先頭の車両V
F及び後尾の車両V
Lの橋梁変位を含む上下加速度の差分を演算する。差分演算部4eは、演算後の共振橋梁に特有の振動成分の振幅の差分を差分データとして共振検出部4fに出力する。
【0056】
共振検出部4fは、共振橋梁に特有の振動成分に基づいて、短支間橋梁B3の共振を検出する手段である。共振検出部4fは、加速度測定装置2の測定結果に基づいて短支間橋梁B3を検出する。共振検出部4fは、先頭の車両VFで上下加速度を測定する加速度測定装置2の測定結果と、後尾の車両VLで上下加速度を測定する加速度測定装置2の測定結果とに基づいて、短支間橋梁B3の共振を検出する。共振検出部4fは、先頭の車両VF及び後尾の車両VLで測定される共振橋梁に特有の振動成分の差分に基づいて、短支間橋梁B3の共振を検出する。共振検出部4fは、先頭の車両VF及び後尾の車両VLで測定される共振橋梁に特有の振動成分の差分(包絡線差分)を、短支間橋梁B3が共振しているか否かを検出するための指標である共振橋梁検出指標RDIとして演算する。共振検出部4fは、列車Tが通過した任意の支間長Lbの短支間橋梁B3が共振しているか否かを、共振橋梁検出指標RDIに基づいて評価する。共振検出部4fは、例えば、共振橋梁検出指標RDIが所定値(しきい値)を超えるときには短支間橋梁B3が共振状態又は共振近い状態であると評価し、共振橋梁検出指標RDIが所定値(しきい値)以下であるときには短支間橋梁B3が共振状態ではない評価する。共振検出部4fは、短支間橋梁B3が共振しているか否かの検出結果を検出結果データとして制御部4jに出力する。
【0057】
検出結果データ記憶部4gは、共振検出部4fの検出結果を記憶する手段である。検出結果データ記憶部4gは、例えば、共振検出部4fが出力する検出結果データを、短支間橋梁B3毎に時系列順に記憶する記憶装置である。
【0058】
共振検出プログラム記憶部4hは、列車Tが走行する短支間橋梁B3の共振を検出するための共振検出プログラムを記憶する手段である。共振検出プログラム記憶部4hは、情報記録媒体から読み取った共振検出プログラム又は電気通信回線を通じて取り込まれた共振検出プログラムを記憶する記憶装置などである。
【0059】
表示部4iは、共振検出装置4に関する種々の情報を表示する手段である。表示部4iは、例えば、加速度測定装置2の測定結果及び共振検出部4fの検出結果などを画面上に表示する表示装置である。表示部4iは、例えば、
図5に示すような先頭車両加速度データD
11及び後尾車両加速度データD
12を列車位置データD
14と対応させて画面上に表示するとともに、列車Tが通過する短支間橋梁B
3毎の共振の有無を列車位置データD
14と対応させて画面上に表示する。
【0060】
制御部4jは、共振検出装置4に関する種々の動作を制御する中央処理部(CPU)である。制御部4jは、共振検出プログラム記憶部4hから共振検出プログラムを読み出して、この共振検出プログラムに従って共振検出処理を実行する。制御部4jは、例えば、測定データ記憶部4bから先頭車両加速度データD11及び後尾車両加速度データD12を読み出して振動成分抽出部4cに出力したり、共振橋梁に特有の振動成分を先頭車両加速度データD11及び後尾車両加速度データD12から抽出するように振動成分抽出部4cに指令したり、共振橋梁に特有の振動成分の振幅の推定を振動振幅推定部4dに指令したり、先頭の車両VF及び後尾の車両VLで測定される共振橋梁に特有の振動成分の振幅の差分を差分演算部4eに指令したり、短支間橋梁B3が共振しているか否かの検出を共振検出部4fに指令したり、共振検出部4fが出力する検出結果データを検出結果データ記憶部4gに出力したり、検出結果データの記憶を検出結果データ記憶部4gに指令したり、表示部4iに種々のデータの表示を指令したりする。制御部4jは、測定データ受信部4a、測定データ記憶部4b、振動成分抽出部4c、振動振幅推定部4d、差分演算部4e、共振検出部4f、検出結果データ記憶部4g、共振検出プログラム記憶部4h及び表示部4iとの間で通信可能に接続されている。
【0061】
次に、この発明の第1実施形態に係る橋梁の共振検出方法について説明する。
図10は、先頭の車両V
F及び後尾の車両V
Lで測定される支間長10mの短支間橋梁B
3の変位成分に共振検出方法を適用した場合を一例として示すグラフである。
図10(A)は、各列車速度200,230,250,270,300km/hにおける列車通過時の橋梁支間中央の鉛直変位を示すグラフである。
図10(A)に示す縦軸は、鉛直変位[m]であり、横軸は時間[s]である。
図10(B)は、橋梁通過時の先頭の車両V
Fの第1台車及び後尾の車両V
Lの第2台車の直上の車体上下加速度を示すグラフである。
図10(B)に示す縦軸は、上下加速度 [m/s
2]である。
図10(C)は、橋梁通過時の車体上下加速度へのバンドパスフィルタ(BPF)処理及び包絡線処理後の適用結果を示すグラフである。
図10(C)に示す縦軸は、上下加速度 [m/s
2]である。
図10(D)は、包絡線処理された先頭の車両V
F及び後尾の車両V
Lの車体上下加速度の差分処理後の適用結果を示すグラフである。
図10(D)に示す縦軸は、包絡線差分[m/s
2]である。
図10(B)~(D)に示す横軸は、橋梁左端からの位置[m]である。
【0062】
図11に示す共振検出方法#100は、列車Tが走行する短支間橋梁B
3の共振を検出する方法である。共振検出方法#100は、振動成分抽出工程#110と、振動振幅推定工程#120と、差分演算工程#130と、共振検出工程#140などを含む。共振検出方法#100では、
図2~
図4に示す加速度測定装置2が測定する測定データD
1から車両長L
cの1/3の成分以外の成分を除去するとともに、共振橋梁に特有の振動成分を抽出する。共振検出方法#100では、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅との差分から、短支間橋梁B
3の共振を検出する。
【0063】
振動成分抽出工程#110は、加速度測定装置2の測定結果に基づいて、共振橋梁に特有の振動成分を抽出する工程である。振動成分抽出工程#110では、車両長L
cの1/3を主成分とする振動を、共振橋梁に特有の振動成分として抽出する。振動成分抽出工程#110では、
図10(B)に示すように、加速度測定装置2が先頭の車両V
Fの車体で測定する上下加速度と、加速度測定装置2が後尾の車両V
Lの車体で測定する上下加速度とから、
図10(C)に示すように短支間橋梁B
3の変位成分以外の変位成分がフィルタ処理(BPF処理)されることによって除去される。その結果、先頭の車両V
Fの台車T
2で測定される橋梁変位のみの上下加速度と、後尾の車両V
Lの台車T
1で測定される橋梁変位のみの上下加速度とが、車両長L
cの1/3を主成分とする共振橋梁に特有の振動成分として抽出される。
【0064】
振動振幅推定工程#120は、先頭の車両V
F及び後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅を推定する手段である。振動振幅推定工程#120では、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を加速度測定装置2の測定結果に基づいて推定するとともに、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅を加速度測定装置2の測定結果に基づいて推定する。振動振幅推定工程#120では、
図10(C)に示す先頭の車両V
Fの共振橋梁に特有の振動成分と、後尾の車両V
Lの共振橋梁に特有の振動成分とが包絡線処理される。その結果、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅とが推定される。
【0065】
差分演算工程#130は、先頭の車両V
F及び後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅の差分を演算する工程である。差分演算工程#130では、
図10(D)に示すように、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅から、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅が差し引かれて、包絡線差分に相当する共振橋梁検出指標RDIが算出される。
【0066】
共振検出工程#140は、共振橋梁に特有の振動成分に基づいて、短支間橋梁B
3の共振を検出する工程である。共振検出工程#140では、加速度測定装置2の測定結果に基づいて短支間橋梁B
3を検出する。共振検出工程#140では、先頭の車両V
Fで上下加速度を測定する加速度測定装置2の測定結果と、後尾の車両V
Lで上下加速度を測定する加速度測定装置2の測定結果とに基づいて、短支間橋梁B
3の共振を検出する。共振検出工程#140では、先頭の車両V
F及び後尾の車両V
Lの共振橋梁に特有の振動成分の振幅の差分に基づいて短支間橋梁B
3の共振を検出する。共振検出工程#140では、
図10(D)に示す共振橋梁検出指標RDIが所定値を超えるときには、短支間橋梁B
3が共振していると判定され、共振橋梁検出指標RDIが所定値以下であるときには、短支間橋梁B
3が共振していない判定される。例えば、
図10(D)に示すように、列車速度250km/hの場合には、共振橋梁検出指標RDIが比較的大きくなっており、短支間橋梁B
3が共振していると検出される。一方、
図10(D)に示すように、列車速度200,300km/hの場合には、共振橋梁検出指標RDIが比較的小さくなっており、短支間橋梁B
3が共振していないと検出される。また、
図10(D)に示すように、列車速度230km/hの場合には、共振橋梁検出指標RDIが共振しているときよりも小さいが共振していないときよりも大きくなっており、短支間橋梁B
3が共振に近いと検出される。
【0067】
次に、この発明の第1実施形態に係る橋梁の共振検出装置の動作について説明する。
以下では、制御部4jの動作を中心として説明する。
図12に示すステップ(以下、Sという)100において、共振検出プログラム記憶部4hから共振検出プログラムを制御部4jが読み込む。共振検出プログラムを制御部4jが読み込むと、一連の共振検出処理を制御部4jが開始する。
【0068】
S200において、共振橋梁に特有の振動成分の抽出を振動成分抽出部4cに制御部4jが指令する。加速度測定装置2が測定する先頭の車両V
Fで測定される先頭車両加速度データD
11と、加速度測定装置2が測定する後尾の車両V
Lで測定される後尾車両加速度データD
12とを、測定データ記憶部4bから制御部4jが読み出して、これらの先頭車両加速度データD
11及び後尾車両加速度データD
12を振動成分抽出部4cに制御部4jが出力する。このため、
図8に示す短支間橋梁B
3の動的応答成分z
b,d(x
p)の波形からバンドパスフィルタ処理によって、車両長L
cの1/3を主成分とする共振橋梁に特有の振動成分を振動成分抽出部4cが抽出する。その結果、
図10(C)に示すように、先頭の車両V
F及び後尾の車両V
Lの共振橋梁に特有の振動成分を振動成分抽出部4cがそれぞれ抽出し、振動成分データとして振動振幅推定部4dに振動成分抽出部4cが出力する。
【0069】
S300において、共振橋梁に特有の振動成分の振幅の推定を振動振幅推定部4dに制御部4jが指令する。その結果、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅とを、加速度測定装置2の測定結果に基づいて振動振幅推定部4dが推定する。
図8に示す波長が車両長L
cの1/3となる短支間橋梁B
3の動的応答成分z
b,d(x
p)の波形を振動振幅推定部4dが包絡線処理し、波長が支間長L
bの2倍の2L
bの包絡線sin(πx/L
b)を振動振幅推定部4dが生成する。その結果、
図10(C)に示すように、先頭の車両V
F及び後尾の車両V
Lの共振橋梁に特有の振動成分の振幅を振動振幅推定部4dがそれぞれ包絡線処理し、振動振幅推定部4dがこの包絡線sin(πx/L
b)の振幅を推定し、振動振幅データとして差分演算部4eに振動振幅推定部4dが出力する。
【0070】
S400において、先頭の車両V
F及び後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅の差分の演算を差分演算部4eに制御部4jが指令する。このため、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅から、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を差分演算部4eが減算して、共振橋梁に特有の振動成分の振幅の差分を差分演算部4eが演算する。その結果、
図10(D)に示すように、先頭の車両V
F及び後尾の車両V
Lの共振橋梁に特有の振動成分の振幅の差分を差分演算部4eが演算して、共振橋梁に特有の振動成分の振幅の差分を差分データとして共振検出部4fに差分演算部4eが出力する。
【0071】
S500において、短支間橋梁B3の共振の検出を共振検出部4fに制御部4jが指令する。その結果、共振検出部4fが共振橋梁検出指標RDIを演算し、短支間橋梁B3が共振しているか否かを共振橋梁検出指標RDIに基づいて共振検出部4fが評価する。短支間橋梁B3が共振しているか否かの検出結果を検出結果データとして共振検出部4fが制御部4jに出力すると、この検出結果データを検出結果データ記憶部4gに制御部4jが出力し、この検出結果データが検出結果データ記憶部4gに記憶される。
【0072】
S600において、検出結果の表示を表示部4iに制御部4jが指令する。検出結果データを制御部4jが検出結果データ記憶部4gから読み出して、検出結果データを制御部4jが表示部4iに出力する。その結果、短支間橋梁B3に共振が発生しているか否かの検出結果を表示部4iが画面上に表示する。
【0073】
この発明の第1実施形態に係る橋梁の共振検出方法とその共振検出装置及び橋梁の共振検出プログラムには、以下に記載するような効果がある。
(1) この第1実施形態では、列車T側から測定する共振橋梁の検出に必要な測定データD1に基づいて、N次共振(Nは2以上の整数)する短支間橋梁B3を共振検出部4fが検出する。例えば、従来技術1,2では、1車両が通過する毎に1波の振動が励起されて1次共振が生ずる橋梁Bを検出することができるが、1車両が通過する毎に3波の振動が励起されて3次共振が生ずる短支間橋梁B3を検出することができない。この第1実施形態では、列車T側で測定される共振橋梁の検出に必要な測定データD1を列車T側から測定し、測定データD1に基づいてN次共振する短支間橋梁B3を正確に検出することができる。
【0074】
(2) この第1実施形態では、列車Tの上下振動加速度をこの列車T側から測定する加速度測定装置2の測定結果に基づいて、3次共振する短支間橋梁B3を共振検出部4fが検出する。このため、車両計測データである車体加速度を利用することによって、短支間橋梁B3の共振橋梁に特有の波長成分を車両VF,VLの振動特性上、車体上下加速度として簡単に検出することができる。その結果、橋梁B上を走行する列車Tの加速度測定装置2が測定する測定データD1を利用することによって、短支間橋梁B3を高精度に抽出することができる。例えば、多くの新幹線の営業列車の先頭及び後尾の車両VF,VLに設置されている動揺加速度センサを利用して、3次共振する短支間橋梁B3を車上から簡単に漏れなく高精度に検知することができ、適用範囲を大幅に拡大することができる。また、例えば、共振橋梁に特有の波長成分をフィルタ処理によって強調し、共振橋梁に特有の波長成分を特定することができ、共振橋梁の検出精度を向上させることができる。その結果、車両長LCの1/3の振動成分を強調する波形処理をすることによって、単純な測定誤差や、先頭の車両VFから後尾の車両VLまでの距離の変化による位置ずれに起因する位置同定誤差などの種々の誤差の影響を低減することができる。
【0075】
(3) この第1実施形態では、列車Tの前方及び後方の上下振動加速度を加速度測定装置2が測定し、列車Tの前方の加速度測定装置2の測定結果と、この列車Tの後方の加速度測定装置2の測定結果とに基づいて、短支間橋梁B3の共振を共振検出部4fが検出する。このため、車上計測データによる高頻度かつ網羅的な共振橋梁の検知とモニタリングによって、高速鉄道に追加の設備投資をすることなく、共振橋梁を効率的に維持管理することができる。また、先頭の車両VF及び後尾の車両VLで同じ加速度測定装置2を使用するため、先頭の車両VF及び後尾の車両VLの測定誤差の分散を原理的に同程度にすることができる。
【0076】
(4) この第1実施形態では、列車Tを組成する先頭の車両VF及び後尾の車両VLの車体の上下振動加速度を加速度測定装置2が測定する。このため、日々走行する営業列車の先頭車両及び後尾車両に搭載されている加速度測定装置2を利用して、鉄道橋の状態を高頻度で簡単に把握することができ、一度の走行により膨大な鉄道橋の共振の有無を効率的かつ網羅的に検査することができる。例えば、多くの新幹線などの営業列車の先頭車両及び後尾車両の車体に設置されている加速度センサを利用して、3次共振する短支間橋梁B3を車上から簡単に検出することができ、共振橋梁を検知する際の適用範囲を大幅に拡大することができる。
【0077】
(5) この第1実施形態では、加速度測定装置2の測定結果に基づいて、共振橋梁に特有の振動成分を振動成分抽出部4cが抽出し、車両VF,VLの車両長LCの1/3を主成分とする振動を、共振橋梁に特有の振動成分として振動成分抽出部4cが抽出する。このため、例えば、3次共振する短支間橋梁B3に特有の波長成分をフィルタ処理によって強調し、短支間橋梁B3に特有の波長成分を特定することができ、共振橋梁の検出精度を向上させることができる。その結果、車両長LCの1/3の振動成分を強調する波形処理をすることによって、単純な測定誤差や、先頭の車両VFから後尾の車両VLまでの距離の変化による位置ずれに起因する位置同定誤差などの種々の誤差の影響を低減することができる。
【0078】
(6) この第1実施形態では、列車Tの前方及び後方で測定される共振橋梁に特有の振動成分の振幅を振動振幅推定部4dが推定する。また、この第1実施形態では、列車Tの前方及び後方で測定される共振橋梁に特有の振動成分の振幅の差分を差分演算部4eが演算し、共振橋梁に特有の振動成分の振幅の差分に基づいて、短支間橋梁B3の共振を共振検出部4fが検出する。このため、例えば、包絡線処理により長波長化することで、先頭の車両VF及び後尾の車両VLの位置ずれの誤差に対して安定化させることができるとともに、包絡線処理により測定誤差成分を相殺することができる。その結果、包絡線処理による測定誤差成分の高い除去効果を期待することができる。また、先頭の車両VFの上下加速度に含まれているが、後尾の車両VLの上下加速度には含まれていない短支間橋梁B3に特有の成分を、先頭の車両VFの上下加速度と後尾の車両VLの上下加速度とを差分処理することによって、簡単に抽出することができる。さらに、先頭の車両VF及び後尾の車両VLで測定される上下加速度に混入している短支間橋梁B3の振動以外の多くの振動成分を差分処理することによって、短支間橋梁B3の振動成分以外の軌道変位などを大幅にキャンセルさせて、高精度に共振橋梁を抽出することができる。例えば、先頭車両加速度データD11及び後尾車両加速度データD12には、動的な橋梁応答の他に共振橋梁以外に起因した軌道変位、車両振動、測定ノイズなどが混在している。この第1実施形態では、編成車両の異なる位置で測定された二つの上下加速度の差分により、共振橋梁以外に起因した軌道変位、車両振動及び測定ノイズなどに起因した成分を相殺し大幅に低減することができる。
【0079】
(7) この第1実施形態では、列車Tの上下振動加速度をこの列車T側から測定する加速度測定装置2の測定結果に基づいて、共振検出手順において3次共振する短支間橋梁B3を検出する。このため、既存の軌道保守管理データベースシステムに共振検出プログラムを実装し、軌道保守管理データベースシステム上で共振検出プログラムを実行させることができる。また、既存の軌道保守管理データベースシステムに共振検出プログラムをオプション機能として簡単に付加することができる。その結果、車体動揺加速度による軌道の維持管理を行っている事業者であれば、新たなセンサやデータベースの導入なしに低コストで容易に適用することができる。
【0080】
(第2実施形態)
以下では、
図1~
図13に示す部分と同一の部分については、同一の符号を付して詳細な説明を省略する。
この第2実施形態は、第1実施形態とは異なり、
図13に示すように台車T
1,T
2の上下加速度を加速度測定装置2によって測定して、短支間橋梁B
3の共振を検出する場合の実施形態である。加速度測定装置2は、先頭の車両V
Fの台車T
1の上下加速度と後尾の車両V
Lの台車T
2の上下加速度とを測定する。加速度検出部2aは、列車Tの車両V
Fの台車(第1台車)T
1の上下加速度(上下振動加速度)を検出し、加速度検出部2bは列車Tの車両V
Lの台車(第2台車)T
2の上下加速度(上下振動加速度)を検出する。加速度検出部2a,2bは、例えば、高速鉄道車両に搭載されている軌道状態監視用の台車加速度センサを利用可能である。加速度検出部2a,2bは、例えば、台車T
1,T
2の軸箱の上部に設置されている。
【0081】
共振検出装置4は、列車Tの先頭の車両VF及び後尾の車両VLの台車T1,T2で計測した台車上下加速度に基づいて、共振橋梁に特有の振動成分を強調する信号処理(フィルタ及び包絡線処理)を行うとともに、他の振動成分の影響を相殺して短支間橋梁B3に起因した振動成分(車両長Lcの1/3の成分)のみを抽出する先頭の車両VF及び後尾の車両VLの差分処理を行う。共振検出装置4は、共振橋梁上を通過する列車Tのうち、後尾の車両VLの台車上下加速度に混入する車両長LCの1/3の成分の有無から共振橋梁を検知する。共振検出装置4は、先頭の車両VF及び後尾の車両VLの位置同期誤差や加速度センサの測定誤差に対してロバストな差分処理を実現するために、フィルタ処理後の台車上下加速度波形に対して包絡線処理を行う。共振検出装置4は、フィルタ処理及び包絡線処理により、台車上下加速度に含まれた共振橋梁に特有の車両長LCの1/3の成分を、短支間橋梁B3の支間長Lbに対応した半正弦波状の卓越成分に変換する。共振検出装置4は、先頭の車両VF及び後尾の車両VLで計測された二つの台車上下加速度に対して、フィルタ処理及び包絡線処理を施したうえで、後尾の車両VLから先頭の車両VFを差し引く差分処理により、共振以外の振動成分を相殺する。この第2実施形態には、第1実施形態と同様の効果がある。
【0082】
(第3実施形態)
この第3実施形態は、第1実施形態及び第2実施形態とは異なり、
図14に示すように先頭の車両
F及び後尾の車両V
Lから軌道変位を軌道変位測定装置2A,2Bによって測定して、短支間橋梁B
3の共振を検出する場合の実施形態である。
図14に示す軌道Rは、
図16に示すように、列車Tの車輪を案内する左右一対のレールR
1,R
2などを備えている。
図14及び
図15に示す共振検出システム1は、列車Tが走行する短支間橋梁B
3の共振を検出するシステムである。共振検出システム1は、
図15に示すように、軌道変位測定装置2A,2Bと、通信装置3と、共振検出装置4などを備えている。共振検出システム1は、軌道変位測定装置2A,2Bの測定結果を通信装置3によって共振検出装置4に送信し、軌道変位測定装置2A,2Bの測定結果に基づいて短支間橋梁B
3の共振を検出する。
【0083】
図14~
図16に示す軌道変位測定装置2A,2Bは、共振橋梁の検出に必要な測定データ(車両計測データ)D
2を列車T側から測定する。軌道変位測定装置2A,2Bは、共振橋梁の検出に必要な測定データD
2として、短支間橋梁B
3上の軌道変位を測定する。
図14に示すように、軌道変位測定装置2Aは列車Tの先頭の車両V
Fの進行方向後側の台車T
2に配置されており、軌道変位測定装置2Bは列車Tの後尾の車両V
Lの進行方向前側の台車T
1に配置されている。軌道変位測定装置2Aは、列車Tの前方で軌道変位を測定し、軌道変位測定装置2Bは列車Tの後方で軌道変位を測定する。軌道変位測定装置2A,2Bは、列車Tとともに軌道R上を移動しながら軌道変位を測定する。ここで、軌道変位(通路変位)とは、列車Tの繰り返し通過などによって、列車Tの走行路面である軌道Rが徐々に変動し、
図16に示すレールR
1,R
2の長さ方向の形状が変化する現象であり、軌道不整又は軌道狂いともいう。軌道変位測定装置2A,2Bは、いずれも同一構造である。軌道変位測定装置2A,2Bは、
図16に示すように、ジャイロ2hと、加速度検出部2iと、レーザ変位計2j,2kと、軌道変位演算部2mと、走行距離演算部2nと、測定データ記憶部2pと、測定データ送信部2qと、制御部2rなどを備えている。
【0084】
図14~
図16に示す軌道変位測定装置2A,2Bは、例えば、一部の高速鉄道列車に導入されており慣性正矢法による車載型の軌道不整計測機器であり、営業列車の台車T
1,T
2に搭載される台車搭載型の軌道変位測定装置(慣性正矢測定装置)である。ここで、慣性正矢法とは、車両V
F,V
Lに搭載したジャイロ2h及び加速度検出部2iの出力信号を軌道変位演算部2mが二回積分することによって算出した車両V
F,V
Lの変位に基づいて、軌道変位演算部2mが仮想基準線を作成し、この仮想基準線からレールR
1,R
2までの変位量を軌道変位演算部2mが軌道変位として演算する手法である。軌道変位測定装置2A,2Bは、ジャイロ2h及び加速度検出部2iの出力信号を軌道変位演算部2mが二回積分することによって、各時点における測定機器の位置(台車変位)を推定する慣性計測を軌道変位演算部2mが実施する。軌道変位測定装置2A,2Bは、レーザ変位計2jによって測定された台車直下の軌道Rと台車T
1,T
2との相対変位(左右のレール位置)から、ジャイロ2h及び加速度検出部2iによって慣性計測された台車変位(装置本体の空間上の絶対位置)を軌道変位演算部2mが差し引くことで、台車T
1,T
2の振動がキャンセルされた軌道変位を軌道変位演算部2mが測定する。
【0085】
図16に示すジャイロ2hは、台車T
1,T
2の角加速度を測定する装置である。加速度検出部2iは、台車T
1,T
2の加速度を検出する装置である。レーザ変位計2jは、左右のレールR
1,R
2の頭頂面にレーザ光を照射して反射レーザ光を受光し、台車T
1,T
2から左右のレールR
1,R
2までの変位を測定する装置である。レーザ変位計2kは、左右のレールR
1,R
2の頭側面にレーザ光を照射して反射レーザ光を受光し、台車T
1,T
2から左右のレールR
1,R
2までの変位を測定する装置である。軌道変位演算部2mは、軌道Rの軌道変位を演算する手段である。軌道変位演算部2mは、ジャイロ2h、加速度検出部2i及びレーザ変位計2j,2kの測定結果に基づいて軌道Rの軌道変位を演算し、軌道変位データD
21~D
25として制御部2rに出力する。
【0086】
走行距離演算部2nは、列車Tの走行距離を演算する手段である。走行距離演算部2nは、例えば、軌道Rの特定地点に設置された自動列車停止装置(ATS)のATS車上子が出力する絶対位置情報を受信して列車Tの絶対位置を検出し、次のATS地上子に列車Tが到達するまで、列車Tの速度を検出する速度発電機が出力する距離パルス信号を積算して列車Tの走行距離を演算する。走行距離演算部2nは、起点からの列車Tの走行距離(移動距離)を走行距離データD26として制御部2rに出力する。
【0087】
測定データ記憶部2pは、軌道変位測定装置2A,2Bが測定する種々の測定データD
2を記憶する手段である。測定データ記憶部2pは、例えば、
図17に示すように、軌道変位演算部2mが演算する軌道変位データD
21~D
25と、走行距離演算部2nが演算する走行距離データD
26とを測定データ(検測データ)D
2として記憶する記憶装置であり、軌道変位データD
21~D
25を走行距離データD
26と対応させて時系列順に記憶する。ここで、
図17に示す軌道変位データD
21は、レールR
1,R
2の上下方向の変位である高低変位に関するデータである。軌道変位データD
22は、左右のレールR
1,R
2の高さの差(高低差)である水準変位に関するデータである。軌道変位データD
23は、一定距離間の軌道Rの水準の変化量(軌道Rの平面に対するねじれ状態)である平面性変位に関するデータである。軌道変位データD
24は、レールR
1,R
2の左右方向の変位である通り変位に関するデータである。軌道変位データD
25は、左右のレールR
1,R
2の間隔(軌間)の変化である軌間変位に関するデータである。
【0088】
図16に示す測定データ送信部2qは、軌道変位測定装置2A,2Bから測定データD
2を送信する手段である。測定データ送信部2qは、軌道変位測定装置2A,2Bから通信装置3を通じて共振検出装置4に測定データD
2を送信する送信機である。測定データ送信部2qは、測定データD
2をリアルタイムで共振検出装置4に送信する。
【0089】
制御部2rは、軌道変位測定装置2A,2Bに関する種々の動作を制御する中央処理部(CPU)である。制御部2rは、例えば、ジャイロ2h及び加速度検出部2iに角加速度及び加速度の検出を指令したり、軌道変位演算部2mに軌道変位の演算を指令したり、軌道変位演算部2mが出力する軌道変位データD21~D25を測定データ記憶部2pに出力したり、走行距離演算部2nに走行距離の演算を指令したり、走行距離演算部2nが出力する走行距離データD26を測定データ記憶部2pに出力したり、軌道変位データD21~D25及び走行距離データD26の記憶を測定データ記憶部2pに指令したり、測定データD2を測定データ記憶部2pから読み出して測定データ送信部2qに出力したり、測定データD2の送信を測定データ送信部2qに指令したりする。制御部2rは、ジャイロ2h、加速度検出部2i、レーザ変位計2j,2k、軌道変位演算部2m、走行距離演算部2n、測定データ記憶部2p及び測定データ送信部2qとの間で通信可能に接続されている。
【0090】
図15に示す通信装置3は、軌道変位測定装置2A,2Bから共振検出装置4に測定データD
2を送信する。通信装置3は、軌道変位測定装置2A,2Bの測定データ送信部2qから共振検出装置4の測定データ受信部4aに測定データD
2を送信する。
【0091】
図14及び
図15に示す共振検出装置4は、軌道変位測定装置2A,2Bが測定する軌道変位データD
21から短支間橋梁B
3の橋梁変位(橋梁変位成分)以外の軌道変位を除去するとともに、共振橋梁に特有の振動成分を抽出する。共振検出装置4は、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅との差分から、短支間橋梁B
3の共振を検出する。
【0092】
次に、この発明の第3実施形態に係る橋梁の共振検出装置の検出原理を説明する。
図14及び
図15に示す共振検出装置4は、短支間橋梁B
3上を通過する列車Tのうち、後尾の車両V
Lの軌道変位に混入する車両長L
Cの1/3の成分の有無から短支間橋梁B
3を検知する。共振検出装置4は、
図18に示すように、列車Tの先頭の車両V
F及び後尾の車両V
Lで計測した軌道変位(鉛直変位)に基づいて、共振橋梁に特有の振動成分を強調する信号処理(フィルタ及び包絡線処理)を行うとともに、他の振動成分の影響を相殺して共振橋梁に起因した振動成分(車両長L
Cの1/3の成分)のみを抽出する先頭の車両V
F及び後尾の車両V
Lの差分処理を行う。共振検出装置4は、包絡線処理された波形の差分値(包絡線差分)を検知指標とし、列車Tが通過する短支間橋梁B
3の支間長L
bに対応した卓越成分をこの検知指標が形成する場合に、短支間橋梁B
3が共振橋梁であると判断する。
【0093】
(フィルタ処理)
共振検出装置4は、軌道変位に混入する様々な成分の中から、短支間橋梁B3に起因する車両長LCの1/3の成分以外を低減するためのフィルタ処理を行う。共振検出装置4は、共振橋梁通過時の後尾の車両VLの応答に混入する車両長LCの1/3の成分を抽出し、3次共振する短支間橋梁B3に特有の波長成分(車両長LCの1/3)を特定する。
【0094】
(包絡線処理)
共振検出装置4は、フィルタ処理後の軌道変位に対して包絡線処理を行う。共振検出装置4は、
図8に示すように、フィルタ処理によって抽出された動的応答成分z
b,d(x
p)の波形から、支間長成分に対応する波形の振幅を推定する包絡線処理を行う。共振検出装置4は、先頭の車両V
F及び後尾の車両V
Lの軌道変位測定装置2A,2Bが同形式であり、混入する測定ノイズが同様に生成されると仮定した場合に、波形としての評価から振幅量としての評価に包絡線処理によって変換することで、差分処理したときに測定ノイズを相殺させて測定ノイズを大幅に低減する。
【0095】
(先頭及び後尾車両の差分処理)
共振検出装置4は、後尾の車両V
Lで測定される橋梁変位を含む軌道変位から、先頭の車両V
Fで測定される橋梁変位を含む軌道変位を引くことで、橋梁変位を除いた軌道変位及び短支間橋梁B
3の準静的なたわみ成分を消去する。共振検出装置4は、
図8に示すように、フィルタ処理及び包絡線処理により、軌道変位に含まれた車両長L
cの1/3の成分を、短支間橋梁B
3の支間長L
bに対応した半正弦波状の卓越成分に変換する。共振検出装置4は、
図18に示すように、先頭の車両V
F及び後尾の車両V
Lで計測された二つの軌道変位に対して、フィルタ処理及び包絡線処理を施したうえで、後尾の車両V
Lから先頭の車両V
Fを差し引く差分処理により、共振以外の成分を相殺する。
【0096】
図15に示す測定データ受信部4aは、軌道変位測定装置2A,2Bが送信する測定データD
2を受信する。測定データ受信部4aは、軌道変位測定装置2A,2Bが通信装置3を通じて送信する測定データD
2を受信する。測定データ記憶部4bは、軌道変位測定装置2A,2Bが送信する測定データD
2を記憶する。測定データ記憶部4bは、例えば、
図17に示すような軌道変位測定装置2A.2Bが送信する測定データD
2を時系列順に記憶する記憶装置である。
【0097】
図15に示す振動成分抽出部4cは、軌道変位測定装置2A,2Bの測定結果に基づいて、共振橋梁に特有の振動成分を抽出する。振動成分抽出部4cは、測定データ記憶部4bが記憶する鉛直方向の軌道変位である軌道変位データD
21から共振橋梁に特有の振動成分を抽出する。振動成分抽出部4cは、先頭の車両V
Fの共振橋梁に特有の振動成分を軌道変位測定装置2Aの測定結果(軌道変位波形)から抽出するとともに、後尾の車両V
Lの共振橋梁に特有の振動成分を軌道変位測定装置2Bの測定結果(軌道変位波形)から抽出する。振動成分抽出部4cは、支間長橋梁B
3の変位分(橋梁応答)を含む軌道変位の時間変化を示す測定波形から、車両長L
cの1/3を主成分とする振動(車両長不整)のみを通過させて、車両長L
cの1/3を主成分とする振動以外を除去する。
【0098】
振動振幅推定部4dは、先頭の車両VFの共振橋梁に特有の振動成分の振幅を軌道変位測定装置2Aの測定結果に基づいて推定するとともに、後尾の車両VLの共振橋梁に特有の振動成分の振幅を軌道変位測定装置2Bの測定結果に基づいて推定する。振動振幅推定部4dは、車両長Lcの1/3を主成分とする振動の振幅を包絡線処理によって推定する。差分演算部4eは、バンドパスフィルタ処理及び包絡線処理後の先頭の車両VF及び後尾の車両VLの橋梁変位を含む軌道変位の差分を演算する。
【0099】
共振検出部4fは、軌道変位測定装置2A,2Bの測定結果に基づいて、短支間橋梁B
3の共振を検出する。共振検出部4fは、先頭の車両V
Fで上下加速度を測定する加速度測定装置2の測定結果と、後尾の車両V
Lで上下加速度を測定する加速度測定装置2の測定結果とに基づいて、短支間橋梁B
3の共振を検出する。表示部4iは、例えば、
図17に示すような軌道変位データD
21~D
25を走行距離データD
26と対応させて画面上に表示するとともに、列車Tが通過する短支間橋梁B
3毎の共振の有無を走行距離データD
26と対応させて画面上に表示する。
図15に示す制御部4jは、例えば、測定データ記憶部4bから軌道変位データD
21を読み出して振動成分抽出部4cに出力したり、共振橋梁に特有の振動成分を軌道変位データD
21から抽出するように振動成分抽出部4cに指令したりする。
【0100】
次に、この発明の第3実施形態に係る橋梁の共振検出方法について説明する。
図19は、先頭の車両V
F及び後尾の車両V
Lで測定される支間長10mの短支間橋梁B
3の変位成分に共振検出方法を適用した場合を一例として示すグラフである。
図19(A)は、各列車速度200,230,250,270,300km/hにおける列車通過時の橋梁支間中央の鉛直変位を示すグラフである。
図19(A)に示す縦軸は、鉛直変位[m]であり、横軸は時間[s]である。
図19(B)は、橋梁通過時の先頭の車両V
Fの第1車軸及び後尾の車両V
Lの第4車軸の鉛直変位を示すグラフである。
図19(B)に示す縦軸は、鉛直変位 [mm]である。
図19(C)は、橋梁通過時の鉛直変位へのバンドパスフィルタ(BPF)処理及び包絡線処理後の適用結果を示すグラフである。
図19(C)に示す縦軸は、鉛直変位 [mm]である。
図19(D)は、包絡線処理された先頭の車両V
Fの第1車軸及び後尾の車両V
Lの第4車軸の鉛直変位の差分処理後の適用結果を示すグラフである。
図19(D)に示す縦軸は、包絡線差分[m/s
2]である。
図19(B)~(D)に示す横軸は、橋梁左端からの位置[m]である。
【0101】
図11に示す共振検出方法#100では、
図14及び
図15に示す軌道変位測定装置2A,2Bが測定する軌道変位データD
21から短支間橋梁B
3の変位成分以外の軌道変位を除去するとともに、共振橋梁に特有の振動成分を抽出する。共振検出方法#100では、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅との差分から、短支間橋梁B
3の共振を検出する。
【0102】
振動成分抽出工程#110は、軌道変位測定装置2A,2Bの測定結果に基づいて、共振橋梁に特有の振動成分を抽出する。振動成分抽出工程#110では、車両長L
cの1/3を主成分とする振動を共振橋梁に特有の振動成分として抽出する。振動成分抽出工程#110では、
図19(B)に示すように、軌道変位測定装置2Aが先頭の車両V
Fの台車T
1で測定する軌道変位と、軌道変位測定装置2Bが後尾の車両V
Lの台車T
2で測定する軌道変位とから、
図19(C)に示すように短支間橋梁B
3の変位成分以外の変位成分がフィルタ(BPF)処理されることによって除去される。その結果、先頭の車両V
Fの台車T
1で測定される橋梁変位のみの軌道変位と、後尾の車両V
Lの台車T
2で測定される橋梁変位のみの軌道変位とが、車両長L
cの1/3を主成分とする共振橋梁に特有の振動成分として抽出される。
【0103】
振動振幅推定工程#120では、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を軌道変位測定装置2Aの測定結果に基づいて推定するとともに、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅を軌道変位測定装置2Bの測定結果に基づいて推定する。振動振幅推定工程#120では、
図19(C)に示す先頭の車両V
Fの共振橋梁に特有の振動成分と、後尾の車両V
Lの共振橋梁に特有の振動成分とが包絡線処理される。その結果、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅と、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅とが推定される。差分演算工程#130では、
図19(D)に示すように、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅から、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅が差し引かれて、包絡線差分に相当する共振橋梁検出指標RDIが算出される。
【0104】
共振検出工程#140では、軌道変位測定装置2A,2Bの測定結果に基づいて、短支間橋梁B
3の共振を検出する。共振検出工程#140では、先頭の車両V
Fで軌道変位を測定する軌道変位測定装置2Aの測定結果と、後尾の車両V
Lで軌道変位を測定する軌道変位測定装置2Bの測定結果とに基づいて、短支間橋梁B
3の共振を検出する。共振検出工程#140では、先頭の車両V
F及び後尾の車両V
Lの共振橋梁に特有の振動成分の振幅の差分に基づいて短支間橋梁B
3の共振を検出する。共振検出工程#140では、
図19(D)に示す共振橋梁検出指標RDIが所定値を超えるときには、短支間橋梁B
3が共振していると判定され、共振橋梁検出指標RDIが所定値以下であるときには、短支間橋梁B
3が共振していない判定される。
【0105】
次に、この発明の第3実施形態に係る橋梁の共振検出装置の動作について説明する。
図12に示すS200において、軌道変位測定装置2Aが測定する先頭の車両V
Fで測定される軌道変位データD
21と、軌道変位測定装置2Bが測定する後尾の車両V
Lで測定される軌道変位データD
21とを、測定データ記憶部4bから制御部4jが読み出して、これらの軌道変位データD
21を振動成分抽出部4cに制御部4jが出力する。このため、
図8に示す短支間橋梁B
3の動的変位z
b,d(x
p)の波形からバンドパスフィルタ処理によって、車両長L
cの1/3を主成分とする共振橋梁に特有の振動成分を振動成分抽出部4cが抽出する。
【0106】
S300において、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅を、軌道変位測定装置2Aの測定結果に基づいて振動振幅推定部4dが推定する。また、S300において、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅を、軌道変位測定装置2Bの測定結果に基づいて振動振幅推定部4dが推定する。
図8に示す波長が車両長L
cの1/3となる短支間橋梁B
3の動的変位z
b,d(x
p)の波形を振動振幅推定部4dが包絡線処理する。S400において、後尾の車両V
Lの共振橋梁に特有の振動成分の振幅から、先頭の車両V
Fの共振橋梁に特有の振動成分の振幅を差分演算部4eが減算して、共振橋梁に特有の振動成分の振幅の差分を差分演算部4eが演算する。
【0107】
S500において、軌道変位測定装置2A,2Bの測定結果に基づいて、短支間橋梁B3の共振の検出を共振検出部4fに制御部4jが指令する。その結果、共振検出部4fが共振橋梁検出指標RDIを演算し、短支間橋梁B3が共振しているか否かを共振橋梁検出指標RDIに基づいて共振検出部4fが評価する。
【0108】
この発明の第3実施形態に係る橋梁の共振検出方法とその共振検出装置及び橋梁の共振検出プログラムには、第1実施形態及び第2実施形態の効果に加えて、以下に記載するような効果がある。
(1) この第3実施形態では、短支間橋梁B3上の軌道変位を列車T側から測定する軌道変位測定装置2A,2Bの測定結果に基づいて、3次共振する短支間橋梁B3を共振検出部4fが検出する。このため、橋梁B上を走行する列車Tの軌道変位測定装置2A,2Bが測定する軌道変位データD21を利用することによって、短支間橋梁B3の共振を高精度に抽出することができる。例えば、営業列車から軌道変位を測定する営業車検測の測定結果を利用して、短支間橋梁B3の共振を簡単に検知することができる。また、走行列車を構成する複数の車両VF,VLで測定した動的な軌道変位に基づいて、共振橋梁を簡単に検出することができる。
【0109】
(2) この第3実施形態では、列車Tの前方及び後方で軌道変位測定装置2A,2Bが軌道変位を測定し、列車Tの前方の軌道変位測定装置2Aの測定結果と、この列車Tの後方の軌道変位測定装置2Bの測定結果とに基づいて、短支間橋梁B3の共振を共振検出部4fが検出する。例えば、日本の一部の高速鉄道では、営業列車の先頭車両及び後尾車両でレールR1,R2の高低などの軌道変位を測定している。この第3実施形態では、日々走行する営業列車の先頭車両及び後尾車両に搭載されている軌道変位測定装置2A,2Bを利用して、鉄道橋の状態を高頻度で簡単に把握することができ、一度の走行により膨大な鉄道橋の共振の有無を効率的かつ網羅的に検査することができる。その結果、車上計測データによる高頻度かつ網羅的な共振橋梁の検知とモニタリングによって、高速鉄道に追加の設備投資をすることなく、共振橋梁を効率的に維持管理することができる。また、先頭の車両VF及び後尾の車両VLで同じ軌道変位測定装置2A,2Bを使用するため、先頭の車両VF及び後尾の車両VLの測定誤差の分散を原理的に同程度にすることができる。
【0110】
(3) この第3実施形態では、列車Tを組成する先頭の車両VF及び後尾の車両VLから軌道Rの変位を軌道変位測定装置2A,2Bが測定する。このため、例えば、先頭車両及び後尾車両の車体に設置されている軌道変位測定装置2A,2Bを利用して、3次共振する短支間橋梁B3を車上から簡単に検出することができ、共振橋梁を検知する際の適用範囲を大幅に拡大することができる。
【0111】
(4) この第3実施形態では、軌道変位測定装置2A,2Bの測定結果に基づいて、共振橋梁に特有の振動成分を振動成分抽出部4cが抽出し、車両VF,VLの車両長LCの1/3を主成分とする振動を、共振橋梁に特有の振動成分として振動成分抽出部4cが抽出する。このため、例えば、3次共振する短支間橋梁B3に特有の波長成分をフィルタ処理によって強調し、短支間橋梁B3に特有の波長成分を特定することができ、共振橋梁の検出精度を向上させることができる。その結果、車両長LCの1/3の振動成分を強調する波形処理をすることによって、単純な測定誤差や、先頭の車両VFから後尾の車両VLまでの距離の変化による位置ずれに起因する位置同定誤差などの種々の誤差の影響を低減することができる。
【0112】
(5) この第3実施形態では、列車Tの前方及び後方で測定される共振橋梁に特有の振動成分の振幅を振動振幅推定部4dが推定する。また、この第3実施形態では、列車Tの前方及び後方で測定される共振橋梁に特有の振動成分の振幅の差分を差分演算部4eが演算し、共振橋梁に特有の振動成分の振幅の差分に基づいて、短支間橋梁B3の共振を共振検出部4fが検出する。このため、先頭の車両VF及び後尾の車両VLで測定される軌道変位に混入している短支間橋梁B3の振動以外の多くの振動成分を差分処理することによって、短支間橋梁B3の振動成分以外の軌道変位を大幅にキャンセルすることができる。例えば、軌道変位データD21には、動的な橋梁応答の他に橋梁以外に起因した不整や軌道構造の変位などが混在している。この第3実施形態では、橋梁以外に起因した不整や軌道構造の変位などは異なる二つの時点で測定しても変化しないと仮定したときに、編成車両の異なる位置で測定され、位置の関数に変換された二つの軌道変位の差分により、橋梁以外に起因した不整や軌道構造の変位などを相殺することができる。その結果、共振橋梁に特有の振動成分の振幅の差分から短支間橋梁B3を簡単に検知することができ、差分処理によって短支間橋梁B3の変位成分以外をキャンセルさせて、高精度に共振橋梁を抽出することができる。
【0113】
(第4実施形態)
この第4実施形態は、第1実施形態~第3実施形態とは異なり、
図20に示すように磁気浮上式鉄道の先頭の車両
F及び後尾の車両V
Lの車体の上下加速度を加速度測定装置2によって測定して、短支間橋梁B
3の共振を検出する場合の実施形態である。
図20に示すガイドウェイWは、磁気浮上式鉄道の車両V
F,V
M,V
Lが走行する空間を構成する地上設備である。ガイドウェイWは、
図2、
図13及び
図14に示す軌道Rに相当し、ガイドウェイWの長さ方向に対して直交する平面で切断したときの断面形状が略U字状の凹部である。ガイドウェイWは、車両V
F,V
M,V
Lの支持車輪が走行する走行路W
1と、走行路W
1の両側に形成された略垂直な側壁W
2とを備えている。ガイドウェイWは、車両V
F,V
M,V
Lを支持する支持部として機能するとともに、車両V
F,V
M,V
Lが水平方向に逸脱するのを防ぐガイド部としても機能する。ガイドウェイWは、車両V
F,V
M,V
Lに推進力を与える推進コイルと、車両V
F,V
M,V
Lに浮上力及び案内力を発生させる浮上案内コイルとを支持している。
【0114】
列車Tは、ガイドウェイWに沿って移動する移動体である。列車Tは、橋梁B上を移動する磁気浮上式鉄道車両である。列車Tは、車両VF,VM,VLが磁気吸引力及び磁気反発力によって浮上し走行する。列車Tは、強磁界を発生する超電導磁石Mを備えている。加速度検出部2a,2bは、先頭の車両VLの前方と後尾の車両VLの後方とで上下加速度を検出する。加速度検出部2aは、例えば、先頭の車両VLの進行方向前側の車体床上に設置されており、加速度検出部2bは後尾の車両VLの進行方向後側の車体床上に設置されている。この第4実施形態は、第1実施形態~第3実施形態と同様の効果がある。
【0115】
(第5実施形態)
この第5実施形態は、第1実施形態~第3実施形態とは異なり、
図21に示すように磁気浮上式鉄道の先頭の車両
F及び後尾の車両V
Lからガイドウェイ変位をガイドウェイ変位測定装置2C,2Dによって測定して、短支間橋梁B
3の共振を検出する場合の実施形態である。共振検出システム1は、
図21及び
図22に示すように、ガイドウェイ変位測定装置2C,2Dなどを備えている。共振検出システム1は、ガイドウェイ変位測定装置2C,2Dの測定結果を通信装置3によって共振検出装置4に送信し、ガイドウェイ変位測定装置2C,2Dの測定結果に基づいて短支間橋梁B
3の共振を検出する。
【0116】
ガイドウェイ変位測定装置2C,2Dは、共振橋梁の検出に必要な測定データD
2を列車T側から測定する装置である。軌道変位測定装置2A,2Bは、共振橋梁の検出に必要な測定データD
2として、橋梁B上のガイドウェイ変位を測定する。ここで、ガイドウェイ変位(通路変位)とは、ガイドウェイWの設計上の位置及び基本寸法に対する現場のガイドウェイWの位置及び寸法の誤差である。ガイドウェイ変位は、軌道変位と同様に高低変位、通り変位、水準変位、平面性変位及び内面間距離変位などがあり、ガイドウェイ不整又はガイドウェイ狂いともいう。
図21に示すように、ガイドウェイ変位測定装置2Cは列車Tの先頭の車両V
Fの進行方向後側の超電導磁石Mに配置されており、ガイドウェイ変位測定装置2Dは列車Tの後尾の車両V
Lの進行方向前側の超電導磁石Mに配置されている。ガイドウェイ変位測定装置2Cは、列車Tの前方でガイドウェイ変位を測定し、ガイドウェイ変位測定装置2Dは列車Tの後方でガイドウェイ変位を測定する。ガイドウェイ変位測定装置2C,2Dは、列車TとともにガイドウェイW上を移動しながらガイドウェイ変位を測定する。ガイドウェイ変位測定装置2C,2Dは、いずれも同一構造であり、
図14~
図16に示す軌道変位測定装置2A,2Bに近似した構造である。
【0117】
図21及び
図22に示す共振検出装置4は、ガイドウェイ変位測定装置2C,2Dが測定するガイドウェイ変位データから短支間橋梁B
3の変位成分(橋梁変位)以外のガイドウェイ変位を除去するとともに、共振橋梁に特有の振動成分を抽出する。
図22に示す測定データ受信部4aは、ガイドウェイ変位測定装置2C,2Dが送信する測定データD
2を受信する。測定データ記憶部4bは、ガイドウェイ変位測定装置2C,2Dが送信する測定データD
2を記憶する。
【0118】
図22に示す振動成分抽出部4cは、ガイドウェイ変位測定装置2C,2Dの測定結果に基づいて、共振橋梁に特有の振動成分を抽出する。振動成分抽出部4cは、測定データ記憶部4bが記憶する鉛直方向のガイドウェイ変位であるガイドウェイ変位データから共振橋梁に特有の振動成分を抽出する。振動振幅推定部4dは、先頭の車両V
Fで測定される共振橋梁に特有の振動成分の振幅をガイドウェイ変位測定装置2Cの測定結果に基づいて推定するとともに、後尾の車両V
Lで測定される共振橋梁に特有の振動成分の振幅をガイドウェイ変位測定装置2Dの測定結果に基づいて推定する。
【0119】
共振検出部4fは、ガイドウェイ変位測定装置2C,2Dの測定結果に基づいて、短支間橋梁B3の共振を検出する。共振検出部4fは、先頭の車両VFでガイドウェイ変位を測定するガイドウェイ変位測定装置2Cの測定結果と、後尾の車両VLでガイドウェイ変位を測定するガイドウェイ変位測定装置2Dの測定結果とに基づいて、短支間橋梁B3の共振を検出する。
【0120】
図11に示す共振検出方法#100では、
図21及び
図22に示すガイドウェイ変位測定装置2C,2Dが測定するガイドウェイ変位データから短支間橋梁B
3の変位成分以外のガイドウェイ変位を除去するとともに、共振橋梁に特有の振動成分を抽出する。振動成分抽出工程#110では、ガイドウェイ変位測定装置2C,2Dの測定結果に基づいて、共振橋梁に特有の振動成分を抽出する。振動成分抽出工程#110では、ガイドウェイ変位測定装置2Cが先頭の車両V
Fで測定するガイドウェイ変位と、ガイドウェイ変位測定装置2Dが後尾の車両V
Lで測定するガイドウェイ変位とから、短支間橋梁B
3の変位成分以外の変位成分がフィルタ処理されることによって除去される。共振検出工程#140では、ガイドウェイ変位測定装置2C,2Dの測定結果に基づいて、短支間橋梁B
3の共振を検出する。共振検出工程#140では、先頭の車両V
Fでガイドウェイ変位を測定するガイドウェイ変位測定装置2Cの測定結果と、後尾の車両V
Lでガイドウェイ変位を測定するガイドウェイ変位測定装置2Dの測定結果とに基づいて、短支間橋梁B
3の共振を検出する。この第5実施形態には、第1実施形態~第4実施形態と同様の効果がある。
【0121】
(他の実施形態)
この発明は、以上説明した実施形態に限定するものではなく、以下に記載するように種々の変形又は変更が可能であり、これらもこの発明の範囲内である。
(1) この実施形態では、橋梁Bがラーメン高架橋である場合を例に挙げて説明したが、橋梁Bが桁式高架橋である場合についても、この発明を適用することができる。また、この実施形態では、短支間橋梁B3の3次共振(振動モードが曲げ3次モードの共振)を共振検出部4fが検出する場合を例に挙げて説明したが、短支間橋梁B3のN次共振(振動モードが曲げN次モードの共振(Nは2以上の整数))のを共振検出部4fが検出する場合についても、この発明を適用することができる。例えば、短支間橋梁B3の2次共振(振動モードが2次曲げモードの共振)又は短支間橋梁B3の4次以上の共振(振動モードが4次曲げモード以上の共振)を共振検出部4fによって検出することもできる。この場合には、短支間橋梁B3の動的応答成分zb,d(xp)の波形から、車両長LCの1/N(Nは2以上の整数)を主成分とする振動を、共振橋梁に特有の振動成分sin(2Nπx/Lc+θres) (Nは2以上の整数)として振動成分抽出部4cが抽出する。さらに、この実施形態では、共振橋梁の検出に必要な測定データ(車両計測データ)D1,D2として、車両VF,VL側で測定される車体加速度、台車加速度又は軌道変位に基づいて、短支間橋梁B3の共振を検出する場合を例に挙げて説明したが、これらの測定データD1,D2以外の測定データに基づいて、短支間橋梁B3の共振を検出する場合についても、この発明を適用することができる。
【0122】
(2) この実施形態では、短支間橋梁B3がコンクリート橋である場合を例に挙げて説明したが、短支間橋梁B3が鋼橋である場合についても、この発明を適用することができる。また、この実施形態では、列車Tの前方及び後方に加速度測定装置2、軌道変位測定装置2A,2B及びガイドウェイ変位測定装置2C,2Dを配置する場合を例に挙げて説明したが、加速度測定装置2、軌道変位測定装置2A,2B及びガイドウェイ変位測定装置2C,2Dの配置箇所を限定するものではない。例えば、加速度測定装置2、軌道変位測定装置2A,2B及びガイドウェイ変位測定装置2C,2Dを列車Tの編成中央部Oから前後に等距離離れた任意の位置に配置する場合についても、この発明を適用することができる。
【0123】
(3) この実施形態では、列車Tが12両編成である場合を例に挙げて説明したが、列車Tが8両、10両又は16両編成などである場合についても、この発明を適用することができる。また、この実施形態では、列車Tの車両長Lcが25mであり、短支間橋梁B3の支間長Lbが10mである場合を例に挙げて説明したが、この車両長Lc及び支間長Lbに限定するものではない。例えば、車両長Lcが20mであり、支間長Lbが10mである場合についても、この発明を適用することができる。
【0124】
(4) この第1実施形態では、車両VFの進行方向前側及び車両VLの進行方向後側の車体に加速度測定装置2を配置する場合を例に挙げて説明したが、車両VFの進行方向後側及び車両VLの進行方向前側の車体に加速度測定装置2を配置する場合についても、この発明を適用することができる。同様に、この第2実施形態及び第3実施形態では、車両VFの進行方向前側の台車T1及び車両VLの進行方向後側の台車T2に加速度測定装置2又は軌道変位測定装置2A,2Bを配置する場合を例に挙げて説明したが、車両VFの進行方向後側の台車T2及び車両VLの進行方向前側の台車T1に加速度測定装置2又は軌道変位測定装置2A,2Bを配置する場合についても、この発明を適用することができる。
【0125】
(5) この第1実施形態及び第2実施形態では、起点から終点まで上下加速度を連続して加速度測定装置2が測定する場合を例に挙げて説明したが、橋梁B上の区間内のみで上下加速度を加速度測定装置2が測定する場合についても、この発明を適用することができる。同様に、この第3実施形態では、起点から終点まで軌道変位を連続して軌道変位測定装置2A,2Bが測定する場合を例に挙げて説明したが、橋梁B上の区間内のみで軌道変位を軌道変位測定装置2A,2Bが測定する場合についても、この発明を適用することができる。さらに、この第1実施形態及び第2実施形態では、軌道変位測定装置2A~2Cが慣性正矢測定装置である場合を例に挙げて説明したが、慣性正矢測定装置以外の測定装置についても、この発明を適用することができる。
【0126】
(6) 第1実施形態~第3実施形態では、列車Tが新幹線を走行する新幹線車両である場合を例に挙げて説明したが、在来線を走行する在来線車両、又は新幹線と在来線とを相互に走行可能な新在直通運転用の車両などについても、この発明を適用することができる。また、この第1実施形態~第3実施形態では、列車Tが営業列車である場合を例に挙げて説明したが、車両、軌道又は架線を試験及び調査することを目的として組成された検査列車である場合についても、この発明を適用することができる。例えば、地上設備の状態を検測する機能を有する電気軌道総合試験車などの軌道検測車についても、この発明を適用することができる。
【0127】
(7) この第1実施形態~第3実施形態では、列車Tの各車両VF,VM,VLの車体を二つの台車T1,T2によって支持する場合を例に挙げて説明したが、隣接する車両VF,VM,VL間を連接台車によって支持する場合についても、この発明を適用することができる。さらに、この第1実施形態~第3実施形態では、速度発電機の出力信号とATS車上子の出力信号とに基づいて列車Tの移動距離を位置検出部2d及び走行距離演算部2nが演算する場合を例に挙げて説明したが、このような演算方法にこの発明を限定するものではない。例えば、GPS(Global Positioning System(全地球測位システム))又は自律航行装置(ジャイロ)を併用して列車Tの走行距離を演算する場合についても、この発明を適用することができる。
【0128】
(8) この第5実施形態では、車両VFの進行方向後側の超電導磁石Mにガイドウェイ変位測定装置2Cを配置し、車両VLの進行方向前側の超電導磁石Mにガイドウェイ変位測定装置2Dを配置する場合を例に挙げて説明したが、車両VFの進行方向前側の超電導磁石Mにガイドウェイ変位測定装置2Cを配置し、車両VLの進行方向後側の超電導磁石Mにガイドウェイ変位測定装置2Dを配置する場合についても、この発明を適用することができる。また、この第5実施形態では、車両VF,VLのガイドウェイ変位測定装置2C,2Dによってガイドウェイ変位を測定する場合を例に挙げて説明したが、ガイドウェイWに沿って走行しながらガイドウェイ変位を測定するガイドウェイ検測車のガイドウェイ変位測定装置2C,2Dの測定結果に基づいて、短支間橋梁B3の共振を検出する場合についても、この発明を適用することができる。
【符号の説明】
【0129】
1 共振検出システム
2 加速度測定装置
2A,2B 軌道変位測定装置(通路変位測定装置)
2C,2D ガイドウェイ変位測定装置(通路変位測定装置)
2a,2b 加速度検出部
2h ジャイロ
2i 加速度検出部
2j,2k レーザ変位計
3 通信装置
4 共振検出装置
4c 振動成分抽出部
4d 振動振幅推定部
4e 差分演算部
4f 共振検出部
R 軌道(通路)
R1,R2 レール
B 橋梁
B3 短支間橋梁
T 列車(移動体)
VF 車両(先頭車両(前方))
VM 車両(中間車両)
VL 車両(後尾車両(後方))
T1 台車(第1台車)
T2 台車(第2台車)
D1,D2 測定データ
D11 先頭車両加速度データ
D12 後尾車両加速度データ
D21~D25 軌道変位データ
D26 走行距離データ
RDI 共振橋梁検出指標
W ガイドウェイ(通路)
W1 走行路
W2 側壁